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Abstract—Several power-aware scheduling policies have been
proposed for homogeneous clusters. In this work, we pro-
pose a new policy for heterogeneous clusters. Our simulation
experiments show that using our proposed policy results in
significant reduction in energy consumption while performing
very competitively in heterogeneous clusters.
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I. INTRODUCTION

Optimizing performance in computer clusters has been a
topic of interest in a number of recent research papers. It is
true that research has been, to a certain extent, successful
in accomplishing this goal but on the other hand, energy
consumption has been mostly neglected.

Reducing energy consumption in computer clusters has
become a necessity for many reasons. First of all, for a large
cluster which consumes significant amounts of energy, it can
be necessary to use expensive cooling equipment. Cooling
equipment can consume up to 50% of the total energy
consumption in some commercial servers (see Rajamani et
al. [15]). Also, because of the growing cost of electricity,
reducing energy consumption has become an economic
necessity (see Bianchini et al. [5]).

Scheduling for such systems is complicated due to several
factors. The state of the system dynamically changes and a
scheduling policy should adapt its decisions to the state of
the system. Another factor contributing to the complexity
of scheduling for clusters is related to the heterogeneous
nature of such systems. These systems interconnect a mul-
titude of heterogeneous machines (desktops with various
resources: CPU, memory, disk, etc.) to perform computation-
ally intensive applications that have diverse computational
requirements. Performance may be significantly impacted if
information on task and machine heterogeneity is not taken
into account by the scheduling policy.

In our earlier work ([1] and [2]), we have developed
several scheduling policies that perform competitively in het-
erogeneous systems. The policies use the solution to an allo-
cation linear programming problem (LP) which maximizes
the system capacity. However, machine power consumption

is not considered. In this paper, we suggest a power-aware
scheduling policy (the Power-Aware Linear Programming
based Affinity Scheduling policy (LPAS)). The proposed
policy also uses the solution to an allocation LP which
takes into consideration machine power consumption. Our
experiments show that our policy provides significant energy
savings.

The policy uses the arrival and execution rates to find
the maximum capacity. Also, the policy uses information
on the power consumption of each machine in order to
find an allocation of the machines which results in the
maximum energy saving. However, there are cases where
obtaining such information is not possible or there is a
large degree of uncertainty. In this paper, we also suggest a
power-aware policy for structured systems that only requires
knowledge of the ranking of machines with respect to
their power efficiencies. Structured systems are a special
kind of heterogeneous systems that are common for cluster
environments. These are defined in Section VI.

II. WORKLOAD MODEL

In our model for a computer cluster, there is a dedicated
front-end scheduler for assigning incoming tasks to the back-
end machines. Let the number of machines in the system be
J .

It is assumed that the tasks are classified into I classes.
Tasks of class i arrive to the front-end at the rate αi. Let α
be the arrival rate matrix, the ith element of α is αi. The
tasks are assumed to be independent and atomic. In the liter-
ature, parallel applications whose tasks are independent are
sometimes referred to as Bag-of-Tasks applications (BoT)
(as in Anglano et al. [3]) or parameter-sweep applications
(as in Casanova et al. [6]).

While determining the exact task execution time on a
target machine remains a challenge, there exist several
techniques that can be used to estimate an expected value
for the task execution time (see Rao and Huh [16]). The
policies considered in this paper exploit estimates on mean
task execution times rather than exact execution times.
Furthermore, in computer clusters and grids, tasks that
belong to the same application are typically similar in their



resource requirements. For example, some applications are
CPU bound while others are I/O bound. In fact, several
authors have observed the high dependence of a task’s
execution time on the application it belongs to and the
machine it is running on. They argue for using application
profile information to guide resource management (see [12]).
We follow the same steps and assume that the tasks are
classified into groups (or classes) with identical distributions
for the execution times.

Let µi,j be the execution rate for tasks of class i at
machine j, hence 1/µi,j is the mean execution time for
class i tasks at machine j. We allow µi,j = 0, which implies
machine j is physically incapable of executing class i tasks.
Each task class can be executed by at least one machine. Let
µ be the execution rate matrix, having (i, j) element µi,j .
Our workload model is similar to the workload model in
Al-Azzoni and Down [2].

We note that performance monitoring tools such as
NWS [19] and MonALISA [13] can be used to provide
dynamic information on the state of the cluster system.
Furthermore, these tools anticipate the future performance
behaviour of an application including task arrival and ma-
chine execution rates.

