State Independent Resource Management for Distributed Grids

Aysan Rasooli
Department of Computing and Software
McMaster University
Hamilton, Canada
rasooa@mcmaster.ca

Abstract—Advances in network technologies and comput-
ing resources have led to the possibility of deploying large
scale computational systems, such as those following a Grid
architecture (or related architectures). The scheduling problem
is a significant issue in the Grid environment. In practice,
a scheduling algorithm should consider multiple objectives.
Typically, there are two kinds of objectives. The first is the
performance of the system in terms of quantities related to the
completion time of tasks, the second is the amount of state
information required, which is often measured in terms of
quantities such as communications costs. These two objectives
are often in tension with one another. For example, gathering
large amounts of state information can lead to low completion
times. In this work, we introduce a scheduling algorithm which
simultaneously addresses the objectives listed above namely,
minimizing completion times, while requiring zero dynamic
state information. Using simulation, we show the promising
performance of our algorithm, and its robustness with respect
to errors in parameter estimates.

Keywords-Grid Scheduling; Scheduling Algorithms; Shadow
Routing Approach

I. INTRODUCTION

Innovations in computational and network technologies
have led to the emergence of computational Grid systems
[1]. Task scheduling is an integral part of a distributed
computing system. These scheduling algorithms involve
matching of application needs with resource availability.
Several optimization criteria are considered for scheduling
in Grids, making the problem a multi-objective one in its
general formulation. With these criteria and other complex-
ities of scheduling in the Grid environment, the scheduling
problem is known to be NP-complete [2].

In recent years, several analogies from natural and social
systems have been leveraged to form powerful heuristics for
Grid scheduling, which have proven to be highly successful
in attacking several NP hard global optimization problems
[2]. These scheduling policies may use different system
information to make reasonable scheduling decisions; some
parameters are typically periodically estimated such as re-
source execution rate, and some are highly dynamic informa-
tion, which should be gathered in real-time such as current
resource loads.

As mentioned, Grid scheduling is a problem with multiple
objectives, and it is extremely difficult to satisfy all of the

Douglas G. Down
Department of Computing and Software
McMaster University
Hamilton, Canada
downd@mcmaster.ca

objectives with one scheduling algorithm. To the best of
our knowledge there is no single Grid scheduling algorithm
which is the optimum over all Grid systems with their
different applications and features. In this work, we address
the scheduling problem of Grid systems whose resources
are widely distributed, and there is a considerable commu-
nication cost between the resources. The most well-known
application of these Grid systems is in the Enabling Grids
for E-sciencE (EGEE) [3] project. The main contributions
of our work are:

« We bring a theoretical idea from the queuing literature
(the so-called Shadow Routing algorithm), to a practical
scheduling algorithm implemented in Grid systems.

« We modify this basic theoretical approach to be effi-
cient for Grid systems, and study the advantages of the
proposed algorithm in widely distributed Grid systems.

In general, the Grid scheduling algorithm should improve
the performance of the Grid system, which can be eval-
uated by various criteria such as Flowtime or Makespan.
Furthermore, if an algorithm reduces the amount of state
information required at the time of scheduling, this leads to
reductions in the communication cost and synchronization
overhead. In fact, a large system that requires full state in-
formation for scheduling may suffer from increasing limita-
tions due to significant communication and synchronization
overheads.

The Shadow Routing method is a robust, generic scheme,
introduced in [4] for routing of arriving tasks in systems
of parallel queues with flexible, many-server pools. This
algorithm has proven to achieve good performance levels in
queuing systems. However, its structure is designed in a way
which is not directly applicable in Grid systems. In this paper
we modify the structure of the Shadow Routing approach
in two key ways, and introduce a scheduling algorithm for
Grid systems, called the Grid Shadow Routing algorithm.
First, we change the structure of the basic Shadow Routing
algorithm to be applicable for a typical Grid workload model
[7]. Second, we add to the basic Shadow Routing algorithm,
which causes significant improvement in its performance in
Grid systems.

