
Scheduling Multi-Server Systems Using
Foreground-Background Processing

Rong Wu

Department of Computing and Software
McMaster University

1280 Main Street West, Hamilton, ON L8S 4L7, Canada
wur2@mcmaster.ca

Douglas G. Down

Department of Computing and Software
McMaster University

1280 Main Street West, Hamilton, ON L8S 4L7, Canada
downd@mcmaster.ca

Abstract
It is known that foreground-background processor sharing (FBPS) stochastically min-

imizes the number in the system with a single server when task processing times follow
a Decreasing Failure Rate(DFR) distribution. Based on this, we derive an optimal pol-
icy for a system with a common queue for several identical servers. The performance
of such a system will provide a lower bound for the loosely coupled servers case —
a system with several identical servers, where a routing decision must be made imme-
diately on a task’s arrival. When system load and task variance are high, we propose
maximum-least-elapsed-time (MLET) or join-the-shortest-queue (JSQ) for routing fol-
lowed by foreground-background processor sharing scheduling at each server. Simulation
results show good performance of the proposed policies.

1 Introduction

Consider scheduling tasks for a system in which the processing times of incoming tasks are
unknown, such as dynamic requests for a web server system or static requests for files with
fixed sizes, but where the processing times are unknown (Lu, Sheng, and Dinda [4] have a
discussion of how file size and processing time may exhibit very little correlation). Righter
and Shanthikumar [6] show that for a single server system, the foreground-background pro-
cessor sharing (FBPS) discipline (give priority to tasks with the least attained processing time)
stochastically minimizes the number of tasks in the system for decreasing failure rate (DFR)
processing time distributions, while the first-come-first-served (FCFS) discipline stochastically
minimizes the number of tasks in the system for increasing failure rate (IFR) processing time
distributions. As a reminder, DFR (IFR) is defined as follows: Let the random variableX
have distribution functionF and density functionf . A distribution is said to be DFR(IFR) if
f(x)/(1− F (x)) is decreasing (increasing).
More optimality properties of the FBPS discipline are presented in Feng and Misra [1], Nui-
jens [5], and Righter with her co-authors [7]. Recent research suggests that heavy-tailed dis-
tributions (most are DFR) appear to be a feature in many aspects of computing systems (see

Harchol-Balter with her co-authors [2]). This arises from a mixture of many small tasks and a
small number of large tasks, but with the total processing times for large tasks being a signifi-
cant proportion of the overall load. The focus of this paper is on choosing scheduling policies
which perform well for multi-server systems with DFR processing time distributions. As a
starting point, we use the fact that FBPS is optimal for a single server system under the as-
sumption that the processing time distribution is DFR.
In Section 2, we look at the tightly coupled server system, i.e. one in which there is a single
queue for all of the (identical) servers. We describe a policy which stochastically maximizes
the number of completed tasks for a discrete time queue length process. From this, we present
the policyc-FBPS for the continuous time process. The performance of such a tightly coupled
server system will be a lower bound on a system with several identical servers in parallel, where
a routing decision must be made immediately upon a task’s arrival. In Section 3, we present a
discussion on what is precisely required for the DFR assumption. In particular, the proof that
FBPS is optimal requires the processing time distribution to be DFR on[0,∞). In Section 4,
we propose several scheduling policies for the loosely coupled server system, i.e. one in which
arriving tasks are immediately assigned to one of several identical servers in parallel. In par-
ticular, we assume that the processing times follow a DFR distribution on[0,∞). Section 5
gives some simulation results for the proposed policies where processing times follow a Shifted
Pareto distribution (DFR on[0,∞)). Section 6 provides some concluding remarks.

2 Tightly Coupled Server Systems

We consider a system where there is a common queue forc identical servers. We make no
assumptions on the arrival process and we assume that the task processing times are unknown
and follow a DFR distribution. We first give the description of a policy we call D-c-FBPS and
show that it stochastically maximizes the number of completed tasks for a sampled version of
the system (with the sampling rate chosen sufficiently fast). By letting the sampling rate tend
to infinity, we developc-FBPS for a continuous version of the system. Suppose we only make
scheduling decisions at timesn∆t, n = 0, 1, 2, ..., where∆t > 0 is the sampling time. Define

µi(si) =
fi(si)∆t

1− Fi(si)
,

wheresi is the elapsed processing time of taski. The valueµi(si) is the probability that task
i will finish in a time ∆t. Note that the distribution itself may depend on the task. A direct
consequence of the DFR assumption is thatµi(·) is a decreasing function. For a tightly coupled
server system, the policy D-c-FBPS gives priority to tasks with the firstc highest values of
µi(si) at a particular scheduling epoch (ties may be broken arbitrarily).

