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Abstract By refining a variant of the Klee–Minty example that forces the cen-
tral path to visit all the vertices of the Klee–Minty n-cube, we exhibit a nearly
worst-case example for path-following interior point methods. Namely, while
the theoretical iteration-complexity upper bound is O(2nn

5
2 ), we prove that

solving this n-dimensional linear optimization problem requires at least 2n − 1
iterations.

Keywords Linear programming · Interior point method · Worst-case
iteration-complexity
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1 Introduction

While the simplex method, introduced by Dantzig [1], works very well in practice
for linear optimization problems, in 1972 Klee and Minty [6] gave an exam-
ple for which the simplex method takes an exponential number of iterations.
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More precisely, they considered a maximization problem over an n-dimensional
“squashed” cube and proved that a variant of the simplex method visits all its 2n

vertices. Thus, the time complexity is not polynomial for the worst case, as 2n −1
iterations are necessary for this n-dimensional linear optimization problem. The
pivot rule used in the Klee–Minty example was the most negative reduced cost
but variants of the Klee–Minty n-cube allow to prove exponential running time
for most pivot rules; see [11] and the references therein. The Klee–Minty worst-
case example partially stimulated the search for a polynomial algorithm and,
in 1979, Khachiyan’s [5] ellipsoid method proved that linear programming is
indeed polynomially solvable. In 1984, Karmarkar [4] proposed a more effi-
cient polynomial algorithm that sparked the research on polynomial interior
point methods. In short, while the simplex method goes along the edges of the
polyhedron corresponding to the feasible region, interior point methods pass
through the interior of this polyhedron. Starting at the analytic center, most inte-
rior point methods follow the so-called central path and converge to the analytic
center of the optimal face; see e.g. [7,9,10,14,15]. In 2004, Deza et al. [2] showed
that, by carefully adding an exponential number of redundant constraints to the
Klee–Minty n-cube, the central path can be severely distorted. Specifically, they
provided an example for which path-following interior point methods have to
take 2n − 2 sharp turns as the central path passes within an arbitrarily small
neighborhood of the corresponding vertices of the Klee–Minty cube before
converging to the optimal solution. This example yields a theoretical lower
bound for the number of iterations needed for path-following interior point
methods: the number of iterations is at least the number of sharp turns; that is,
the iteration-complexity lower bound is �(2n). On the other hand, the theoret-
ical iteration-complexity upper bound is O(

√
NL) where N and L respectively

denote the number of constraints and the bit-length of the input-data. The
iteration-complexity upper bound for the highly redundant Klee–Minty n-cube
of [2] is O(23nnL) = O(29nn4), as N = O(26nn2) and L = O(26nn3) for this

example. Therefore, these 2n − 1 sharp turns yield an �( 6
√

N
ln2 N

) iteration-com-
plexity lower bound. In this paper we show that a refined problem with the same
�(2n) iteration-complexity lower bound exhibits a nearly worst-case iteration-
complexity as the complexity upper bound is O(2nn

5
2 ). In other words, this new

example, with N = O(22nn3), essentially closes the iteration-complexity gap

with an �(
√

N
ln3 N

) lower bound and an O(
√

N ln N) upper bound.

2 Notations and the main results

We consider the following Klee–Minty variant where ε is a small positive factor
by which the unit cube [0, 1]n is squashed.

min xn,

subject to 0 ≤ x1 ≤ 1,

ε xk−1 ≤ xk ≤ 1 − ε xk−1 for k = 2, . . . , n.
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The above minimization problem has 2n constraints, n variables and the feasible
region is an n-dimensional cube denoted by C. Some variants of the simplex
method take 2n − 1 iterations to solve this problem as they visit all the ver-
tices ordered by the decreasing value of the last coordinate xn starting from
v{n} = (0, . . . , 0, 1) till the optimal value x∗

n = 0 is reached at the origin v∅.
While adding a set h of redundant inequalities does not change the feasible

region, the analytic center χh and the central path are affected by the addi-
tion of redundant constraints. We consider redundant inequalities induced by
hyperplanes parallel to the n facets of C containing the origin. The constraint
parallel to the facet H1 : x1 = 0 is added h1 times at a distance d1 and the
constraint parallel to the facet Hk : xk = εxk−1 is added hk times at a distance
dk for k = 2, . . . , n. The set h is denoted by the integer-vector h = (h1, . . . , hn),
d = (d1, . . . , dn), and the redundant linear optimization problem is defined by

min xn

subject to 0 ≤ x1 ≤ 1

ε xk−1 ≤ xk ≤ 1 − ε xk−1 for k = 2, . . . , n

0 ≤ d1 + x1 repeated h1 times

ε x1 ≤ d2 + x2 repeated h2 times
...

