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Abstract—To design effective control schemes for energy
efficiency in data centers, it is crucial to have a thermal
model of the system. Constructing thermal models of data
centers for temperature prediction is extremely challenging,
due to inherent complexity. Computational fluid dynamics
(CFD) simulations or physical heat transfer equations are
conventionally used to construct such thermal models. More
recent approaches combine physical heat transfer rules and
data-driven methods in an effort to obtain more accurate
models.

Our proposed adaptive learning-based thermal model
(ALTM) is fast, adapts to thermal changes in the data center
environment, and does not require prior knowledge of heat
transfer rules between data center entities. Unlike other
methods, ALTM is a holistic thermal model that predicts
temperature of critical zones using data center operational
variables as inputs. The operational variables are the control-
lable parameters and easily obtained measurements from IT
and cooling units. A key use case for ALTM is that it can
be effectively used for thermal-aware workload schedulers or
cooling system controllers. Our results confirm the accuracy
and adaptability of the model.

Index Terms—thermal model, thermal-aware workload
scheduling, data center temperature prediction, adaptive cool-
ing control, neural network thermal model

I. INTRODUCTION

Air cooling systems continue to be the most common
cooling systems in data centers. These can be simply
building-designed coolers such as normal air conditioners
(AC) or conventional heating, ventilation, and air condi-
tioning (HVAC) units. Many large scale data centers use
computer room air conditioning (CRAC) units, in the form
of a raised-floor architecture [1]. In-row cooling units and
rack mountable cooling units (RMCUs) are more recent and
power-efficient cooling system designs [2].

Cooling systems should provide sufficient cool air for
servers. Maintaining the intake air of servers below a
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certain temperature ensures a safe working environment
for servers and does not compromise their performance
(due to automatic throttling of computing nodes [3]) or
reliability [4]. The current practice of today’s data centers
is to keep the maximum temperature of a zone affected by
a cooling unit below a certain temperature. Implementing
this practice inevitably results in many servers being far
below the required temperature, such servers are said to be
over-cooled. Reducing over cooling of servers is an obvious
opportunity for power savings [5]. The key component
in achieving the minimum amount of over-cooling is to
have a holistic thermal model. This model should give the
distribution of air temperatures inside a data center based
on the operational parameters of the cooling units and the
heat generation profiles of servers [6].

A thermal model simply answers the question “what will
be the temperature at the front of each server?”. The answer
should be in the form of a vector containing the temperature
distribution, at a given future time. This can be obtained
with respect to the current status of a data center, such
as cooling unit configurations or the arrangement of heat
sources (servers). Tracking server temperatures is crucial for
operational control of cooling systems and server workload
management.

There are a number of works and methods presenting
thermal models of data centers. In our previous work, we
showed that using a holistic thermal model, a significant
portion of the cooling power could be saved through an op-
timized assignment of workload and appropriate adjustment
of cooling parameters [7]. Computational fluid dynamics
(CFD) methods [8] can estimate the temperature of every
point within a data center with high precision, however, they
are very computationally intensive and are not appropriate
for real-time decisions. There are a number of faster models
using zonal-based methods and physical energy balance
equations [6], [9]; however, these methods do not adapt
with physical changes within data centers and also their
accuracy deteriorates within large-scale settings. This is



because determining incoming and outgoing air flows of
thermal zones becomes very complicated in such chaotic
environments.

In this paper, we present a means to predict the inlet tem-
peratures of servers with high precision. This is a transient
model (as opposed to steady state) that adapts to physical
changes and can estimate the temperature over a time hori-
zon. The inputs to our model are the operational parameters
of the cooling unit and server workload assignment. With
this in mind, we set up an infrastructure monitoring tool
to provide the required data to predict future temperatures.
We compared a linear regression (least squares) model and a
neural network approach and concluded that an appropriate
neural network can predict the temperature more accurately,
further into the future. An important application of our work
is as a key component for holistic system management
to both schedule the incoming workload and control the
cooling unit parameters efficiently in order to minimize total
power consumption.