At this stage, we introduce the machine power con-
sumption model. We assume that at any point in time
a machine can be either busy or in a low power state.
Each machine may have different power consumption when
executing different classes of tasks. Let Mi,j be the power
consumption of machine j when executing a task of class i
(it is measured in terms of the energy consumed per time-
unit). In addition, we assume that a machine is put into a low
power state when it is not executing any task. Let Bj be the
power consumption of machine j when it is in a low power
state. We assume that Bi,j �Mi,j . Our power consumption
model is similar to the one considered in Heath et al. [10].

III. CURRENT POLICIES

A scheduling policy that is applicable to our workload
model is the classical First-Come-First-Served (FCFS) pol-
icy. FCFS is used in major schedulers (such as Kondo
et al. [11]). An advantage of FCFS is that it does not
require any dynamic information on the state of the system.
However, FCFS only performs well in systems with limited
task heterogeneity and under moderate system loads. As
the application tasks become more heterogeneous and the
load increases, performance degrades rapidly (see Al-Azzoni
and Down [1]). Furthermore, FCFS ignores machine power
consumption and thus may result in severe energy wastage.

Another scheduling policy is the Pick-the-most-efficient
(PME) policy. The policy uses a greedy approach for as-
signing tasks to machines. It is defined as follows. When
a machine j becomes available, it is assigned a class i
task where the power efficiency of machine j on class
i is the maximum amongst those classes with at least

one task waiting. The power efficiency of a machine j
on class i tasks is defined as Mi,j/µi,j . The PME policy
only requires dynamic information on the machine execution
rates and power consumption. It does not take into account
information on the task arrival rates.

IV. THE POWER-AWARE LPAS POLICY

The Power-Aware LPAS policy requires solving two allo-
cation linear programming (LP) problems. The first LP does
not take power consumption into account. It is the same
LP that is used in the other LPAS-related policies (See [1]
and [2]). This LP is solved for the purpose of obtaining the
maximum capacity of the system λ∗. This value is used in
the second LP.

In the first LP, the decision variables are λ and θi,j for
i = 1, . . . , I , j = 1, . . . , J . The variables θi,j are to be
interpreted as the proportional allocation of machine j to
class i. The goal is to maximize λ such that

J∑
j=1

θi,jµi,j ≥ λαi, for all i = 1, . . . , I, (1a)

I∑
i=1

θi,j ≤ 1, for all j = 1, . . . , J, (1b)

θi,j ≥ 0, for all i = 1, . . . , I, and j = 1, . . . , J. (1c)

Let λ∗ and {θ∗i,j}, i = 1, . . . , I , j = 1, . . . , J , be an
optimal solution to LP (1). The LP always has a solution,
since no lower bound constraint is put on λ. However, the
physical meaning of λ∗ requires that its value be at least one.
In this case, 1/λ∗ is interpreted as the long-run utilization
of the busiest machine. The value λ∗ can also be interpreted
as the maximum capacity of the system (see [1]) and {θ∗i,j},
i = 1, . . . , I , j = 1, . . . , J , can be interpreted as the long-
run fraction of time that machine j should spend on class
i in order to stabilize the system under maximum capacity
conditions.

The second LP considers the power consumption of the
machines. The decision variables are δi,j for i = 1, . . . , I ,
j = 1, . . . , J .

min
J∑
j=1

δi,jMi,j + (1−
J∑
j=1

δi,j)Bj

s.t.
J∑
j=1

δi,jµi,j ≥ cαi, for all i = 1, . . . , I, (2a)

I∑
i=1

δi,j ≤ 1, for all j = 1, . . . , J, (2b)

δi,j ≥ 0, for all i = 1, . . . , I, and j = 1, . . . , J.
(2c)

The constraint (2a) enforces that the total execution capacity
allocated for a class should be at least as large as the arrival



rate for that class scaled by a factor c. The optimal solution
for this LP is given in the form of a matrix δ∗ where the
(i, j) entry is δ∗i,j . The matrix δ∗ specifies an allocation of
machines to tasks such that the the energy consumption is
minimized while still meeting capacity c.

