Decentralized Load Balancing for Heterogeneous Grids

Issam Al-Azzoni and Douglas G. Down
Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada
alazzoi@mcmaster.ca, downd @mcmaster.ca

Abstract—Several decentralized load balancing policies have
been proposed to address the issue of scalability in grids.
However, the communication overhead incurred in exchanging
state information remains a burden. In this paper, we propose
a dynamic, decentralized load balancing policy which performs
very competitively in heterogeneous grids. The policy uses an
effective mechanism for state information exchange, which sig-
nificantly reduces the communication overhead, while quickly
updating the state information in a decentralized fashion.

Keywords-grid computing; decentralized load balancing; dis-
tributed systems; heterogeneous processors; information ex-
change;

I. INTRODUCTION

Widespread availability of low-cost, high performance
computing hardware and the rapid expansion of the Internet
and advances in computing networking technology have
led to an increasing use of heterogeneous computing (HC)
systems (see Kontothanassis and Goddeau [1]). An HC
system is constructed by networking various machines with
different capabilities and coordinating their use to execute a
set of tasks. Grids are an example of HC systems.

To harness the computational power of a grid, a load
balancing policy is used. Such policies attempt to balance the
load with the end result of maximizing resource utilization
and hence optimizing performance. Load balancing for grids
is complicated due to several factors. Grids can consist of
a very large number of machines. The state of the system
dynamically changes and the load balancing policy should
adapt its decisions to the state of the system. Another factor
contributing to the complexity of load balancing for grids is
related to the heterogeneous nature of such systems. These
systems interconnect a multitude of heterogeneous machines
(desktops with various resources: CPU, memory, disk, etc.)
to perform computationally intensive applications that have
diverse computational requirements. Performance may be
significantly impacted if information on task and machine
heterogeneity is not taken into account by the load balancing
policy.

In this paper, we consider decentralized load balancing
policies. In centralized policies, a central machine is dedi-
cated as a load balancer and tasks are submitted to the central
machine. Thus, the load balancer becomes a bottleneck and

a single point of failure. To avoid this, decentralized load
balancing policies involve all machines in load balancing
and avoid the use of a central server.

Even though decentralized load balancing has advantages
in terms of scalability and fault tolerance, the commu-
nication overhead incurred by frequent state information
exchange between machines represents a challenge. In such
systems, the state information needs to be propagated to
each machine. In our earlier work [2], we have developed a
centralized load balancing policy, the Linear Programming
based Affinity Scheduling policy (LPAS), that performs
competitively in heterogeneous systems. The policy uses the
solution to an allocation linear programming problem (LP)
which maximizes the system capacity.

Adapting the policy into a decentralized setting is not
straightforward (the difficulties are discussed in Section IV).
It requires all machines to know the up-to-date state of other
machines. The communication overhead necessary to do this
looks initially prohibitive. In this work, we propose an ef-
fective mechanism for state information update designed for
the LPAS policy. The mechanism significantly cuts down the
communication overhead while quickly updating the state
information. Our simulations show significant performance
advantages over competing policies, especially in highly
heterogeneous systems. Although this paper provides a proof
of concept, future work is needed to deploy the proposed
policy on actual grids in order to analyze performance under
representative workloads.

The organization of the paper is as follows. Section II
gives the workload model in detail. Section III describes
several decentralized load balancing policies and gives an
overview of the related work. The LPAS_dec policy is
described in Section IV. In Section V, we present the results
obtained in our simulation experiments.

II. WORKLOAD MODEL

In decentralized load balancing, a task can be submitted
to any machine in the grid. Each machine is responsible
for the assignment of its locally submitted tasks to one of
the grid machines. Upon the arrival of a task to a machine,
the machine immediately makes a decision on whether to
execute the task locally or send it for execution on another

machine. After that, the task can only be executed by the
machine to which it is assigned. Thus, a task can not
be migrated more than once. Similarly, several researchers
assume a migration limit of one as task migration is often
difficult in practice and there are no significant benefits of
using higher migration limits (see Lu et al. [3] and Shah et
al. [4]).

