
An Adaptive Scheduling Algorithm for Dynamic

Heterogeneous Hadoop Systems

Aysan Rasooli , Douglas G. Down

Department of Computing and Software
McMaster University

{rasooa, downd}@mcmaster.ca

Abstract

The MapReduce and Hadoop frameworks were
designed to support efficient large scale com-
putations. There has been growing interest
in employing Hadoop clusters for various di-
verse applications. A large number of (hetero-
geneous) clients, using the same Hadoop clus-
ter, can result in tensions between the vari-
ous performance metrics by which such sys-
tems are measured. On the one hand, from
the service provider side, the utilization of the
Hadoop cluster will increase. On the other
hand, from the client perspective the paral-
lelism in the system may decrease (with a corre-
sponding degradation in metrics such as mean
completion time). An efficient scheduling al-
gorithm should strike a balance between uti-
lization and parallelism in the cluster to ad-
dress performance metrics such as fairness and
mean completion time. In this paper, we pro-
pose a new Hadoop cluster scheduling algo-
rithm, which uses system information such as
estimated job arrival rates and mean job exe-
cution times to make scheduling decisions. The
objective of our algorithm is to improve mean
completion time of submitted jobs. In addition
to addressing this concern, our algorithm pro-

Copyright c© 2011 Aysan Rasooli and Dr. Dou-
glas G. Down. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

vides competitive performance under fairness
and locality metrics (with respect to other well-
known Hadoop scheduling algorithms - Fair
Sharing and FIFO). This approach can be ef-
ficiently applied in heterogeneous clusters, in
contrast to most Hadoop cluster scheduling
algorithm work, which assumes homogeneous
clusters. Using simulation, we demonstrate
that our algorithm is a very promising candi-
date for deployment in real systems.

1 Introduction

Cloud computing provides massive clusters for
efficient large scale computation and data anal-
ysis. MapReduce [5] is a well-known program-
ming model which was first designed for im-
proving the performance of large batch jobs
on cloud computing systems. However, there
is growing interest in employing MapReduce
and its open-source implementation, called
Hadoop, for various types of jobs. This leads to
sharing a single Hadoop cluster between mul-
tiple users, which run a mix of long batch jobs
and short interactive queries on a shared data
set.

Sharing a Hadoop cluster between multiple
users has several advantages, such as statisti-
cal multiplexing (lowering costs), data locality
(running computation where the data is), and
increasing the utilization of the resources. Dur-

ing the past years companies have used Hadoop
clusters for executing specific applications; for
instance Facebook is using a Hadoop cluster
for analyzing usage patterns to improve site de-
sign, spam detection, data mining and ad opti-
mization [10].

Assigning a new type of job to the cur-
rent workload mix on a Hadoop cluster, may
severely degrade the performance of the sys-
tem, which may not be tolerable for certain
applications. Moreover, heterogeneity is a ne-
glected issue in most current Hadoop systems,
which can also lead to poor performance. Here,
heterogeneity can be with respect to both jobs
and resources.

The Hadoop scheduler is the centrepiece of
a Hadoop system. Desired performance lev-
els can be achieved by proper submission of
jobs to resources. Primary Hadoop scheduling
algorithms, like the FIFO algorithm and the
Fair-sharing algorithm, are simple algorithms
which use small amounts of system informa-
tion to make quick scheduling decisions. The
main concern in these algorithms is to quickly
multiplex the incoming jobs on the available re-
sources. Therefore, they use less system infor-
mation. However, a scheduling decision based
on a small amount of system information may
cause some disadvantages such as less locality,
and neglecting the heterogeneity of the system.
As a result, the primary Hadoop scheduling al-
gorithms may not be good choices for hetero-
geneous systems. In a heterogeneous Hadoop
system, increasing parallelism without consid-
ering the difference between various resources
and jobs in the system can result in poor per-
formance. As a result of such considerations,
it is useful to explore the possible performance
gains by considering more sophisticated algo-
rithms.

Gathering more system information can have
significant impact on making better scheduling
decisions. It is possible to gather some Hadoop
system information [7], which can be used in
scheduling decisions. Research at UC-Berkeley
[2] provides a means to estimate the mean job
execution time based on the structure of the
job, and the number of map and reduce tasks
in each job. Moreover, in most Hadoop sys-
tems, multiple types of jobs are repeating ac-
cording to various patterns. For example, the

Spam detector applications run on the Face-
book Hadoop cluster every night. Therefore, it
is also may be possible to estimate the arrival
rates of job types in some Hadoop systems.

In this paper, we introduce a Hadoop
scheduling algorithm which uses this system in-
formation to make appropriate scheduling de-
cisions. The proposed algorithm takes into ac-
count the heterogeneity of both resources and
jobs in assigning jobs to resources. Using the
system information, it classifies the jobs into
classes and finds a matching of the job classes
to the resources based on the requirements of
the job classes and features of the resources.
At the time of a scheduling decision, the algo-
rithm uses the matchings of the resources and
the classes, and considers the priority, required
minimum share, and fair share of users to make
a scheduling decision. Our proposed algorithm
is dynamic, and it updates its decisions based
on changes in the parameters of the system.

We extend a Hadoop simulator, MRSIM [6],
to evaluate our proposed algorithm. We im-
plement the four most common performance
metrics for Hadoop systems: locality, fairness,
satisfying the minimum share of the users, and
mean completion time of jobs. We compare the
performance of our algorithm with two com-
monly used Hadoop scheduling algorithms, the
FIFO algorithm and the Fair-sharing algorithm
[9]. The results show that our proposed algo-
rithm has significantly better performance in
reducing the mean completion time, and satis-
fying the required minimum shares. Moreover,
its performance in the Locality and the Fair-
ness performance metrics is very competitive
with the other two algorithms. To the best of
our knowledge, there is no Hadoop scheduling
algorithm which simultaneously considers job
and resource heterogeneity. The two main ad-
vantages of our proposed algorithm are increas-
ing the utilization of the Hadoop cluster, and
reducing the mean completion times by consid-
ering the heterogeneity in the Hadoop system.