The Power-Aware policy considers the trade-off between
energy consumption and performance. Let c represent the
target capacity of the system. Assuming that λ∗ > 1, the
value of c can range from 1 to the maximum capacity of the
system, i.e., 1 ≤ c ≤ λ∗. In this case, LP (2) always has a
solution, since θ∗ already satisfies the constraints (2a)-(2c).
Choosing for c values closer to 1 may cause performance
to degrade while achieving increased energy saving. If c is
very close to 1, then only the minimum capacity is utilized
and this results in severe performance degradation (or even
system instability). Thus, we avoid the use of such values for
c. On the other hand, the closer c to the maximum capacity
λ∗, the better performance, at the expense of increased
energy consumption.

In order to achieve the allocations δ∗i,j , we use the
following mechanism. Suppose that machine j requests a
task at time point t. Let δi,j(t) be the proportion of time
that machine j has been executing class i tasks up to time
t. The scheduler assigns the machine to a class i task such
that δ∗i,j > 0 and δ∗i,j - δi,j(t) is the maximum. If all the
values of δ∗i,j - δi,j(t) are negative, machine j is put in a
low power state until Lj(t)

t = 1−
∑I
i=1 δ

∗
i,j , where Lj(t) is

the total time machine j has been in a low power state up
to time t.

Consider a system with two machines and two classes of
tasks (I = 2, J = 2). The arrival and execution rates are as
follows:

α =
[

1 1.5
]

and µ =
[

9 5
2 1

]
.

Furthermore, assume that

B =
[

0.1 0.1
]

and M =
[

1 20
1 20

]
.

Thus, when executing a task, power consumption of machine
2 is 20 times that of machine 1. Both machines have the
same power consumption in the low power state.

Solving LP (1) gives λ∗ = 1.7647 and

θ∗ =
[

0 0.3529
1 0.6471

]
.

First, set c = λ∗. Solving LP (2) gives δ∗ = θ∗. The
resulting δ∗ achieves the maximum system capacity (see
[1]), however it ignores power consumption of the machines.
Machine 2 is assigned tasks for execution although it is very
inefficient power-wise.

In the second case we set c = 1. Solving LP (2) gives

δ∗ =
[

0.1111 0
0.7500 0

]
.

Note that in this case machine 2 is put in a low power state.
The allocation δ∗ results in the maximum energy saving
while meeting the minimum capacity.

V. SIMULATION RESULTS

The task arrivals are modeled by independent Poisson
processes, each with rate αi, i = 1, . . . , I . The execution
times are exponentially distributed with rates µi,j , where
1/µi,j represents the mean execution time of a task of class
i at machine j, i = 1, . . . , I , j = 1, . . . , J .

There are several performance metrics that can be used.
We use the long-run average task completion time W , as a
metric for performance comparison. A task completion time
is defined as the time elapsing between the submission of
the task and the completion of its execution. Another metric
we also show is the energy saving (∆) with respect to FCFS.

Each simulation experiment models a particular system,
characterized by the values of I , J , Bj , Mi,j , αi,j , and µi,j ,
i = 1, . . . , I , j = 1, . . . , J . Each experiment is executed for
20,000 time-units and repeated 30 times. For every case, we
give W and ∆. For W , we also give the accuracy of the
confidence interval defined as the ratio of the half width of
the interval over the mean value (all statistics are at 95%
confidence level).

A. Task and Machine Heterogeneity

There are different kinds of system heterogeneity. Ma-
chine heterogeneity refers to the average variation along the
rows of µ, and similarly task heterogeneity refers to the
average variation along the columns (see Armstrong [4]).
In the first experiment, we simulate a system with high task
heterogeneity and high machine heterogeneity. In the second
experiment, we simulate a system with high machine het-
erogeneity and low task heterogeneity. In both experiments,
machine power consumptions are completely heterogeneous.

1) Experiment 1: Consider a system with 3 classes and 6
machines (I = 3, J = 6). The system is chosen to be both
highly machine and task heterogeneous. The arrival and ex-
ecution rates for this system are given by α = [9.75 8.5 9.5]
and

µ =

 4.5 2 9.5 6.2 10.25 2.25
6.2 4.5 6 2 4.2 5.9
9.5 6.5 4 10 5.9 2.25

 , respectively.