We consider dynamic load balancing policies. These
policies, as opposed to static policies, attempt to exploit
dynamic state information to optimize performance. In or-
der to do that, certain types of information need to be
exchanged among the machines, e.g. task queue lengths,
machine execution rates, and so forth. In grids, there is no
efficient state-broadcast mechanism [3]. Other approaches
for information exchange, such as state-polling, are also
problematic in practice (see [3], Gu et al. [5], and Werstein et
al. [6]). To minimize the overhead of information collection,
we assume that state information exchange is done by mutual
information feedback [3]. Thus, when a machine j; needs
the local state information of another machine jo, then it
sends a request message to jo which in turn sends back a
reply message. Both the request and reply messages may
embed other local state information as dictated by the load
balancing policy.

The tasks are assumed to be independent and atomic. In
the literature, parallel applications whose tasks are indepen-
dent are sometimes referred to as Bag-of-Tasks applications
(BoT) (as in Anglano et al. [7]) or parameter-sweep appli-
cations (as in Casanova et al. [8]). Such applications are
becoming predominant for grids (see losup et al. [9] and Li
and Buyya [10]).

While determining the exact task execution time on a
target machine remains a challenge, there exists several
techniques that can be used to estimate an expected value
for the task execution time (see Rao and Huh [11]). The
policies considered in this paper exploit estimates on mean
task execution times rather than exact execution times. Fur-
thermore, in grids, tasks that belong to the same application
are typically similar in their resource requirements. For
example, some applications are CPU bound while others
are I/O bound. In fact, several authors have observed the
high dependence of a task execution time on the application
it belongs to and the machine it is running on. They argue
for using application profile information to guide resource
management (see [1]). We follow the same steps and assume
that the tasks are classified into groups (or classes) with
identical distributions for the execution times.

In our model for a grid, it is assumed that the tasks are
classified into NV classes. Tasks of class ¢ arrive to a machine
j at the rate «; ;. Let o be the arrival rate matrix, having
(i,7) entry ;. Let the number of machines in the system
be M. Thus, o; = Z?il vy, ; 1s the total arrival rate of class
1 tasks to the system. Let p; ; be the execution rate for tasks
of class ¢ at machine j, hence 1/ f4i,; is the mean execution

time for class 4 tasks at machine j. We allow p; ; = 0, which
implies machine j is physically incapable of executing class
¢ tasks. Each task class can be executed by at least one
machine. Let p be the execution rate matrix, having (i, j)
entry fi; ;.

We note that performance monitoring tools such as
NWS [12] and MonALISA [13] can be used to provide
dynamic information on the state of the grid system. Fur-
thermore, these tools anticipate the future performance be-
haviour of an application including task arrival and machine
execution rates.

III. CURRENT POLICIES AND RELATED WORK

The MCT (minimum completion time) policy assigns an
arriving task to the machine that has the earliest expected
completion time. Several authors have suggested decentral-
ized load balancing policies that are based on the MCT
policy, e.g., the IDP (Instantaneous Distribution Policy)
in [3] and the LBA (Load Balancing on Arrival) policy
in [4]. When a task arrives to a machine, the machine
contacts all machines in the system to determine the machine
with the earliest expected completion time.

The policy suffers from a significant information exchange
overhead. In particular, for each arriving task to a machine,
the machine needs to send a request message to all machines
in the system who in turn need to send back a reply message
containing the expected completion time information. Thus,
a total of 2 x (M — 1) message exchanges are needed for
every arriving task.

An advantage of the MCT policy is that a machine does
not require any information about the task arrival rates or
machine execution rates of other machines. Thus, only the
expected completion times need to be exchanged between
machines. It is for this reason that the MCT policy is suited
for systems where predicting these rates is not possible or
severely inaccurate.