The remainder of this paper is organized as
follows. In Section 2 we give a brief overview of
a Hadoop system. Current Hadoop scheduling
algorithms are given in Section 3. Our Hadoop
system model is described and formally intro-
duced in Section 4. Then, in Section 5, we for-
mally present the performance metrics of in-

terest. Our proposed Hadoop scheduling al-
gorithm is introduced in Section 6. In Sec-
tion 7, details of the environment in which
we study our algorithm are provided, and we
study the performance of our algorithm in var-
ious Hadoop systems. Finally, we provide some
concluding remarks and discuss possible future
work in the last section.

2 Hadoop Systems

Computing todays’ large scale data processing
applications requires thousands of resources.
Cloud computing is a paradigm to provide such
levels of computing resources. However, to har-
ness the available resources for improving the
performance of large applications, it is required
to break down the applications into smaller
pieces of computation, and execute them in
parallel. MapReduce [5] is a programming
model which provides an efficient framework for
automatic parallelization and distribution, I/O
scheduling, and monitoring the status of large
scale computations and data analysis.

Hadoop is an open-source implementation
of MapReduce for reliable, scalable, and dis-
tributed computing. A distributed file system
that underlies the Hadoop system provides ef-
ficient and reliable distributed data storage for
applications involving large data sets. Users in
Hadoop submit their jobs to the system, where
each job consists of map functions and reduce
functions. The Hadoop system breaks the sub-
mitted jobs into multiple map and reduce tasks.
First, Hadoop runs the map tasks on each block
of the input, and computes the key/value pairs
from each part of the input. Then, it groups in-
termediate values by their key. Finally, it runs
the reduce tasks on each group, which provides
the jobs’ final result.

The scheduler is a fundamental component of
the Hadoop system. Scheduling in the Hadoop
system is pool based, which means that when
a resource is free, it sends a heartbeat to the
scheduler. Upon receiving a heartbeat, the
scheduler searches through all the queued jobs
in the system, chooses a job based on some per-
formance metric(s), and sends one task of the
selected job to each free slot on the resource.
The heartbeat message contains some informa-

tion such as the number of currently free slots
on the resource. Various Hadoop scheduling
algorithms consider different performance met-
rics in making scheduling decision.

3 Related Work

MapReduce was initially designed for small
teams in which a simple scheduling algorithm
like FIFO can achieve an acceptable perfor-
mance level. However, experience from deploy-
ing Hadoop in large systems shows that basic
scheduling algorithms like FIFO can cause se-
vere performance degradation; particularly in
systems that share data among multiple users.
As a result, the next generation scheduler in
Hadoop, Hadoop on Demand (HOD) [3], ad-
dresses this issue by setting up private Hadoop
clusters on demand. HOD allows the users to
share a common file system while owning pri-
vate Hadoop clusters on their allocated nodes.
This approach failed in practice because it vi-
olated the data locality design of the origi-
nal MapReduce scheduler, and it resulted in
poor system utilization. To address some of
these shortcomings, Hadoop recently added a
scheduling plug-in framework with two addi-
tional schedulers that extend rather than re-
place the original the FIFO scheduler.

The additional schedulers are introduced in
[9], where they are collectively known as Fair-
sharing. In this work, a pool is defined for each
user, each pool consisting of a number of map
slots and reduce slots on a resource. Each user
can use its pool to execute her jobs. If a pool of
a user becomes idle, the slots of the pool are di-
vided among other users to speed up the other
jobs in the system. The Fair-sharing algorithm
does not achieve good performance regarding
locality. Therefore, in order to improve the
data locality, a complementary algorithm for
Fair-sharing is introduced in [10], called delay
scheduling. Using the delay scheduling algo-
rithm, when Fair-sharing chooses a job for the
current free resource, and the resource does not
contain the required data of the job, schedul-
ing of the chosen job is postponed, and the al-
gorithm finds another job. However, to limit
the waiting time of the jobs, a threshold is de-
fined; therefore, if scheduling of a job is post-

poned until the threshold is met, the job will
be submitted to the next free resource. The
proposed algorithms can perform much bet-
ter than Hadoop’s default scheduling algorithm
(FIFO); however, these algorithms do not con-
sider heterogeneous systems in which resources
have different capacities and users submit var-
ious types of jobs.

In [1], the authors introduce a scheduling al-
gorithm for MapReduce systems to minimize
the total completion time, while improving
the CPU and I/O utilization of the cluster.
The algorithm defines Virtual Machines (VM),
and decides how to allocate the VMs to each
Hadoop job, and to the physical Hadoop re-
sources. The algorithm formulates and solves
a constrained optimization problem. To formu-
late the optimization problem a mathematical
performance model is required for the different
jobs in the system. The algorithm first runs
all job types in the Hadoop system to build
corresponding performance models. Then, as-
suming these jobs will be submitted multiple
times to the Hadoop system, scheduling deci-
sions for each job are made based on the solu-
tion of the defined optimization problem. The
algorithm assumes that the job characteristics
will not vary between runs, and also when a job
is going to be executed on a resource, all its re-
quired data is placed on that node. The prob-
lem with this algorithm is that the algorithm
can not make decisions when a new job with
new characteristics joins the system. Moreover,
the assumption that all of the data required by
a job is available on the running resource, with-
out considering the overhead of transmitting
the data is unrealistic. Furthermore, Hadoop
is very I/O intensive both for file system access
and Map/Reduce scheduling, so virtualization
incurs a high overhead.