The following define machine power consumption:

B =
[

3.5 3 4 4 3.5 3
]

and

M =

 66 73 84 103 93 75
50 65 79 71 82 63
105 80 96 85 95 70

 .
Solving LP (1) gives λ∗ = 1.7068. Table I shows

the simulation results for the experiment. The table gives



Policy c ∆ W
Power-Aware LPAS λ∗ = 1.7068 38.21% 0.165± 0.24%
Power-Aware LPAS midpoint=1.3534 45.63% 0.265± 1.97%

PME - 13.20% 0.261± 0.22%
FCFS - 0% 2.842± 14.08%

Table I
SIMULATION RESULTS FOR EXPERIMENT 1

Policy c ∆ W
Power-Aware LPAS λ∗ = 1.4582 22.38% 0.308± 0.45%
Power-Aware LPAS midpoint=1.2291 54.14% 0.335± 1.92%

PME - 4.41% 0.207± 0.23%
FCFS - 0% 0.207± 0.25%

Table II
SIMULATION RESULTS FOR EXPERIMENT 2

simulation results for the Power-Aware LPAS policy under
two different values of c: c = λ∗ and c = 1+λ∗

2 .
The results show that significant energy saving can be

achieved by using the Power-Aware LPAS policy. When c
is set to the midpoint (i.e., 1+λ∗

2 ), the Power-Aware LPAS
policy results in energy saving that is almost 2.5 times that
of PME while achieving the same performance.

2) Experiment 2: In this experiment, we consider a
system with high machine heterogeneity and low task het-
erogeneity. The system has 6 machines and 3 classes (I =
3, J = 6). The arrival and execution rates are respectively
given by α = [8.75 8.5 9] and

µ =

 2.2 7 10.25 1 5.7 12
1.95 7.05 9.78 0.95 5.65 11.85

2 7.25 10.02 0.98 5.75 11.8

 .

The following define machine power consumption:

B =
[

3.5 3 4 4 3.5 3
]

and

M =

 128.4 193.1 155.6 105.5 125.4 116.1
135.1 230.15 203.4 94.2 250.6 85.5
84.15 62.3 81.1 96.9 71.3 215.09

 .
Solving LP (1) gives λ∗ = 1.4582. Table II shows

the simulation results for the experiment. The table gives
simulation results for the Power-Aware LPAS policy under
two different values of c: c = λ∗ and c = 1+λ∗

2 .
The results show that using the Power-Aware LPAS policy

results in significant energy saving compared to both FIFO
and PME but at the expense of an increased average waiting
time. Note that the system has low task heterogeneity. In
such systems, previous work has demonstrated that LPAS-
related policies may not perform as well as other competing
policies (see [1] and [2]).

B. Realistic Architectures

In this section, we simulate a system which models
a real computer cluster [12] to compare the scheduling
policies. The system is a medium size system with 5 task
classes and 30 machines. The machines are partitioned into
6 groups, machines within a group are identical. Thus,
if two machines are in the same group, then they have
the same execution rates. Groups T, U, V, W, X, and Y,
consist of 2 machines, 6 machines, 7 machines, 7 machines,
4 machines, and 4 machines, respectively. The execution
rates are shown in Table III. The arrival rate vector is
α = [204.10 68.87 77.63 5.01 10.43]. For such a system,
λ∗ = 2.4242.

We consider two cases. In the first case, machine power
consumptions are completely heterogeneous. The machine
power consumption matrix M is shown in Table IV. M1,...,10

is a sub-matrix of M which shows the power consumption
for machines 1, . . . , 10 (The sub-matrices M11,...,20 and
M21,...,30 are defined analogously). Machines in Group T
are 1 and 2, machines in Group U are 4, . . . , 9, etc.

The second case represents more homogeneous per-cluster
power consumption. We assume that the power consumption
for a machine is just a multiple of its execution rate.
Thus, the faster the machine, the more energy it consumes.

Group
Task T U V W X Y

1 16.7 24.8 24.2 29 25.6 48.3
2 30.4 48.3 77.7 83.6 135.9 144.9
3 18.9 24.2 48.3 45.8 72.5 72.5
4 3 3 7.6 7.6 8.3 8.7
5 1 1.1 3 2.9 3 3

Table III
THE EXECUTION RATES FOR THE SYSTEM IN SECTION V-B



M1,...,10 =

264 53.2 70.1 67.2 45.3 48.8 78.5 120.0 163.1 77.3 85.0
82.6 200.7 148.8 68.8 92.9 97.9 87.4 67.0 78.3 94.4

216.3 79.2 94.3 86.5 218.6 87.8 96.4 136.9 200.3 136.1
97.2 87.4 136.4 154.5 156.1 176.2 137.3 183.9 149.6 230.6

