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Abstract—When scheduling single server systems, Shortest
Remaining Processing Time (SRPT) minimizes the number of
jobs in the system at every point in time. However, a major
limitation of SRPT is that it requires job processing times a
priori. In practice, it is likely that only estimates of job processing
times are available. This paper proposes a policy that schedules
jobs with estimated job processing times. The proposed Modified
Comparison Splitting Scheduling (MCSS) policy is compared to
SRPT when scheduling both single and multi-server systems. In
the single server system we observe from simulations that the
proposed scheduling policy provides robustness that is crucial
for achieving good performance. In contrast, in a multi-server
system we observe that robustness to estimation errors is not
dependent on the scheduling policy. However, as the number of
servers grows, SRPT becomes preferable.

I. INTRODUCTION

If processing times are known a priori, scheduling using

the Shortest Remaining Processing Time (SRPT) policy is

proven to be optimal by Schrage [1] in that the number of

jobs in the system is minimized at every point in time. The

optimality of SRPT does not depend on any assumptions

about the distribution of either the job interarrival times or

processing times. SRPT is an appropriate scheduling policy

for systems where dynamic scheduling is required, such

as web servers, where job processing times are known on

arrival. There is no need to have a predetermined list of jobs

and their processing times before run-time. Web servers are

quite fitting for this domain and we will continue to use them

to illustrate some of the issues that may arise in a practical

setting.

Even though SRPT is optimal when scheduling for a

single server system, it may be worth noting some of its

disadvantages. The first drawback, noted by Bansal and

Harchol-Balter [2], is that it may force a large amount of

preemption. If this preemption has high overhead cost this

can affect the system response time. Response time for a

single job is the time between the arrival of a job to its

departure. For the remainder of this paper, it will be assumed

that preemption has a low overhead cost and is not a critical

problem, however, it is still an issue to consider.

The second concern in using SRPT is that it may be

complicated to implement. It requires a large volume of

storage as each job must be stored along with its processing

time. If maintaining data for every job is a problem, one

could use a class-based approximation of SRPT. This is

the primary motivation for Jelenkovic et al. [3] when

designing the Comparison Splitting scheduling policy, where

the complexity of implementation is a critical concern.

They are interested in finding a threshold-based policy that

approximates SRPT. Static thresholds are those where values

are calculated and set in advance and do not change over

time. Conversely, dynamic thresholds are adaptive and change

over time based on the job size distribution. In order to

design a class-based scheduling policy with static thresholds,

one must know the job processing time distribution in order

to calculate threshold bounds. In reality, job distributions are

rarely known and are difficult to identify or estimate. For

example, with web server traffic, job distributions commonly

have a high variance and change over time; hence dynamic

thresholds are a better choice for job size classification.

The assumption that job processing times are known

exactly is problematic in general. Thus, a current area of

study is working with estimated job processing times. In

web server systems, exact job sizes may be known, however,

the exact time to process these requests may be unknown.

As noted by Schroeder and Harchol-Balter [4], this is due

in part to the inherent latency when sending data over a

network and while sending and receiving acknowledgments,

therefore processing times must be estimated. Web servers

often use virtual machines to process jobs, thus another

reason that job processing times must be estimated is the

variance of the performance of virtual resources. When job

processing times are estimated, errors are introduced. If the

scheduling policy is dependent on the job processing times

being known, estimation errors may cause performance issues.

Figure 1 displays an example in which a job enters

the system with an actual processing time of one million

time units. Here, the updated real remaining processing

(RRPT) is maintained for illustration. Upon arrival, the job is

underestimated by 1% and thus has an estimated remaining





in a single server system where jobs arrive following a Poisson

Process and are assigned a required processing time that

is calculated with respect to a Bounded Pareto distribution

(details of the Bounded Pareto distribution will be given

below). The required processing time is then multiplied by

a random percent error value to simulate the estimation errors

for approximating job processing times.

A. Policies

SRPT Scheduling Policy — The queue is sorted in

increasing order of Estimated Remaining Processing Time

(ERPT) and the job with the current shortest ERPT is

always processing. ERPT is calculated from taking the initial

processing time estimate of the job and subtracting from it

the elapsed processing time. The initial estimates are never

updated. When a job completes and leaves the system, the

job next in the queue, with the shortest ERPT, will be sent

to the server until the next event, a job arrival or departure,

occurs.