The Grid Shadow Routing algorithm uses virtual queues

to keep track of the loads on resources in the system. These
are used as estimates of the actual queue lengths in the
system, thus removing the need to gather real-time load
information. The only information that the Grid Shadow
Routing algorithm requires are estimates of the lengths of
tasks and the execution rates of resources in the system.
By using this information, the algorithm properly balances
the loads on the resources. The two estimated parameters
are used in most Grid scheduling algorithms. In order to
provide this information various prediction methods are
applied to forecast them, and in turn to guide task scheduling
and load balancing strategies to achieve high performance
and more efficient resource usage [5, 6]. An important
advantage of our algorithm is that it does not require highly
accurate estimates- even highly inaccurate estimates can be
satisfactory for our algorithm.

Generally, based on the information that can be used, and
the timing of the scheduling decision, scheduling algorithms
are classified as either static or dynamic algorithms. Static
scheduling algorithms do not use any dynamic state infor-
mation, but there can be a huge performance degradation
in comparison to dynamic algorithms. On the other hand,
dynamic scheduling algorithms can make better scheduling
decisions, while increasing the communication cost. As we
mentioned before, there is no single scheduling algorithm
which performs well in all Grid systems. If a Grid system
has low communication overhead, a dynamic scheduling
algorithm with full state information can make a significant
improvement in the performance of the system. On the other
hand, in a widely distributed system in which the time to
gather full state information is significant (as in the systems
in which we are interested), a dynamic scheduling algorithm
which requires full state information can potentially create
severe additional overheads. The large amount of overhead
can lead to performance degradation. The main advantage
of our proposed Grid Shadow Routing algorithm is that it
requires zero state information from resources at the time of
scheduling, and it can achieve much better performance than
dynamic algorithms that require full state information. This
is particularly advantageous for large, highly loaded systems
with widely distributed resources, where communications
costs are significant.

We use simulation to study the performance of our
proposed algorithm in Grid systems. We evaluate the Grid
Shadow Routing algorithm by comparing to two other
algorithms. Minimum Completion Time (MCT) is a dynamic
scheduling algorithm, commonly used in Grid systems. This
algorithm greedily attempts to reduce the mean completion
time, and does not consider the communication overhead
in scheduling. The second algorithm that we employ is Join
the Shortest Queue, which uses partial state information and
does not require task lengths in making scheduling decisions.
In order to evaluate the performance of our algorithm in
a real system in which the parameters may be estimated

inaccurately, we implement our algorithm in a system which
has various levels of error in the estimates. Moreover, we
evaluate our algorithm by using inaccurate parameters, to
show that the significant performance gain of our algorithm
can be achieved even in an environment in which there are
errors in estimating required parameters.

The remainder of this paper is organized as follows.
The problem of task scheduling and our workload model
are described and formally introduced in Section II. An
overview of several Grid scheduling algorithms is given
in Section III. Then, in Section IV, the Shadow Routing
algorithm is introduced and Section V provides the details
of our proposed scheduling algorithm. In Section VI, details
of the environment in which we study our algorithm are
provided. In Section VII, we study the performance of
our algorithm in various Grid systems with different error
models in estimating the parameters of the system. Finally,
we provide some concluding remarks and discuss possible
future work in the last section.

II. WORKLOAD AND SYSTEM MODEL

In order to describe and evaluate our scheduling algo-
rithm, we define a workload model based on a typical Grid
workload [7]. As mentioned before, most Grid scheduling al-
gorithms assume that estimates of task lengths and resource
execution rates are available at the time of scheduling. In
our workload model, we let the number of resources in the
system be M. The actual resource execution rate for resource
r is given by ., and the task length for task k is given by
L;.. We assume the use of one of the available estimation
methods to provide estimates of resource execution rates
for all resources and the length of each incoming task. We
define the estimated length of task k as ﬁk, and the estimated
execution rate of resource 7 as ji,.

In order to model a widely distributed Grid system, we
assume that the Grid network has associated delays. The
delay in the network is calculated based on the bandwidth
and the load on the Grid network. When a task arrives
to the system, the Grid scheduling algorithm is used to
route the arriving task to one of the available resources in
the system. Here we assume that all local schedulers are
using the classical FIFO algorithm, however in general each
resource can use its own local scheduling algorithm.