In [8], a Dynamic Priority (DP) parallel task
scheduler is designed for Hadoop, which al-
lows users to control their allocated capac-
ity by dynamically adjusting their budgets.
This algorithm prioritizes the users based on
their spending, and allows capacity distribution
across concurrent users to change dynamically
based on user preferences. The core of this al-
gorithm is a proportional share resource alloca-
tion mechanism that allows users to purchase
or be granted a queue priority budget. This

budget may be used to set spending rates de-
noting the willingness to pay a certain amount
per Hadoop map or reduce task slot per time
unit.

4 Hadoop System Model

The Hadoop system consists of a cluster, which
is a group of linked resources. The data in
the Hadoop system is organized into files. The
users submit jobs to the system, where each
job consists of some tasks. Each task is either
a map task or a reduce task. The Hadoop com-
ponents related to our research are described
as follows:

1. The Hadoop system has a cluster. The
cluster consists of a set of resources, where
each resource has a computation unit, and
a data storage unit. The computation unit
consists of a set of slots (in most Hadoop
systems, each CPU core is considered as
one slot), and the data storage unit has
a specific capacity. We assume a cluster
with M resources as follows:

Cluster = {R1, . . . , RM}

Rj =< Slotsj ,Memj >

• Slotsj is a set of slots in resource Rj ,
where each slot (slotkj) has a specific
execution rate (exec ratekj). Gener-
ally, slots belonging to one resource
have the same execution rate.

Slotsj = {slot1j , . . . , slotmj }

• Memj is the storage unit of resource
Rj , which has a specific capacity
(capacityj) and data retrieval rate
(retrieval ratej). The data retrieval
rate of resource Rj depends on the
bandwidth within the storage unit of
this resource.

2. Data in the Hadoop system is organized
into files, which are usually large. Each file
is split into small pieces, which are called
slices (usually, all slices in a system have
the same size). We assume that there are
L files in the system, which are defined as
follows:

Files = {F1, . . . , FL}

Fi = {slice1i , . . . , sliceki }

3. We assume that there are N users in the
Hadoop system, where each user (Ui) sub-
mits a set of jobs to the system (Jobsi).

Users = {U1, . . . , UN}

Ui =< Jobsi >

Jobsi = {J1
i , . . . , J

n
i }

The Hadoop system assigns a priority and
a minimum share to each user based on
a particular policy (e.g. the pricing pol-
icy of [8]). The number of slots as-
signed to user Ui depends on her priority
(priorityi). The minimum share of a user
Ui (min sharei) is the minimum number
of slots that the system must provide for
user Ui at each point in time.

In a Hadoop system, the set of jobs of a
user is dynamic, meaning that the set of
jobs for user Ui at time t1 may be com-
pletely different from the set of jobs of this
user at time t2. Each job in the system
consists of a number of map tasks, and re-
duce tasks. The sets of map tasks, and re-
duce tasks for the job Ji is represented with
Mapsi, and Redsi, respectively.

Ji = Mapsi ∪Redsi

Each map task k of job i (MT ki) performs
some processes on the slice (slicelj ∈ Fj)
where the required data for this task is lo-
cated.

Mapsi = {MT 1
i , . . . ,MT ki }

Each reduce task k of job i (RT ki) receives
and processes the results of some of the
map tasks of job i.

Redsi = {RT 1
i , . . . , RT

k
i }

The mean execT ime(Ji, Rj) defines the
mean execution time of job Ji on resource
Rj , and the corresponding execution rate
is defined as follows:

mean execRate(Ji, Rj) =

1/mean execT ime(Ji, Rj)

5 Performance Metrics

In this section, first we define the follow-
ing functions which return the status of the
Hadoop system and will be used to define the
performance metrics. Then, we introduce the
performance metrics related to our scheduling
problem.

• Tasks(U, t) and Jobs(U, t) return the sets
of tasks and jobs, respectively, of the user
U at time t.

• ArriveT ime(J), StartT ime(J), and
EndTime(J) return the arrival time,
start of execution time, and completion
time of job J , respectively.

• TotalJobs(t) returns the set of all the jobs
which have arrived to the system up to
time t.

• RunningTask(slot, t) returns the running
task (if there is one) on the slot slot at
time t. If there is no running task on the
slot, the function returns NULL.

• Location(slice, t) returns the set of re-
sources (R), which store the slice slice at
time t.

• AssignedSlots(U, t) returns the set of slots
which are executing the tasks of user U at
time t.

• CompletedJobs(t) returns the set of all
jobs that have been completed up to time
t. The function CompletedTasks(t) is de-
fined analogously for completed tasks.

• Demand(U, t) returns the set of tasks of
the user U at time t which have not yet
been assigned to a slot.

Using the above functions, we define four per-
formance metrics that are useful for a Hadoop
system:

1. MinShareDissatisfaction(t) measures
how successful the scheduling algorithm is
in satisfying the minimum share require-
ments of the users in the system. If there
is a user in the system, whose current
demand is not zero, and her current share

is lower than her minimum share, then we
compute her Dissatisfaction as follows:

IF

(|Demand(U, t)| > 0 ∧
U.min share > 0 ∧

|AssignedSlots(U, t)| < U.min share)

THEN

Dissatisfaction(U, t) =

U.min share−|AssignedSlots(U,t)|
U.min share

×U.priority

ELSE

Dissatisfaction(U, t) = 0

U.priority and U.min share denote the
priority and the minimum share of the user
U . MinShareDissatisfaction(t) takes
into account the distance of all the users
from their min share. When comparing
two algorithms, the algorithm which has
smaller MinShareDissatisfaction(t) has
better performance.

MinShareDissatisfaction(t) =X
∀U∈Users

Dissatisfaction(U, t).