Algorithm 1 Assign class

1: procedure ASSIGNCLASS(numClasses, job)

2: while len(prevJobsArray) > (numClasses− 1) do

3: prevJobsArray.pop(0)

4: end while

5: prevJobsArray.append(job)

6: prevJobsArray.sort(attribute = ERPT)

7: i = 1
8: for j ∈ prevJobsArray do

9: if j.name == job.name then

10: job.class = i

11: i++

12: end if

13: end for

14: end procedure

Modified Comparison Splitting Scheduling Policy —

As described by Jelenkovic et al. [3], this scheduling policy

is designed to approximate the SRPT scheduling policy —

the class assignment process is called Comparison Splitting.

The class assignment algorithm is given in Algorithm 1. The

jobs are divided between the desired number of classes, r,

using dynamic thresholds. When a job enters the system, its

estimated processing time is compared with the estimated

processing times of the previous r−1 jobs. The list of jobs is

sorted from 1 through r by ERPT. The location of the current

job in the sorted list will become its assigned class. The

thresholds are dynamic as the class a job might be assigned

to is dependent on the jobs that arrive before it. Two jobs of

the same size may arrive to the system at two different points

in time and be assigned to different classes. It is important to

note that during the class assignment process, no jobs have

their assigned classes updated. It may be more accurate to say

that this scheduling policy is an approximation to Shortest

Processing Time (SPT) than an approximation to SRPT, as

jobs never change classes, even after a reduction in ERPT.

Each class at the server has its own queue. The classes are

processed in order of priority, with class 1 having the highest

priority and class r the lowest. The priorities are preemptive.

When a job is preempted, its accumulated processing is

not lost. Jobs within each class are processed in order of

First-Come, First-Served (FCFS). Processing in FCFS order

allows less data to be maintained and updated for each job,

thus simplifying the scheduling policy.

High variance distributions have often been chosen to

model job processing times as they provide an accurate

representation of reality [10], [11], [12], [13], [14]. We focus

on such distributions for the reason that the issues caused by

job processing time estimates are only a concern when using

high variance job size distributions, such as those that exhibit

heavy-tailed behavior. These issues appear as a result of large

jobs that are underestimated and not dealt with correctly.

We have observed that such problems do not arise for lower

variance distributions [15].

The details of the processing time distribution used in our

simulations, Bounded Pareto, are as follows. The probability

density function B(L,U, α) is described in Equation (1).

f(x) =











αLαx−α−1

1− (L
U
)α

, L ≤ x ≤ U

0, otherwise

(1)

This distribution has three parameters, α, U , and L. U is

the upper bound of the possible job processing times, we

use a value of 106. L is the lower bound of the possible

job processing times, we use a value of 1. The parameter α

determines the shape of the tail of the distribution. The second

moment, and thus for this distribution the variance increases

as α decreases as defined by Crovella et al. [16]:

E[X2] =
αLα(L2−α − U2−α)

(α− 2)(1− (L
U
)α)

, α 6= 2.

We used three different values for α to diversify the variance

of the processing time distribution: 1.1, 1.3, and 1.5. In this

paper we are focusing on high variance distributions, so only

the results for α = 1.1 are presented. The results for the

lower variance simulations can be found in [15].

In a system with no estimation errors, as the number of

classes approaches infinity, we approach SPT. Figure 2 shows

the Comparison Splitting scheduling policy with an increasing

number of servers and no processing time estimation errors.

As the number of classes increases, the relative performance

improvement decreases. The downside to having a large

number of classes is that it would require more space in order

to store the previous r − 1 jobs necessary for comparison

during classification. Another downside to maintaining many

classes is that if the processing time distribution changes, it



α=1.1, L=1, U = 106, Simulation Length=5M,

Percent Error=0%, Load=95%

Fig. 2: A comparison of the average number of jobs in the

system under varying number of classes using the Comparison

Splitting scheduling policy

would take longer for the system to adapt. For our simulations

we choose to use 10 classes as it maintains a reasonable

amount of prior processing time data without requiring more

storage.

