For each orbit of faces of codimension k we give a canonical representative face f_i. The face fk_i is defined by a set of k inequalities of rank k satisfied with equality. A triangular inequality Tr of met_n is represented by a {-1,0,1}-valued vector V of length n with 3 nonzero entries with: Tr_ij = V_i x V_j. The left hand side of Tr is 2 if V is a {0,1}-valued vector and 0 otherwise. +++++ remark ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ the set of all inequalities satisfied with equality by f_i might be larger than k but we show only k facets. This way the codimension is directly readable and the presentation is homogeneous) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -------------- canonical representatives -------------------------- f4_1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 f4_2 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 f4_3 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 f4_4 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 f4_5 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 f4_6 1 1 1 0 0 1 1 0 1 0 1 0 -1 1 0 1 1 0 0 1 f4_7 1 1 1 0 0 0 1 1 0 1 0 0 1 0 -1 1 0 0 1 0 0 0 1 1 f4_8 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 f4_9 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 -1 1 1 f4_10 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 f4_11 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 f4_12 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 f4_13 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 -1 1 0 1 f4_14 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 f4_15 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 f4_16 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 -1 f4_17 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 f4_18 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 f4_19 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 f4_20 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 f4_21 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 -1 0 0 1 1 f4_22 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 f4_23 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 -1 1 1 f4_24 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 f4_25 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 -1 0 0 0 1 1 f4_26 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 f4_27 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 f4_28 1 1 1 0 0 0 1 1 0 1 0 0 0 0 -1 1 1 0 1 0 0 0 1 1 f4_29 1 1 1 0 0 0 1 1 0 1 0 0 0 0 -1 1 1 0 0 0 -1 1 0 1 f4_30 1 1 1 0 0 0 1 1 0 1 0 0 0 0 -1 1 1 0 0 0 -1 0 1 1 f4_31 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 f4_32 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 -1 1 1 f4_33 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 -1 0 1 1 f4_34 1 1 1 0 0 0 1 0 0 1 1 0 0 -1 0 1 0 1 0 0 1 0 -1 1