
On Optimal Control for Energy-Aware Queueing
Systems

Vincent J. Maccio
Department of Computing and Software

McMaster University
Hamilton, Ontario

Email: macciov@mcmaster.ca

Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Ontario

Email downd@mcmaster.ca

Abstract—Over the past few years, energy provisioning in
server farms and data-centres has become an active area of
research. As such, many models have been proposed where
an individual server has setup times and can switch between
two different energy states (on and off). To make such models
tractable, assumptions are usually made on the type of policies
the system can implement. However, it is often not known if such
assumptions allow for the model to capture the optimal policy,
or if such a model will be strictly suboptimal. In this work we
model such systems using Markov Decision Processes (MDPs) and
derive several structural properties which (partially) describe the
optimal policy. These properties reduce the set of feasible policies
significantly, allowing one to describe the optimal policy by a set
of thresholds which have considerable structure. In addition to
the analysis, we discuss the current literature in the context of
our results.

I. INTRODUCTION

The energy costs of server farms and data-centres are
currently increasing across North America and account for a
significant amount of our energy consumption. While one may
think that this is a necessity of progress, the truth is a lot of
these systems are designed to handle peak loads, which results
in a significant number of machines often idling. Furthermore,
an idling server still consumes a notable amount of energy
(approximately 70% of a working server) [2]. Therefore, one
could switch a server to some state which consumes a lesser
amount of energy, turn it off, hibernate etc. to save costs.
However, there is a trade-off present since once a server is
switched to such a state it is unable to work on present or
arriving jobs, and the system performance suffers. This trade-
off has motivated many authors to develop and analyse models
of these systems [4], [5], [13], [17]–[19], [24], [25]. However,
when dealing with multiple server systems with setup times,
arriving at the optimal policy remains a challenge.

Queueing theory offers a large set of tools and results
to model such systems. Specifically of interest are what are
known as vacation models - such models have been studied
for decades [1], [6], [12], [23]. In this context, a vacation
can be seen as the setup or down time of the server. However,
when seeking the optimal policy, energy-aware systems cannot
always be embedded within already studied vacation models.
Specifically, the vacation time or time before a server begins
to start its setup is often assumed to be an independent random

variable rather than state dependent. As such, in the past few
years these models have been adapted for the specific context
of server farms and data-centres.

Multiple server systems modelled as continuous time
Markov chains have been studied in [7]–[9], [20], [22], [26].
Exact solutions for system metrics such as the expected
response time and expected rate of energy consumption have
been derived. However, all of these works considered specific
policies, such as requiring a server to be turned off as soon as
it becomes idle, and beginning to turn a server on as soon as
there is a job waiting. Furthermore, where exact expressions
were found, the assumption of server setups being interruptible
was imposed. These models were extended in [10], [14],
[16] to specifically look at single server systems. Due to
the decreased complexity of the model, the optimal policy
was found under general cost functions as well as general
underlying distributions for the setup and service times.

We model a multiple server system with setup times as
a Markov decision process (MDP). We further analyse this
model to determine structural properties of the optimal policy
which lead to a decreased set of candidate optimal policies, as
well as several rules which can be used to easily determine if
a given policy is suboptimal. The contributions of this paper
include but are not limited to:
• A formal definition of an MDP modelling an energy-

aware multiple server system for both interruptible and
non interruptible setups.

• A proof that the optimal policy follows a partially ordered
set of threshold values.

• For general cost functions, a proof that it is suboptimal
to turn a server off if there is a job waiting in queue.

• A proof that if setups are interruptible and the cost
function is linear in the expected response time and
expected energy consumption then the optimal policy is
a bulk setup policy.

II. MODEL AND NOTATION

The system of interest has multiple servers, where the
system manager has the ability to turn a server off that is
currently on, or to start turning on a server which is currently
off. For simplicity we often refer to powering a server down as
turning it off, but in general the server is moving to some state



where it consumes energy at a lower rate. The key difference
between these two server states is that when a server is off
(hibernating, sleeping, etc.) it cannot process jobs, but when
a server is on, it can.

A. Formal Model

Our model contains N homogeneous servers and a central
queue. Each of the N servers can be in one of four energy
states, OFF, SETUP, IDLE, BUSY. For ease of exposition we
often refer to a server being BUSY, IDLE, OFF, or in SETUP
as shorthand for a server being in energy state BUSY, IDLE,
OFF, or SETUP respectively. A server is BUSY if it is on and
processing a job. A server is IDLE if it is on but not processing
a job. A server cannot begin processing a job unless it is IDLE.
For each server, there are two control options. Firstly, an IDLE
or BUSY server can be moved to energy state OFF (turning a
server off). Secondly, an OFF server can be moved to energy
state SETUP (begin turning a server on). Once a server is in
setup, it will remain there for a time exponentially distributed
with rate γ, at which time the server will become IDLE. In
other words, each server has setup/turn-on times expected to
last 1/γ time units, while turn-offs happen instantaneously.

