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CS 2SD3. Sample solutions to the assignment 3. 

Total of this assignment is 123 pts. Each assignment is worth 10% of total. Most of solutions are 

not unique. 

 
If you think your solution has been marked wrongly, write a short memo stating where marking in wrong 

and what you think is right, and resubmit to me during class, office hours, or just slip under the door to my 

office. The deadline for a complaint is 2 weeks after the assignment is marked and returned. 

 

1.[10] Consider the Coloured Petri Net solution to Dining Philosophers with a butler, presented 

as a sample solution to Question 5 of Assignment 2. Prove that this solution is deadlock-

free by mimicking the proof of Proposition from page 33 of Lecture Notes 12. 

 

Solution: 

 

colour PH = with ph1 | ph2 | ph3 | ph4 | ph 

colour FORK = with f1 | f2 | f3 | f4 | f5 

colour TOKENS = with t 

var x : PH 

var i: TOKENS 

fun LF x = case of ph1 ⇒ f2 | ph2 ⇒ f3 | ph3 ⇒ f4 | ph4 ⇒ f5 | ph5 ⇒ f1  

fun RF x = case of ph1 ⇒ f1 | ph2 ⇒ f2 | ph3 ⇒ f3 | ph4 ⇒ f4 | ph5 ⇒ f5  
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Interpretation of places: 

p1 - thinking room 

 

p2 - philosophers without forks in the dining room 

p3 - philosophers with left forks in the dining room 

p4 - philosophers that are eating 

p5 - philosophers that finished eating and still with right forks  in the dining room 

p6 - unused forks 

p7 - butler or counter 

 

Solution to the Question 1: 

  

We need to find some appropriate invariants, for example: 

 

[inv1] m(p1)+m(p2)+m(p3)+m(p4)+m(p5) = ph1+ph2+ph3+ph4+ph5 

 

[inv2] |m(p7)| +|m(p2)| +|m(p3)| +|m(p4)| +|m(p5)| = 4 

 

[inv3] LF(m(p4))+RF(m(p4)) + m(p6) = f1+ f2+ f3+ f4+ f4 + f5 

 

Now consider two cases: 

 

(a) m(p4)+m(p5) ≠ 0. Then either return_left_fork or 

returen_right_fork_and_exit_dinig_room can be fired. 

(b) m(p4)+m(p5) = 0. Then from invariant [inv3] we have : 

  LF(m(p3)) + m(p6) = f1+ f2+ f3+ f4+ f4 +f5 

 and from invariant [inv1]: 

  m(p1)+m(p2)+m(p3) = ph1+ph2+ph3+ph4+ph5. 

 

From the definitions of LF(x) and RF(x) We have LF(x) ≠ RF(x) for all x = ph1, ph2, ph3, ph4, 

ph5. 

Hence if m(p3) ≠ 0 then take_right_fork can be fired. 

Similarly if  m(p2) ≠ 0 then take_left_fork can be fired. 

If m(p1) ≠ ph1+ph2+ph3+ph4+ph5, then either m(p3) ≠ 0 or m(p2) ≠ 0. 

If m(p1) = ph1+ph2+ph3+ph4+ph5 then m(p2) = 0, and from invariant [inv2] |m(p7)|=4, so 

enter_dining_room can be fired. 

 

This is not the only solution. 
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2.[15] A self-service gas station has a number of pumps for delivering gas to customers for their 

vehicles. Customers are expected to prepay a cashier for their gas. The cashier activates 

the pump to deliver gas.  

 a.[5] Provide a model for the gas station with N customers and M pumps. Include in the 

model a range for different amounts of payment and that customer is not satisfied 

(ERROR) if incorrect amount of gas is delivered. 

 

 b.[5] Specify and check (with N=2, M=3) a safety property FIFO (First In First Out), 

which ensures that customers are served in the order in which they pay. 

 

 c.[5]  Provide a simple Java implementation for the gas station system with N=2, M=3. 

 
a.  
const N = 3   //number of customers 

const M = 2   //number of pumps 

 

range C = 1..N 

range P = 1..M 

range A = 1..2   //Amount of money or Gas 

 

CUSTOMER = (prepay[a:A]->gas[x:A]-> 

    if (x==a) then CUSTOMER else ERROR). 

 

CASHIER      = (customer[c:C].prepay[x:A]->start[P][c][x]->CASHIER). 

 

PUMP         = (start[c:C][x:A] -> gas[c][x]->PUMP). 

 

DELIVER = (gas[P][c:C][x:A]->customer[c].gas[x]->DELIVER). 