III. CURRENT ALGORITHMS AND RELATED WORK

A large number of algorithms have been designed to
schedule independent tasks on computational Grid resources.
In this section, rather than presenting a complete survey of
current Grid scheduling algorithms, we list two of the com-
monly used scheduling algorithms for Grid environments,
those for which we compare performance with our proposed
algorithm.

o Minimum Completion Time (MCT): assigns each task

to the resource which has the minimum expected com-

pletion time for that task [8]. The expected completion
time for a newly arriving task will be computed at each
resource; the scheduler collects this state information
from all resources and chooses the resource with the
minimum expected completion time for execution of
the new task. This algorithm can cause a significant
improvement in maximum completion time of all tasks.
However, it has the cost of requiring full state infor-
mation, and consequently may have a large commu-
nication cost. This algorithm requires the following
parameters: 1) estimated length of incoming task, 2)
current estimated resource execution rate (considers
the fluctuations in each resource execution rate), 3)
estimated current available bandwidth in resources, and
between resources and scheduler, 4) real-time load on
each resource. The final three parameters should be
collected from all resources at the time of scheduling.

e Join the Shortest Queue* (JSQ*): This algorithm
assigns each task to the resource which has the smallest
number of waiting tasks in its queue. The advantage of
this approach is that it does not require the length of
tasks to make a scheduling decision. It simply uses the
number of tasks in all of the queues as the state in-
formation. This algorithm just requires one parameter:
the real-time number of tasks in each resource queue.
However, this parameter should be collected from all
resources at the time of scheduling.

IV. SHADOW ROUTING ALGORITHM

The Shadow Routing algorithm was first introduced in
[4] as an algorithm for routing in systems of parallel
queues. This algorithm proposes a generic routing algorithm,
which properly balances resources’ loads and automatically
identifies the best set of matchings, without the knowledge
of the flow input rates and without explicitly solving any
optimization problem. The algorithm is based on the Shadow
Routing algorithm in a virtual queueing system.

In order to describe the basic Shadow Routing algorithm,
first we define the queuing system model in which the
algorithm is introduced in [4]. The model is defined as
follows: It is assumed to have I classes (types) of tasks, and
J pools of resources in the system in which the resources in
each pool are homogeneous. The mean execution time of a
task of class 4 on a resource of pool j is given by p; ; > 0 (if
wi,; = 0, this means that tasks of class ¢ can not be executed
on resources of pool j). It is assumed that the input rate of
tasks, and number of resources in each pool are increased
simultaneously with scaling parameter » — oo. This means
that the growth rate of incoming tasks to the system is O(r),
and the number of resources in pool j is given by 3;r, with
parameter 3; > 0. Our brief description of the model is
simply to introduce the basic Shadow Routing algorithm;
more details about the model are provided in [4].

According to [4], in a heavily loaded queuing system,
if the routing algorithm chooses only certain matchings of
tasks to pools of resources, it can keep task queues stable and
provide asymptotically optimal performance. By asymptotic
optimality, we mean that if the number of resources in all
pools and the input rates of tasks scale up simultaneously
by a factor r (which grows to infinity), the Shadow Routing
algorithm keeps the queuing system load within O(+/r) of
its optimal capacity.

« The initial values of @Q; are set to nQ,; = 1/J
for all j € (1...J).

« Upon each new task arrival, the algorithm does
the following:

1) Find the class which the incoming task
belongs to, say class i.

2) A virtual queue
m € {argmin; Q;/(Bjpi;)}

is identified, and the arriving task is sent to
pool m.

3) The virtual queue of the chosen pool is
updated to :

Qm=Qm+ 1/(/8”#”@'»7”)

4) If the condition
1 Zj Q=1
holds, the following update is performed:
Q; =[Q; — |7, for each j,

where ¢ = (max {1/(B;ui ;) |ui; > 0}),
and [z]* = max{z,0}.

Figure 1. The Basic Shadow Routing Algorithm

Figure 1 presents the basic Shadow Routing algorithm.
This algorithm maintains a virtual (shadow) queue @, for
each pool of resources j - these are used to keep the
loads in the system balanced. The algorithm makes each
routing decision based on the values and simple updates of
virtual queues; virtual here means that the queues are simply
variables maintained by the algorithm. The parameter n > 0
is a small number (we elaborate later on how it should be
chosen), which controls the tradeoff between responsiveness
of the algorithm and its accuracy.