Jobs arrive to the central queue following a Poisson process
with rate λ and are processed on a first come first serve basis.
If a job is at the front of the queue and at least one of the
N servers is IDLE, then one of the IDLE servers is arbitrar-
ily chosen to begin processing that job. Consequently, that
server becomes BUSY. Job processing times are exponentially
distributed with rate µ. Once a server finishes processing a
job, it becomes IDLE, at this point the server can stay IDLE,
immediately be switched to OFF, or start processing a new
job, in turn making the server BUSY once again. It is assumed
that Nµ > λ. Although the control of the system can always
construct a policy in which the system is unstable, i.e. keep
all servers turned off, as long as the condition Nµ > λ holds,
there exists a policy where the system is stable, i.e. all servers
are always left on, and therefore we consider such a system
stable.

From here we consider two options with respect to control
of a server in the process of being in SETUP. One could add
the control option that server setups can be interrupted, i.e.
when a server is in SETUP it can be moved to energy state
OFF. This is in contrast to having no control once a server
begins turning on, i.e. once a server is in SETUP it will remain
in SETUP until the server turns on. In this work both of these
variations are analysed and it will be seen that the structure
of the optimal policy is very sensitive to this choice. If the
system does allow for a server to move from SETUP to OFF,
we refer to such as a system as an interruptible energy-aware
system. If this transition is not allowed, we simply refer to it
as an energy-aware system.

With the previous description and notation in mind, we
refer to an energy-aware system and interruptible energy-
aware system as a four-tuple S = (N,λ, µ, γ). Furthermore,
due to the assumption on the underlying distributions, a full
description of the state of an energy-aware system S can be

denoted as a three-tuple s = (n1, n2, n3), where n1 denotes
the number of jobs in the system, n2 denotes the number of
servers either IDLE or BUSY (the number of servers on), and
n3 denotes the number of servers in SETUP.

Definition 1. Valid State: Given an energy-aware system
S = (N,λ, µ, γ), a valid state (n1, n2, n3) satisfies
n1, n2, n3 ≥ 0 and n2 + n3 ≤ N .

Each of the energy states has a rate of corre-
sponding energy consumption. These rates are denoted
EOFF , ESETUP , EIDLE , and EBUSY . The assumption on
the ordering of these rates is as follows: 0 ≤ EOFF <
EIDLE < ESETUP , EBUSY . The non-negativity of EOFF
allows for the hibernate/sleep interpretation of the state, but
for simplicity EOFF is often assumed to equal 0.

B. Markov Decision Process

A given energy-aware system S = (N,λ, µ, γ) can be rep-
resented as a Markov decision process (MDP). Without loss of
generality we firstly assume S has undergone uniformization.
We also use the notation from [21] where As denotes the
allowable set of actions in state s, and p(s′|s, a) denotes the
probability of being in state s′ at the next decision epoch,
given that at the current decision epoch the system is in state
s and performs action a. With uniformization and the above
notation in mind, an MDP for an energy-aware system can be
defined by (1),

A(n1,n2,n3) ={−n2,−n2 + 1, ...,−1, 0, 1,
..., N − n2 − n3 − 1, N − n2 − n3},

and the cost (reward) function C((n1, n2, n3), a), which for
now is left unspecified. The above MDP can also be made
interruptible by simply expanding the action space, that is by
letting

A(n1,n2,n3) ={−(n2 + n3),−(n2 + n3) + 1, ...,−1, 0, 1,
..., N − n2 − n3 − 1, N − n2 − n3}.

III. MAIN RESULTS AND DISCUSSION

As will be seen, the optimal policy for energy-aware sys-
tems can in general be quite complex and difficult to determine
explicitly. However, there exist several structural properties
which the optimal policy satisfies. These properties allow us to
make decisions on when to turn servers on and off in a much
more intelligent manner. Specifically, some decisions which
may appear to be intuitively viable are shown to be subop-
timal. This section is primarily reserved for discussion and
implications of the results, all proofs are found in Section V.

To understand the more advanced structural properties of
the optimal policy, it is first important to understand the
rudiments of how the optimal policy behaves. In a Markovian
setting like the one we have defined, if an optimal action is
performed, then it is immediately following a non-dummy
event. This means that it is only optimal to turn off or on
a server immediately after a job arrives, a job leaves, or a
server finishes its setup. The optimal policy also has two other



p((n′
1, n

′
2, n

′
3)|(n1, n2, n3), a) =



λ if n′
1 + 1 = n1, n

′
2 = n2 +min(0, a),

n′
3 = n3 +max(0, a)

min(n1, n2 +min(0, a))µ if n′
1 − 1 = n1, n

′
2 = n2 +min(0, a),

n′
3 = n3 +max(0, a)

(n3 +max(0, a))γ if n′
1 = n1, n

′
2 + 1 = n2 +min(0, a),

n′
3 − 1 = n3 +max(0, a)

1− λ if n′
1 = n1, n

′
2 = n2 +min(0, a),

−min(n1, n2 +min(0, a))µ n′
3 = n3 +max(0, a)

−(n3 +max(0, a))γ

(1)

simple structural properties which allow for its analysis to be
somewhat simplified before we consider more sophisticated
properties.