Theorem 2.1 Consider the problem with periodic scheduling epochs parameterized by sam-
pling time∆t. For a tightly coupled server system with DFR processing time distribution,
D-c-FBPS stochastically maximizes the number of completed tasks for suitably small∆t.

Proof. The proof for Theorem 2.1 is similar to the proof of thecµ rule in [6] and as a result,
our notation will be chosen to that in [6]. If the number of tasks in the system is less thanc, all
of the tasks will get service. So, without loss of generality, we consider the situation that the
number of tasks to be scheduled at an epoch is greater thanc. Let N be the number of tasks
that have been completed, we want to show that D-c-FBPS maximizesP{N ≥ k} for all k.

The result trivially holds forT = 0. We proceed by induction, assuming the result holds for
T = n∆t and considering the time horizonT ′ = T + ∆t.
Suppose that for the problem with time horizonT ′, π is an optimal policy that does not follow
D-c-FBPS for the first∆t time units. In other words, at time 0, taskj is processed underπ,
but there exists a taski such thatµi(si) > µj(sj). Note thatπ and D-c-FBPS are equivalent
after time∆t. If τ is the first time thatπ schedules taski, then as the DFR assumption yields
µj(sj + ∆t) ≤ µj(sj) < µi(si), and asπ and D-c-FBPS are equivalent from∆t to T ′, j will
not be scheduled again before timeτ .
Supposeπ′ is constructed fromπ by scheduling taski at time 0 and taskj at timeτ . Also, let
N ′ be the number of tasks that are correctly completed during the first∆t time units andN̂ be
the number of tasks that are correctly completed after time∆t. Then

Pπ{N ≥ k} = Pπ{N ≥ k|T ′ ≥ τ} · Pπ{T ′ ≥ τ}
+ Pπ{N̂ ≥ k, T ′ < τ}

+
c∑

h=1

Pπ{N̂ = k − h, T ′ < τ} · Pπ{N ′ = h}.

The order ofi andj is irrelevant ifT ′ ≥ τ , soPπ{N ≥ k|T ′ ≥ τ}=Pπ′{N ≥ k|T ′ ≥ τ}. If
T ′ < τ , N̂ underπ or π′ is the same, soPπ{N̂ ≥ k, T ′ < τ} = Pπ′{N̂ ≥ k, T ′ < τ} and
Pπ{N̂ = k − h, T ′ < τ} = Pπ′{N̂ = k − h, T ′ < τ}, whereh = 1, 2, ..., c.

Pπ′{N ′ = h} − Pπ{N ′ = h}
= (µi(si)− µj(sj))

·
∑

r1,...,rh−1 6=i,j

h−1∏
d=1

µrd
(srd

) ·
∏

l 6=r1,...,rh−1, l 6=j

(1− µl(sl))


+

∑
r1,...,rh 6=j

(
h∏

d=1

µrd
(srd

) ·
∏

l 6=r1,...,rh, l 6=i,j

(1− µl(sl))

)

= (µi(si)− µj(sj)) ·

 ∑
r1,...,rh−1 6=i,j

(
h−1∏
d=1

µrd
(srd

)− k1o(∆th)

) , (1)

whereh = 1, 2, ..., c, r1, ..., rh, m, l represent tasks that are in service during the first∆t time
units, andk1 is a positive constant. As we have assumed thatµi(si) − µj(sj) > 0, we can
always take∆t small enough such that the right hand side of equation (1) is greater than 0 for
each value ofh. Then

Pπ{N̂ = k − h, T ′ < τ} · Pπ{N ′ = h} − Pπ′{N̂ = k − 1, T ′ < τ} · Pπ′{N ′ = 1} > 0,

for eachh = 1, 2, ..., c. Therefore,

Pπ′{N ≥ k} − Pπ{N ≥ k}

=
c∑

h=1

(Pπ′{N ′ = h} − Pπ{N ′ = h}) · Pπ{N̂ = k − h, T ′ < τ} > 0,
(2)

and (2) implies thatπ cannot be optimal.

If we let ∆t → 0, we can create a continuous version of D-c-FBPS, which we will callc-FBPS.