2. Fairness(t) measures how fair a schedul-
ing algorithm is in dividing the resources
among the users in the system. A fair algo-
rithm gives the same share of resources to
users with equal priority. However, when
the priorities are not equal, then the user’s
share should be proportional to their pri-
ority. In order to compute the fairness of
an algorithm, we should take into account
the slots which are assigned to each user
beyond her minimum share, which is rep-
resented with ∆(U, t).

∆(U, t) = AssignedSlots(U, t)−U.min share

Then, the average additional share of all
the users with the same priority (Usersp)
is defined as:

avg(p, t) =P
U∈Usersp

∆(U, t)

|Usersp|
,

Usersp = {U |U ∈ Users ∧ U.priority = p},

and Fairness(t) is computed by the sum
of distances of all the users in one prior-
ity level from the average amount of that
priority level.

Fairness(t) =X
p∈priorities

X
U∈Usersp

|∆(U, t)− avg(p, t)|.

Comparing two algorithms, the algorithm
which has lower Fairness(t) achieves bet-
ter performance.

3. Locality(t) is defined as the number of
tasks which are running on the same re-
source as where their stored data are lo-
cated. Since in the Hadoop system the in-
put data size is large, and the map tasks
of one job are required to send their re-
sults to the reduce tasks of that job, the
communication cost can be quite signifi-
cant. A map task is defined to be local on
a resource R, if it is running on resource
R, and its required slice is also stored on
resource R. Comparing two scheduling al-
gorithms, the algorithm which has larger
Locality(t) has better performance.

4. MeanCompletionT ime(t) is the average
completion time of all the completed jobs
in the system.

6 Proposed Scheduler
Model

In this section we first discuss the characteris-
tics of our proposed algorithm, comparing them
with current Hadoop scheduling algorithms.
Then, we present our proposed scheduling al-
gorithm for the Hadoop system.

6.1 Motivating Our Algorithm

In this part we discuss the important charac-
teristics of our proposed algorithm, based on
the challenges of the Hadoop system.

1. Scheduling based on fairness, min-
imum share requirements, and the
heterogeneity of jobs and resources.

In a Hadoop system satisfying the mini-
mum shares of the users is the first critical
issue. The next important issue is fairness.
We design a scheduling algorithm which
has two stages. In the first stage, the algo-
rithm considers the satisfaction of the min-
imum share requirements of all the users.
Then, in the second stage, the algorithm
considers fairness among all the users in
the system. Most current Hadoop schedul-
ing algorithms consider fairness and min-
imum share objectives without consider-
ing the heterogeneity of the jobs and the
resources. One of the advantages of our
proposed algorithm is that while our pro-
posed algorithm satisfies the fairness and
the minimum share requirements, it fur-
ther matches jobs with resources based
on job features (e.g. estimated execution
time) and resource features (e.g. execu-
tion rate). Consequently, the algorithm
reduces the completion time of jobs in the
system.

2. Reducing communication costs. In a
Hadoop cluster, the network links among
the resources have varying bandwidth ca-
pabilities. Moreover, in a large cluster, the
resources are often located far from each
other. The Hadoop system distributes
tasks among the resources to reduce a
job’s completion time. However, Hadoop
does not consider the communication costs
among the resources. In a large cluster
with heterogenous resources, maximizing
a task’s distribution may result in signifi-
cant communication costs. Therefore, the
corresponding job’s completion time will
be increased. In our proposed algorithm,
we consider the heterogeneity and distri-
bution of resources in the task assignment.

3. Reducing the search overhead for
matching jobs and resources. To find
the best matching of jobs and resources, an
exhaustive search is required. In our algo-
rithm, we use clustering techniques to re-
strict the search space. Jobs are classified
based on their requirements. Every time
a resource is available, it searches through
the classes of jobs (rather than the individ-
ual jobs) to find the best matching (using

optimization techniques). The solution of
the optimization problem results in the set
of suggested classes for each resource. The
suggested set for each resource is used for
making the routing decision. We limit the
number of times that this optimization is
performed, in order to avoid adding signif-
icant overhead.

4. Increasing locality. In order to in-
crease locality in a Hadoop system, we
should increase the probability that tasks
are assigned to resources which also store
their input data. Our algorithm makes a
scheduling decision based on the suggested
set of job classes for each resource. There-
fore, we can replicate the required data of
the suggested classes of a resource, on that
resource. Consequently, locality will be in-
creased in the system.

6.2 Proposed Algorithm

In this section, we first present a high level view
of our proposed algorithm (in Figure 1), and
then we discuss different parts of our algorithm
in more detail.

A typical Hadoop scheduler receives two
main messages: a new job arrival message from
a user, and a heartbeat message from a free re-
source. Therefore, our proposed scheduler con-
sists of two main processes, where each pro-
cess is triggered by receiving one of these mes-
sages. Upon receiving a new job from a user,
the scheduler performs a queueing process to
store the incoming job in an appropriate queue.

When receiving a heartbeat message from a
resource, the scheduler triggers the routing pro-
cess to assign a job to the free resource. Our
algorithm uses the job’s classification, so when
a new job arrives to the system, the queueing
process specifies the class of this job, and stores
the job in the queue of its class. The queueing
process sends the updated information of all of
the classes to the routing process, where the
routing process uses this information to choose
a job for the current free resource. In what fol-
lows, we provide greater detail for our proposed
algorithm.

Figure 1: High level view of our proposed algorithm

1. Job Execution Time Estimation:
When a new job arrives to the system,
it is required to estimate its mean exe-
cution time on the resources. The Task
Scheduler component uses the Program
Analyzer to estimate the mean execution
time of the new incoming job on all re-
sources (mean execT ime(Ji, Rj)). The
Task Scheduler component has been intro-
duced in the AMP lab in UC Berkeley [2].

