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Abstract—In this work we address the problem of fault-
tolerant operation of data center thermal management systems.
A data driven fault tolerant control framework is proposed. First,
a data driven dynamic predictive model is trained using subspace
identification. This model is utilized in a model predictive con-
troller to predict dynamic behavior of a data center. An economic
model predictive control is designed to maintain temperatures
within an allowable range while minimizing operational costs of
the cooling system. An observer based fault diagnosis method is
then developed to detect and isolate sensor faults. When a fault
occurs, it is diagnosed and the corresponding measured signal
is replaced with the reconstructed signal from a state estimator.
The effectiveness of the proposed method is illustrated through
simulations on a mechanistic data center model.

Index Terms—Data centers; Thermal management; Zonal
control; MPC; EMPC; Data driven predictive model; Time series
analysis; Machine learning.

I. INTRODUCTION

Growing demand for cloud based services requires reliable
operation and monitoring of data centers (DCs). These op-
erational systems require proven capabilities in scale, speed
and security to support costumer demand. At the same time,
DCs are currently drawing up to 5% of the world’s electricity
[1], [2], with this proportion growing because of increasing
demand for cloud computing infrastructures. About 40% of
this energy is usually provided for thermal management of IT
equipment (ITE) [3]–[5]. The aim of DC cooling systems is to
maintain server temperatures within a safe temperature region,
where servers can be reliably operated. The safe temperature
ranges for different types of DC hardware are available in
guidelines such as those of ASHRAE [6]. This can be achieved
by utilizing modern and advanced control and monitoring
techniques. The challenges in the closed-loop operation of
DCs are compounded by uncertainties manifested as variations
in demands or faults. DC performance can be negatively
affected by abnormal operating conditions and faults, which
can lead to undesired consequences including unsatisfactory
quality of service, economic loss and hardware failure (or any
combination of these).

A data center’s control and monitoring framework must be
capable of fault detection and isolation (FDI) and fault tolerant
control (FTC). All model-based FDI frameworks consist of
two main components, an underlying model to predict healthy

system behavior and FDI logic to detect and isolate faults. A
wide variety of methods have been proposed assuming the
availability of a good model (mechanistic or data driven).
Theses approaches are based on comparing measured/available
data with estimated/reconstructed signals. In the presence of a
fault a considerable difference typically exists between some
of the available signals and reconstructed signals estimated
using the model. The logical part of an FDI system utilizes the
residual values to diagnose fault(s). With respect to controller
design, there are several approaches employed for dynamic
management of data centers.

Violation of safe temperature guidelines, even by 1 or 2
degrees, can result in server failures [7], [8]. It can also result
in poor performance [9]. Therefore a controller is required that
can maintain safe temperatures while minimizing operating
cost. In order to control temperatures within a DC, we find
that a control theoretic viewpoint is applicable.

Recently we proposed a data driven controller for data
center thermal management [10]. Using a Model Predictive
Control (MPC) approach, our technique solves an optimization
problem at each sampling instant over a finite time hori-
zon, subject to a dynamic model of the system and general
constraints, in order to calculate the control action. The
proposed framework minimizes operating costs while ensuring
temperatures are within a given safe temperature zone. In order
to enable fault tolerant operation the FDI system should be
integrated with the controller. There are different types of
data driven fault diagnosis frameworks that can be utilized.
In [11] a black-box fault detection method for rack-level
fault detection is proposed. In [12] and [13] the problem of
workload management under faults is considered. However,
the problem of fault tolerant control of a cooling unit is not
addressed in these works.

Motivated by the above considerations, in this work we
address the problem of designing a fault tolerant control
framework for ensuring that temperature is within a safe range.
To this end first a fault detection and isolation framework is
proposed, which is then integrated with an economic model
predictive control framework. The rest of the manuscript is
organized as follows: First, the general description for the
data center considered in this work, a mechanistic model for
DCs as a test bed, a machine learning approach (subspace



identification) and a representative formulation for Economic
MPC are reviewed. Then the proposed FDI approach for
sensor faults is presented and is integrated with the controller.
The efficiency of the proposed FDI and FTC methods is
illustrated by simulating a DC with two rack mounted cooling
units. Finally, concluding remarks are presented.