...

ε xn−1 ≤ dn + xn repeated hn times.

By analogy with the unit cube [0, 1]n, we denote the vertices of the Klee–Minty
cube C by using a subset S of {1, . . . , n}, see Fig. 1. For S ⊂ {1, . . . , n}, a vertex
vS of C is defined by

vS
1 =

{
1, if 1 ∈ S
0, otherwise

vS
k =

{
1 − εvS

k−1, if k ∈ S
εvS

k−1, otherwise
k = 2, . . . , n.

The δ-neighborhood Nδ(vS) of a vertex vS is defined, with the convention x0 = 0,
by

Nδ(vS) =
{

x ∈ C :
{

1 − xk − εxk−1 ≤ εk−1δ, if k ∈ S
xk − εxk−1 ≤ εk−1δ, otherwise

k = 1, . . . , n
}

.

In this paper we focus on the following problem Cn
δ defined by

ε = n
2(n+1)

,

d = n(2n+4, . . . , 2n−k+5, . . . , 25),

h =
(
� 22n+8(n+1)n

δnn−1 − 2n+7(n+1)
δ

�, . . . , � 22n+8(n+1)n+k−1

δnn+k−2
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Fig. 1 The δ-neighborhoods
of the four vertices of the
Klee–Minty 2-cube

v∅

v{2}

v{1}

v{1,2}

− 2n+k+6(n+1)2k−1

δn2k−2 �, . . . , �3 22n+6(n+1)2n−1

δn2n−2 �
)

,

where 0 < δ ≤ 1
4(n+1)

.

Note that we have: ε + δ < 1
2 ; that is, the δ-neighborhoods of the 2n vertices

are non-overlapping, and that h is, up to a floor operation, linearly dependent
on δ−1. Proposition 2.1 states that, for Cn

δ , the central path takes at least 2n − 2
turns before converging to the origin as it passes through the δ-neighborhood
of all the 2n vertices of the Klee-Minty n-cube; see Sect. 3.2 for the proof. Note
that the proof given in Sect. 3.2 yields a slightly stronger result than Propo-
sition 2.1: In addition to pass through the δ-neighborhood of all the vertices,
the central path is bent along the edge-path followed by the simplex method.
We set δ = 1

4(n+1)
in Propositions 2.3 and 2.4 in order to exhibit the sharpest

bounds. The corresponding linear optimization problem Cn
1/4(n+1)

depends only
on the dimension n.

Proposition 2.1 The central path P of Cn
δ intersects the δ-neighborhood of each

vertex of the n-cube.

Since the number of iterations required by path-following interior point meth-
ods is at least the number of sharp turns, Proposition 2.1 yields a theoretical
lower bound for the iteration-complexity for solving this n-dimensional linear
optimization problem.

Corollary 2.2 For Cn
δ , the iteration-complexity lower bound of path-following

interior point methods is �(2n).

Since the theoretical iteration-complexity upper bound for path-following

interior point methods is O
(√

NL
)

, where N and L respectively denote the

number of constraints and the bit-length of the input-data, we have:

Proposition 2.3 For Cn
1/4(n+1)

, the iteration-complexity upper bound of path-

following interior point methods is O(2nn
3
2 L); that is, O(23nn

11
2 ).
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Proof We have N = 2n+∑n
k=1 hk = 2n+∑n

k=1 n2
(

22n+10
(

n+1
n

)n+k −2n+k+8

(
n+1

n

)2k
)

and, since
∑n

k=1

(
n+1

n

)n+k ≤ ne2, we have N = O(22nn3) and L ≤
N ln d1 = O(22nn4). 	