2. Two Classifications: The Hadoop sys-
tem requires that upon a user’s request
at any time, it will provide her minimum

share immediately. Therefore, it is criti-
cal for the system to first consider satisfy-
ing the minimum shares of all users. Af-
ter satisfying the minimum shares, the sys-
tem should consider dividing the resources
among the users in a fair way (to prevent
starvation of any user). Based on these
two facts, our algorithm has two classifica-
tions: minimum share classification, and
fairness classification. In the minimum
share classification, only the jobs whose
users have min share > 0 are considered,
while in the fairness classification all the
jobs in the system are considered.

When a user asks for more than her mini-
mum share, the scheduler assigns her min-
imum share immediately but the extra
share will be assigned fairly after consid-
ering all users. As a result, users with
min share > 0 first should be considered
in the minimum share classification, and
once they receive their minimum shares,
they should be considered in the fairness
classification. However, the current share
of a user, and consequently her minimum
share satisfaction can be highly varying
over time, and it is not feasible to gener-
ate a new classification each time the min-
imum share satisfaction changes. There-
fore, we consider a job whose user has
min share > 0 in both classifications, and
make the scheduling decision for the job
based on its user’s status at the time of
scheduling.

In our algorithm, both the minimum
share, and the fairness classifications clas-
sify the jobs such that the jobs in
the same class have the same features
(i.e, priority, execution rate on the re-
sources (mean execRate(Ji, Rj)), and ar-
rival rate). We define the set of classes
generated in the minimum share classifi-
cation as JobClasses1, where each class is
denoted by Ci. Each class Ci has a spe-
cific priority, which is equal to the priority
of the jobs in this class. The estimated
arrival rate of the jobs in class Ci is de-
noted by αi, and the estimated execution
rate of jobs in class Ci on resource Rj is
denoted by µi,j . Hence, the heterogeneity
of resources is completely addressed with
µi,j . We assume that the total number of
classes generated with this classification is
F .

JobClasses1 = {C1, . . . , CF }

The fairness classification is the same as
the minimum share classification; however,
the difference is that this classification is
done on all the jobs regardless of their
users’ min share amount. We define the
set of classes generated by this classifica-
tion as JobClasses2. Each class, denoted
by C ′i, has a specific priority, which is equal
to the priority of the jobs in this class. The

arrival rate of the jobs in class C ′i is equal
to α′i, and the execution rate of the jobs in
class C ′i on resource Rj is represented with
µ′i,j . We assume that the total number of
classes generated with this classification is
F ′.

JobClasses2 = {C′1, . . . , C′F ′}

For example, Yahoo uses the Hadoop sys-
tem in production for a variety of products
(job types) [4]: Data Analytics, Content
Optimization, Yahoo! Mail Anti-Spam,
Ad Products, and several other applica-
tions. Typically, the Hadoop system de-

User Job Type min share priority
User1 Advertisement Products 50 3
User2 Data Analytics 20 2
User3 Advertisement Targeting 40 3
User4 Search Ranking 30 2
User5 Yahoo! Mail Anti-Spam 0 1
User6 User Interest Prediction 0 2

Table 1: The Hadoop System Example (Exp1)

fines a user for each job type, and the sys-
tem assigns a minimum share and a prior-
ity to each user. For example, assume a
Hadoop system (called Exp1) with the pa-
rameters in Table 1. The jobs in the Exp1
system, at a given time t, are presented
in Table 2, where the submitted jobs of a
user are based on the user’s job type (e.g.,
J4 which is submitted by user1 is an ad-
vertisement product, while the job J5 is
a search ranking job). The minimum

User Job Queue
User1 {J4, J10, J13, J17}
User2 {J1, J5, J9, J12, J18}
User3 {J2, J8, J20}
User4 {J6, J14, J16, J21}
User5 {J7, J15}
User6 {J3, J11, J19}

Table 2: The job queues in Exp1 at time t

share classification of the jobs in the Exp1
system, at time t, is presented in Figure
2. Note that here we assume that there
is just one resource in the system. In a
system which has more than one resource,
the mean execution time for each class is
represented with an array, to show the ex-
ecution time of the class on each resource.
The fairness classification of system Exp1,

Figure 2: The minimum share classification of
the jobs in Exp1 system at time t

at time t, is presented in Figure 3. Similar
to the minimum share classification, we as-
sume that there is just one resource in the
system.

Figure 3: The fairness classification of the jobs
in Exp1 system at time t

3. Optimization approach: In order to
find an appropriate matching of jobs and
resources, we define an optimization prob-
lem based on the properties of the job
classes and the features of the resources.
The scheduler solves the following linear
program (LP) for the classes in the set
JobClasses1. Here δi,j is defined as the
proportion of resource Rj which is allo-
cated to class Ci, and λ is the amount that
we simultaneously increase arrival rates of
all classes. We aim to maximize λ, while
keeping the system stable.

maxλ

s.t.
MX

j=1

Ci.µi,j×δi,j ≥ λ×Ci.αi, for all i = 1, . . . , F,

(1)
FX

i=1

δi,j ≤ 1, for all j = 1, . . . ,M, (2)

δi,j ≥ 0, for all i = 1, . . . , F, and j = 1, . . . ,M.
(3)

In the above LP, M is the total number
of resources in the system, and F is the
total number of minimum share classes
(|JobClasses1|). This optimization prob-
lem tries to minimize the maximum load
over all resources. After solving this LP,
we have the allocation matrix δi,j for each
class Ci and each resource Rj . Based on
the results of this LP, we define the set
SCj for each resource Rj as follows:

SCj = {Ci : δi,j 6= 0}

Note that this is the only place we use δi,j ,
where its value is just used to find the non
zero amounts for defining the set SCj . For
example consider a system with two classes
of jobs, and two resources (M = 2, F = 2),
in which the arrival and execution rates are
as follows:

α =
ˆ

2.45 2.45
˜
and µ =

»
9 5
2 1

–
Solving the above LP gives λ = 1.0204 and

δ =

»
0 0.5
1 0.5

–
.