Theorem 1. For all energy-aware systems, the optimal policy
is always a pure policy. That is at every decision epoch, the
optimal policy will never turn a non-zero number of servers
off and put a number of non-zero number of servers into setup.

This theorem is particularly convenient as an observant
reader may have noticed this result embedded in the MDP
as an assumption (since there is only one action variable).
This along with the next result allows us to begin to formally
describe the optimal policy.

Theorem 2. The decision to turn a specific server on or a
specific server off follows a threshold policy based on the
number of jobs in the system.

This means that if in state (n1, n2, n3) it is optimal to begin
turning on another i servers, then in state (n1 + 1, n2, n3) it
is optimal to turn on at least i more servers. Likewise when
dealing with turning servers off, if it is optimal to turn off i
servers in state (n1, n2, n3), then it is also optimal to turn off
at least i servers in state (n1 − 1, n2, n3).

Theorem 2 allows for a convenient description of the
optimal policy, by simply providing a set of threshold values.
Let k+i,j and k−i,j denote the threshold decision variables for an
energy-aware system, where 0 < i ≤ N and 0 ≤ j < i. The
variable k+i,j is the threshold value to turn on the ith server,
while there are j servers turning on. The variable k−i,j is the
threshold value to turn off the ith server, while there are j
servers turning on. An initial partial ordering of the threshold
values is given from the following definition.

Definition 2. For all i, j ≥ 0 such that i + j < N − 1,
k+i,j ≤ k+i+1,j and k+i,j ≤ k+i,j+1. Furthermore, for all i > 0

and j ≥ 0 such that i+j < N , k−i,j ≤ k
−
i+1,j and k−i,j ≤ k

−
i,j+1.

For an energy-aware system, one knows the optimal policy
if and only if the values of all of the threshold values
are known. Therefore, for an energy-aware system S =
(N,λ, µ, γ), to find the optimal policy one must determine
N(N + 1) decision variables. Delving deeper into these

threshold values leads to a result which offers a significant
reduction to the state space which should be considered.

Theorem 3. For all 0 < i ≤ N and 0 ≤ j < i, k−i,j < k+i−1,j .
Or in other words, if in a valid state (n1, n2, n3 − 1) it is
optimal to begin turning on the (n3+n2)

th server, then in state
(n1, n2 +1, n3− 1) it is suboptimal to turn off the (n2 +1)th

server.

This theorem is obvious if one were to consider a system
with instantaneous setups, i.e. 1/γ = 0, since it would make
no sense to turn a server on and then immediately turn it
off. However, consider a system with long setup times (1/γ is
large) in some state (n1, n2, n3) where in state (n1, n2+1, n3)
it is known that turning a server off is optimal. It may be
reasonable to think that although the system were in a state
where it is optimal to turn a server off given it was currently
turned on, it might still be optimal to begin turning it on in
anticipation of the expected state of the system once the server
finishes its setup. However, this is not the case. Furthermore,
this gives us a link between the orderings of the off thresholds,
and on thresholds. From here a comprehensive partial order
for all threshold values can be derived.

Theorem 4. A partial order can be defined on the threshold
values, of which the lattice is shown in Figure 1, where x→ y
denotes x ≤ y.

One should note that in the optimal policy it is possible
to have some number of servers which always remain on.
If this is the case, then in state (0, N, 0) the system would
immediately turn off N −n∗ servers, where n∗ is the number
of servers which always remain on. Figure 1 still captures this
behaviour, as k+i,j ≤ 0 for all i + j < n∗, alongside k−i,j < 0
for all i + j ≤ n∗. From Theorem 3 and the fact that there
cannot be less than zero jobs in the system, it is known these
servers will always remain on.

Theorem 3 offers information on turning servers on with
respect to the off thresholds. We would also like to have in-
formation about choosing the off threshold directly. A popular
simplification when creating tractable models for these sys-
tems is to have servers turn off as soon as they idle. In general,
when describing the optimal policy, there is no compelling



Fig. 1. Threshold lattice: some arrows from Theorem 3 are left off for
readability

reason why this should be the case. In fact, feasible values for
off thresholds seem to be as free as the on thresholds. Clearly,
there exists a configuration of parameters and cost function
where it is optimal to have a server idle until some lower
threshold is reached. But conversely, is there a configuration
of parameters and cost function where it is optimal to turn a
server off while there are jobs to be processed? At first glance
there seems to be two arguments which suggest that there
should be. Firstly, turning a server off will decrease the energy
consumed by the system in the short run (although it will
increase holding costs). Secondly, and the more subtle of the
two arguments, keeping a server on will cause the system to
remove jobs at faster rate. Therefore, other servers could start
to turn off sooner. Once those other servers are OFF, more jobs
could arrive and cause those servers to now start to SETUP,
incurring a larger energy cost than if the turned off servers just
remained on until the new jobs arrived. But if the initial server
instead turned off and the system was therefore processing jobs
at a slower rate, the other servers could incur a lesser cost
by not undergoing additional setup periods. These arguments
seem to indicate that the cost tradeoffs in the optimal policy
may be inordinately complex. However, while these arguments
may seem intuitive, they are in fact incorrect, which leads us
to our next theorem.