When a new task arrives to the system, the algorithm first
defines the class of the incoming task, and compares the
ratio of the virtual queue length to execution rate of that
class on each pool of resources. Among all the pools in the
system, the algorithm chooses the pool with the smallest

ratio. As mentioned before, the algorithm keeps track of the
load of each pool by using virtual queues. In fact, the virtual
queue length provides an estimate of the (relative) time that
the pool will be busy with executing previously assigned
tasks. To summarize step 1, the algorithm trades off a small
(virtual) queue length versus a fast execution rate. When the
algorithm selects a pool for the new task, it adds the mean
execution time of the task on the selected pool to the virtual
queue of that pool. If the loads on faster pools of resources
increase such that the proper balancing of loads is going
to be violated, the total virtual queue length of all pools
will reach a predefined limit. In this case, the virtual queue
lengths of all pools are reduced by a prespecified amount. By
doing this, the algorithm is making the virtual queue lengths
of slower pools of resources smaller, and is increasing the
chance of slower pools being chosen for executing future
tasks.

We will see that a significant advantage of the Shadow
Routing algorithm is in properly balancing the load of the
system without requiring any state information. However, the
basic Shadow Routing algorithm is defined on a workload
model which is not applicable in Grid systems. In this
work, we modify the structure of the Shadow Routing
algorithm, and introduce a new scheduling algorithm which
is applicable for typical Grid workloads. Also, we change
the basic Shadow Routing algorithm in a way that leads to
significant performance improvement.

V. GRID SHADOW ROUTING ALGORITHM

In this Section, we introduce a new Grid scheduling
algorithm, called the Grid Shadow Routing algorithm (Grid
Shadow), which is presented in Figure 2. In order to apply
the idea of the Shadow Routing algorithm in Grid systems,
first we should eliminate the class-based setting of the
basic Shadow Routing algorithm. As we know, a Grid is a
dynamic system in which the resources may join and leave
at any time, and various types of tasks may be assigned
to the system. So, it is unrealistic to assume that we have
predefined types (class) of tasks, and that the execution rate
of each class on each resource is known.

Instead of using the workload model of the basic Shadow
Routing algorithm, we consider each task separately. We
introduce our algorithm based on the typical Grid workload
model defined in Section II. As mentioned before, various
estimation methods have been introduced in the literature
to provide estimates of task lengths and resource execution
rates (see [5, 6] for example). Rather than going into detail
on any particular estimation method, we simply assume
that such estimates have been provided, with associated
errors. By applying these two parameters, we estimate the
expected execution time of task k£ on resource r by ;%’
where ﬁk and [1,- are estimates of the length of task k and the
execution rate of resource r, respectively. Also, we assume
that each resource has a virtual queue (@), which is used

to estimate loads on resources, and the parameter n > 0 is
used to control the tradeoff between responsiveness of the
algorithm and its accuracy. The required parameters of the
Grid Shadow Routing algorithm are: 1) estimated incoming
task length, and 2) estimated mean resource execution rate.
To achieve these parameters, it is not required to contact any
of the resources at the time of scheduling.

« For all resources in the system, set the initial
values of @, to nQ, = 1/M for all .

« Upon the arrival of task k, the algorithm per-
forms the following steps :

1) Among all the resources available in the
system (i.e. those with fi, > 0), choose the
resource m, such that :

m € argmin, {(Qr + %) X %}
and submit the arriving task to resource m.

2) The virtual queue of resource m is updated
to :

Q= Qm + g
3) If condition
N2, @r>1
holds, the following update is performed:
for each resource r:
If (Q, — ¢ > 0) then
Qr=Qr —cx

else
QT =0

where ¢ = 2 X (max{%} |per > 0}).

Figure 2. The Grid Shadow Routing Algorithm

In Grid scheduling, taking into account the load that an
incoming task adds to each resource, is important when the
resources are heterogeneous, and the load of the system is
moderate or light. The basic Shadow Routing algorithm just
considers the current load of each resource in making the
scheduling decision for each incoming task. So, we changed
the first step of the basic Shadow Routing algorithm to make
our scheduling decision also consider the expected load
of the incoming task on each resource. In our scheduling
decision, instead of comparing the current loads, we consider
the current size of the virtual queue plus the expected load
of the incoming task on the corresponding resource. Another
way to look at this is that from the analytic perspective, if

the load on the system approaches 1 (as in [4]), then the
effect of the incoming task is negligible. This may not be
true in practice, and should be accounted for.