375

M11,...,20 =

264 93.3 64.1 82.6 72.9 59.1 69.1 59.3 75.4 88.0 130.6
90.6 69.7 84.4 73.3 120.2 102.1 160.7 210.3 93.7 190.8

164.2 89.3 95.5 189.6 129.6 87.5 74.8 98.0 94.9 129.0
94.8 86.9 94.1 78.4 76.6 98.0 75.3 120.2 134.4 160.2

375

M21,...,30 =

264 116.7 69.3 150.4 144.5 78.0 96.0 73.5 180.7 211.0 130.0
211.9 94.2 89.3 67.5 87.6 73.7 133.8 128.0 123.0 221.6
137.0 129.2 234.1 176.2 146.3 197.4 136.6 79.4 83.6 76.1

96.9 130.6 143.4 176.1 109.3 79.1 69.6 78.9 143.3 165.5

375
Table IV

THE MACHINE POWER CONSUMPTION MATRIX FOR THE SYSTEM IN SECTION V-B - THE HETEROGENEOUS CASE

Furthermore, the multiplicative factor is different amongst
the groups. This represents realistic systems in which the
machines in a cluster are homogeneous in terms of their
power consumption while the clusters differ in their power
efficiency. The multiplicative factor are 6, 4, 7, 5.5, 5, and
6, for groups T, U, V, W, X, and Y, respectively.

In both cases, the power consumption in a low power state
is 2 for machines in Group T , 3 for machines in Groups U ,
V , and X , 3.5 for machines in Group W , and 4 for machines
in Group Y . For the Power-Aware LPAS, policy, we give
simulation results corresponding to five different values of
c (1.1500, 1.3561, 1.7121, 2.0682, and 2.4242).

Figures 1 and 2 show the simulation results under both
cases. The figures show that the Power-Aware LPAS policy
performs competitively while reducing energy consumption.
The improvements are more significant in systems with
higher degrees of heterogeneity. Also, when the param-
eter c is set to values closer to λ∗, better performance
results. In this case, since the system being simulated is not
highly loaded (41.25%), performance improvement is not
that significant. However, if the load increases, performance
improvement becomes much more significant.

The Power-Aware LPAS policy results in reduced energy
consumption, ranging from 25% to 50% in the heteroge-
neous case and from 0.5% to 5.5% in the more homogeneous
case. We note that the energy saving is not linear with
respect to decreasing values of c (the same observation
holds for performance with respect to increasing values
of c). Furthermore, when c is set to the midpoint (i.e.,
1+λ∗

2 = 1.7160), the Power-Aware LPAS policy results in a
reasonable compromise between performance improvement
and energy saving. An administrator of a cluster can adjust
the value of c to tailor to the organization’s specific need.
For example, one can reduce c just below the midpoint if
energy consumption is more of a concern than performance.

VI. STRUCTURED SYSTEMS

The execution rate matrix of a structured system is
given by a combination of two components: a component
that is completely dependent on the task (the inherent
task difficulty) and another component that is completely
dependent on the machine (the machine efficiency). Such
systems appear to be reasonable models for computer cluster
environments. Thus, the execution rate of machine j on a
class i task is given by µi,j = γjµi, i = 1, . . . , I , j =
1, . . . , J .

The busy power consumption matrix is also structured
such that each machine power consumption is equal to a
factor multiplied by its speed. So, the power consumption
of machine j while executing a class i task can be given by
Mi,j = βjµi,j , i = 1, . . . , I , j = 1, . . . , J , where the factor
1/βj is the power efficiency of machine j.

Suppose we have a system with M = 7 machines and
N = 4 tasks. To formulate the execution rate matrix, we
choose µ1 = 1, µ2 = 2, µ3 = 5, and µ4 = 3. Suppose that
γ1 = 1, γ2 = 3, γ3 = 4, γ4 = 0.2, γ5 = 6, γ6 = 5, and γ7

= 10. Thus, the execution rate matrix is given by:

µ =


1 3 4 0.2 6 5 10
2 6 8 0.4 12 10 20
5 15 20 1 30 25 50
3 9 12 0.6 18 15 30

 .
Let β1 = 3.1, β2 = 11.7, β3 = 8.2, β4 = 6.5, β5 = 13.6, β6

= 17.4, and β7 = 1.3. Thus, the busy power consumption
matrix is given by:

M =


3.1 35.1 32.8 1.3 81.6 87 13
6.2 70.2 65.6 2.6 163.2 174 26
15.5 175.5 164 6.5 408 435 65
9.3 105.3 98.4 3.9 244.8 261 39

 .
Assume also that :

B =
[

1 3 3 0.5 3 3 3
]
.