Theorem 5. Given an energy-aware system S = (N, 1
λ ,

1
µ ,

1
γ ),

where the cost function is only dependent on, increasing and

continuous in the expected number of jobs in the system and
expected rate of energy consumption, if the number of jobs in
the system is greater than or equal to the number of servers
currently turned on, it is suboptimal to turn a server off.

With regards to the faulty intuition presented before Theo-
rem 5, it would never make sense to turn a server off while
there is a job to process for the sole reason of saving the energy
cost to process the job. The job will have to be processed
eventually, otherwise the system is not stable, or unnecessary
holding costs are incurred. Therefore it is preferable to incur
the energy cost now, since processing it earlier will also
decrease the holding cost. It is much harder to show the second
argument (keeping a server on in the short run causes more
setups in the long run) to be false, and this is where the
real value of Theorem 5 is seen. One of the popular turn off
policies used in literature is to turn a server off the moment
it idles, such as the “stagger setup” model in [7]. Theorem 5
also allows such models to be used with greater confidence
as it is now shown that such a policy is not suboptimal with
respect to the turn off criteria. On the other hand, if one were
to construct a policy such that a server will turn off when there
are k > 0 jobs waiting in the queue, it would immediately be
known to be suboptimal.

In Section II we described an alteration to our energy-aware
system where we allow for the setups to be interruptible.
That is, a server is allowed to move directly from SETUP
to OFF. This modification drastically changes the structure of
the optimal policy. We define a new class of policies called
bulk-setup policies. A bulk-setup policy uses the following
setup criteria: for some valid state (n1, n2, n3) if it is better to
turn on some number of servers rather than do nothing or turn
some number off, then it turns on all available servers, where
the number of available servers is given by N − n2 − n3.

Theorem 6. For all interruptible energy-aware systems where
the cost function is a positive linear combination of the number
of jobs in the system and the rate of energy consumed by the
system, the optimal policy is a bulk-setup policy.

While perhaps surprising at first, this type of result arises
in other research [3] and follows from the assumption of the
exponentially distributed setup times. If you were to turn on
k servers, although you would incur the energy costs at k
times the rate, due to the nature of the exponential distribution,
it would be for an expected amount of time that is reduced
by a factor k. Compare this to having the setup time follow
a degenerate distribution (constant setup times). Under this
assumption such a policy would be a disaster, especially if N
is large.

While the sensitivity to the distribution can be worrisome,
there is another potential problem with such a policy. In
practice managers are reluctant to turn machines on and off
due to potential wear and tear, risk of failure, etc. As such there
is a switching cost associated with such an action and some
authors incorporate this into their cost function [5], [14], [16].
Clearly, for a such a cost function a bulk setup policy would



not be optimal in general. While the bulk setup issue can be
addressed by incorporating switching into the cost functions,
one could instead constrain the model directly to not allow
such behaviour. This is seen in models where the turn on
policy follows some predefined structure, such as the staggered
setup described in [9]. But if one chooses to exclude switching
from the cost function and allows their model freedom with
regard to turn on decisions, they should be aware of this
problem when searching for an optimal policy. With these
notions in mind it seems that when setups are interruptible, the
assumption of exponentially distributed setup times alongside
a cost function independent of switching costs gives rise to
a model with optimal behaviour that may be problematic to
actually implement. Therefore, one should be cautious when
using results derived from such a model.

IV. THREE SERVER EXAMPLE

Here we present a toy example with a three server energy-
aware system. Define an energy-aware system S = (3, λ, µ, γ)
where λ < 3µ. We do not offer an exact solution to the optimal
policy but instead show how theorems from Section III can
be applied to constrain the search for the optimal thresholds.
Firstly, from Theorems 1 and 2 it is known that there are
twelve decision variables. These decision variables are the
threshold values k+i,j where i, j ≥ 0 and i + j < 3, and k−i,j
where i > 0, j ≥ 0 and i+ j ≤ 3.

We begin by examining the off thresholds for the system.
In complete ignorance of previously presented results the set
of feasible values for these thresholds is {−1, 0, 1, 2, ...,K −
1,K} for some constant K. However, applying Theorem 5,
arguably the most valuable of our theorems, the feasible
state space shrinks significantly. Explicitly the feasible set of
values for the off thresholds k−1,j , k

−
2,j , and k−3,j are {−1, 0},

{−1, 0, 1} and {−1, 0, 1, 2} respectively. This result alone
makes the problem much easier to tackle as one has a greater
confidence in approximations for picking such values, as well
as the ability to iterate numerically through a much smaller
set of values.