 

||STATION = (CASHIER || pump[1..M]:PUMP || DELIVER) 

            /{pump[i:1..M].start/start[i], 

              pump[i:1..M].gas/gas[i]}. 

 

||GASSTATION =  (customer[1..N]:CUSTOMER ||STATION). 

 

b. 
range T = 1..2  

property 

   FIFO          =  (customer[i:T].prepay[A] -> PAID[i]), 

   PAID[i:T]     =  (customer[i].gas[A]      -> FIFO  

                    |customer[j:T].prepay[A] -> PAID[i][j]), 

   PAID[i:T][j:T]=  (customer[i].gas[A]      -> PAID[j]). 

 

||CHECK_FIFO = (GASSTATION || FIFO). 

 

This property is expected to be violated 
 

c. Java solutions are not provided. 
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3.[15] The cheese counter in a supermarket is continuously mobbed by hungry customers. There 

are two sorts of customer: bold customers who push their way to the front of the mob and 

demand services; and meek customers who wait patiently for service. Request for service 

is denoted by the action getcheese and service completion is signalled by the action 

cheese.  

 

(a)[5] Assuming that there is always cheese available, model the system with FSP for a 

fixed population of two bold customers and two meek customers.  

 

(b)[5] Assuming that there is always cheese available, model the system with Petri nets 

(any kind). 

 

 (c)[5] For the FSP model, show that meek customers may never be served when their 

requests to get cheese have lower priority than those of bold customers. 

 

Solutions: 

a.[5] There are many simple solutions. The one is shown below 

set Bold = {bold[1..2]} 

set Meek = {meek[1..2]} 

set Customers = {Bold,Meek} 

 

CUSTOMER = (getcheese->CUSTOMER). 

COUNTER =  (getcheese->COUNTER). 

 

||CHEESE_COUNTER = (Customers:CUSTOMER || Customers::COUNTER) 

 

Another solution: 
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b.[5] Two simple solutions in terms of Place/Transition nets. 

 
 

c.[5] Adding priorities results in: 

||CHEESE_COUNTER =  

  (Customers:CUSTOMER || Customers::COUNTER)>>{Meek.getcheese}. 

If we use 

progress BOLD = {Bold.getcheese} 

progress MEEK = {Meek.getcheese} 

clearly Mees.getcheese get starved, as Bold.getcheese will always get executed. The same with 

the second solution. A choice between meek and bold will always be solved in favour of bold. 

Any argument of this kind should be accepted. 
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4.[10] To restore order, the management installs a ticket machine that issues tickets to 

customers. Tickets are numbered in the range 1..MT. When ticket MT has been issued, 

the next ticket to be issued is ticket number 1, i.e. the management install a new ticket 

roll. The cheese counter has a display that indicates the ticket number of the customer 

currently being served. The customer with the ticket with the same number as the counter 

display then goes to the counter and is served. When the service is finished, the number is 

incremented (modulo MT). Model this system (with FSP) and show that, even when their 

requests have low priority, meek customers are now served. 

 

Solution: 

 
 

set Bold = {bold[1..2]} 

set Meek = {meek[1..2]} 

set Customers = {Bold,Meek} 

 

const MT = 4  //maximum ticket number 

range T = 1..MT 

 

CUSTOMER = (ticket[t:T]->getcheese[t]->CUSTOMER). 

 

TICKET = TICKET[1], 

TICKET[t:T] = (ticket[t]->TICKET[t%MT+1]). 

 

COUNTER = COUNTER[1], 

COUNTER[t:T] = (getcheese[t]->COUNTER[t%MT+1]). 

 

||CHEESE_COUNTER =  

  (Customers:CUSTOMER || Customers::TICKET || 

Customers::COUNTER)>>{Meek.getcheese[T]}. 

 

progress BOLD = {Bold.getcheese[T]} 

progress MEEK = {Meek.getcheese[T]} 
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5.[10] Translate the model of the cheese counter from Question 4 into a Java program. Each 

customer should be implemented by a dynamically created thread that obtains a ticket, is 

served cheese and then terminates. 

 

Solution: 

 
/* -- Java implementation  

class Ticket { 

 const MT = 1000; 

 private int next = 0; 

 

 public synchronized int ticket() { 

  next = next%MT + 1; 

  return next; 

 } 

} 

 

class Counter { 

 const MT = 1000; 

 private int serve = 1; 

 

 public synchronized getcheese(int ticket) 

   throws Interruptedexception { 

  while (ticket!=serve) wait(); 

  serve = serve%MT + 1; 

  notifyAll(); 

 } 

} 

*/ 
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6.[10] Design (with FSP) a message-passing protocol which allows a producer process 

communicating with a consumer process by asynchronous messaging to send only a 

bounded number of messages, N, before it is blocked waiting for the consumer to receive 

a message. Construct a model which can be used to verify that your protocol prevents 

queue overflow if ports are correctly dimensioned. 