The policyc-FBPS is described as follows. LetSEi represent the set of tasks whose elapsed
time equals taski’s elapsed time in the system,ni represent the number of elements inSEi,
andmi represent the number of tasks whose elapsed time is less than taski’s elapsed time
in the system. For a tightly coupled system withc servers,c-FBPS gives service to taski if
mi < c. Further, ifni > c−mi, all the tasks inSEi processor share amongstc−mi servers,
otherwise, each task inSEi is assigned a single server. Note that this policy may be impossible
to implement due to the feature of multiple processor pooling. In fact, the discrete time version
may be a more natural version of the problem in the multiple server setting. In [6], this type of
argument is used to show that FBPS is optimal. They begin with a discrete time process and
suggest that if one takes a continuous version of the policy, a simple limiting argument provides
optimality. The work in [5] suggests that while true, the limiting argument is somewhat more
subtle. It appears we can use the same approach as in [5] to getPπ′{N ≥ k}−Pπ{N ≥ k} > 0
for a continuous version of the problem operating underc-FBPS.
There is another subtlety in the argument here (and in [6] on which it is based). We require
µj(sj + ∆t) ≤ µj(sj) < µi(si) on [0,∞), not just over the range of the processing time
distributions. We discuss this in more detail in the next section.

3 DFR Distribution Range

FBPS is optimal for a DFR distribution with range starting from 0. If the range does not start
from 0, it may not be optimal. Suppose all the tasks in the system follow a DFR distribution
on [b,∞), whereb > 0. The elapsed time of each task always starts from 0, which is not in the
range of the processing time distribution[b,∞). In particular, this implies that a task’s failure
rate is0 if its elapsed time is in[0, b). When a new task arrives, if the system has other tasks
whose elapsed times are greater thanb, then these tasks’ failure rates are greater than the newly
arrived task. FBPS gives priority to the new arriving task (least elapsed time) instead of tasks
with the highest failure rates in this case. Hence the proof for optimality of FBPS cannot work.
We can also illustrate this by an example. Consider a system where task processing times
follow a DFR distribution on[100,∞), e.g.a Pareto distributionP [b,∞) with density function
f(x) = αbα/x(α+1), whereα = 1.5 andb = 100. The expected processing time for a task
in such a system is300. Eighty percent of the arrivals are tasks whose processing times are
less than300. Consider a system which has only one task with elapsed time99 when a new
task arrives. FBPS gives priority to the new arrival whose expected remaining processing time
is 300. But the expected remaining processing time for the older task is201 (by

∫∞
0

uf(x +
u)du/(1−

∫ x

b
f(v)dv), wherex = 99), which is much smaller than300. It therefore seems to

be advantageous to at least provide some service to the old task. It seems in this case that the
optimal policy may be very complicated. This is not to say that FBPS might not perform well
in this case, just that it is not optimal.
One can create a distribution that is DFR on[0,∞) from one which is DFR on its range by
performing a simple shift. For example, for a Pareto distributionP [b, α), we can shift the range
to get a DFR distribution on[0,∞). Let X be a random variable with a Pareto distribution
P (b, α) andf be its density function. LetY be a random variable withY = X − b, thenY has
a Shifted Pareto distributionSP [b, α) with densityf(y) = αbα/(y + b)α+1, wherey ≥ 0. The
resulting Shifted Pareto distribution with densityf(y) is DFR on[0,∞). In section 5, we use
a Shifted Pareto distribution to perform simulations.