In order to address the limitations of the MCT policy,
the k-percent best (KPB) policy (Maheswaran et al. [14])
identifies for each class a subset consisting of the (kM /100)
best machines based on the execution times for the class,
where _100/M < k < 100. With respect to a machine j,
let Sf */ be the set of the [kM/100] machines that have the
smallest expected execution time for class ¢ tasks. When a
task of class ¢ arrives to machine j, the machine assigns the
task to the machine in the subset Sf *J that has the earliest
expected completion time. Define k = [kM/100] to be the
number of machines considered by the KPB policy.

Depending on the value of k, an advantage of the KPB
policy is that it requires less state information than the MCT
policy. Furthermore, this can significantly reduce the number
of message exchanges. In fact, a total of 2 x k message
exchanges are needed for every arriving task. This can be a
dramatic improvement over the MCT policy.

While the KPB policy succeeds in reducing the required
state information, setting its parameter (k) may be problem-
atic and can only be done in an ad-hoc manner. Instability or
severe performance degradation can result if inappropriate
values for k£ are used. Also, the KPB policy maps each
class to the same number of machines, which may not be
desirable.

The KPB policy requires knowledge on machine execu-
tion rates while the MCT policy does not. We use the fol-
lowing mechanism for exchanging information on machine
execution rates. When a task of class 7 arrives to a machine
j', the machine sends request messages to the machines
J € Sf 7" In each request message, machine j’ includes its
local execution rates (p;, 4/, ¢ = 1,...,N). Upon receiving
the request messages, each of the contacted machines replies
with a message including the corresponding expected com-
pletion time as well as the local execution rates. Thus, at
the end, machine j' and the machines j € Sf ' update their
local state information with the corresponding execution
rates.

The MCT and KPB policies balance the load only upon
task arrivals, as do the LPAS_dec policy, [4], [11], and Arora
et al. [15]. Other policies [6] are threshold-based e.g., only
when the load on a machine exceeds a certain threshold,
load balancing is triggered. Some load balancing policies
use a combination of both techniques (see [3] and [5]).

On the event of load balancing, a policy should determine
which tasks to migrate. Policies such as the LPAS_dec pol-
icy, which balance the load upon task arrivals, typically
migrate only the arriving task. Some policies, however,
migrate additional tasks, such as [15]. Other policies rank
the queued tasks based on certain criteria and only migrate
the highest ranking tasks (see [3] and [5]).

Two mechanisms for information exchange were dis-
cussed in Section II: state polling and mutual information
feedback. Several load balancing policies that use state
polling are presented in [4], [5], and [6]. The LPAS_dec pol-
icy uses mutual information feedback, as do the policies
presented in [3], [11], and [15].

IV. THE LPAS_dec PoLICY

The LPAS_dec policy is similar to the KPB policy in
that only a subset of machines need to be considered for
each class, however, the determination of this subset requires
solving the following LP (Andradéttir et al. [16]), where

the decision variables are A and §; ; fori=1,...,N, j =
1,..., M.
max A
M
S.t. Zéi,jﬂi,j > A, forall¢=1,...,N, (1)
j=1
N
> 6i;<1, forallj=1,...,M,)
i=1

forallt=1,...,N, and 5 =1,..., M.
3)
The interpretation of the variables and constraints is iden-
tical to that of the allocation LP in [2].

Let A* and {6} ;},i=1,...,N,j=1,...,M, be an
optimal solution to the allocation LP. Let 6* be the machine
allocation matrix where the (4, j) entry is J; ;.

The LPAS_dec policy can be stated as follows. Each
machine j’ solves a local version (using local data) of the
allocation LP to find {57}, i =1,...,N,j =1,..., M.
W}/lf:n a new task of class 4 arrives to a machine j’, let
S? denote the set of machines whose corresponding 07 ; at
machine j' is not zero. Machine ;' assigns the task to the
machine j € SZ that has the earliest expected completion
time among the subset of machines Sg,. Again, ties are
broken arbitrarily.

The LPAS_dec policy requires knowledge on both arrival
and execution rates. We use the following mechanism for
information exchange. When a task of class ¢ arrives to
a machine j’, the/machine sends request messages to the
machines j € Sg . In each request message, machine j’
includes its local arrival and execution rates (v j/, [,
¢t =1,..., N). Upon receiving the request messages, each of
the contacted machines replies with a message including the
corresponding expected completion time as well as the local
arrival and execution rates. Thus, at the end, machine j’ and
the machines j € S} update their local state information
with the corresponding arrival and execution rates.