Moving our attention to the on thresholds, some simpli-
fications can also be made. Similar to the off thresholds,
with no structural results the set of potential thresholds has
K elements, i.e. {0, 1, 2, ...,K − 1,K} for some constant,
K. While here we have not presented a theorem which
can be applied directly without any other knowledge, we
can make simplifications assuming we know other threshold
values. Specifically, if the off thresholds are known (which
as seen earlier can be chosen from a relatively small set
of values) then the lower end of the set of feasible val-
ues can be truncated by applying Theorem 3. That is for
each threshold k+i,j the feasible set of values now becomes
{k−i+1,j + 1, k−i+1,j + 2, k−i+1,j + 3, ...,K − 1,K}. While the
truncation only eliminates a relatively small number of values
from the set, they are arguably the most important values to
eliminate. The greater the value of the threshold, the lesser the
impact increasing (or decreasing) that threshold by one would
have on the performance of the system. For example, if the

optimal value of say k2,0 were 3 and a value of 2 was chosen,
the difference in performance would be greater than say if
the optimal value was 20 and 19 was chosen. Therefore, even
a small truncation could have a large impact when choosing
these thresholds.

V. PROOFS OF RESULTS

All proofs of the theorems presented in Section III are
contained in [15]. However, we consider Theorem 5 to be
one of our strongest contributions and therefore offer a proof
of it here. Before we proceed with the proof, we must first
describe one of our analytical methods.

We wish to reason about finite costs, while still considering
the optimal policy under an infinite time horizon. These
corresponding finite costs are built around the renewal reward
argument. Let c(s) be the minimum ratio over all possible
policies of the expected cost incurred during a cycle of leaving
and returning to state s and the expected time it takes to
complete that cycle. Formally this is defined as follows. Let
Rp,s be a random variable denoting the reward (or cost) earned
over a single cycle of state s under policy p. A cycle of state
s refers to the interval of time where the system begins in
state s, leaves that state, and then returns to it at some point
in the future, which completes the cycle. Furthermore, let Tp,s
be a random variable denoting the amount of time it takes to
complete a cycle of s under policy p. Given the set of all
stable policies P , along with these two random variables, c(s)
can be defined as

c(s) = min
p∈P

{
E[Rp,s]
E[Tp,s]

}
.

Here Rp,s is interpreted as a cost, since the minimum is
used. This is a convenient definition since the renewal reward
theorem can be applied. That is, if Rp(t) denotes the total
reward/cost earned by time t under policy p, then for all
states s

Rp(t)

t
→ E[Rp,s]

E[Tp,s]
as t→∞.

This gives the interpretation that c(s) is the rate at which the
system gains reward/cost under the optimal policy. This is true
no matter which state s is chosen as the cycle reference, or as
it is referred to in the literature, as the renewal process [11].
Therefore c(s) is independent from s, in other words, c(s) is
a constant, which we will denote by c∗. Likewise, the ratio
E[Rp,s]/E[Tp,s] is also independent from s and an arbitrary
state, say s = (0, 0, 0) can be chosen as the cycle reference.
It should be noted that this does not say E[Rp,s] and E[Tp,s]
do not depend on s, since they clearly do, but rather that their
ratio is independent of s. Therefore for all s and some specific
policy p, E[Rp,s]/E[Tp,s] equals a constant, which we denote
by cp.

To further the usefulness of these cycle costs, an extension
c(s, a) is made to c(s) = c∗. The quantity c(s, a) is no longer
the minimum ratio of the expected cost incurred and expected
cycle time over all policies, but rather the minimum ratio over



all policies which choose action a in state s. Formally, given
the set of all stable policies which choose action a in state s,
denoted by Ps,a,

c(s, a) = min
p∈Ps,a

{cp}.

The values c(s, a) are referred to as the constrained cycle
costs. Such a construction is useful for several reasons. Firstly,
in any stable energy-aware system for all states s and actions
a, unlike the classical MDP optimality equations, c(s, a)
is finite. This provides an option that can lead to simpler
reasoning when the optimality equations become convoluted.
Furthermore, it is also possible (albeit difficult) to arrive at
closed form solutions for c∗ and c(s, a). Secondly, due to the
construction one can say that in state s, a is an optimal action
if and only if c(s, a) = c∗.

Lemma 1. For all valid states s and for all valid actions, a,
a is an optimal action in state s if and only if c(s, a) = c∗.

Proof. This result is proven via contradiction. Assume
c(s, a) = c∗, but a is a suboptimal action. That is, for all
optimal policies p∗, p∗ is not present in the constrained set of
policies Ps,a. Therefore,

c(s, a) = min
p∈Ps,a

{cp} > cp∗ = c∗

which implies c(s, a) > c∗ and contradicts the initial assump-
tion.