As displayed in Figure 2, the gap between the Comparison

Splitting Scheduling policy and SPT arises due to jobs that

are queued in class r for long periods of time. This is because

class r has the lowest priority of the classes, which means

queues 1 through r − 1 would have to be empty in order to

begin processing the jobs in class r. The class assignment

algorithm tends to assign significant load to the last class; this

issue is not addressed by Jelenkovic et al. [3]. Class r has the

largest range of processing times within its threshold. This is

a problem when using FCFS to process the class r queue as

FCFS is known to perform poorly if the variance is high. A

question arises as to whether increasing r, i.e. adding more

classes, would rectify this problem. If there are equal loads

in each class, adding more classes would be helpful to reduce

the load for each class. The classes do not have equal load in

simulation, as illustrated in Figure 3. This figure shows the

percentage of the total load carried by the jobs of each class.

It is clear that the last class tends to carry a significant load

no matter the size of r.

In our experiments, classes 1 through r − 1 tended to

have low variance, class r had high variance. The scheduling

policy must take variance in processing times into account

in order to optimize mean response time. The Comparison

Splitting scheduling policy was adapted so that the lowest

priority class is processed using Last-Come, First-Served

(LCFS) and will be henceforth be called the MCSS policy.

This reasoning is supported when looking at a side-by-side

comparison of LCFS and FCFS for a typical case of class r

in Figure 4.

Preemptive LCFS has been studied and analysed by

Harchol-Balter et al. [17] and found to have the same mean

response time as PS. PS and LCFS are both size-blind

policies and thus do not know the sizes of arriving jobs. They

also show that PS has a lower mean response time than FCFS

if the variance of the service time distribution is higher than

the variance would be for an exponential distribution.

There are two main disadvantages of LCFS compared to

FCFS, the first being that LCFS requires more preemption as

it preempts the job currently processing for every arriving job.

Performance may increase with the use of LCFS for every

class, or for some sufficient number of classes if there is a

balance between the preemption overhead and the advantages

in performance gained through the use of LCFS. The second

disadvantage to LCFS is that it only performs well in a system

with high variance for the job processing time distribution. In

our system, only class r has high enough variance to warrant

using LCFS over FCFS. Section II-B provides more insight

into this topic.

B. Condition for Preferring LCFS

Consistent with the method and notation described by Adan

and Resing [18], define Ri to be the remaining processing time

and Bi the service time for a job of class i. The variance of

Bi is represented by σ2

i .

E[Ri] =
E[Bi]

2
+

σ2

i

2E[Bi]
(2)

In Equation (2), it is clear that E[Ri] is dependent on

E[Bi] and σ2

i . This is important as the condition for when

LCFS is preferable over FCFS in Inequality (3) below, is

dependent on the variance of Bi. The utilization of class j

is denoted by ρj calculated by multiplying the arrival rate to

class j, λj , by the mean service time, E[Bj ].

LCFS is preferred over FCFS for class r if and only if:

ρr(E[Rr]− E[Br])

≥



1−

r−1
∑

j=1

ρj





r−1
∑

j=1











ρ2j











j
∑

k=1

E[Rk]

(1−
j
∑

k=1

ρk)(1−
j−1
∑

k=1

ρk)





















−

r−1
∑

j=1

ρjE[Rj ]. (3)

If the left hand side, which is dependent on the processing

time variance of class r, is greater than the right hand side,

then LCFS is preferred. As the variance increases, the more

desirable LCFS becomes for that class. This expression can be

extended to determine exactly how many classes one would



α=1.1, L=1, U = 106, Simulation Length=5M, Percent Error=0%

(a) Number of Classes=5 (b) Number of Classes=20

Fig. 3: A comparison of the average load per class using the Comparison Splitting scheduling policy

α=1.1, L=1, U = 106, Simulation Length=5M, Percent

Error=[-50%,0%], Load=95%, 10 classes

Fig. 4: A comparison of the average number of jobs using

the Comparison Splitting scheduling policy, where class r is

processed according to LCFS and FCFS

want to use LCFS for. To determine if class r − 1 should

use LCFS we are able to use the same formula where r − 1
is substituted for r. In the situations we have explored, the

rth class is the only class that has a high enough variance

to warrant using LCFS. A detailed proof and additional

discussion can be found in [15].