II. PRELIMINARIES

In this section, a description of a recently developed data
center with rack mounted cooling units is reviewed. This is
utilized as our test-bed model. A machine learning based
predictive model that is used to predict the dynamic behavior
of the system is described. Finally a description of the eco-
nomic model predictive (EMPC) framework is presented. This
material is a summary of the work presented in [10] and is
included here for completeness.

A. Data Center

There are different types of cooling methods in data centers:
room based, row based and rack mounted cooling units. In
this work we consider a single rack data center with two
rack mounted cooling units (RMCUs). The schematic for a
data center IT rack within an enclosure that is cooled by two
RMCUs is presented in Fig. 1.

In this work we utilize a mechanistic model as a test
bed. The model was recently developed in [14]. The model
development uses heat transfer and fluid mechanics principles
to capture dynamic behavior of the system. A detailed expla-
nation of the model development can be found in [14]. The
final formulation is a set of differential, algebraic equations.

Fig. 1. Schematic of the IT enclosure integrated with a single rack and two
RMCUs with separated cold and hot chambers. The zones (control volumes)
in the front and back chambers are shown.

B. Dynamic Predictive Modeling

In this section we briefly review a data-driven (machine
learning) method for dynamic modeling. We will utilize a
subspace-based identification method to train a discrete time
state space model. The goal in model identification is to

compute the linear time invariant (LTI) model parameters with
the following form:

xk+1 = Axk +Buk + wk (1)
yk = Cxk +Duk + vk (2)

where x ∈ Rnx and y ∈ Rny denote the vectors of state
variables and measured outputs, w ∈ Rnx and v ∈ Rny are
zero mean, white vectors of process noise and measurement
noise with the following covariance matrices:

E[

(
wi
vj

)(
wTi vTj

)
] =

(
Q S
ST R

)
δij (3)

where Q ∈ Rnx×nx , S ∈ Rnx×ny and R ∈ Rny×ny are
covariance matrices, and δij is the Kronecker delta function.

In order to calculate the model parameters from given input
and output data, the training procedure from [15] is adopted.
A detailed description of the data-driven modeling, which
involves orthogonal projection and least squares, is explained
in [15] and [16].

Note that the order of the LTI system nx is selected in a
manner such that the identified system is controllable and the
prediction of validation data is acceptable.

Fig. 2. Model validation results (outputs: six temperature values in front of
servers)

Fig. 3. Model validation results inputs and measured disturbances

Remark 1: The order of the model or the number of states
to be used for the model (the only model parameter choice)
is decided from properties of the training data fitting. This



is done at the singular value decomposition step, where the
choice of the number of states is equal to the number of
dominant singular values. Note also that for the case that data
are collected in closed-loop with noise or disturbances in the
plant, open-loop identification methods are theoretically biased
for data driven modeling, and closed-loop identification must
be used, for example the closed-loop identification method
utilized in [17].

C. Economic Model Predictive Control

In this section an economic model predictive controller
based on the identified model is described. The goal of this
controller is to keep all the temperatures in front of the servers
within a desired range. The proposed controller is found as a
solution of the following optimization problem, which we call
the EMPC optimization problem:

min
ũ(j),ε−(j),ε+(j)

P∑
j=1

cTε−ε−(j) + cTε+ε+(j) + cTu ũ(j) (4)

subject to:

x̃(k + 1) = Ax̃(k) +Bũ(k) +Bdd̃(k) (5)

d̃(k + 1) = d̃(k) (6)