Figure 1. Simulation results for the system in Section V-B - The heterogeneous case

For structured systems, the machines should be put in a
low power state in increasing order of βj when the load on
the system is reduced and employed in decreasing order of
βj when the load on the system is increased. Table V shows∑I
i=1 δ

∗
i,j for each machine j (i.e., the load of the machine)

at different values of the system load ( 1
λ∗ ) assuming c is set

to the midpoint ( 1+λ∗

2 ).
Notice that machine 6 (which has the largest β) is the first

machine for which
∑I
i=1 δ

∗
i,j is zero and thus it is the first

machine to be put in the low power state. If we decrease
the load further and compute

∑I
i=1 δ

∗
i,j for each machine

j, the machines are put in a low power state in decreasing
order of βj : machines 5, 2, 3, 4, 1, then 7 (or equivalently,
increasing order of the power efficiency i.e., 1

βj
).

1
λ∗ 1 2 3 4 5 6 7

0.9418 1 1 1 1 1 0.83 1
0.856 1 1 1 1 1 0.58 1

0.7705 1 1 1 1 1 0.3301 1
0.6849 1 1 1 1 1 0.08 1
0.5993 1 1 1 1 0.8584 0 1
0.5137 1 1 1 1 0.6499 0 1
0.428 1 1 1 1 0.4417 0 1

0.3425 1 1 1 1 0.2333 0 1
0.2568 1 1 1 1 0.025 0 1
0.1712 1 0.6333 1 1 0 0 1

0.08556 1 0.2167 1 1 0 0 1
0.000856 1 0 0.325 1 0 0 1
0.000856 0.75 0 0 0 0 0 1
0.000856 0 0 0 0 0 0 1

Table V
THE LOAD ON EACH MACHINE FOR DIFFERENT SYSTEM LOADS

As a direct implication, we propose a Power-Aware policy
that turns on and off machines in the order of β and we call
this policy the ordered-β policy. The ordered-β policy uses
the following parameters: the window size (WS), the target
waiting time (W ) and the threshold (T ). The window size
determines the decision points. After every WS time units,
the scheduler computes the average waiting time for the
tasks that are executed during the interval. The parameters

W and T determine when a new machine should be added
to those being employed or a working machine should be
put in a low power state. A new machine is added to those
employed when the average waiting time is above (1−T )W
and an additional machine is put in a low power state
when the average waiting time is below (1− 2T )W , where
0 < T < 1. The machines to be added to those employed
or to be put in a low power state are chosen according to
the ordering of βj , as explained earlier.

The ordered-β policy only requires knowledge of the
ranking of the machines in terms of their power efficiencies.
It does not require the task arrival or execution rates of the
machines, nor their power consumptions. This is extremely
useful in systems where obtaining such information is diffi-
cult or there is a large degree of uncertainty.

Under arrival rates α = [6.25 6 6.25 6], we simulate the
structured system defined above using different scheduling
policies. The simulation results are given in Table VI. For
the ordered-β policy, we use the following values for the
parameters: WS = 25, W = 0.2 and T = 0.1. The results
show significant energy saving achieved by the ordered-β
policy. Furthermore, performance is comparable to that of
the Power-Aware LPAS at c = λ∗ which requires knowledge
of the arrival and execution rates as well as the machine
power consumptions.

The ordered-β policy also works well for almost struc-
tured matrices. For example, consider a variation on the
structured system above such that µi,j = γjµi(1 + εai,j) and
Mi,j = βjµi,j(1 + εbi,j), i = 1, . . . , I , j = 1, . . . , J . The
inaccuracy levels εai,j and εbi,j are sampled from the uniform
distribution [0.5,−0.5]. One particular pair of execution rate
and busy power consumption matrices is given as follows:

µ =


0.52 1.79 5.61 0.29 6.13 2.92 14.60
2.74 3.04 11.04 0.24 8.42 9.73 25.91
7.17 15.11 21.42 0.60 34.78 34.82 57.21
3.57 11.37 8.88 0.79 22.84 15.64 37.07


and



Figure 2. Simulation results for the system in Section V-B - The more homogeneous case

Policy c ∆ W
Ordered-β - 40.38% 0.177± 0.33%

Power-Aware LPAS λ∗ = 2.3360 40.93% 0.167± 0.13%
Power-Aware LPAS midpoint= 1.6680 57.13% 0.20± 0.32%

PME - 0.009% 0.164± 0.10%
FCFS - 0% 0.163± 0.11%

Table VI
SIMULATION RESULTS FOR THE STRUCTURED SYSTEM IN SECTION VI

M =


1.61 20.99 45.98 1.87 83.32 50.87 18.99
8.49 35.52 90.55 1.55 114.57 169.24 33.68

22.23 176.83 175.63 3.89 473.05 605.92 74.38
11.06 133.05 72.86 5.17 310.58 272.06 48.19


respectively.