The next section provides a review of works related to
temperature prediction in data centers. Next, the details of
our experimental data center architecture and data acquisi-
tion phase are explained. In Section (III-B), the framework
to implement two model estimators is illustrated and dis-
cussed. Finally, results of implementing the framework are
provided and analyzed.

II. LITERATURE REVIEW

The literature lacks adaptive and/or practical solutions
capturing all factors affecting air recirculation in a data cen-
ter. Computational fluid dynamics (CFD) simulations are the
predominant way of constructing thermal models for data
centers. CFD simulations are based on thermodynamic laws
and have heavy computational requirements. Although CFD
methods have high precision and resolution, they cannot be
evaluated at the time scales of data center dynamics [10].

The majority of works on thermal-aware workload as-
signment either simplified the effects of air recirculation
using a static recirculation matrix [11], [12] or used a simple
auto-regression method, simply based on IT load [13]. The
drawback to these methods is that they have not considered
the effects of all operational variables of a data center.

Moore et al. [14] used a neural network to compute the
temperature of inlet air for all servers. The inputs of their
model are pairs of power and heat profiles. Specifically,
workload, cooling settings, and room layout measurements
are used to train the model. However, it is a steady-state
model that uses a limited number of influential parameters
of the cooling unit as inputs to the model. So, the accuracy
of the model can potentially be compromised by changes in
parameters that have not been considered, such as a change
in the air flow rates.

Zhang et al. [15], [16] developed a machine learning-
based framework for temperature prediction of server cores.
Several measurements of a running task are used as the
features of the neural network model such as the CPU

frequency, the number of instructions, floating-point oper-
ations, and cache hits or misses in different cache levels.
Appropriate features are selected using a correlation feature
selection (CFS) algorithm. They used this prediction model
for application scheduling on different servers to reduce the
maximum average core temperature.

Yao et al. [13] used a linear function that relates the
outlet temperatures of IT-racks and CRACs to the inlet
temperatures of IT-racks. Y = WX is used as the linear
model where X contains the outlet temperatures, Y contains
the inlet temperatures, and W contains the weights. They
used the recursive least squares (RLS) method to determine
the weights (W ) of the linear model.

Li et al. [17] presented an approach for energy-efficient
thermal-aware workload scheduling. They used CFD meth-
ods to model the temperature distribution in a data center.
Although it is asserted that the thermal model captures
features of CRACs holistically, the simplified thermal model
may be far from reality (for example, fan speeds are sup-
posed to be constant, or the closest CRAC unit to a server
is considered to be the only cooling unit that influences the
server temperature) and the model lacks cooling unit details.

Li et al. [9] proposed ThermoCast, a thermal prediction
model to predict temperatures in a data center, based on
temperature and air flow measurements. This approach
considers the most recent measurements of IT power con-
sumption, temperature, and air flow rates to update the
model coefficients. The main issue with this method is that
the model requires a structure based on physical laws. They
simplify the air flow equations to obtain the structure. So,
errors due to simplification may propagate for large scale
data centers. The other issue is that the model uses air flow
measurements at the front of servers, which we have found
to be problematic as directly controllable (or measurable)
variables.

III. THERMAL MODEL

The main objective of constructing a thermal model
is the estimation of the temperature distribution within a
data center. The model should be able to predict the inlet
temperatures of servers based on the operational parameters
of cooling units and the data center workload. We start with
illustrating outputs and inputs of the model. The outputs are
the temperatures of thermal zones. A zone is the cubical
volume at the front of a number of adjacent servers. For
example, the data center shown in Fig. 1 has 25 thermal
zones. Adjacent servers typically have small differences
in their inlet temperatures; as a result, we use the inlet
temperature of a server and the temperature of a zone
interchangeably throughout this paper. Inputs of the model
are manipulatable or controllable variables which here are
workload profiles and cooling profiles; the former is related
to the IT facilities and the latter corresponds to the cooling
facilities.

a) Workload profile: For the sake of simplicity, this
work simply considers the workload of a server to be its
utilization.



Fig. 1. Front view of an in-row cooling data center with two cooling units
at two sides and five IT racks

b) Cooling profile: The cooling profiles are the set of
dynamic variables that can be measured and controlled and
also affect the temperature distribution.