As mentioned, this modification is a significant improve-
ment to the basic Shadow Routing algorithm, in particular
when loads are moderate or light, and the system is het-
erogeneous. For each incoming task, we aim to increase
the total amount in the virtual queues by the minimum
possible amount, then the normalization step will be trig-
gered less frequently. This results in less overhead due to
scheduling decisions, which improves the performance of
the basic Shadow Routing algorithm significantly. Science
Grid systems have a large number of resources, and step 3
of the basic Shadow Routing algorithm requires searching
over all resources and updating all of their virtual queues. If
we modify the algorithm in a way that reduces the number
of times step 3 is triggered, we will reduce the overhead
of the algorithm and improve the performance of the Grid
system.

When a new task arrives to the system, our new schedul-
ing algorithm considers three factors for choosing a re-
source: the current load on each resource, estimation of the
execution time of the arriving task on each resource, and
how much load the incoming task is going to add to each
resource. So, we define the first step of our algorithm as fol-
lows: the algorithm compares the quantity (@, + ﬁ .) X %)
for all resources, and chooses the resource with the smallest
value. So, the algorithm has a trade-off between a resource
which finishes the currently assigned tasks earlier, and a
resource which executes the incoming task faster. Also, it
aims to minimize the load which is going to be added to
each resource. When the algorithm selects a resource for
the new task, it adds the estimated execution time of the
task on the selected resource to the virtual queue of that

resource, which is given by ﬂ,’“ for task k on resource m.

If the loads on faster resources increase such that the
proper balancing of loads is going to be violated, the total
virtual queue length of all resources will reach a predefined
limit. In this case, the virtual queue lengths of all resources
are reduced by a specific amount. This is a normalization
step of the algorithm, in which the virtual queues are reduced
by the maximum load that the incoming task can add to the
resources. By doing this, the algorithm is making the virtual
queue length of slower resources smaller, and is increasing
the chance of slower resources being chosen for executing
future tasks.

The parameter 1 should be chosen based on the features
of the system. If n is a large number, the algorithm tries to
equally divide the loads, and reduces the impact of differing
execution rates of resources. So, 77 should be a small number,
and the smaller the parameter is chosen, the more accurate
matching of resources to tasks would be. As a result, the
loads would be balanced properly based on both the load

and speed of each resource. However, the rate at which
the algorithm adapts to changes in the system parameters is
proportional to 7 (the smaller 7, the slower the rate) and thus
n cannot be chosen too small. For the workloads considered
in this work, we conclude that a good value of 7 is 1/300.

Since the Grid Shadow Routing algorithm makes each
decision based on the values of virtual queues, if task input
rates, or resource execution rates change in the system, no
explicit detection of such an event (or any other input rate
measurement/estimation) is necessary. The virtual queues
automatically readjust and the algorithm starts routing along
the new best matchings of resources to tasks.

VI. EXPERIMENTAL SET-UP

We use simulation to evaluate the scheduling algorithms.
This section gives details of the simulation toolkit used, the
performance metrics applied, and the experimental set-up.

A. Simulation toolkit & Performance metrics

Simulation models were implemented with the Java pack-
age GridSim [9]. GridSim is a toolkit for modeling and
simulation of Grid resources and application scheduling.
It provides a comprehensive facility for the simulation of
different types of resources, users, tasks, and schedulers.

Depending on the Grid scenario and applications run in
the system, there exist different performance metrics for
evaluating Grid scheduling algorithms. We use two of the
most important performance metrics to evaluate the algo-
rithms from different aspects. The metrics that we consider
are: Makespan (the maximum completion time of all tasks),
and Flowtime (the average completion time of all tasks).

B. Experimental Environment

We consider a Grid system consisting of 50 dedicated
resources with different CPU speeds, working in parallel
with an overall high load. To simulate a widely distributed
Grid system, and because the bandwidth between elements
of the system which are far from each other is low, we set
the bandwidth inside the elements of the system to be 1
Gbps, and the bandwidth between the scheduler and each
of the 50 resources to be 10 Mbps. The GridSim simulator
calculates the network delay between the elements of the
system, depending on the bandwidth of each network and
the load on each network at any given time.