A. Proof of Theorem 5

Theorem 5 is one of the more involved proofs offered in
this work. The proof uses two lemmas. The first shows that
increasing the expected turn on times of an energy-aware
system will discourage it from turning a server off, i.e. the
optimal threshold to turn a server off is less than or equal
to that of a system with shorter setup times. The second
determines the optimal policy for an energy-aware system with
instant turn on times and shows that the server will never turn
off if there is work to be done. The rest of the theorem follows
by using these lemmas in conjunction.

Lemma 2. For all x > 0, given two energy-aware systems,
S1 = (N, 1

λ ,
1
µ ,

1
γ ) and S2 = (N, 1

λ ,
1
µ ,

1
γ +x), if for S1, while

in state (n1, n2, n3), it is suboptimal to turn a server off, then
for S2 while in state (n1, n2, n3), it is also suboptimal to turn
a server off.

Proof. For the remainder of this proof, the constrained cycle
costs for S1 and S2 are denoted by c1(s, a) and c2(s, a),
respectively. To prove the lemma, it is enough to show that
given c1(s, a+) < c1(s, a−), c2(s, a+) < c2(s, a−), where
a+ ≥ 0 and a− < 0. An interpretation of this statement is if
it is better to either do nothing, or turn a number of servers
on rather than turn a number of servers off while in state s
for S1, then this is also true while in state s for S2.

It is known that for all states and actions, c1(s, a) <
c2(s, a). This follows from an argument that there exists a
policy for the first system which will always incur a lower cost.

Consider two systems where all job sizes and job arrival times
are equal, they have an equal number of servers, and they share
the same reward/cost function. However, the expected setup
times in the second system are longer than that of the first.
The first system can mimic what the second system does in
every way, with the exception of the setup times. If the second
system chooses to turn on a server while the corresponding
server in the first system is turned off, the server in the first
system will also begin to turn on. The associated servers for the
first and second system are denoted by v1 and v2 respectively.
From here, two cases can happen:

• Case 1: v1 turns on before v2.
• Case 2: v2 turns on before v1.

For Case 1, v1 can begin processing jobs (or idle if there are
no jobs to process) until v2 turns on. Once v2 turns on, v1 will
mimic its behaviour while possible, that is v1 will process jobs
while v2 is processing jobs. If it becomes the case that v1 has
no jobs to process while v2 does, it will remain idle. Once v2 is
turned off, v1 is immediately turned off as well and the servers
are once again synchronized. A graphical representation of the
timeline for Case 1 can be seen in Figure 2, with labels on
the times at which key events occur. Using the denotation in
Figure 2, one can perform an analysis on the expected holding
costs, as well as the expected rate of energy consumption.
For ease of argument, if the event at t2,1 does not occur, it
is assumed that t2,1 = t3,1. Firstly, it is clear that the first
system incurs a lesser holding cost. This is due to v1 being on
while v2 is still in setup. While the exact decrease in holding
cost is unclear, it is known that as long as there are jobs to
be processed, the total saved holding costs will increase in
time. That is there is some function h(t) which is increasing
in t up until t = t2,1− t1,1. Therefore, the amount of holding
cost saved in the first system is h(t2,1 − t1,1) + x1, where x1
denotes the holding cost of any new job which arrives once v1
has already idled. Secondly, the rate of energy of consumption
is also less in the first system. While v1 is processing jobs, it is
incurring zero energy costs, and when it is idle, it is incurring
energy costs at rate less than v2 by the amount rSetup− rIdle.
Therefore the total amount of energy saved in the first system
is rsetup(t2,1− t1,1 + x2) + (rSetup− rIdle)(t3,1− t2,1− x2).
Here, x2 denotes the time it takes to process any other jobs
once v1 becomes idle for the first time, but v2 has not yet
turned on.

For Case 2, v2 will begin processing jobs (or idling) until
v1 is turned on. Once v1 does turn on, it will begin processing
all available jobs which v2 had previously processed. Once it
completes those jobs, v1 checks the status of v2. If v2 is off,
v1 turns off and the servers are synced. If v2 is in setup, v1
will either idle or process jobs if some are available. In the
case where v1 finds v2 off once the jobs are complete, it will
also turn off. A graphical representation for Case 2’s timeline
can be seen in Figure 3, with labels on the times at which
key events occur. Following the upper path of Figure 3 where
v1 inspects v2 as off once it has completed its work, one can
show that the second system has incurred a lesser cost than that



Fig. 2. Case 1 Timeline

Fig. 3. Case 2 Timeline

of the first. However, it will be shown that the expected cost
which the second system saves, is less than the expected cost
which the first system saves in Case 1. Furthermore, following
the lower path of Figure 3, where v1 inspects v2 in setup, it is
clear that in this path the second system saves less than it did in
the upper path. Therefore if it can be shown that the expected
cost saved by the second system in the upper path of Case 2
is less than the cost expected to be saved by the first system
in Case 1, weighted by the corresponding probabilities of the
cases occurring, then we can conclude that c1(s, a) < c2(s, a).

