
BCMP networks

There are M nodes and R classes (or types) of job. For each class, we
must specify routing probabilities through the network (these can be class
dependent). A class can either be open (jobs enter from outside and eventually
leave) or closed (jobs never leave). As discussed in class, the nodes are allowed
to be one of four types:

1. FCFS Here, jobs are served in a first come, first served order. Multiple
classes may visit a node, but in this case the service time distributions
must be the same (and exponentially distributed) for all classes. The
service rates may be load-dependent.

2. PS Here jobs are served using processor sharing, with each waiting job
getting an equal share of capacity. Jobs of different classes may have
different service requirements and the service rates (for each class) may
depend on the queue length at the node. The service distributions must
be so-called Coxian type (essentially a combination of exponential dis-
tributions), but only the expected value needs to be determined.

3. IS or delay Here an infinite number of servers is available, or equivalently,
each job is served by “their own” server. Jobs of different classes may
have different service requirements and the service rates (for each class)
may depend on the queue length at the node. The service distributions
must be so-called Coxian type (essentially a combination of exponential
distributions), but only the expected value needs to be determined.

4. LCFS-PR Here jobs are served on a last come first serve basis, with pre-
emption (also, work done on preempted jobs is not lost). Further restric-
tions are the same as in the previous two cases.

At this point, let me indicate that the results below depend only on the
mean service times. This is why I have not discussed Coxian distributions. It
will suffice at this point to note that we can approximate most distributions
by a Coxian distribution and thus when the nodes are of the last 3 types, there
is no practical limitation on the service time distributions.

Upon leaving node i, a job of class r goes to node j and becomes a job of
class s with probability ri,r;j,s. A job will leave the network with probability
ri,r;0. By examining the probabilities, so-called routing chains can be defined
by partitioning the pairs (node,class).

Of course, there can only be arrivals from outside of the system for classes
that are open. In this case, there are two possibilities which are allowed.

The first possibility is that there is a single Poisson process with rate λ(k)
where k is the total population in the network. Upon arrival to the system, a
job goes to node i as a class r job with probability r0;i,r.

The second possibility is that each routing chain has its own arrival stream,
with a rate that depends only on the population of that chain (which we will



give by λc(kc), with c ∈ C, where C is the set of routing chains and kc is
the population in routing chain c. For each stream, with probability r0;i,c an
arrival joins node i.

For each routing chain c, we want to write an equation for the net arrival
rate to node i of class r jobs. This can be written as

λi,r = λ∗i,r +
∑
(j,s)

λj,srj,s;i,r.

Here, λ∗i,r is the arrival rate of jobs from outside of the system. For closed
networks it is 0; for open networks it equals λr0;i,c (one arrival process) or
λrr0;i,r (arrivals per chain/class). This equation has a very simple intuitive
explanation. The left side is the arrival rate to (i, r), the first term on the
right hand side is the arrival rate to (i, r) from outside, and the final term is
the sum of the arrival rates to (i, r) from all other (node,class) pairs in the
network. Using this equation, assuming the system is stable, one can calculate
the throughputs for open chains λi,r, and visit ratios for closed chains Vi,r.
Of course, it is not uncommon that for closed systems, the visit ratios are
given directly (think of what we have done in class and that you have done in
assignments).

The main result is now stated (the proof is really beyond the scope of the
course, but is not particularly difficult... if anybody is interested, just ask). We
need a couple of definitions, to define what the state of the queueing network
is. Let N̄i be the vector (Ni,1, Ni,2, . . . , Ni,R) denote the state of node i, where
Ni,r gives the number of class r jobs at node i. The state of the system is the
vector N̄ = (N̄1, N̄2, . . . , N̄M) and the total number of jobs in the system is K.

BCMP Theorem The steady-state probability distribution in a BCMP
network has the following product form:

P (N̄ = n̄) =
1

G
A(n̄)

M∏
i=1

pi(n̄i),

where G is a normalizing constant (it assures that the probabilities sum to
one), A(n̄) is a function of the external arrival processes only, and the functions
pi(n̄i) are the “per-node” steady-state distributions.

The important point of this result is that there are explicit expressions for
the p functions. They are as follows (note that ni is

∑R
r=1 ni,r)
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and in the load-dependent case
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When node i is of type PS or LCFS-PR, we have in the load-independent case
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and in the load-dependent case
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When node i is of type IS, we have in the load-independent case
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Finally, the term A(n̄) is determined by the arrival processes in the fol-
lowing manner. If all chains are closed, then A(n̄) = 1. If the arrivals de-
pend on the total system population, then it is equal to A(n̄) =

∏k−1
j=0 λ(j),

where k is the network population. If the arrivals are per chain, then A(n̄) =∏NC
c=1

∏kc−1
j=0 λc(j), where NC is the number of routing chains and kc is the pop-

ulation in routing chain c.
At this point, all of this notation may seem a bit much, so there will be

two examples given at this point which are special cases of the BCMP theorem
which are of great practical interest. After that, an example will be given that
we will spend some time on.

Example. Single-class, load-independent open networks. Here, the
arrival process is Poisson of constant rate λ (there is no load dependence for
the arrivals). Also, the service rates are fixed. If the node is FCFS, PS or
LCFSPR, there is only one server. Then

P (N̄ = n̄) =
M∏
i=1

pi(ni),

where

pi(ni) =

 (1− ρi)ρ
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where Ri is the set of classes that require service at node i. You should be
able to verify this result yourself, it is a decent exercise to get used to all of
the notation. Note that A(n̄) has been absorbed into the definition of ρi. This
result should be somewhat intuitive. It says that the the system decomposes
into M/M/1 (or M/M/∞) queues with the appropriate arrival rates.

Example. Closed, multi-class, load-independent BCMP networks.
A lot of computer systems examples have load-independent servers, mul-

tiple customer classes (but no class changes) and fixed populations per class.
Here,
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Note that ni =
∑R

r=1 ni,r.

Example. Client Server System with Ethernet connection.
Here we consider a client server system with a fixed number m of client

workstations that are connected by an Ethernet network to a server. The
server consists of a single disk and a single CPU. The Ethernet connection
between the terminals and the server can be modelled as a server with the
load dependent service rate

µ(k) =
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where C(k) = (1−A(k))/A(k) is the average number of collisions per request
and A(k) = (1 − 1/k)k−1 is the probability of a successful transmission and
k the number of workstations that desire the use of the network. The other
parameters in the expression for µ(k) are: Np, the average number of packets
generated per request, B, the network bandwidth in bits per second, S, the
slot duration (in other words, the time for collision detection) and L̄p, the
average packet length in bits.