In this paper, we show that a reasonably accurate tem-
perature prediction is gained using the suggested framework
with the help of readily available inputs. The implementa-
tion of the framework is straightforward and there is no need
for understanding the physics of the heat transfer within the
data center. The determination of server inlet temperature
estimates is both on-line and adaptive. To the best of our
knowledge, this is the first thermal modeling approach that
directly uses cooling and IT parameters for its predictions
and adapts to changing thermal conditions. Changes in the
thermal condition of a data center are to be expected. These
changes can be initiated from component changes due to
system maintenance, room alterations, device replacements,
dust accumulation, modifications of the compartments and
air vents, etc. An example later in the paper shows the
necessity of being adaptive.

Next, the procedure for data acquisition for model estima-
tion is described in detail. We then show the implementation
of on-line model estimators and describe a framework for
using them. Finally, we discuss the accuracy of using
different model estimators, and illustrate the results.

A. Data acquisition

An important aspect of this work was setting up equip-
ment and reporting tools to acquire data. The setup was
implemented in a data center which has two in-row cooling
units at two sides and five IT racks (Fig. 1). We developed a
data acquisition tool to both apply our desired configurations
and acquire all operational variables of cooling units and
server profiles. Fig. 2 shows the top view of the data center
under study, consisting of two major parts: IT and cooling
units. IT is considered to be the servers and cooling units
include the facilities that provide cool air at the front of
servers.

Fig. 3 shows the architecture of each cooling unit. As
shown, each cooling unit has a number of fans that draw
hot air from the hot chamber, pass the air through a heat
exchanger and blow the cold air to the cold chamber. Water
flow within the heat exchanger transfers the generated heat

Fig. 2. The top view of the in-row cooling data center

Fig. 3. In-row cooling schema

out of the facility. In other words, cold water enters the heat
exchanger, and warm water exits.

Cooling unit operational parameters can be controlled and
monitored using the simple network management protocol
(SNMP); these parameters include the speed of each fan
and the water flow rate inside the heat exchanger of the
cooling unit. On the other hand, the IT consists of servers
that process the given workload. We can apply the given
workload to servers and collect real-time reports using
SSH commands. Each server is able to report the current
utilization and temperature of its cores. Temperatures at
the front of servers obtained via thermal sensors (DS18B20
digital thermometers) which are placed in each zone. The
height of each rack is divided into five equal height thermal
zones.

Our designed tool connects to cooling units using SNMP,
to servers by SSH, and to thermal sensors via serial ports.
It takes operational scenarios as an input. A scenario is a
time series of values that needs to be applied to the con-
trollable variables of the data center at specified times. The
operational scenario should be rich in parameter variation
to be suitable to train the model. Upon executing a scenario
workload patterns are applied to servers and patterns of
operational parameters are applied to cooling units. At the
same time, reported data including measurements from the
thermometers (installed at 25 thermal zones), the utilization
and CPU temperature of servers, and operational parameters



of the two cooling units are saved in a data base. The
operational parameters of the cooling units consist of the
inlet water temperature (Twater

inlet ), the water flow (Qwater)
and fan speeds (Sfan

i ).
Gathered data is preprocessed and saved into correspond-

ing matrices, input X and output Y, to be applicable for a
model estimator. Each row of X includes all input variables
and each row of Y includes all output measures are obtained
at the same time step. The values in X and Y are normalized
to be in comparable scales. A bold capital letter, such as
Y, represents a matrix and a bold small letter, such as yi,
denotes a vector corresponding to the ith row of a matrix.

A top-level view of the thermal model can be formulated
as (1). This is a transient model that predicts the inlet
temperatures of servers at the next time step, shown by
ŷk+1. So, the model is a discrete function of the current
and previous inputs and outputs. The output vector is
represented by yk and xk is the input vector, both at the
kth time step. The vector xk consists of the operational
parameters of cooling units, S̄fan, Q̄water and T̄water

in , and
the workload profile given by server utilizations (Ū ). The
vectors xk−i and yk−i are the input and output in the ith

previous time step.