Clearly, the probability of Case 1 occurring once the servers
are synchronized is greater than the probability of Case 2
occurring. That is, γ1/(γ1+γ2) > γ2/(γ1+γ2). Furthermore,
using the denotation of Figure 3 one can analyse the saved
costs in the second system. Following the upper path, the
second system will save holding costs. However, the expected
saved cost will be less than E[h(t2,1−t1,1)+x1] (the expected
holding cost saved by v1 in Case 1). This is due to the
fact that once on, v1 and v2 are homogeneous and process
jobs at the same rate. However, the expected amount of time
which v1 would have to process jobs before v2 turns on, i.e.
E[t1,1 − t3,1] = 1/γ2, is greater than the amount of time
which v2 would have to process jobs before v1 turns on, i.e.
E[t1,2 − t2,2] = 1/γ1. Similarly, it can be shown that the
expected energy savings of the second system on this path are
also less than the expected energy savings of the first system
in Case 1. Because the expected amount of time v2 has to
work before v1 turns on is less than v1 has before v2 turns on
and both servers process jobs at the same rate, the expected
energy saved in Case 1, must be greater than that saved in
Case 2. Since Case 1 has a higher probability of occurring,

and in Case 1 the first system has lower cost than the second
system in Case 2, it can be concluded that c1(s, a) < c2(s, a).

It should be noted that it may seem as though c(s, a) is
putting a constraint on the policy which could hinder the
above argument, however this is not the case. Limiting the
two systems to implement only policies which choose action
a in state s, one can instead look at a regeneration process, or
complete cycle on state s. Both systems would start in state
s and apply action a. Now all the servers in each system are
synchronized. From here the previous argument can be applied
until the systems return to state s, and the average cost incurred
by S1 will still be less than S2.

With these notions in mind, consider the following rela-
tionship c2(s, a) = c1(s, a) +K(s, x), where K(n1, n2, n3, x)
denotes some extra cost. It is known that K(n1, n2, n3, x) >
0, given the previous observation that c1(n1, n2, n3, a) <
c2(n1, n2, n3, a). It is also known that the extra incurred cost
is solely caused by the decreased setup rate between S2 and
S1. This is a direct result of the possible extra energy costs,
as well as the added holding cost (number in the system,
response time, etc.) and/or the increased cycle times that the
greater setup times incur. It is important to note that these
incurred costs are finite, as the constrained cycle equation must
also be finite. Furthermore, is it clear that K(n1, n2, n3, x) is
increasing in x, as longer setup times imply a higher cost
under the same policy.

Now consider the constrained cycle costs where the action
to turn a number of servers off is forced. Using the given
inequality c1(s, a+) < c1(s, a−), it is known that c2(s, a−) >
c1(s, a−) ⇒ c2(s, a−) > c1(s, a+) Due to the initial as-
sumption, it is known that c1(s, a−) − c1(s, a+) = k(s), for



some bounded positive value k(s). Since it is also known that
K(s, x) decreases as x decreases, a sufficiently small value for
x, say x′ can be chosen such that k(s) ≥ K(s, x′). Therefore,

c2(s, a−) > c1(s, a−)

⇒ c2(s, a−) > c1(s, a+) + k(s)

⇒ c2(s, a−) > c1(s, a+) +K(s, x′)
⇒ c2(s, a−) > c2(s, a+)

which of course implies that a− is a suboptimal action, or in
other words, it is suboptimal to turn any number of servers
off while in state s. This only proves Lemma 2 for x ≤ x′,
while we wish to show it for all x > 0. However, we can can
repeatedly apply the result. It is important to note that x′ is
non-zero, as k(s) is bounded positive. Due to the non-zero and
positive nature of x′, the result can be extended to all positive
values of x.

Lemma 3. Given an energy-aware system, S = (N, 1
λ ,

1
µ , 0),

where the cost function is only dependent on and increasing
in the expected number of jobs in the system and expected
rate of energy consumption, it is optimal to have the num-
ber of servers on be equal to the number of jobs in the
system, whenever possible. Formally, in state (n1, n2, n3),
a = min(N − n3, n1 − n3).

Proof. To show this result, it is shown that this policy
minimizes both the expected energy used, as well as the
expected holding costs. It is known that all jobs must be served
eventually otherwise the holding cost of a job can be thought
of as infinite, in contrast to the finite energy cost to remove
it from the system. Therefore, the lowest energy cost which
can be incurred is the energy required to process all the jobs.
This is the amount of energy incurred in the policy where
a = min(N − n3, n1 − n3), since here a server is never idle,
or in setup. Therefore, under the proposed policy, the expected
energy costs are minimized.

It is a similar story with the expected holding costs. It is
known that the holding costs are minimized when jobs are
either served immediately if the number of jobs in the system
is less than N , and a job is waiting in the queue if and only
if all N servers are busy processing other jobs. This is true in
the policy a = min(N−n3, n1−n3), since due to the instant
turn on times, jobs never wait in the queue, unless all servers
are currently busy.

With the above two lemmas proven, we begin the proof of
Theorem 5.