Noticing that the only two vertices with last coordinates smaller than or equal
to εn−1 are v∅ and v{1}, with v∅

n = 0 and v{1}
n = εn−1, the stopping criterion can be

replaced by: stopping duality gap smaller than εn with the corresponding central
path parameter at the stopping point being µ∗ = εn

N . Additionally, one can check
that by setting the central path parameter to µ0 = 1, we obtain a starting point
which belongs to the interior of the δ-neighborhood of the highest vertex v{n},
see Sect. 3.3 for a detailed proof. In other words, a path-following algorithm
using a standard ε-precision as stopping criterion can stop when the duality
gap is smaller than εn as the optimal vertex is identified, see [9]. The corre-
sponding iteration-complexity bound O(

√
N log N

ε
) yields, for our construction,

a precision-independent iteration-complexity O(
√

N ln Nµ0

Nµ∗ ) = O(
√

Nn) and
Proposition 2.3 can therefore be strengthened to:

Proposition 2.4 For Cn
1/4(n+1)

, the iteration-complexity upper bound of path-

following interior point methods is O(2nn
5
2 ).

Remark 2.5

(i) For Cn
1/4(n+1)

, by Corollary 2.2 and Proposition 2.4, the order of the iter-
ation-complexity of path-following interior point methods is between 2n

and 2nn
5
2 or, equivalently, between

√
N

ln3 N
and

√
N ln N.

(ii) The k-th coordinate of the vector d corresponds to the scalar d defined
in [2] for dimension n − k + 3.

(iii) Other settings for d and h ensuring that the central path visits all the
vertices of the Klee–Minty n-cube are possible. For example, d can be set
to (1.1, 22) in dimension 2.

(iv) Our results apply to path-following interior point methods but not to
other interior point methods such as Karmarkar’s original projective
algorithm [4].

Remark 2.6

(i) Megiddo and Schub [8] proved, for affine scaling trajectories, a result
with a similar flavor as our result for the central path, and noted that
their approach does not extend to projective scaling. They considered
the non-redundant Klee–Minty cube.

(ii) Todd and Ye [12] gave an �(
3√N) iteration-complexity lower bound

between two updates of the central path parameter µ.
(iii) Vavasis and Ye [13] provided an O(N2) upper bound for the number of

approximately straight segments of the central path.
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(iv) A referee pointed out that a knapsack problem with proper objective
function yields an n-dimensional example with n + 1 constraints and n
sharp turns.

(v) Deza et al. [3] provided a non-redundant construction with N constraints
and N − 4 sharp turns.

3 Proofs of Proposition 2.1 and Proposition 2.4

3.1 Preliminary lemmas

Lemma 3.1 With b= 4
δ
(1, . . . , 1), ε= n

2(n+1)
, d=n(2n+4, . . . , 2n−k+5, . . . , 25), h̃ =(

22n+8(n+1)n

δnn−1 − 2n+7(n+1)
δ

, . . . , 22n+8(n+1)n+k−1

δnn+k−2 − 2n+k+6(n+1)2k−1

δn2k−2 , . . . , 3 22n+6(n+1)2n−1

δn2n−2

)

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1+1

−ε
d2

0 0 . . . 0 0
−1
d1

2ε
d2+1

−ε2

d3
0 . . . 0 0

...
...

. . .
. . .

...
...

...
−1
d1

0 0 2εk−1

dk+1
−εk

dk+1
0 0

...
...

...
...

. . .
. . . 0

−1
d1

0 0 0 . . . 2εn−2

dn−1+1
−εn−1

dn
−1
d1

0 0 0 . . . 0 2εn−1

dn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have Ah̃ ≥ 3b
2 .