In the ideal conditions when full state information is
available, all the machines solve the same allocation LP
and thus use the same 0* matrix which is necessary to
achieve the maximum capacity. In such cases, our earlier
work in [2] shows that the LPAS_dec policy performs well
in heterogeneous systems. However, in practice, at any given
time, one or more of the machines may have different
views of the state of the system. Thus, they solve different
allocation LPs and the resulting J* matrices are different.
However, as our simulation experiments indicate, the in-
formation exchange mechanism of the LPAS_dec policy is
effective in its state update and thus the machines tend to
quickly have the same view of the system. Furthermore,
since the LPAS_dec policy does not use the actual values for
{6*} (it only uses information on what entries are nonzero),
and since these LPs are inherently robust, the resulting §*
matrices tend to be similar with respect to the positions of
the zero and nonzero entries. Thus, performance would not
be significantly deteriorated when the observed system state
is a little different amongst the machines.

Consider a system with two machines and two classes of
tasks (M = 2, N = 2). Assume initially that o and p are
known by both machines:

1 145 du_?
=11 145 PR T 9

05 >0,

= Ot
—

Solving the allocation LP gives

. [0 05
5_[1 0.5}

Thus, all arriving tasks that belong to class 1 are assigned to
machine 2. At the times of their arrivals, tasks that belong to
class 2 are assigned to the machine, either machine 1 or 2,
that has the earliest expected completion time. Even though
machine 1 has the fastest rate for class 1, class 1 tasks are
never assigned to it. Since the system is highly loaded, and
since % < % and a; = s, the performance is improved
significantly if machine 1 only executes class 2 tasks.

Now, assume that «q o becomes 0.5. Thus, machine 2
solves a new allocation LP to obtain:

5o [0 03273
|1 06727 |

Even though machines 1 and 2 use different §* matrices
until the next state update, they are equivalent in terms of
the locations of the zero and nonzero entries. Thus, machine
1 still uses an allocation matrix that is equivalent in effect to
the allocation matrix which maximizes the system capacity.
Consider another scenario in which pq 2 becomes 0.5.
Thus, machine 2 solves a new allocation LP to obtain:

5o [02727 0
o723 1

Thus, machines 1 and 2 use different 6* matrices (even with
respect to the locations of the zero and nonzero entries).
However, one can check that, via the information exchange
mechanism of the LPAS_dec policy, machine 1 becomes
aware of the change of p; 2 upon the arrival of a task to
either machine. Hence, machine 1 is quickly updated with
the new state of machine 2 and thus both machines solve the
same allocation LP. In larger systems, there will be a delay in
propagating information on the state change throughout the
system. However, our simulation experiments suggest that
the state update happens quickly enough to not significantly
impact performance.

In the LPAS_dec policy, tasks of each class can only be
assigned to a subset of machines. Ideally, the size of each
subset should be much smaller than M. To achieve this,
the §* matrix should contain a large number of elements
that are equal to zero. In fact, there could be many optimal
solutions to an allocation LP, and an optimal solution with
a larger number of zeros in the §* matrix is preferred. The
following proposition gives the number of zero elements in
the §* matrix that could be achieved (the proof can be found
in [16]):

Proposition 1: There exists an optimal solution to the
allocation LP with at least NM 4+ 1 — N — M elements
in the §* matrix equal to zero.

Ideally, the number of zero elements in the §* matrix
should be NM 4+ 1 — N — M. If the number of zero

elements is greater, the LPAS_dec policy would be sig-
nificantly restricted in shifting workload between machines
resulting in performance degradation. Furthermore, in this
case, our information exchange mechanism becomes less
effective in its state update. Also, solutions that result in
degenerate cases should be avoided. For example, if the §*
matrix contains no zeros at all, then the LPAS_dec policy
reduces to the MCT policy. Throughout the paper, we use
an optimal solution in which the §* matrix contains exactly
NM +1— N — M zeros.