As mentioned before, our proposed algorithm is mostly
advantageous for EGEE Grids, so we evaluate our algorithm
in a real workload from the CERN Grid project. We use
a workload from the Grid Workload Archive, in a typical
Grid Workloads Format (GWF). This workload is collected
from the LCG project. The LCG testbed represents the Large
Hadron Collider (LHC) Computing Grid. We use the LCG
trace, version 0.1 which is provided by the Grid Workloads
Archive [7]. We use the first 20,000 tasks in this trace for
our experiment. We run our simulation until 20, 000 tasks

arrive to the system and then turn off the arrival streams and
wait until the system becomes empty.

Our algorithm uses estimates of the task lengths and
resource execution rates. However, various estimation meth-
ods may have different levels of accuracy. So, to show
that our algorithm can achieve significant performance gain
even with considerable errors in estimates of parameters, we
evaluate our algorithm in a system that has various levels of
error in the estimated task lengths and resource execution
rates. In order to completely study the robustness of our
algorithm, we examine cases that have 0% to 40% error in
our estimations; however, typically these errors are on the
order of 10% [10]. We evaluate our proposed algorithm by
considering the error model discussed in [11] for estimating
task lengths and resource execution rates. Generally the two
models of error in these estimates are:

e Over and Under Estimation Error. Consider actual
task lengths and resource execution rates to be Ly
for task k and u, for resource r, respectively. Let Ly
denote the (corresponding) estimated task length, and
i1, denote the estimated resource execution rate. In our
simulations, L, and i, are obtained using the following
relations: Ly, = Ly x (1+ E) and f1,, = p x (1+ E,.).
Here, £} and E, are the errors for task lengths and
resource execution rates, respectively, which are sam-
pled from the uniform distribution [—1,+1], and I is
the maximum error.

e Over Estimation Error. The main error models are
obtained using the relations L, = Ly x (1 + Ej)
and fi, = pi X (1 + E.). The parameters Ej and E.
are the errors for task lengths and resource execution
rates, respectively, and are sampled from the uniform
distribution [0, +I] for over estimation, in which I is
the maximum error. This model is used for systems
which always over estimate the parameters (powers of
resources are estimated to be the maximum amount
without considering fluctuation of their power caused
by increasing the load).

VII. EXPERIMENTAL RESULTS

In this Section we consider the various error models. First,
we consider an environment with over and under estima-
tion errors in task lengths without any error in estimating
resource execution rates. Then we evaluate our algorithm
in a system with over and under estimation errors in both
task lengths and resource execution rates. We repeat the
simulation for these two cases with the over estimation error
model.

A. Over and Under Estimation

In this part, we assume the over and under estimation
error model applies. First, we evaluate our algorithm in
an environment with accurate resource execution rates, and
errors in estimating task lengths, whose results are provided

in Figures 3 and 4, from the Flowtime and Makespan
perspectives, respectively. Then, we consider an environment
with errors in estimating both task lengths and resource
execution rates, whose results are provided in Figures 5 and
6. Different error levels are considered in these Figures.

- L] - *
FLOWTIME(msec) mcT GRID SHADOW IsQ

3100

2900

2700
2500
2300
2100
1900
1700
o 10% 20% 30% ao% 1

Figure 3. Flowtime-over & under estimating task length

MAKESPAN(msec) mmcT [GRID SHADOW mJsQ*

25000

20000 1
15000 1
10000 1
5000 I
0
20% 30% ao% 1

0 10%
Figure 4. Makespan-over & under estimating task length

Among the algorithms presented in this work, the MCT
algorithm is the only one that uses full state information
in order to make scheduling decisions. So, we expect that
in the absence of overhead, this algorithm should achieve
the smallest Makespan and Flowtime, and should lead to
a good balance between the loads of resources. Since our
simulations consider a highly loaded system, in which
gathering full state information causes large overhead, the
MCT algorithm can not achieve good Flowtime compared to
our proposed algorithm. However, the MCT algorithm does
achieve the best Makespan by minimizing the completion
time for each individual incoming task. Generally, minimiz-
ing Flowtime can be at the expense of the largest task taking
a long time, whereas minimizing Makespan asks that no task
takes too long, at the expense of most tasks generally taking
a longer time. In summary, minimization of Makespan can
result in maximization of Flowtime. By considering this fact,
and since the MCT algorithm uses the greedy approach of
minimizing the completion time for each individual task, it
does not perform well for the average completion time of
all tasks. So, the poor Flowtime performance of the MCT
algorithm results from the combination of its high overhead
and its greedy approach in minimizing the completion time
for each individual task.