ŷk+1 = f(xk, xk−i, yk, yk−i) i = 1, 2, · · · (1)

B. The model framework and algorithms

We explored two different approaches for temperature
estimation. The first uses weighted recursive least squares
(wRLS) for the estimation of a linear model, and the second
trains a neural network model. We selected two off-the-shelf
adaptive model estimators; one of them works well for a
linear system and the other can better model a non-linear
system. We arranged to make a fair comparison between
them by exposing them to the same input data.

a) Weighted recursive least squares: We used wRLS
for the parameter estimation of a linear thermal model [18].
Without loss of generality, the problem can be considered as
a simple linear model Y = ΦX; here X and Y are matrices
of inputs and measured output values, respectively. wRLS is
an on-line model estimator which is able to adapt to changes
in the system being estimated. The algorithm forgets the past
data using a forgetting factor λ.

wRLS has an update phase that updates the model
parameters (or Φ) upon receiving new data. For the sake
of simplicity, we do not explain the wRLS process. We
just denote the update phase in the form of Φnew =
parameterUpdate(Φold,X,Y, λ). Here, Φnew is the newly
calculated model parameters with respect to Φold and up-
dated X and Y. Φold is the latest calculation of the model
parameters. The matrices X and Y are updated with new
data during each iteration.

The wRLS algorithm considers a number of previous data
samples p, often referred to as a pth order filter. So, a
window of length p is updated with the most recent data
samples. X is a p by i matrix, Y is a p by o matrix, and Φ

is an i by o matrix in which i is the number of linear terms
of the input and o is the number of outputs being estimated.

Algorithm 1 gives a simple form of wRLS to estimate
the linear thermal model. In this algorithm, one iteration
is performed upon receiving a new vector of data d. The
function dataGeneration() returns the vector of new samples
of inputs and the corresponding outputs. The new data d is
used to update input and output matrices using dataInser-
tion(). Finally, parameterUpdate(), using the new matrices
of inputs and outputs, updates the previously obtained
parameters in Φ.

Result: Estimation of the linear thermal model
X=[0]p,i;
Y=[0]p,o;
Φ=[0]i,o;
λ=0.9;
while true do

d = dataGeneration();
[X Y]=dataInsertion(X,Y,d);
Φ=parameterUpdate(Φ,X,Y,λ);

end
Algorithm 1: Adaptive linear thermal model

b) Neural Networks: The second method is training
an adaptive neural network for the thermal model. For the
neural network model, we used a MATLAB toolkit in which
the standard back-propagation method uses the Levenberg-
Marquardt algorithm to train the model. Our job is to see
how well an off-the-shelf neural network performs. As a
result, analyzing and comparing different neural network
methods is out of the scope this paper. However, it is
certainly an interesting topic for future work.

As explained previously, the model should be updated as
time progresses. There are a number of methods that con-
sider updating neural networks upon system changes [19].
For example, an update can be performed upon detecting a
notable mismatch between the desired and estimated data.
We chose the statistical batch selection method for updating
[20], as it is straightforward to implement for our scenario.

Statistical batch selection updates the neural network
model upon receiving a number of new data points. Ran-
domly generated numbers are used as indexes to select data
samples from the previously saved data. The batch selection
approach is more likely to return recent data for the next
iteration of the algorithm. To implement the adaptive neural
network and batch selection method, we used Algorithm 2.
The algorithm stores the recent data in a buffer of length i. It
then selects the batch of data using the function batchSel(),
as described. This batch is used to train the new neural
network. The network uses the previous iteration weights
and biases.

Algorithm 2 first initializes input and output data win-
dows (X and Y), and the internal neural network weights
(Φ) using the function initialize(). It requires a specific
number of data samples (l) at the beginning of each itera-
tion. In our implementation, we set l to be 10. We chose



Result: Estimation of the neural network model
X=[0]p,i;
Y=[0]p,o;
Φ = initialize();
l = 10;
n = 1;
net = backpropagation(n);
while true do

D = dataGeneration(l);
[X,Y] = dataInsertion(X,Y,D);
[Xb,Yb] = batchSel([X,Y]);
train(net,Xb,Yb,Φ);
Φ = net.weights();

end
Algorithm 2: Adaptive neural network thermal model

one hidden layer and the back-propagation method for the
neural network (n).