V. SIMULATION RESULTS

We use simulation to compare the performance of several
load balancing policies including the LPAS_dec policy. In
Section V-A, we simulate an artificial system with high
heterogeneity levels to show the impact of heterogeneity on
performance. Then, in Section V-B, we show the results of
simulating a realistic grid.

The task arrivals are modeled by independent Poisson
processes, each with rate o; j, ¢ =1,...,N,j=1,..., M.
The execution times are exponentially distributed with rates
i 5, where 1/p; ; represents the mean execution time of a
task of class 7 at machine j,¢=1,...,N,j=1,..., M.

There are several performance metrics that can be used.
We use the long-run average task completion time W, as a
metric for performance comparison. A task completion time
is defined as the elapsed time between the submission of the
task and the completion of its execution. For each simulation
experiment, we also show the average task completion time
for class ¢ tasks, W;, for all ¢ = 1,..., N. Another metric
we also show is the total number of message exchanges, X.
With respect to a given policy, a larger value for X indicates
more overhead is involved in state information exchange.

In this section, we define several systems. Each simulation
experiment models a particular system, characterized by the
values of M, N, a; j,and p; 5,2 =1,...,N,j=1,..., M.
Each experiment is repeated 30 times. For every case, we
give W, W;, ¢ =1,...,N, and X. For W, we also give
the accuracy of the confidence interval defined as the ratio
of the half width of the interval over the mean value (all
statistics are at 95% confidence level).

A. Task and Machine Heterogeneity

There are different kinds of system heterogeneity. Ma-
chine heterogeneity refers to the average variation along the
rows of x, and similarly task heterogeneity refers to the aver-
age variation along the columns (see Armstrong [17]). In this
section, we simulate a system with high task heterogeneity
and high machine heterogeneity.

System A has M = 7 machines and N = 4 classes. Define

Table I
SIMULATION RESULTS FOR SYSTEM A

Policy w W1 Wo Ws | W4 A
MCT 3.41 340 | 3.40 | 3.40 | 3.43 0%
+13.31%
KPB 0.37 0.28 | 0.58 | 0.40 | 0.20 | 66.67 %
K=2 +4.04%
KPB 0.24 020 | 0.25 | 0.27 | 0.26 | 50.02%
K=3 +0.59%
LPAS_ 0.22 023 1 0.19 | 0.24 | 0.21 | 65.19%
dec +0.36%

o' and p’ as follows:

2 1.5 1.7 1 3 1.9 1.35
, | 135 1.5 24 155 29 0.75 1.55

4 27 1 135 15 09 1

2 1.7 2 1.5 225 1.75 0.75

and
4.5 2 95 6.2 10.25 225 3.95
; 6.2 45 6 2 4.2 59 10.25
o 95 6.5 4 10 59 225 3.95

225 10 2 395 1.7 10 1.75

Initially, the arrival and execution rates are given by «a = o’
and pu = y'. The rates only change at regular rate-change
events. At every rate-change event, only a single rate from
a;j or p;, 1 =1,...,N, j = 1,..., M, changes ran-
domly with equal probabilities. Time intervals between the
rate-change events are exponentially distributed with mean
1/0.035 time-units. For a change in «, a; ; is set to o] ;,
L.1aj ;, or 1.2a; ; with equal probabilities. For a change
in g, pijis set to pf;, 1.05u; ;, or 1.15u; ; with equal
probabilities. Thus, the system experiences different loads
with the lowest average load of 77.59% (when o = ' and
w1 = 1.154") and the highest average load of 89.23% (when
a=1.2a' and p = p').

Table I shows simulation results for System A. We sim-
ulate the execution of the system for 200,000 time-units. In
the last column of the table, we define A as the improvement
in the total number of message exchanges (X) with respect
to the MCT policy. For X, the accuracy of the confidence
intervals is less than 0.1%.