Proof As ε = n
2(n+1)

and d = n(2n+4, . . . , 2n−k+5, . . . , 25), h̃ can be rewritten as

h̃ = 4
δ

(
d1(

4
εn − 1

ε
), . . . , dk

εk−1 ( 4
εn − 1

εk ), . . . , dn
εn−1

3
εn

)
and Ah̃ ≥ 3b

2 can be rewritten
as

4
δ

d1

d1 + 1

(
4
εn − 1

ε

)
− 4

δ

(
4
εn − 1

ε2

)
≥ 6

δ

−4
δ

(
4
εn − 1

ε

)
+ 4

δ

2dk

dk + 1

(
4
εn − 1

εk

)
− 4

δ

(
4
εn − 1

εk+1

)
≥ 6

δ
for k=2, . . . , n−1

−4
δ

(
4
εn − 1

ε

)
+ 4

δ

2dn

dn + 1
3
εn ≥ 6

δ
,

which is equivalent to

(
1
ε2 − 1

ε
− 3

2

)
d1 ≥ 4

εn − 1
ε2 + 3

2
,

(
1

εk+1
− 2

εk
+ 1

ε
− 3

2

)
dk ≥ 8

εn − 1
εk+1

− 1
ε

+ 3
2

for k = 2, . . . , n − 1,



How good are interior point methods? 7

(
2
εn + 1

ε
− 3

2

)
dn ≥ 4

εn − 1
ε

+ 3
2

.

As 1
ε2 − 1

ε
− 3

2 ≥ 1
2 , 1

ε
− 3

2 ≥ 0, 1
ε2 − 3

2 ≥ 0 and 1
εk+1 + 1

ε
− 3

2 ≥ 0, the above
system is implied by

1
2

d1 ≥ 4
εn ,

(
1

εk+1
− 2

εk

)
dk ≥ 8

εn for k = 2, . . . , n − 1,

2
εn dn ≥ 4

εn ,

as 1
εk+1 − 2

εk = 2
nεk and 1

εn−k = 2n−k
(

1 + 1
n

)n−k ≤ 2n−k+2, the above system is

implied by

d1 ≥ 2n+5,
dk ≥ n2n−k+4 for k = 2, . . . , n − 1,
dn ≥ 2,

which is true since d = n(2n+4, . . . , 2n−k+5, . . . , 25). 	


Corollary 3.2 With the same assumptions as in Lemma 3.1 and h = �h̃�, we have
Ah ≥ b.

Proof Since 0 ≤ h̃k − hk < 1 and dk = n2n−k+5, we have:

h̃1 − h1

d1 + 1
− (h̃2 − h2)ε

d2
≤ 2

δ
,

− h̃1 − h1

d1
+ 2(h̃k − hk)εk−1

dk + 1
− (h̃k+1 − hk+1)ε

k

dk+1
≤ 2

δ
for k = 2, . . . , n − 1,

− h̃1 − h1

d1
+ 2(h̃n − hn)εn−1

dn + 1
≤ 2

δ
,

thus, A(h̃ − h) ≤ b
2 , which implies, since Ah̃ ≥ 3b

2 by Lemma 3.1, that Ah ≥ b.
	


Corollary 3.3 With the same assumptions as in Lemma 3.1 and h = �h̃�, we have:
hkεk−1

dk+1 ≥ hk+1ε
k

dk+1
+ 4

δ
for k = 1, . . . , n − 1.

Proof For k = 1, . . . , n − 1, one can easily check that the first k inequalities of

Ah ≥ b imply hkεk−1

dk+1 ≥ hk+1ε
k

dk+1
+ 4

δ
. 	
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The analytic center χn = (ξn
1 , . . . , ξn

n ) of Cn
δ is the unique solution to the

problem consisting of maximizing the product of the slack variables:

s1 = x1

sk = xk − εxk−1 for k = 2, . . . , n

s̄1 = 1 − x1

s̄k = 1 − εxk−1 − xk for k = 2, . . . , n

s̃1 = d1 + s1 repeated h1 times
...

...

s̃n = dn + sn repeated hn times.

Equivalently, χn is the solution of the following maximization problem:

max
x

n∑

k=1

(
ln sk + ln s̄k + hk ln s̃k

)
,

i.e., with the convention x0 = 0,

max
x

n∑

k=1

(
ln(xk − εxk−1) + ln(1 − εxk−1 − xk) + hk ln(dk + xk − εxk−1)

)
.