C. Results and Discussion

For this and subsequent simulations, simulation code was

written using the Python 3 language and is available for

download at [19] and [20]. The simulations were each run

using the SRPT and the MCSS policies. Common random

numbers were used for the simulations.

Figure 5 shows the comparison between the SRPT

scheduling policy and the MCSS policy for three different

loads. In all three graphs there are large jumps in the average

number of jobs when using the SRPT scheduling policy, but

the jumps are almost non-existent when using the MCSS

policy.

The large vertical gains correspond to extremely large

jobs that are underestimated. When these jobs reach zero

ERPT, they are considered to be the smallest in the

system, and because of this, they are given the highest

priority. They block jobs that have true processing times

that are much smaller than the true remaining processing

time of the large jobs. As these jobs are being processed,

a large number of jobs enter the system and are forced to wait.

The MCSS policy performs much better than SRPT because

the large jobs that are underestimated are still sent to the lowest

priority class, class r. Since the MCSS policy processes in

order of priority by class, a job in class r will not block jobs

in queues 1 through r−1. Recall, jobs are never re-classified.

This effect is why the MCSS policy is much more robust to

estimation errors than SRPT.

III. MULTI-SERVER SYSTEMS

This section presents the analysis of SRPT and the MCSS

policy in multi-server systems. The primary motivation for

looking into multi-server systems is to explore the effect of

estimation error as the system is scaled up. In the course of

doing this examination, we found that multi-server systems

are naturally more robust to estimation errors.





α=1.1, L=1, U = 106, Simulation Length=5M, Percent Error=[-50%,0%]

(a) SRPT
Load = 70%

(b) MCSS
Load = 70%

(c) SRPT
Load = 85%

(d) MCSS
Load = 85%

(e) SRPT
Load = 95%

(f) MCSS
Load = 95%

Fig. 8: Mean response time under various loads on various numbers of servers



two-server systems. The MCSS policy (8b, 8d, and 8f) has

similar mean response times under all three loads.

In all cases except the two-class SRPT system under a load

of 85%, the MCSS policy seems to have a slightly higher

mean response time than the SRPT scheduling policy. One

reason this may occur is because some jobs may be poorly

classified. If a large burst of similar sized jobs arrives, some

of those jobs may be placed in lower priority classes as a

result of being slightly larger than the other arrivals. Another

reason for the difference in performance between the two

policies may be because over short time periods some servers

may be underutilized when using the MCSS policy. When

using the SRPT scheduling policy, if there are any jobs in

the queue, it means all servers are busy. Recall, in the MCSS

policy jobs are never re-classified or re-routed. A situation

could arise where one server has a large queue and one or

more servers are idle because they have completed all the

jobs routed to them.

The two-server system shown in Figure 8c is a special case.

The arrival streams for each of these graphs vary depending

on load and number of servers, so no two arrival streams are

identical. What is visible here is a situation where a large

job that has been underestimated is occupying a server. In

this case there are only two servers and there is a significant

increase in the mean response time. In the two-server case, it

is fairly likely that this situation could arise. We investigate

this issue in a little more detail below.

When inspecting the SRPT scheduling policy, there is very

little difference to observe from the varying number of servers

once there are five or more servers (under all loads). The

mean response time decreases with the increasing number of

servers. As more servers are added to either model, there is a

decrease in the effect that the number of servers has on the

mean response time in the system.

When scaling the system from one server to multiple

servers, there are two main aspects that must be addressed:

robustness to estimation errors and maintaining busy servers.

For a single server system, we have seen that the MCSS policy

is inherently more robust to estimation errors in performance

than SRPT as any large jobs that are underestimated are still

classified into class r. However, the situation changes for a

multi-server system.