Therefore, the sets for resources R1 and R2

will be SC1 = {C2} and SC2 = {C1, C2},
respectively. These two sets define the sug-
gested classes for each resource, i.e. they
suggest that upon receiving a heartbeat
from resource R1, select a job from class
C2. However, upon receiving a heartbeat
from the resource R2, either choose a job
from class C1 or C2. Even though resource
R1 has the fastest rate for class C1, the al-
gorithm does not assign any jobs of class
C1 to it. This occurs because, the system
is highly loaded, and since µ1,1

µ2,1
>

µ1,2
µ2,2

and
α1 = α2, the mean completion time of the
jobs is decreased if resource R1 only exe-
cutes class C2 jobs.

A similar optimization problem is used for
the classes defined in the fairness classi-
fication. The scheduler solves the follow-
ing LP for classes in the set JobClasses2.
Here δ′i,j is defined as the proportion of re-
source Rj which is allocated to class C ′i,
and λ′ is the amount that we simultane-
ously increase arrival rates of all classes.
We aim to maximize λ′, while keeping the
system stable.

maxλ′

s.t.
MX

j=1

C
′
i.µ

′
i,j × δ

′
i,j ≥ λ

′×C′
i.α

′
i, for all i = 1, . . . , F

′
,

(4)

F ′X
i=1

δ
′
i,j ≤ 1, for all j = 1, . . . ,M, (5)

δ
′
i,j ≥ 0, for all i = 1, . . . , F

′
, and j = 1, . . . ,M.

(6)

As with the LP for the minimum share
classification, this linear programming
problem aims to find the best classes for
resource allocation based on the require-
ments of the jobs, the arrival rates and
features of the resources. We define the
set SC ′j for each resource Rj as the set of
classes which are allocated to this resource
based on the result of this LP. Note that
this is the only place we use δ′i,j , and we
are not using the actual values.

SC′j = {C′i : δ′i,j 6= 0}

4. Job selection: When the scheduler re-
ceives a heartbeat from a resource, say Rj ,
it triggers the routing process. The first
stage in the routing process is the Job Se-
lector component. This component selects
a job for each free slot in the resource Rj ,
and sends the selected job for each slot to
the Task Scheduler component. The Task
Scheduler, introduced in [2], chooses a task
of the selected job to assign to the free slot.

7 Evaluation

In this section we first describe our imple-
mented evaluation environment, and later we
provide our experimental results.

7.1 Experimental Environment

To evaluate our proposed algorithm, we use
a Hadoop simulator, MRSIM [6]. MRSIM
is a MapReduce simulator based on discrete
event simulation, which accurately models the
Hadoop environment. The simulator on the
one hand allows us to measure scalability of
the MapReduce based applications easily and
quickly, while capturing the effects of differ-
ent configurations of Hadoop setup on perfor-
mance.

We extend this simulator to measure the
four Hadoop performance metrics introduced
in Section 5. We also add a job submission
component to the simulator. Using this com-
ponent we can define various users with dif-
ferent minimum shares, and priorities. Each
user can submit various types of jobs to the
system with different arrival rates. Moreover,
we add a scheduler component to the simula-
tor, which receives the incoming jobs and stores
them in corresponding queues chosen by the
system scheduling algorithm. Also, upon re-
ceiving a heartbeat message, it sends a task to
the free slot of the resource.

Our experimental environment consists of a
cluster of 6 heterogeneous resources. The re-
sources’ features are presented in Table 3. The
bandwidth between the resources is 100Mbps.
We define our workload using a Loadgen exam-

Resources Slot Mem
slot# execRate Capacity RetriveRate

R1 1 500MHz 4GB 40Mbps
R2 1 500MHz 4TB 100Gbps
R3 1 500MHz 4TB 100Gbps
R4 8 500MHz 4GB 40Mbps
R5 8 500MHz 4GB 40Mbps
R6 8 4.2GHz 4TB 100Gbps

Table 3: Experiment resources

ple job in Hadoop that is used in Hadoop’s in-
cluded Gridmix benchmark. Loadgen is a con-
figurable job, in which choosing various per-
centages for keepMap and keepReduce, we can
make the job equivalent to various workloads
used in Gridmix, such as sort and filter.

We generate four types of jobs in the sys-
tem: small jobs, with small I/O and CPU
requirements (they have 1 Map and 1 Re-
duce task), I/O-heavy jobs, with large I/O and
small CPU requirements (they have 10 Map

and 1 Reduce tasks), CPU-heavy jobs, with
small I/O and large CPU requirements (they
have 1 Map and 10 Reduce tasks), and large
jobs, which have large I/O and large CPU re-
quirements (they have 10 Map and 10 Reduce
tasks). Using these jobs, we define three work-
loads: an I/O-Intensive workload, in which all
jobs are I/O-bound; a CPU-Intensive work-
load; and a mixed workload, which includes all
job types. The workloads are given in Table 4.
Considering various arrival rates for the jobs in

Workloads Workload Type Jobs Included
W1 I/O-Intensivei small, I/O-heavy
W2 CPU -Intensivei small, CPU -heavy
W3 Mixedi All jobs

Table 4: Experimental workloads

each workload, we define three benchmarks for
each workload in Table 5. Here BMi,j shows
the benchmark j of workload i; for instance,
BM1,1 is a benchmark which includes I/O-
Intensive jobs, where the arrival rate of smaller
jobs is higher than the arrival rate of larger
ones. In total, we define nine benchmarks to
run in our simulated Hadoop environment. We

Benchmarks Arrival rate Ordering
BMi,1 Smaller jobs have higher arrival rates
BMi,2 Arrival rates are equal for all jobs
BMi,3 Larger jobs have higher arrival rates

Table 5: Experiment benchmarks

submit 100 jobs to the system, which is suffi-
cient to contain a variety of the behaviours in
a Hadoop system, and is the same number of
jobs used in evaluating most Hadoop schedul-
ing systems [9]. The Hadoop block size is set
to 64MB, which is the default size in Hadoop
0.21. We generate job input data size similar to
the workload used in [9] (which is driven from
a real Hadoop workload), where the input data
of a job is defined by the number of map tasks
of the job and creating a data set with correct
sizes (there is one map task per 64MB input
block).