As mentioned before, our proposed Grid Shadow Routing
algorithm does not use any state information; one might

EMmCT @ GRID SHADOW mJsQ*
FLOWTIME(msec)
3100

2900

2700
2500
2300
2100
1900
1700
1500
o 10% 20% 30% a% 1

Figure 5. Flowtime-over & under estimating task length and resource rate

MAKESPAN(msec) =mct [GRID SHADOW ujsq*

35000

30000

25000
20000
15000
10000
5000
0

0 10% 20% 30% a% 1

Figure 6. Makespan-over & under estimating task length & resource rate

expect a large difference between the performance of our
algorithm and the MCT algorithm. However, the results il-
lustrate that our algorithm has much better Flowtime than the
MCT algorithm. This is due to the fact that the Grid Shadow
Routing algorithm does not use the greedy view point of
the MCT algorithm in optimizing the completion time for
any single task. Instead, our proposed algorithm considers
a long term approach for minimizing the completion times,
and balancing the loads in the system, so it can achieve good
performance for aggregated metrics like Flowtime. Another
reason for better Flowtime of our algorithm compared to the
MCT algorithm is the large overhead of the MCT algorithm
in gathering full state information from the system, while
our proposed algorithm has no such overhead. As discussed
before, minimizing Flowtime can result in maximizing the
Makespan. As the Grid Shadow Routing algorithm does
not have the goal of minimizing the completion time for
each individual task, and it considers overall balancing of
loads, this can increase the completion time for a small
number of tasks, which results in larger Makespans for
the Grid Shadow Routing algorithm. Still, its Makespan is
competitive with the JSQ* algorithm. As discussed before,
our algorithm is most useful for EGEE like Grid systems in
which gathering full state information for scheduling each
incoming task causes significant overhead for the system. We
believe that in these Grid systems the average completion
time (Flowtime) (which is interpreted as QoS [12]) of the
system is more important than maximum completion time of
tasks (Makespan) (which is interpreted as throughput of the
system). According to the results, even in systems which
have large estimation errors, our proposed Grid Shadow

Routing algorithm still has much better Flowtime than the
MCT algorithm. This result is the consequence of the Grid
Shadow Routing approach in properly balancing the loads
in all resources based on their estimated loads and execution
rates.

B. Over Estimation

In this part, we assume the over estimation error model
applies. First, we evaluate our algorithms in an environment
with accurate resource execution rates, but with various error
levels in estimating task length, whose results are provided
in Figures 7 and 9, from the Flowtime and Makespan
perspectives, respectively. Then, we consider an environment
with error in both task length and resource execution rate
estimation. Figures 8 and 10 compare the Flowtime and
Makespan of the scheduling algorithms in an environment
with errors in all estimates. Different error levels are con-
sidered in these Figures.

FLOWTIME(msec) EMCT EGRIDSHADOW mJsQ*

3100

2700
2500
2300
2100
1900
1700
1500
0 10% 20% 30% aw% 1

Figure 7. Flowtime-over estimating task length

[]]] *
FLOWTIME(msec) MmcT GRID SHADOW Isq

3100

2900

2700
2500
2300
2100
1900
1700
1500 v
0 10% 20% 30% aw% !

Figure 8. Flowtime-over estimating task length and resource rate

Based on the results, up to 40 percent over estimation
does not significantly affect performance of our algorithm.
The Grid Shadow Routing algorithm has the best Flowtime
and the MCT algorithm has the best Makespan.

To summarize the observations in this section, in a real
Grid workload, the Grid Shadow Routing algorithm has
much better Flowtime than the MCT algorithm, and the Grid
Shadow Routing algorithm achieves this performance with-
out collecting any state information. The MCT algorithm
achieves the best Makespan at the cost of collecting full
state information. So, our Grid Shadow Routing algorithm
is a promising candidate for widely distributed, and highly
loaded Grid systems.