4 Loosely Coupled Server Systems

We have characterized the optimal policy for tightly coupled servers. The case of loosely
coupled server systems is also of interest. In such a system, each server has its own queue and
a routing decision is made immediately at the time of a task’s arrival. We assume the routing
decision takes zero time.
The scheduling policy for a loosely coupled server system has two components: thedispatch
policy, which assigns tasks to servers, and the particularservicepolicy employed at each of the
servers to which the tasks are assigned. Examples ofdispatchpolicies are Random (a task is
assigned to a particular server with probability1/c), Round-Robin (RR, theith arriving task is
assigned to the(i mod c)th server), and Join the Shortest Queue (JSQ, each task is assigned
to the server with the least number of waiting tasks). Note that Random and Round-Robin do
not need any information for routing. JSQ requires the queue length information at each server.
Examples of service policies are First Come First Served (FCFS), in which tasks are served in
the order that they arrive, Shortest Remaining Processing Time (SRPT), where priority is given
to the task with the least processing time remaining, Processor Sharing (PS), where all tasks
get an equal portion of CPU time, and FBPS.
In [5], it is shown that FCFS performs poorly for heavy-tailed processing time distributions
since the number of tasks in queue is likely to grow very large once a large task is in service.
The mean queue length of FCFS is known to be directly proportional to the task size variance
(e.g.Pollaczek-Khinchin formula). In fact, the mean queue length may not exist if the second
moment of the processing time does not exist. On the other hand, FBPS and PS (Processor
Sharing) perform well since large tasks cannot monopolize the server if there are short tasks
waiting. The proof of optimality for FBPS in [6] does not have any assumption on the arrival
process. Therefore, for any fixed routing policy, choosing FBPS as the service policy at each
server achieves the best performance. The choice of dispatching policy depends on many
factors. If communication overhead is a big issue, we suggest Round-Robin since Round-Robin
does not require any information to make routing decisions. If higher quality of performance is
needed, we propose to use Maximum Least Elapsed Time (MLET) or JSQ as the dispatching
policy. Letlsi represent the least task elapsed time at queuei. If all the servers are busy, MLET
assigns incoming tasks to serverk wherek = arg max1≤i≤c lsi. If there is an idle server, MLET
assigns incoming tasks to one of them. Both JSQ and MLET have communication overhead.
The intuition behind MLET is to try to approximatec-FBPS as much as possible. The routing
decision is based on looking at a list of thec + 1 tasks (thec tasks in service and the new
arrival) and putting thec tasks with the least elapsed processing time into service. Note that
MLET may not matchc-FBPS exactly since it only considers those tasks with least elapsed
time at each server. Better performance might possibly be achieved by a more complicated
policy which considers all the elapsed times at each server. Our intuition to choose JSQ is that
tasks in a short queue have likely received more service than tasks in a long queue. In this way,
the shortest queue is more likely to have the task with the maximum least elapsed service, so
intuitively JSQ should operate in a similar manner to MLET (and in turn,c-FBPS). In the next
section, we give some simulation results that suggest that this intuition is indeed the case.
The fact that JSQ is a reasonable routing policy is appealing. It would imply that in the case
where processing times are unknown, as long as one gets the scheduling policy correct (FCFS
for IFR distributions, FBPS for DFR distributions), the routing policy may be independent of
the underlying assumptions. It also suggests that the insight in Whitt [8] is that JSQ is not
optimal because the scheduling policy was not chosen well.

5 Simulation Results

Tables 2-4 give90% confidence intervals for the expected queue length for several policies
under varying numbers of servers and system loads. These policies are represented in a format
A-B, where A denotes the dispatching policy and B denotes the service policy used at each
server. The simulations use a Shifted Pareto distribution for the processing times, whereb =
512 andα = 1.2. The expected processing time is2453. Table 1 gives the parameters used in
the simulation.

Number of Servers (c) ρ 1/λ
4 0.7 876.07
4 0.85 721.47
4 0.95 645.53
8 0.7 438.04
8 0.85 360.74
8 0.95 322.76
16 0.7 219.02
16 0.85 180.37
16 0.95 161.38

Table 1: Parameters Used in Simulation

Tasks arrive to the system according to a Poisson process with rateλ, whereλ is varied to set
the load on the system. We ran 30 replications for each policy, with each replication consisting
of 1.0× 106 arrivals.

Policy ρ = 0.7 ρ = 0.85 ρ = 0.95
RR-FBPS (1.173, 1.224) (1.747, 1.834) (2.408, 2.533)
JSQ-FBPS (0.929, 0.969) (1.202, 1.271) (1.525, 1.617)

MLET-FBPS (0.819, 0.934) (1.230, 1.294) (1.694, 1.793)
RR-PS (1.703, 1.916) (3.179, 3.606) (5.285, 5.984)
JSQ-PS (1.010, 1.112) (1.522, 1.689) (2.239, 2.568)

MLET-PS (1.012, 1.123) (1.583, 1.736) (2.536, 2.883)
c-FBPS (0.803, 0.854) (1.042, 1.091) (1.273, 1.374)

Table 2: 90% CI of Expected Queue Length withc = 4

The simulation results show that the greater the number of servers, the better the system perfor-
mance. For any fixed service policy, comparing with other dispatching policies, Round-Robin
is less sensitive to the number of servers. The performance of MLET-FBPS and JSQ-FBPS are
close to each other which matches our intuition to choose either MLET or JSQ as a dispatching
policy. They both outperform RR-FBPS. The difference of the expected queue length between
the proposed policies (MLET-FBPS, JSQ-FBPS) and optimal policyc-FBPS increases as the
system load increases. If the system load is not high, RR-FBPS is a good choice. The results
also show that for any fixed dispatching policy, the performance when FBPS is the service
policy is better than using PS. Of course, this holds as FBPS is optimal, but the results quantify
the difference. When the system load increases, the gap between FBPS related policies and PS
related policies (here the dispatching policy is fixed) increases. Note that if the distribution is