7.2 Results

This section provides the results of our exper-
iments. In each experiment we compare our

Figure 4: Dissatisfaction performance metric of
the algorithms in I/O-Intensive workload

Figure 5: Dissatisfaction performance metric of
the algorithms in CPU-Intensive workload

proposed algorithm with the FIFO algorithm
and the version of the Fair-sharing algorithm
which is presented in [9]. The comparison is
based on the four performance metrics intro-
duced in Section 5. For each experiment, we
run 30 replications in order to construct 95 per-
cent confidence intervals.

Figures 4, 5, and 6 present the Dissat-
isfaction metric of the algorithms running
the benchmarks of the I/O-Intensive, CPU-
Intensive, and Mixed workloads, respectively.
The lower and upper bounds of the confidence
intervals are represented with lines on each bar.

Based on these results, our proposed algo-
rithm can lead to considerable improvement in
the Dissatisfaction performance metric. There
are a couple of reasons for this improvement.
First, our proposed algorithm considers the
minimum share satisfaction of the users as its
initial goal. When receiving a heartbeat from
a resource, it first satisfies the minimum shares

Figure 6: Dissatisfaction performance metric of
the algorithms in Mixed workload

of the users. Second, our algorithm considers
the priority of the users in satisfying their min-
imum shares. Therefore, the highest priority
user who has not yet received her minimum
share will be considered first. However, since
the algorithm considers the product of the re-
maining minimum share and the priority of the
user, it does not let a high priority user with
high minimum share starve lower priority users
with smaller minimum shares. This is an im-
portant issue, which is not considered in the
Fair-sharing algorithm. As for our algorithm,
the Fair-sharing algorithm has the initial goal
of satisfying the minimum shares of the users.
However, since the Fair-sharing algorithm does
not change the ordering of the users who have
not received their minimum share, it causes
higher Dissatisfaction in the system. The Fair-
sharing algorithm defines pools of jobs, where
each pool is dedicated to a user. Since the order
of the pools (which present users) is fixed, the
algorithm always checks the users’ minimum
share satisfaction in that order. Therefore, if
there is a user at the head of this ordering who
has large minimum share requirement and low
priority, she may create a long delay for the
other users with higher priority. Moreover, the
Fair-sharing algorithm does not consider the
users’ priorities in the order of satisfying their
minimum shares.

Figures 7, 8, and 9 present the Mean Com-
pletion Time metric of the algorithms running
the benchmarks of the I/O-Intensive, CPU-
Intensive, and Mixed workloads, respectively.
The results show that compared to the other al-

Figure 7: Mean Comp. Time performance met-
ric of the algorithms in I/O-Intensive workload

Figure 8: Mean Comp. Time performance met-
ric of the algorithms in CPU-Intensive work-
load

gorithms, our proposed algorithm achieves the
best mean completion time in all the bench-
marks. Compared to the FIFO algorithm, our
algorithm leads to significant improvement in
reducing the mean completion time of the jobs.
This significant improvement can be explained
by the fact that unlike the other two algo-
rithms, our proposed algorithm considers the
heterogeneity in making a proper scheduling
decision based on the job requirements and the
resource features.

Table 6 presents the Fairness metric of the
algorithms in the various defined benchmarks.
In each benchmark, the table shows the 95%-
confidence interval for Fairness when the corre-
sponding scheduling algorithm is used. Com-
paring the algorithms, the Fair-sharing algo-
rithm has the best Fairness. This is as ex-
pected, because the main goal of this algorithm
is improving the Fairness metric. Our proposed

Figure 9: Mean Comp. Time performance met-
ric of the algorithms in Mixed workload

Benchmarks FIFO FAIR MyALG

BM1,1 (14.88, 15.05) (11.59, 11.65) (14.68, 16.08)
BM1,2 (14.93, 15.00) (11.57, 11.72) (12.68, 14.60)
BM1,3 (14.63, 15.26) (11.59, 11.76) (17.23, 17.65)

BM2,1 (14.77, 15.22) (11.63, 11.98) (11.99, 12.34)
BM2,2 (14.83, 15.09) (11.81, 12.12) (13.99, 14.36)
BM2,3 (14.42, 15.73) (11.81, 11.94) (17.37, 17.72)

BM3,1 (14.94, 15.37) (11.47, 12.71) (14.11, 15.05)
BM3,2 (14.73, 15.62) (11.72, 12.46) (14.41, 14.98)
BM3,3 (15.00, 15.44) (11.89, 12.07) (12.11, 13.31)

Table 6: Fairness performance metric of the
algorithms for all workloads

algorithm considers the heterogeneity and as-
signs the jobs based on the features of the re-
sources. Therefore, it does not blindly assign
each job to each free resource. Moreover, our
algorithm first satisfies the minimum share of
the users. Then, after receiving the minimum
share, the corresponding user will be consid-
ered along with all other users (second level
of classification of our algorithm) to achieve
fairness in dividing the shares of the resources
among the users in the system. In some bench-
marks, our algorithm leads to an increase in
the Fairness metric. However, because of the
importance of the users with non zero mini-
mum shares, this side effect may be considered
acceptable. Generally, the minimum share of
the users are assigned based on business rules,
which has higher priority for most companies.
As a result, a small increase in Fairness may
be considered acceptable for most Hadoop sys-
tems, if it results in better satisfaction of the
users’ minimum shares, and significant reduc-
tion in the mean completion time of the jobs.