 

 

Solution: 

 
// the idea here is to send a set of N tokens to 

// the producer. before sending the producer must get a token 

// the consumer returns tokens in response to message receipt 

 

// Asynchronous message passing port  

//(turn off "Display warning messages") 

 

const N = 3 

set   M = {msg}  

set   S = {[M],[M][M]} 

 

PORT            //empty state, only send permitted 

  = (send[x:M]->PORT[x]),   

PORT[h:M]       //one message queued to port    

  = (send[x:M]->PORT[x][h]  

    |receive[h]->PORT 

    ),    

PORT[t:S][h:M]  //two or more  messages queued to port  

   = (send[x:M]->PORT[x][t][h] 

     |receive[h]->PORT[t] 

     ). 

 

PRODUCER = (empty.receive.token -> dest.send.msg -> PRODUCER). 

 

CONSUMER = SENDBUF[N], 

SENDBUF[i:1..N] = (empty.send.token -> if (i==1) then CONTINUE else 

SENDBUF[i-1]), 

CONTINUE = (dest.receive.msg -> empty.send.token -> CONTINUE). 

 

||PRODCONS = (PRODUCER || CONSUMER || empty:PORT || dest: PORT) 

             /{empty.[i:{send,receive}].token/empty[i].msg}. 
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7.[38] This question deals with Model Checking. 

 

(a) Consider the system M defined below: 

 

 
 

 

  

 

 

Determine whether M, s0 |= φ and M, s2 |= φ hold and justify your answer, where φ is the 

LTL or CTL formula: 

 (i)[2] ¬ p ⇒ r 

 (ii)[2] ¬ EG r 

 (iii)[2] E( t U q) 

 (iv)[2] F q 

 

 b.[6] Express in LTL and CTL: ‘Event p precedes s and t on all computational paths’ 

(You may find it easier to code the negation of that specification first). 

 

 c.[6] Express in LTL and CTL: ‘Between the events q and r, p is never true but t is 

always true’. 

  

 d.[6] Express in LTL and CTL: ‘Φ is true infinitely often along every paths starting at 

s’. What about LTL for this statement? 

 

 e.[6] Express in LTL and CTL: ‘Whenever p is followed by q (after some finite amount 

of steps), then the system enters an ‘interval’ in which no r occurs until t’. 

 

 f.[6] Express in LTL and CTL: ‘Between the events q and r, p is never true’. 
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a. (i)  (¬ p ⇒ r) is equivalent to ( ¬(¬ p) ∨ r) ≡  p ∨ r. We have L(s0)={r} so M, s0 |= φ. 

We have L(s2)={p,q}, so  M, s0 |= φ.  

 

 (ii) We have r ∈ L(s0) and r ∈ L(s1). Moreover there is an infinite path s0 → s1 → s1 

→ s1 → ..., so M,s0 |= EG r. Therefore, we infer M,s0 |≠ ¬ EG r.  

  Since r ∉ L(s2)={p,q}, so  M, s2 |= ¬ EG r as future includes present.   

 

 (iii) See LN 15, page 68. Since t ∉ L(s0) and t ∉ L(s2), we have M,s0 |≠ E( t U q), and  

  M,s2 |≠ E( t U q). 

 

 (vi) Since q ∈ L(s2) and there are infinite paths s0 → s2 → ..., we have M, s0 |= F q. 

And clearly since q ∈ L(s2) then s0 |= F q (future includes present again).  

 

 

b. Statement: ‘Event p precedes s and t on all computational paths’. 

 Negation: ‘There exists a path where p does not precede s or does not precede t’. 

 

Ambiguities: Is the case when p never happens allowed? We assume it is not (which means ‘yes’ 

for negation). Does ‘precede’ allows p and s (or p and t) be in the same state? We assume it is 

not (which means ‘yes’ for negation). 

   

 LTL: G(Fp ∧ (p ⇒ Fs) ∧ (p ⇒ Ft)) 

 CTL: AG(AFp ∧ AG(p ⇒ AFs) ∧ AG(p ⇒ AFt)) 

 

c. Statement: ‘Between the events q and r, p is never true but t is always true’ 

Ambiguities: Is the case when r or q never happens allowed? We assume that it is not. 

What exactly “between” means? We assume “between” is “closed interval” so p is false in the 

state that holds q and in the state that holds r. 