ỹ(k) = Cx̃(k) +Dũ(k) +Ddd̃(k) (7)
ũ ∈ U , ε− ≥ 0, ε+ ≥ 0 (8)

x̃(k) = x̂k, d̃(k) = dk (9)
ymin − ε− ≤ ỹ ≤ ymax − ε+, (10)

where ỹk and ũk are the predicted output trajectory and
input at the kth sampling instant. The vectors x̃ and x̂ are
the predicted value and the estimate of the subspace state,
obtained utilizing a state estimator. The vectors d̃ and d are the
predicted value and the estimate of the measured disturbances,
equal to the latest measurement. The vectors cε− and cε+
denote penalties associated with slack variables. The vector cu
denotes the cost of the manipulated input variables. The slack
variables ε− and ε+ are added to the lower and upper bounds
on the outputs to ensure the feasibility of the optimization
problem (slack variables). The values ymin and ymax are lower
and upper bounds on the output (temperatures).

In order to compute the control action, the EMPC optimiza-
tion problem is solved at each sampling instant. The first input
in the computed sequence is then implemented. The controller
optimization problem is a linear programming problem. There-
fore, using available solvers, the global optimum (if constraints
are consistent) can be calculated. A Kalman filter is employed
for state estimation in this study.

III. DATA-DRIVEN FAULT DIAGNOSIS AND
FAULT-TOLERANT CONTROL OF DATA CENTERS

A. Fault Diagnosis for Data Centers

In this section a data-driven fault detection and isolation
technique for sensor faults is proposed. The method is then
utilized to develop a fault tolerant control framework for

data centers. In order to diagnose sensor faults consider the
identified model of the system subject to the faults:

xk+1 = Axk +Buk + wk, (11)
yk = Cxk +Duk + vk + fk, (12)

where fk ∈ Rny denotes the sensor fault vector and the
rest of the variables are as defined earlier. In order to detect
and isolate these faults a bank of observers is designed. The
number of observers is equal to the number of measured
outputs (ny). The ith observer, Oi, is designed to detect
faults in the sensor for the ith output. The observers have
the following form:

Oi :

{
x̂Oi

k+1 = Ax̂Oi

k +Buk +KOi

k (y
[i]
k − ŷ

[i]
k )

ŷOi

k = Cx̂Oi

k +Duk
, (13)

i = 1, . . . , ny

where x̂Oi and ŷOi denote the predicted state and output cal-
culated with the ith observer. The observer gain is calculated
similar to (??)-(??). The difference is that the ith observer
excludes yi from its measured and predicted outputs. The
vectors y[i]k ∈ Rny−1 and ŷ

[i]
k ∈ Rny−1 denote the measured

and predicted outputs excluding the ith output of the system
(y[i]k := [yk,1, . . . , yk,i−1, yk,i+1, . . . , yk,ny ]

T ).
The ith observer uses the most recent measurement yOi

k

which includes all the outputs except the ith output (yk,i) to
estimate the state of the system (xOi

k ). Then xOi

k is utilized
in (2) to estimate the outputs of the system ŷOi

k . The esti-
mated (reconstructed) output ŷOi

k is then compared with the
corresponding measured value (yk) to calculate the residual
value of the signals. Also, note that in the update step of
state estimation, the ith output is not utilized, therefore this
estimation would be insensitive to a fault in the ith sensor. In
the absence of a fault the residual value should be negligible.
The residual values may be non-zero due to plant-model
mismatch. In order to determine a threshold on the residual
caused by the plant-model mismatch, training data are utilized.
For each sensor, the threshold is the maximum value of the
residual for each output in healthy (fault free) training data.

In order to detect sensor faults, the residuals are contin-
uously calculated by comparing measured and reconstructed
output signals. In the case that there exists a sensor fault in
the ith sensor, the residual between the reconstructed signal
from the ith observer for the ith output with measured value
exceeds the threshold for that output. More precisely:{

ri,k > ηi There is a fault in the ith sensor
ri,k ≤ ηi There is not a fault in the ith sensor, ,

(14)

where ri denotes the residual vector and is computed as
follows:

ri,k := |ŷOi

i,k − yi,k|. (15)

The vector η is the threshold vector.



B. Fault-Tolerant Control of Data Centers

In order to ensure safe and efficient operation, after fault de-
tection and isolation, fault tolerant control should be utilized.
In this section the developed framework is augmented with a
fault tolerant mechanism.