The MCT policy performs much worse than the other poli-
cies. In general, the MCT policy achieves poor performance
and even results in unstable systems when the system is
highly loaded and there is high task heterogeneity and high
machine heterogeneity. Using the KPB policy, performance
is dramatically improved with respect to the MCT policy.
However, finding an appropriate value for k is problematic.
Furthermore, depending on the value of %, there is a tradeoff
between the achieved performance (W) and the overhead
of message exchanges (X). The LPAS_dec policy achieves
the best performance for System A even though there is a

dramatic decrease in the total number of message exchanges.
It results in values for A comparable with those of the KPB
policy with K = 2, while achieving an improvement of 40%
in the average task completion time.

B. Realistic Architectures

To simulate more realistic scenarios, we use the data
reported in [7] and Canonico [18] which was collected by
running benchmarking tools on an actual system.

In [7], the authors define the nominal computing power
of a machine as a real number whose value is directly
proportional to its speed. Thus, a machine with a nominal
computing power of 2 is twice as fast as a machine with a
nominal computing power of 1. It is found that, for the mon-
itored system, there are three different values for the nominal
computing power of machines, namely {1,1.125,1.4375}.

Since our load balancing policies consider multiple appli-
cations on grids, we define P; ; as the nominal computing
power of machine j on class ¢ tasks. Thus, a machine 7 with
P, ; = 2 is twice as fast as a machine j/ with P; ,, =1 on
class ¢ tasks. In this manner, we can describe systems in
which a machine is fast on some applications but slow on
others.

To model varying machine execution rates, we use an
approach similar to [7]. When a machine is available, it may
also run local jobs (i.e., jobs submitted by a local user).
When a machine is busy with local jobs, the result is a
slowing down of the execution of the grid tasks. To model
the non-dedication property of a machine j, we define its
CPU availability (a;) as the expected proportion of time
that it is going to spend in executing the grid tasks. Thus,
the execution rate for class 7 tasks at machine j is effectively
i j X aj. We assume that the load balancing policies use
these estimated effective execution rates.

As in [7], the CPU availability is described by a Markov
chain whose parameters are computed using a network
monitoring and forecasting system. A new value for the CPU
availability is computed every 10 seconds of simulated time.
The actual values for each machine’s transition probabilities
are reported in [18] (see Table 4.14). For the LPAS_dec pol-
icy, we compute a; as the average CPU availability for each
machine j from the corresponding Markov chain. This is
justified for the model since the mean execution time for a
given task is much larger than the average time spent in a
particular state of the Markov chain.

We define the following system. System B consists of
M = 300 machines which are grouped into 15 groups.
We simulate the execution of the system for two billion
time-units. To have dynamic CPU availabilities, the CPU
availability for each machine changes randomly at regular
rate-change events (time intervals between such events are
exponentially distributed with mean 5 million time-units).
At every rate-change event, each machine assumes the same

wi w2 w3 wa x

m MCT COLPAS dec

Figure 1. Relative average task completion times and number of message
exchanges: System B under arrival rates «

parameters as one of the 15 machines listed in Table 4.14
in [18] with equal probabilities.

In System B, we assume that each machine has a nominal
computing power (on class ¢ tasks) F; ; randomly chosen
from {1,1.125,1.4375} with equal probabilities. Thus, a
machine can be fast executing some applications while, at
the same time, slow executing other applications. System B
represents a system which is mainly used to execute multiple
applications with inherent heterogeneity.

Finally, we assume that there are N = 4 classes (or
applications). The authors in [7] define BaseTime as the
mean execution time of a task submitted to a machine with
a nominal computing power of 1. Thus, each class consists
of tasks with the same value for BaseT'tme (for class i, we
denote it by BaseTime;). We assume that BaseTime; =
8750, 17500, 35000, 50000, for ¢ = 1, ..., 4, respectively.
This information is enough to generate the matrix p. As-
suming a; = 1, the mean execution time for a class ¢ task
at machine j can be computed as BaseT'ime; x 1/P; ;.