 

 LTL:   G(F q  ∧ F r ∧ (q ⇒ (¬ p U r) ∧ (q ⇒ (Ft U r))) 

 CTL:    AG(AF q ∧ AF r) ∧ AG( q ⇒ A(¬ p U r)) 

 

d. CTL:  s |= AG(AF Φ)  

 LTL: s |= G( F Φ)  

 

e. The process of translating informal requirements into formal specifications is subject to 

various pitfalls. On eof them is simply ambiguity. For example it is unclear whether 

“after some finite steps” means “at least one, but finitely many”, or whether zero steps 

are allowed as well. It may also be debatable what “then” exactly means in “... then the 

system enters...”. We chose to solve this problem for the case when zero steps are not 

admissible, mostly since “followed b” suggest a real state transition to tale place. The 

LTL formula is the following 

    G(p ⇒ XG( ¬ q  ∨ ¬ r U t)), 
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while an equivalent CTL formula is: 

 AG( p ⇒ AX AG( ¬ q  ∨ A ¬ r U t ])), 

 

It says: At any state, if p is true, then at any state which one can reach with at least one state 

transition from here, either q is false, or r is false until t becomes true (for all 

continuations of the computation path). This is evidently the property we intended to 

model. Various other “equivalent” solutions can be given. 

 

f. Express in LTL and CTL: ‘Between the events q and r, p is never true’. 

 

 Ambiguities: Is the case when r or q never happens allowed? We assume that it is not. 

What exactly “between” means? We assume “between” is “closed interval” so p is false in the 

state that holds q and in the state that holds r. 

 

 LTL:   G(F q ∧ F r ∧ ( ¬ q ∨ (¬ p U r))  

 CTL:    AG(AF q ∧ AF r) ∧ AG( q ⇒ A(¬ p U r)) 

 

 

 

 

8.[15] Consider Readers-Writers as described in the first part of LN12 and Chapter 7 of the 

textbook. Take the case of two readers and two writers and provide a model in LTL or 

CTL (your choice). You have to provide a state machine that defines the model as figures 

on pages 30 and 33 of LN15 for Mutual Exclusion, appropriate atomic predicates as n1, 

n2, t1, t2, c1, c2 for Mutual Exclusion, and appropriate safety and liveness properties. 

Solution. 

 

Solutions are structurally similar to Mutual Exclusion that was considered in class. Assume the 

following atomic predicates that characterise properties of processes: 

 lpri - local processing of reader i, i=1,2, 

 lpwi - local processing of writer i, i=1,2, 

 tri - reader i, i=1,2, requests reading, 

  twi - writer i, i=1,2, requests writing, 

 ri - reader i, i=1,2, is reading, 

 wi - writer i, i=1,2, is writing, 

 

Note that the solution restricted to writers only should be the same as Mutual Exclusion 

considered in class! Hence to avoid similar problems we have to introduce additional boolean 

variables (or atomic predicates): turn=w1, turn=w2 and turn=r, to indicate that worlds where 

writer 1 will write (turn=w1), writer 2 will write (turn=w2), or readers (one or both) will read 

(turn=r). 

  

Now states can be identified by atomic predicates of the form: 
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   (str1, str2,stw1,stw2, turn)  

 

where:  str1 ∈ {lpr1 , tr1 , r1 }, str2 ∈ {lpr2 , tr2 , r2 }, - status of readers; 

 stw1 ∈ {lpw1 , tw1 , w1 }, str2 ∈ {lpw2 , tw2 , w2 }, - status of readers; 

 turn ∈ {turn=w1, turn=w2,turn=r}, - status of turns. 

 

Life of a reader is a simple cycle: (lpr1 , *,*,*,*) → (tr1 , *,*,*,*) → (r1 , *,*,*,*) → back to 

beginning, 

similarly for writers: (*,*,lpw1 , *) → (*,*,tw1 , *) → (*,*,w1 , *) → back to beginning. 

 

Not all combinations of atomic predicates are allowed, for example 

 stw1 = w1   ⇒  str1 ≠ r1 ∧ str2 ≠ r2   ∧ stw2 ≠ w2 , or 

 str1 = r1   ⇒  stw1 ≠ w1 ∧ stw2 ≠ w2  

 

Properties are also very similar to these for Mutual Exclusion: 

 

Safety in LTL: G (w1  ⇒  ¬ (w2 ∨ r1 ∨ r2)), or in CTL: AG(w1  ⇒  ¬ (w2 ∨ r1 ∨ r2)) 

Liveness in LTL: G( tr1 ⇒ F r1 ), or in CTL: AG( tr1 ⇒ AF r1)  

 

The remaining analysis is also similar to Mutual Exclusion from the book. 