In the case of a measurement fault in the ith sensor, the fault
is diagnosed by the proposed fault detector. The measured
signal for the ith sensor is replaced with the reconstructed
value of the signal by the observer Oi, also the observer is
replaced with the state estimator Oi. The proposed framework
is illustrated in Fig. 4:

MPC Data Center Sensors

Bank of 
observers

Fault Detection 
and Isolation

Signal Selector

(𝑦𝑖,𝑘 𝑜𝑟  𝑦𝑖,𝑘
𝑂𝑖)

𝑢𝑘 𝑦𝑘

𝑓𝑘

 𝑦𝑘
𝑂𝑖,  𝑦𝑘

𝑦𝑠𝑝

observer

 𝑥𝑘

Fig. 4. Fault tolerant control framework

IV. ILLUSTRATIVE SIMULATION RESULTS

A. Data Driven Modeling

The model is computed using the proposed identification
method. The manipulated variables are two air flow rates in
front of the fans and overall chilled water flow rate. The
measured disturbances are the server utilizations (assumed to
be uniform among servers) and chilled water temperature. The
controlled outputs are the six temperatures in front of the
servers.

In order to identify a model, inputs and utilizations are per-
turbed using pseudo-random binary sequences, except for the
chilled water temperature. The chilled water is typically taken
from a utility service, and its temperature is subject to changes
due to the time varying load. Here, we assume a sinusoidal
signal. The identified model consists of twenty states, three
manipulated input variables, two measured disturbances and
six measured outputs.

The identified model has the following form:

xk+1 = Axk +Buk +Bddk + wk, (16)
yk = Cxk +Duk +Dddk + vk, (17)

E[

(
wi
vj

)(
wTi vTj

)
] =

(
Q S
ST R

)
δij , (18)

where d is vector of measured variables. The matrices Bd
and Dd are gains for measured disturbances in the state and
output equations. In order to use our identification approach,
d is augmented with u to create the overall input, while the
rest of the steps are as illustrated.

For model validation, a different training data batch was
used. The model validation results are presented in Fig. 2 and

Fig. 3. Since the initial state of the state space model cannot
be determined from the training data, a Kalman filter (a state
estimator) is utilized in order to achieve output convergence,
then open-loop prediction is used for model validation in
order to evaluate model prediction performance. At time 300
seconds, the output of the predictive model has converged to
the plant output, and the identified LTI model in open-loop
(without state update), along with the known input trajectory,
is utilized for output prediction with the remainder of the
data. The results show that after convergence of the model
states, the prediction performance of the model for simulating
the process behavior is reasonable, and is appropriate for a
predictive control implementation.

B. Fault Detection under Open Loop

In order to test the proposed FDI framework a fault as a
constant bias is added to temperature sensor 5. The results are
presented in Fig. 5 and Fig. 6.

TABLE I
CONTROLLER PARAMETERS

Variable Value

cε−
[
106 106 106

]T
cε+

[
106 106 106

]T
cu

[
10−2 10−2 1

]T
P 8
ymax 16

Fig. 5. Residuals of observers under sensor fault of sensor 5

C. Fault Tolerant control

The closed-loop trajectory with the proposed fault tolerant
control given a fault in sensor number 4 (the hottest point)
is simulated and is compared with the system without added
fault tolerance. The fault tolerant control framework, after
diagnosing the fault, steers the system back to the required
zone. The results are presented in Fig. 7 and Fig. 8.

Remark 2: Although a data center with rack mounted cool-
ing units is used to demonstrate our approach, the proposed
framework can be used for other types of cooling units and
for any size of DC. We have not made any assumptions for



Fig. 6. Closed-loop profile (input)

Fig. 7. Comparison of closed-loop trajectory between FTC and controller
(Outputs)

the structure of the DC system and a data driven model is
used in the predictive controller, so there is no reason that this
approach should not scale well.