Policy ρ = 0.7 ρ = 0.85 ρ = 0.95
RR-FBPS (1.125, 1.169) (1.676, 1.767) (2.248, 2.362)
JSQ-FBPS (0.792, 0.817) (1.036, 1.084) (1.238, 1.305)

MLET-FBPS (0.778, 0.801) (0.996, 1.033) (1.279, 1.355)
RR-PS (1.621, 1.731) (2.966, 3.225) (4.794, 5.240)
JSQ-PS (0.821, 0.846) (1.133, 1.211) (1.561, 1.725)

MLET-PS (0.820, 0.843) (1.174, 1.249) (1.738, 2.006)
c-FBPS (0.679, 0.701) (0.844, 0.882) (1.043, 1.085)

Table 3: 90% CI of Expected Queue Length withc = 8

Policy ρ = 0.7 ρ = 0.85 ρ = 0.95
RR-FBPS (1.125, 1.169) (1.676, 1.767) (2.248, 2.362)
JSQ-FBPS (0.760, 0.770) (0.898, 0.928) (1.059, 1.115)

MLET-FBPS (0.748, 0.754) (0.865, 0.886) (1.032, 1.064)
RR-PS (1.561, 1.636) (2.763, 2.915) (4.332, 4.725)
JSQ-PS (0.774, 0.791) (0.924, 0.962) (1.219, 1.301)

MLET-PS (0.758, 0.769) (0.944, 0.998) (1.212, 1.311)
c-FBPS (0.643, 0.663) (0.799, 0.824) (0.922, 0.952)

Table 4: 90% CI of Expected Queue Length withc = 16

close to but not exactly DFR on[0,∞), (e.g. Pareto distribution), the FBPS related policies
still work well on such a distribution. We also did simulations based on a Pareto distribution
with the sameα andb, the results are close to the Shifted Pareto distribution case.

6 Conclusion and Future Work

We discuss scheduling policies for distributed systems when task sizes are unknown and task
processing times follow a DFR distribution. All the results for loosely coupled system are
based on simulation. It would be of interest to study whether the proposed policies approach
optimality in any (asymptotic) sense. Liu and Towsley in [3] show that Round-Robin mini-
mizes response times and queue lengths among the policies without using any server and task
information if processing times follow an IFR distribution (here FCFS is the service policy).
Based on this, we conjecture that RR-FBPS is also the optimal policy under DFR distributions
where no server information is provided for routing. We are currently examining this issue.
It would also be of interest to develop limiting approximations for FBPS in the single server
case, which could in turn aid in examining the multiple server setting.

References

[1] Hanhua Feng and Vishal Misra. “Mixed Scheduling Disciplines for Network Flows”. In
Proceedings of The Fifth Workshop on Mathematical Performance Modeling and Analysis
(MAMA 2003), San Diego, California, USA, 2003.

[2] Mor Harchol-Balter, Mark E. Crovella, and Cristina D. Murta. “On Choosing a Task
Assignment Policy for a Distributed Server System”.Journal of Parallel and Distributed
Computing, 59(2):204–228, November 1999.

[3] Zhen Liu and Don Towsley. “Optimality of the Round Robin Routing Policy”.Journal of
Applied Probability, 31:466–478, 1994.

[4] Dong Lu, Huanyuan Sheng, and Peter A. Dinda. “Effects and Implications of File
Size/Service Time Correlation on Web server scheduling policy”. Technical Report NWU-
CS-04-33, Northwestern University, 2004.

[5] Misja Nuijens.The Foreground-Background Queue. PhD thesis, University of Amsterdam,
Simon Stevinstraat 46-II, 1097 CA Amsterdam, 2004.

[6] Rhonda Righter and J.George Shanthikumar. “Scheduling Multiclass Single Server Queue-
ing Systems to Stochastically Maximize the Number of Successful Departures”.Probabil-
ity in the Engineering and Informational Sciences, 3:323–333, 1989.

[7] Rhonda Righter, J.George Shanthikumar, and Genji Yamazaki. “On Extremal Service Dis-
ciplines in Single-stage Queueing Systems”.Journal of Applied Probability, 27:409–416,
1990.

[8] Ward Whitt. “Deciding Which Queue to Join: Some Counterexamples”.Operations Re-
search, 34(1):226–244, January 1986.