In the loop, after receiving a certain number of data points
(l), the new data samples (D) are inserted in the data window
[X, Y] and the outdated data points are discarded from the
window. After constructing [X, Y], the batch [Xb,Yb] of
selected data is constructed by the batchSel() function. The
neural network is then trained using the selected batch and
the previously calculated network weights.

IV. RESULTS

We first compare the estimation results of the linear and
neural network models. For the neural network the accuracy
for the validation set is set to 0.001◦C. The termination
of the neural network training happens after 9 epochs, on
average. The neural network computational complexity was
not limiting for our settings, however, this aspect should be
be studied in the future. Fig. 4 depicts the estimation horizon
of the neural network and a linear model. Curves represent
the average temperature of the 25 temperature sensors. The
solid line is the value of measurements and non-solid lines
are the estimates. The figure shows that the neural network
model has greater accuracy than the linear model.

To demonstrate the accuracy of the neural network model,
the measured and estimated values are shown in the same
plot. A box plot representation is chosen to plot 25 estimates
and 25 measured values at each time step. For each box, the
average is indicated by the central mark. The 75th and the
25th percentiles are shown by the top and the bottom edges
of each box, respectively. In Fig. 5, the blank rectangles
with red central marks show the measured values and filled
blue rectangles with the central circle marks are the model
estimates. The figure shows that the estimates follow the
measured values accurately enough. The average estimation
error for the 100 time step projection is 1.5◦C.

The neural network model is designed to be adaptive
to changes that might occur in thermal conditions. We
performed an experiment to demonstrate the adaptivity of
the thermal model. We introduced thermal changes at the
1550th time step. At that time, the front doors of the cooling

Fig. 4. Temperature prediction of the neural network vs wRLS models

Fig. 5. The box plot representation of the 25 measured temperatures vs
their estimates (blank rectangles show the measured values and filled blue
rectangles are estimates of the temperatures using neural networks)

units were left partially open, having been closed before the
1550th time step. Fig. 6 shows that at the time of the change
a large error occurs in the estimates. The model then adapts
to the new thermal conditions and the error decreases.

In Section II, CFD models and a number of physics-based
thermal models were reviewed. It was stated there that the
main issue with using these is that none of them are adaptive
to the thermal changes in the data center environment. Fig.
7 shows the behavior of an adaptive and a non-adaptive
neural network model. The figure clearly demonstrates the
difference between these two models. The average error
for the adaptive model is 1.15◦C and for the non-adaptive
model is 2.1◦C. The errors of non-adaptive models can
potentially diverge for longer prediction horizons, so these
errors are exacerbated as time increases.

V. CONCLUSION

We introduced a novel, low-complexity, easy to imple-
ment, and adaptive model estimator which captures the



Fig. 6. 100 steps projection error for the neural networks model - An
environmental change happened at the 1550th time step

Fig. 7. The comparison between adaptive and non-adaptive thermal models

thermal dynamics of a data center. It can be applied in any
data center and provides up-to-date information that could
be used by a thermal-aware workload manager. The model
is also attractive because it only requires readily available
inputs. Other means of constructing thermal models have
some deficiencies. Many of them are just fixed models that
do not change with the changes within a data center, which
is a serious drawback due to the dynamic nature of data
centers. Some suggested adaptive thermal models do not
consider the cooling infrastructure at the same level of detail
as we have. Considering every operational variable of the
cooling units provides the opportunity of controlling cooling
together with the assignment of workload which can lead
to significant power savings. Our adaptive thermal modeling
approach appears to be an attractive option to incorporate
into workload schedulers or control algorithms.
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Ensemble learning for data stream analysis: A survey, Information
Fusion 37 (2017) 132–156.

[20] I. Loshchilov, F. Hutter, Online batch selection for faster training of
neural networks, arXiv preprint arXiv:1511.06343.