Benchmarks FIFO FAIR MyALG

BM1,1 (96.60, 98.03) (98.12, 99.08) (98.62, 99.98)
BM1,2 (47.39, 57.81) (89.84, 91.76) (93.82, 95.38)
BM1,3 (62.93, 65.07) (71.43, 74.57) (66.44, 71.55)

BM2,1 (90.38, 94.42) (97.12, 98.08) (98.56, 99.87)
BM2,2 (68.65, 82.15) (93.93, 96.87) (91.78, 95.42)
BM2,3 (78.73, 84.07) (94.14, 97.86) (93.78, 97.42)

BM3,1 (73.48, 86.92) (78.77, 83.63) (99.12, 100.00)
BM3,2 (92.36, 95.24) (81.27, 87.13) (95.11, 99.69)
BM3,3 (79.23, 88.37) (78.02, 86.37) (66.86, 76.73)

Table 7: Locality performance metric of the
algorithms for all workloads

Table 7 presents the Locality metric of the
algorithms in the various defined benchmarks.
For each benchmark, the table shows the 95%-
confidence interval for Locality when the cor-
responding scheduling algorithm is used. The
locality of our proposed algorithm is close to,
and in some cases is better than the Fair-
sharing algorithm. This can be explained by
the fact that our algorithm chooses the replica-
tion places based on the suggested classes for
each resource.

Another significant feature of our proposed
algorithm is that although it uses sophisticated
approaches to solve the scheduling problem, it
does not add considerable overhead. The rea-
son is that first, we limit the number of times
required to do classification, by considering the
aggregate of job features (i.e. mean execution
time and arrival rate). This results in consider-
ing the group of job types in each class, rather
than just one job type. Also, since some jobs
in the Hadoop system are submitted multiple
times by users, these jobs do not require chang-
ing the classification each time that they are
submitted to the system.

8 Conclusion and Future
Work

The primary Hadoop scheduling algorithms do
not consider the heterogeneity of the Hadoop
system in making scheduling decisions. In or-
der to keep the algorithm simple they used min-
imal system information in making scheduling
decisions, which in some cases could result in
poor performance. Growing interest in apply-
ing the MapReduce programming model in var-

ious applications gives rise to grather hetero-
geneity, and thus must be considered in its im-
pact on performance. It has been shown that
it is possible to estimate system parameters in
a Hadoop system. Using the system informa-
tion, we designed a scheduling algorithm which
classifies the jobs based on their requirements
and finds an appropriate matching of resources
and jobs in the system. Our algorithm is com-
pletely adaptable to any variation in the sys-
tem parameters. The classification part detects
changes and adapts the classes based on the
new system parameters. Also, the mean job
execution times are estimated when a new job
is submitted to the system, which makes the
scheduler adaptable to changes in job execu-
tion times. We have received permission to use
the workload from a high profile company, and
we are currently working on defining bench-
marks based on this workload, and use them
to evaluate our algorithm. Finally, we aim to
implement and evaluate our algorithm in a real
Hadoop cluster.

ACKNOWLEDGEMENTS

This work was supported by the Natural Sci-
ences and Engineering Research Council of
Canada. A major part of this work was done
while both authors were visiting UC-Berkeley.
In particular, the first author would like to
thank Ion Stoica and Sameer Agarwal for shar-
ing the Task Scheduler part, and also their
comments on our proposed algorithm.

References

[1] A. Aboulnaga, Z. Wang, and Z. Y. Zhang.
Packing the most onto your Cloud. In Pro-
ceedings of the first international workshop
on Cloud data management, 2009.

[2] S. Agarwal and G. Ananthanarayanan.
Think global, act local: analyzing the
trade-off between queue delays and local-
ity in MapReduce jobs. Technical report,
EECS Department, University of Califor-
nia, Berkeley, 2010.

[3] Apache. Hadoop on demand documen-
tation, 2007. [Online; accessed 30-
November-2010].

[4] R. Bodkin. Yahoo! updates
from Hadoop Summit 2010.
http://www.infoq.com/news/2010/07/yahoo-
hadoop-summit, July 2010.

[5] J. Dean and S. Ghemawat. MapRe-
duce: simplified data processing on large
clusters. Communications of the ACM,
51:107–113, January 2008.

[6] S. Hammoud, M. Li, Y. Liu, N. K. Alham,
and Z. Liu. MRSim: a discrete event based
MapReduce simulator. In Proceedings of
the 7th international conference on Fuzzy
Systems and Knowledge Discovery (FSKD
2010), pages 2993–2997. IEEE, 2010.

[7] Kristi Morton, Magdalena Balazinska, and
Dan Grossman. ParaTimer: a progress
indicator for MapReduce DAGs. In Pro-
ceeding of the international conference on
management of data, pages 507–518, 2010.

[8] T. Sandholm and K. Lai. Dynamic pro-
portional share scheduling in Hadoop. In
Proceedings of the 15th workshop on job
scheduling strategies for parallel process-
ing, pages 110–131. Springer, Heidelberg,
2010.

[9] M. Zaharia, D. Borthakur, J. S. Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica.
Job scheduling for multi-user MapReduce
clusters. Technical Report UCB/EECS-
2009-55, EECS Department, University of
California, Berkeley, April 2009.

[10] M. Zaharia, D. Borthakur, J. S. Sarma,
K. Elmeleey, S. Shenker, and I. Stoica.
Delay scheduling: a simple technique for
achieving locality and fairness in cluster
scheduling. In Proceeding of the Euro-
pean conference on computer systems (Eu-
roSys), Paris, France, 2010.