The optimality conditions (the gradient is equal to zero at optimality) for this
concave maximization problem give:

⎧
⎪⎨
⎪⎩

1
σn

k
− ε

σn
k+1

− 1
σ̄n

k
− ε

σ̄n
k+1

+ hk
σ̃n

k
− hk+1ε

σ̃n
k+1

= 0 for k = 1, . . . , n − 1,
1

σn
n

− 1
σ̄n

n
+ hn

σ̃n
n

= 0
σ n

k > 0, σ̄ n
k > 0, σ̃ n

k > 0 for k = 1, . . . , n,

(1)

where

σ n
1 = ξn

1

σ n
k = ξn

k − εξn
k−1 for k = 2, . . . , n,

σ̄ n
1 = 1 − ξn

1

σ̄ n
k = 1 − εξn

k−1 − ξn
k for k = 2, . . . , n,

σ̃ n
k = dk + σ n

k for k = 1, . . . , n.

The following lemma states that, for Cn
δ , the analytic center χn belongs to the

neighborhood of the vertex v{n} = (0, . . . , 0, 1).

Lemma 3.4 For Cn
δ , we have: χn ∈ Nδ(v{n}).
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Proof Adding the nth equation of (1) multiplied by −εn−1 to the jth equation
of (1) multiplied by εj−1 for j = k, . . . , n − 1, we have, for k = 1, . . . , n − 1,

εk−1

σ n
k

− εk−1

σ̄ n
k

− 2εn−1

σ n
n

− 2
n−2∑

i=k

εi

σ̄ n
i+1

+ hkεk−1

σ̃ n
k

− 2hnεn−1

σ̃ n
n

= 0,

implying:

2hnεn−1

σ̃ n
n

− hkεk−1

σ̃ n
k

= εk−1

σ n
k

−
(

εk−1

σ̄ n
k

+ 2εn−1

σ n
n

+ 2
n−2∑

i=k

εi

σ̄ n
i+1

)
≤ εk−1

σ n
k

,

which implies, since σ̃ n
n ≤ dn + 1, σ̃ n

k ≥ dk and h1
d1

≥ hkεk−1

dk
by Corollary 3.3,

2hnεn−1

dn + 1
− h1

d1
≤ εk−1

σ n
k

,

implying, since 2hnεn−1

dn+1 − h1
d1

≥ 1
δ

by Corollary 3.2, σ n
k ≤ εk−1δ for k = 1, . . . , n−1.

The n-th equation of (1) implies: hnεn−1

σ̃n
n

≤ εn−1

σ̄n
n

; that is, since σ̃ n
n < dn + 1 and

hnεn−1

dn+1 ≥ 1
δ

by Corollary 3.2, we have: 1
δ

≤ hnεn−1

dn+1 ≤ εn−1

σ̄n
n

, implying: σ̄ n
n ≤ εn−1δ.

	

The central path P of Cn

δ can be defined as the set of analytic centers χn(α) =
(xn

1, . . . , xn
n−1, α) of the intersection of the hyperplane Hα : xn = α with the

feasible region of Cn
δ where 0 < α ≤ ξn

n , see [9]. These intersections �(α) are
called the level sets and χn(α) is the solution of the following system:

{
1
sn
k

− ε
sn
k+1

− 1
s̄n
k

− ε
s̄n
k+1

+ hk
s̃n
k

− hk+1ε

s̃n
k+1

= 0 for k = 1, . . . , n − 1

sn
k > 0, s̄n

k > 0, s̃n
k > 0 for k = 1, . . . , n − 1,

(2)

where

sn
1 = xn

1

sn
k = xn

k − εxn
k−1 for k = 2, . . . , n − 1,

sn
n = α − εxn−1

s̄n
1 = 1 − xn

1

s̄n
k = 1 − εxn

k−1 − xn
k for k = 2, . . . , n − 1,

s̄n
n = 1 − α − εxn

n−1

s̃n
k = dk + sn

k for k = 1, . . . , n.