EmcT @ GRID SHADOW mjsQ*

MAKESPAN(msec)
30000

25000

20000

15000

10000

5000
0 10% 20% 30% a0% 1

0

Figure 9. Makespan-over estimating task length

EmcT © GRID SHADOW mJsQ*

MAKESPAN(msec)
30000

25000
20000
15000
10000
5000
o

0 10% 20% 30% 4% 1

Figure 10. Makespan-over estimating task length and resource rate

VIII. CONCLUSION AND FUTURE WORK

We introduced a new scheduling algorithm for Grid
systems, called the Grid Shadow Routing algorithm. We
evaluated the performance of this algorithm by simulation,
and the results show the promising performance of our
algorithm for aggregate measures such as Flowtime. Our
introduced algorithm and the MCT algorithm use the same
system parameters, but they differ in the amount of dynamic
state information used for scheduling, in which our algo-
rithm requires zero state information. We conclude that in
cases where the system elements are not tightly coupled, and
the communication cost is considerable, applying the Grid
Shadow Routing algorithm is highly recommended over the
MCT algorithm.

As potential future work, we propose making modifica-
tions in the Grid Shadow Routing algorithm to also consider
data intensive applications. This would require refining the
relations in steps 1 and 2 of the algorithm, to minimize the
data transfer and storage costs. So, the algorithm finds the
best matchings of resources and tasks such that it reduces
both the costs of data transfer and storage, in addition to
what it currently considers.

IX. ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. The LCG Grid
traces are provided by the HEP e-Science group at Imperial
College London.

REFERENCES

[1] I. T. Foster and C. Kesselman, “Computational grids,”
in Proceedings of the 4th International Conference on

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

Vector and Parallel Processing.
3-37.

A. Abraham, R. Buyya, and B. Nath, “Nature’s heuris-
tics for scheduling jobs on computational grids,” in
Proceedings of the Sth IEEE International Conference
on Advanced Computing and Communications, Tata
McGraw -Hill, India, 2000, pp. 45-52.

L. E and B. Jones. (2009) Enabling grids for
e-science: The egee project, egee-pub- 2009-001.
[Online]. Available: http://www.eu-egee.org/

A. L. Stolyar and T. Tezcan, “Control of systems
with flexible multi-server pools: a shadow routing
approach,” 2009, Bell Labs Technical Memo, revised.
null Yuanyuan Zhang, null Wei Sun, and null Ya-
sushi Inoguchi, “Predicting running time of grid tasks
based on cpu load predictions,” in Proceedings of
the 7th IEEE/ACM International Conference on Grid
Computing (Grid06). Los Alamitos, CA, USA: IEEE
Computer Society, 2006, pp. 286-292.

D. Lu, H. Sheng, and P. Dinda, “Size-based scheduling
policies with inaccurate scheduling information,” in
Proceedings of the 12th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems. Los Alamitos, CA,
USA: IEEE Computer Society, 2004, pp. 31-38.

A. Tosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu,
and et al. (2006, Nov) The Grid Workloads Archive.
http://gwa.st.ewi.tudelft.nl/.

F. Dong and S. G. Akl, “Scheduling algorithms for grid
computing: State of the art and open problems,” School
of Computing, Queens University, Kingston, Ontario,
Canada, Tech. Rep. 504, 2006.

R. Buyya and M. Murshed, “Gridsim: A toolkit for
the modeling and simulation of distributed resource
management and scheduling for grid computing,” Con-
currency and Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175-1220, 2002.

S. Akioka and Y. Muraoka, “Extended forecast of
cpu and network load on computational grid,” in Pro-
ceedings of the 4th IEEE International Symposium on
Cluster Computing and the Grid(CCGrid’04). Los
Alamitos, CA, USA: IEEE Computer Society, 2004,
pp. 765-772.

A. losup, O. Sonmez, S. Anoep, and D. Epema, “The
performance of bags-oftasks in large-scale distributed
systems,” in Proceedings of the 17th International Sym-
posium on High Performance Distributed Computing,
2008, pp. 97-108.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic matching and scheduling of a
class of independent tasks onto heterogeneous comput-
ing systems,” in Proceedings of the 8th Heterogeneous
Computing Workshop. Los Alamitos, CA, USA: IEEE
Computer Society, 1999, p. 30.

Springer, 2000, pp.