Figure 1 show simulation results for System B under
arrival rates « = [0.00457 0.00229 0.00114 0.00080]. For
a machine j, we assume that a; ; = a;/M,i=1,...,N.
In this section, we normalize the results with respect to the
MCT policy and note that the accuracy of the generated
confidence intervals is 0.1% or less. The KPB policy is not
included as it is difficult to find an optimal value for &.
As the results indicate, the LPAS_dec policy achieves better
performance than the MCT policy with the added advantage
of significant reduction in the number of message exchanges.

REFERENCES

[1] L. Kontothanassis and D. Goddeau, “Profile driven scheduling
for a heterogeneous server cluster,” in Proceedings of the 34th
International Conference on Parallel Processing Workshops,
2005, pp. 336-345.

[2] I. Al-Azzoni and D. G. Down, “Linear programming based
affinity scheduling of independent tasks on heterogeneous
computing systems,” [EEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 12, pp. 1671-1682, 2008.

[3] K. Lu, R. Subrata, and A. Y. Zomaya, “On the performance-
driven load distribution for heterogeneous computational

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

grids,” Journal of Computer and System Sciences, vol. 73,
no. 8, pp. 1191-1206, 2007.

R. Shah, B. Veeravalli, and M. Misra, “On the design of
adaptive and decentralized load balancing algorithms with
load estimation for computational grid environments,” /EEE
Transactions on Parallel and Distributed Systems, vol. 18,
no. 12, pp. 1675-1686, 2007.

D. Gu, L. Yang, and L. R. Welch, “A predictive, decentralized
load balancing approach,” in Proceedings of the 19th Interna-
tional Parallel and Distributed Processing Symposium, 2005.
P. Werstein, H. Situ, and Z. Huang, “Load balancing in a
cluster computer,” in Proceedings of the 7th International
Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, 2006, pp. 569-577.

C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wol-
ski, “Fault-aware scheduling for Bag-of-Tasks applications
on Desktop Grids,” in Proceedings of the 7th International
Conference on Grid Computing, 2006, pp. 56-63.

H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand,
“Heuristics for scheduling parameter sweep applications in
grid environments,” in Proceedings of the 9th Heterogeneous
Computing Workshop, 2000, pp. 349-363.

A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The per-
formance of bags-of-tasks in large-scale distributed systems,”
in Proceedings of the 17th International Symposium on High
Performance Distributed Computing, 2008, pp. 97-108.

H. Li and R. Buyya, “Model-driven simulation of grid
scheduling strategies,” in Proceedings of the 3rd International
Conference on e-Science and Grid Computing, 2007, pp. 287—
294.

I. Rao and E.-N. Huh, “A probabilistic and adaptive schedul-
ing algorithm using system-generated predictions for inter-
grid resource sharing,” Journal of Supercomputing, vol. 45,
no. 2, pp. 185-204, 2008.

R. Wolski, N. T. Spring, and J. Hayes, “The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing,” Future Generation Computer Sys-
tems, vol. 15, no. 5-6, pp. 757-768, 1999.

I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras,
M. Toarta, and C. Dobre, “MonALISA: an agent based,
dynamic service system to monitor, control and optimize grid
based applications,” in Proceedings of the International Con-
ference on Computing in High Energy and Nuclear Physics,
2004.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems,” in
Proceedings of the Sth Heterogeneous Computing Workshop,
1999, pp. 30-44.

M. Arora, S. K. Das, and R. Biswas, “A de-centralized
scheduling and load balancing algorithm for heterogeneous
grid environments,” in Proceedings of the International Con-
ference on Parallel Processing Workshops, 2002, pp. 499—
505.

S. Andradéttir, H. Ayhan, and D. G. Down, “Dynamic server
allocation for queueing networks with flexible servers,” Op-
erations Research, vol. 51, no. 6, pp. 952-968, 2003.

R. Armstrong, “Investigation of effect of different run-
time distributions on SmartNet performance,” Master’s thesis,
Naval Postgraduate School, 1997.

M. Canonico, “Scheduling algorithms for Bag-of-Tasks ap-
plications on fault-prone desktop grids,” Ph.D. dissertation,
University of Turin, 2006.