The results of simulating this system under arrival rates
α = [6.25 6 6.25 6] are shown in Table VII. For the ordered
β-policy, the following parameters are used: WS = 100, W
= 0.3 and T = 0.1. The results show that the energy saving
achieved by the ordered-β policy is still comparable to that
achieved by the Power-Aware LPAS policy.

VII. RELATED WORK

Energy conservation policies for clusters have been the
focus of many researchers. Typically, these policies aim to
reduce energy consumption while meeting certain perfor-
mance requirements. Two basic power management mech-
anisms dominate the literature: Dynamic Voltage Scaling
(DVS) and machine Vary-On/Vary-Off (VOVO).

A. Policies for Homogeneous Clusters

Five policies are proposed in [7]. Independent Voltage
Scaling and Coordinated Voltage Scaling are two policies
that employ the DVS mechanism in order to reduce the
power consumption of each machine. The third policy uses
the VOVO mechanism. Two other policies combine DVS and
VOVO mechanisms in order to achieve more energy saving.
The first one is a combination of VOVO and Independent

Voltage Scaling. The second one is a combination of VOVO
and Coordinated Voltage Scaling. The main idea is to adjust
the number of operating machines based on a global (target)
CPU operating frequency. To clarify, if the global CPU
operating frequency increases above a threshold we turn a
machine on and if it decreases below this threshold then a
machine is turned off.

In Pinheiro et al. [14], the authors propose a policy
which uses a dynamic cluster configuration mechanism and
is based on control theory. Their approach is to dynamically
turn machines on and off while keeping performance degra-
dation within acceptable levels. Acceptable performance
degradation levels are determined by the system administra-
tor or the user. A machine is turned off if the performance
degradation is judged to be acceptable.

In Sharma et al. [18], the authors consider a homogeneous
cluster with different classes of arriving tasks. The authors
show how to lower energy consumption while meeting task
deadlines. Both DVS and VOVO mechanisms are used.
Meeting task deadlines is achieved by using a technique
called synthetic utilization. The CPU operating frequency of
each machine is adjusted based on the value of the synthetic
utilization. Eventually, if the value of the synthetic utilization
is below a certain threshold, the CPU operating frequency
of each machine is decreased and vice versa.

Another policy is presented in Elnozahy et al. [8]. The
authors propose a policy that combines DVS and VOVO
mechanisms. In the policy, a subset of the machines are put
in a low power state for specified periods of time called the



Policy c ∆ W
Ordered-β - 77.78% 0.229± 0.78%

Power-Aware LPAS midpoint= 2.0263 74.07% 0.217± 0.60%
FCFS - 0% 0.182± 0.14%

Table VII
SIMULATION RESULTS FOR THE NON-EXACT STRUCTURED SYSTEM IN SECTION VI

batching periods. The response time can be controlled by
adjusting the batching period.

B. Policies for Heterogeneous Clusters

The energy conservation policy in [10] attempts to min-
imize the total energy consumption-throughput ratio ac-
cording to predicted load in a heterogeneous cluster. To
accomplish this, the authors develop an optimization pro-
cedure to find the optimal request distribution policy for
the cluster. Analytical models are required to compute the
predicted throughputs and total energy consumption. The
Power-Aware LPAS policy does not require such analytical
models.

In Rusu et al. [17], the authors present a policy for re-
ducing energy consumption in heterogeneous clusters while
meeting certain requirements on the quality of service (QoS).
The proposed policy uses a dynamic cluster configuration
mechanism that turns machines on and off according to the
system load while ensuring that the QoS requirements are
achieved. In addition, they examine the use of the DVS
mechanism.

The authors in Guerra et al. [9] propose a policy that
applies both DVS and VOVO mechanisms in heterogeneous
clusters. A linear-programming formalism is employed to
find the optimal CPU operating frequency for each machine.
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