In a system with m servers, when a large job is

underestimated it occupies a server for the duration of its

service time. The system then uses the remaining m − 1
servers to deal with the incoming load. If there is a system

with a high load, and there are x underestimated large jobs

that are occupying x servers, then m − x servers are free to

handle the remaining jobs. The system appears temporarily

unstable if the m − x servers can not handle the incoming

load. For a fixed load, as m increases, it becomes more

unlikely that x will ever be large enough to destabilize

the system. While this effect seems quite intuitive, a more

detailed analysis is desirable, but appears somewhat difficult

to perform. This effect is also present in related work on

stability and response time asymptotics for multi-server

queues, see the work of Scheller-Wolf and Sigman [22] and

Foss and Korshunov [23], respectively.

When comparing the two policies in Figure 8, as the

number of servers increases, the mean response time under

SRPT is lower than under the MCSS policy. A reason for

this is the inefficient usage of servers in the MCSS policy.

SRPT uses a global queue so there are no idle servers when

the queue contains jobs. In the MCSS policy, there are some

servers that have queues that are non-empty while there are

idle servers in the system. There is a trade-off between the

number of servers, and robustness to estimation errors. As

the number of servers in the system grows, the effect of

the idle servers from the MCSS policy becomes more of a

concern than the benefits gained for robustness to estimation

errors. Therefore, as the number of servers increases, SRPT

outperforms the MCSS policy as the poor utilization of

servers increases response time more than the delays caused

by estimation errors.

When designing a system with estimated job processing

times, it is thus advisable to use two or more servers if

possible, as there is a large increase in robustness when

moving from a single server system to a multi-server system.

This robustness allows one to pick between using SRPT or

a class-based scheduling policy without much difference in

performance. As the number of servers used increases, the

more desirable SRPT is for the system. If the architecture of

the system only allows for one (or perhaps two) servers, one

should consider a class-based scheduling policy.

IV. CONCLUSION

When considering the implementation of SRPT, the optimal

policy for scheduling on single server systems, there are a

few well known issues. The first is that it requires a large

volume of storage to maintain the data of the queued jobs.

It also tends to have a large amount of preemption which

may severely affect performance. When looking at real-life

scenarios such as web servers, processing time estimates may

not be exact, thus, there will be some errors. These errors

may cause response times to grow unacceptably large and

must be considered when attempting to use the single server

optimal scheduling policy. When moving to a multi-server

system, we have demonstrated the increase in robustness to

estimation errors.

We studied both single and multi-server systems with SRPT

and a class-based scheduling policy. We were able to draw

certain conclusions. The first is that a multi-server system

appears to always be more robust to estimation errors than a

single server system. The second conclusion that we can draw



is that the Modified Comparison Splitting Scheduling (MCSS)

policy performs well without some of the disadvantages of

SRPT. In the single server case we see a drastic increase in

robustness when using the MCSS policy over SRPT. In the

multi-server case, both policies preform relatively well but as

the number of servers increases, the MCSS policy becomes

less desirable.

V. FUTURE WORK

In the future, we would like to work on an improved

classification scheme for jobs. As mentioned above, our

assignment algorithm can classify small jobs to the lowest

priority class and those jobs can be blocked by a large arrival.

To rectify this issue, one method that could be investigated

is designing a scheduling policy that can learn the job size

distribution over time. This would allow for setting more

precise thresholds as long as the distribution is relatively

static. If the job size distribution is frequently changing,

the thresholds might have issues adapting to these changes.

Another addition to the class assignment algorithm could be

to set a lower bound on the threshold of class r. This would

mean that no jobs smaller than this threshold value would

end up in the last class and be potentially blocked by any

extremely large jobs. At the moment, it is not entirely clear

how to go about choosing this threshold.

As mentioned above, when there are an infinite number

of classes in the MCSS policy (i.e. each job is assigned

to its own class), it approaches Shortest Processing Time

(SPT) which is itself an approximation of SRPT. It would be

beneficial to compare the robustness of SPT to SRPT as it

has many of the same advantages as the MCSS policy.

A third topic to investigate is the routing of jobs to servers.

The main issue that arises when routing with Round Robin

(RR) is that it allows for some servers to be idle, while others

have a queue. One possible modification would be to only use

RR if no servers are idle. Idle servers could ping the router and

would be sent the next arriving job. It would be worthwhile to

explore the PULL algorithm used by Stolyar [24], where the

servers pull jobs from a pool. This algorithm works well when

the system is scaled up, as the wait time becomes negligible
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