Remark 3: Our results assumed a negative bias in a sensor,
which results in the temperature exceeding the desired thresh-
old at the corresponding zone in the data center. Note that on
the other hand, a positive bias would not result in threshold
violation, but it would increase the operation cost of the system
if FTC is not employed.

V. CONCLUSIONS

In this study, a novel fault detection and isolation method is
developed for DC temperature sensor faults. In order to diag-
nose sensor faults a bank of observers is utilized to reconstruct
measured signals and by comparing them to measured values
faults are detected. The framework is integrated with a zone
model predictive control approach to create a fault tolerant
framework. This approach is based on replacing the signal
of a faulty sensor with an estimated signal. The proposed
approaches are implemented on a simulated data center and
shown to be able to provide improved closed-loop behavior.

REFERENCES

[1] K. C. Armel, A. Gupta, G. Shrimali, and A. Albert, “Is disaggregation
the holy grail of energy efficiency? The case of electricity,” Energy
Policy, vol. 52, pp. 213–234, 2013.

Fig. 8. Comparison of closed-loop trajectory between FTC and controller
(Inputs)

[2] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu,
M. Halverson, D. Winiarski, M. Rosenberg et al., “US Department of
Energy commercial reference building models of the national building
stock,” 2011.

[3] J. Dai, M. M. Ohadi, D. Das, and M. G. Pecht, Optimum cooling of
data centers. Springer, 2016.

[4] K. Ebrahimi, G. F. Jones, and A. S. Fleischer, “A review of data center
cooling technology, operating conditions and the corresponding low-
grade waste heat recovery opportunities,” Renewable and Sustainable
Energy Reviews, vol. 31, pp. 622–638, 2014.

[5] H. M. Daraghmeh and C.-C. Wang, “A review of current status of
free cooling in datacenters,” Applied Thermal Engineering, vol. 114,
pp. 1224–1239, 2017.

[6] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase,
“Balance of power: Dynamic thermal management for internet data
centers,” IEEE Internet Computing, vol. 9, no. 1, pp. 42–49, 2005.

[7] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and
B. Schroeder, “Temperature management in data centers: why some
(might) like it hot,” ACM SIGMETRICS Performance Evaluation Review,
vol. 40, no. 1, pp. 163–174, 2012.

[8] M. K. Patterson, “The effect of data center temperature on energy
efficiency,” in 2008 11th Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems. IEEE, 2008,
pp. 1167–1174.

[9] W. Torell, K. Brown, and V. Avelar, “The unexpected impact of raising
data center temperatures,” Write paper 221, Revision, 2015.

[10] M. Kheradmandi, D. G. Down, and H. Moazamigoodarzi, “Energy-
efficient data-based zonal control of temperature for data centers,” 2019,
submitted for publication.

[11] C. Ciccotelli, L. Aniello, F. Lombardi, L. Montanari, L. Querzoni, and
R. Baldoni, “Nirvana: A non-intrusive black-box monitoring framework
for rack-level fault detection,” in 2015 IEEE 21st Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC). IEEE, 2015,
pp. 11–20.

[12] M. Isard, “Autopilot: automatic data center management,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 2, pp. 60–67, 2007.

[13] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp.
39–50.

[14] H. Moazamigoodarzi, S. Pal, S. Ghosh, and I. K. Puri, “Real-time
temperature predictions in it server enclosures,” International Journal
of Heat and Mass Transfer, vol. 127, pp. 890–900, 2018.

[15] M. Kheradmandi and P. Mhaskar, “Model predictive control with closed-
loop re-identification,” Computers & Chemical Engineering, vol. 109,
pp. 249–260, 2018.

[16] M. Khseradmandi and P. Mhaskar, “Adaptive model predictive batch
process monitoring and control,” Industrial & Engineering Chemistry
Research, vol. 57, no. 43, pp. 14 628–14 636, 2018.

[17] M. Kheradmandi and P. Mhaskar, “Data driven economic model predic-
tive control,” Mathematics, vol. 6, no. 4, p. 51, 2018.