Lemma 3.5 For Cn
δ , Ck

δ = {x ∈ C : s̄k ≥ εk−1δ, sk ≥ εk−1δ} and Ĉk
δ = {x ∈ C :

s̄k−1 ≤ εk−2δ, sk−2 ≤ εk−3δ, . . . , s1 ≤ δ}, we have: Ck
δ ∩ P ⊆ Ĉk

δ for k = 2, . . . , n.
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Proof Let x ∈ Ck
δ ∩P. Adding the (k−1)th equation of (2) multiplied by −εk−2

to the ith equation of (1) multiplied by εi−1 for i = j . . . , k − 2, we have, for
k = 2, . . . , n − 1,

− 2hk−1ε
k−2

s̃n
k−1

+ hjε
j−1

s̃n
j

+ hkεk−1

s̃n
k

+ εj−1

sn
j

+ εk−1

sn
k

+ εk−1

s̄n
k

−
⎛
⎝2εk−2

sn
k−1

+ εj−1

s̄n
j

+ 2
k−3∑

i=j

εi

s̄n
i+1

⎞
⎠ = 0,

which implies, since s̃n
k−1 < dk−1 + 1, s̃n

j > dj, s̃n
k > dk and sn

k ≥ εk−1δ and

s̄n
k ≥ εk−1δ as x ∈ Ck

δ ,

2hk−1ε
k−2

dk−1 + 1
− hjε

j−1

dj
− hkεk−1

dk
≤ εj−1

sn
j

+ 2
δ

,

implying, since h1
d1

≥ hjε
j−1

dj
by Corollary 3.3,

−h1

d1
+ 2hk−1ε

k−2

dk−1 + 1
− hkεk−1

dk
≤ εj−1

sn
j

+ 2
δ

,

that is, as 3
δ

≤ −h1
d1

+ 2hk−1ε
k−2

dk−1+1 − hkεk−1

dk
by Corollary 3.2: sn

j ≤ εj−1δ. Considering
the (k − 1)th equation of (2), we have

hk−1ε
k−2

s̃n
k−1

− hkεk−1

s̃n
k

= εk−2

s̄n
k−1

+ εk−1

sn
k

+ εk−1

s̄n
k

− εk−2

sn
k−1

,

which implies, since s̃n
k−1 < dk−1 + 1, s̃n

k > dk and sn
k ≥ εk−1δ and s̄n

k ≥ εk−1δ as
x ∈ Ck

δ ,

hk−1ε
k−2

dk−1 + 1
− hkεk−1

dk
≤ εk−2

s̄n
k−1

+ 2
δ

,

which implies, since 3
δ

≤ hk−1ε
k−2

dk−1+1 − hkεk−1

dk
by Corollary 3.3, that s̄n

k−1 ≤ εk−2δ

and, therefore, x ∈ Ĉk
δ . 	


3.2 Proof of Proposition 2.1

For k = 2, . . . , n, while Ck
δ , defined in Lemma 3.5, can be seen as the central part

of the cube C, the sets Tk
δ = {x ∈ C : s̄k ≤ εk−1δ} and Bk

δ = {x ∈ C : sk ≤ εk−1δ},
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Fig. 2 The set Pδ for the Klee–Minty 3-cube

B2
0 Ĉ2

0 T 2
0

Ĉ3
0

T 3
0

B3
0

A2
0 A3

0

Fig. 3 The sets A2
0 and A3

0 for the Klee–Minty 3-cube

can be seen, respectively, as the top and bottom part of C. Clearly, we have
C = Tk

δ ∪Ck
δ ∪Bk

δ for each k = 2, . . . , n. Using the set Ĉk
δ defined in Lemma 3.5,

we consider the set Ak
δ = Tk

δ ∪ Ĉk
δ ∪ Bk

δ for k = 2 . . . , n, and, for 0 < δ ≤ 1
4(n+1)

,

we show that the set Pδ = ⋂n
k=2 Ak

δ , see Fig. 2, contains the central path P. By
Lemma 3.4, the starting point χn of P belongs to Nδ(v{n}). Since P ⊂ C and
C = ⋂n

k=2 (Tk
δ ∪ Ck

δ ∪ Bk
δ ), we have:

P = C ∩ P =
n⋂

k=2

(
Tk

δ ∪ Ck
δ ∪ Bk

δ

)
∩ P =

n⋂

k=2

(
Tk

δ ∪
(

Ck
δ ∩ P

)
∪ Bk

δ

)
∩ P,

that is, by Lemma 3.5,

P ⊆
n⋂

k=2

(
Tk

δ ∪ Ĉk
δ ∪ Bk

δ

)
=

n⋂

k=2

Ak
δ = Pδ

Remark that the sets Ck
δ , Ĉk

δ , Tk
δ , Bk

δ and Ak
δ can be defined for δ = 0, see Fig. 3,

and that the corresponding set P0 = ⋂n
k=2 Ak

0 is precisely the path followed
by the simplex method on the original Klee-Minty problem as it pivots along
the edges of C. The set Pδ is a δ-sized (cross section) tube along the path P0.
See Fig. 4 illustrating how P0 starts at v{n}, decreases with respect to the last
coordinate xn and ends at v∅.
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Fig. 4 The path P0 followed
by the simplex method for the
Klee–Minty 3-cube

v∅

v{3}

v{2}

v{2,3}

v{1}
v{1,2}

v{1,2,3}
v{1,3}

3.3 Proof of Proposition 2.4

We consider the point x̄ of the central path which lies on the boundary of the
δ-neighborhood of the highest vertex v{n}. This point is defined by: s1 = δ, sk ≤
εk−1δ for k = 2, . . . , n − 1 and s2n ≤ εnδ. Note that the notation sk for the cen-
tral path (perturbed complementarity) conditions, yksk = µ for k = 1, . . . , pn,
is consistent with the slacks introduced after Corollary 3.3 with sn+k = s̄k for
k = 1, . . . , n and spi+k = s̃k for k = 1, . . . , hi+1Ê and i = 0, . . . , n − 1. Let µ̄

denote the central path parameter corresponding to x̄. In the following, we
prove that µ̄ ≤ εn−1δ which implies that any point of the central path with
corresponding parameter µ ≥ µ̄ belong to the interior of the δ-neighborhood
of the highest vertex v{n}. In particular, it implies that by setting the central path
parameter to µ0 = 1, we obtain a starting point which belongs to the interior of
the δ-neighborhood of the vertex v{n}.

3.3.1 Estimation of the central path parameter µ̄

The formulation of the dual problem of Cn
δ is:

max z = −
2n∑

k=n+1

yk −
n∑

k=1

dk

pk∑

i=pk−1+1

yi

subject to yk − εyk+1 − yn+k − εyn+k+1

+
pk∑

i=pk−1+1

yi − ε

pk+1∑

i=pk+1

yi = 0 for k = 1, . . . , n − 1

yn − y2n +
pn∑

i=pn−1+1

yi = 1

yk ≥ 0 for k = 1, . . . , pn,

where p0 = 2n and pk = 2n + h1 + · · · + hk for k = 1, . . . , n.
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For k = 1, . . . , n, multiplying by εk−1 the kth equation of the above dual
constraints and summing then up, we have:

y1 − yn+1 − 2
(
εyn+2 + ε2yn+3 + · · · + εn−1y2n

)
+

2n+h1∑

i=2n+1

yi = εn−1

which implies

2εn−1y2n ≤ y1 +
2n+h1∑

i=2n+1

yi

implying, since for i = 2n + 1, . . . , 2n + h1, d1 ≤ si yields yi ≤ µ̄
d1

, that

2εn−1y2n ≤ y1 + µ̄h1

d1
= µ̄

δ
+ µ̄h1

d1
.

Since for i = pn−1 + 1, . . . , pn, si = dn + x̄n − εx̄n−1 ≤ dn + 1 yields yi ≥ µ̄
dn+1 ,

the last dual constraint implies

y2n ≥
pn∑

i=pn−1+1

yi − 1 ≥ µ̄hn

dn + 1
− 1

which, combined with the previously obtained inequality, gives µ̄
(

2hnεn−1

dn+1 − h1
d1

− 1
δ

)
≤ 2εn−1, and, since Corollary 3.2 gives 2hnεn−1

dn+1 − h1
d1

− 1
δ

≥ 2
δ
, we have

µ̄ ≤ εn−1δ.
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