Proof. Consider two energy-aware systems S1 = (N, 1
λ ,

1
µ , ε)

and S2 = (N, 1
λ ,

1
µ , 0). It is assumed that both systems are

stable, that is Nµ > λ. Let p∗ be the policy described in
Lemma 3. From Lemma 3 it is known that p∗ is an optimal
policy for S2. It will first be shown that as ε→ 0, p∗ is also
an optimal policy for S1. From here, Lemma 2 can be applied
to show the desired result.

Firstly, it must be shown that the metrics which make up the
cost function, holding costs and energy costs, are continuous

in ε, specifically around 0. This is done be looking directly at
the expected reward/cost and cycle time for the cycle equations
of S1 under p∗ and how they compare to the corresponding
values in S2. Since at the moment, individual metrics are what
is of concern, the reward/cost function will be defined as one
of these metrics. Firstly the rate of energy consumption is
considered. Letting the cost function simply be the energy
metric, by definition c∗2 = E[E2,p∗,s]/E[T2,p∗,s], where the
subscript 2 denotes the values corresponding to S2, E is
a random variable denoting the rate of energy consumption
across the cycle of s, s = (0, n∗2, 0) and n∗2 denotes the number
of servers which always remain on. Now if it can be shown that
as ε→ 0, E[E1,p∗,s]→ E[E2,p∗,s] and E[T1,p∗,s]→ E[T2,p∗,s]
then the expected rate of energy consumption is continuous
in the expected setup time around 0. Looking at the energy
consumed over a single cycle one can bound the expected
energy consumed by S1 below and above.

E[E2,p∗,s] ≤ E[E1,p∗,s] ≤ E[E2,p∗,s] + εE[Ns]rsetup
+ (1− E[P (Ns)])E[CE(Ns)|X = 1]

+ E[P (Ns)]E[CE(Ns)|X = 0], (2)

where Ns is a random variable denoting the number of
server setups before completing a cycle of state s in S2,
and rsetup = ESETUP /EBUSY . The third and fourth terms
require a little more explanation. Because there are turn on
times in S1, the expected extra amount of time it takes to turn
the servers on not only adds directly, but could cause another
job to arrive to the system before it returns to state (0, n∗2, 0).
These terms represent the cost incurred by this case. While
there could be servers setting up concurrently, in the worst
case the cycle time is increased by Ns consecutive setups.
However, if the Ns setups were all able to complete before a
new job arrives to the system, this case of causing a potential
new cycle to start would be avoided. The random variable X
is an indicator variable which equals one if at least one new
cycle is caused, and zero otherwise. P (n) is a function which
equals the probability of n consecutive server setups finishing
before a new job arrives. Explicitly,

P (n) =

(
1/ε

1/ε+ λ

)n
.

One minus P (n) represents the probability that a job would
arrive before these setups finish. Or in other words, S1 does
not complete the cycle where S2 would have. CE(Ns) denotes
all the added energy costs that starting a new cycle would add
given there were Ns setups, including any consequent cycles
which the new cycle may cause to occur. However, since the
change in setup times has no impact on stability, CE(Ns) must
be finite.

There are a few things to note about (2). Firstly, given that
at least one extra cycle does not occur, clearly the expected
extra energy costs which those cycles add is equal to zero, i.e.
E[P (Ns)]E[CE(Ns)|X = 0] = 0. Secondly, from inspection,
P (n) is convex in n. Therefore, when applied to a random



variable such as Ns, from Jensen’s inequality it is known that,

P (E[Ns]) ≤ E[P (Ns)]⇒ (1− E[P (Ns)]) ≤ (1− P (E[Ns]))

Due to this inequality, (2) becomes,

E[E2,p∗,s] ≤ E[E1,p∗,s] ≤ E[E2,p∗,s] + εE[Ns]rsetup

+

(
1− 1/ε

1/ε+ λ

)E[Ns]

E[CE(Ns)]. (3)

From inspection of (3) it can be seen that as ε → 0,
E[E1,p∗,s]→ E[E2,p∗,s].

To show that the expected rate of energy consumption is
continuous in the expected setup times around 0, it remains
to show that as ε → 0, E[T1,p∗,s] → E[T2,p∗,s]. Furthermore,
to show the cost function is continuous in the expected setup
times around 0, is must be shown that the expected holding
cost of the two systems approach each other as ε→ 0. To do
this we apply the same methods and arguments as we did to
show the continuity of the expected energy consumed over a
cycle. A more detailed version of this part of the proof can be
found in [15].

Putting this all together it can be concluded that for S1, as
ε → 0, p∗ is the optimal policy for any cost function that is
increasing and continuous in the expected number of jobs in
the system and expected rate of energy consumption. From
here it is easy to see that as ε→ 0, for all states (n1, n2, n3),
where n1 ≥ n2 it is suboptimal to turn a server off. Defining a
new energy-aware system S3 = (N, 1

λ ,
1
µ , ε+x) as ε→ 0, one

can apply Lemma 2 to say that for all x ≥ 0, it is suboptimal
to turn a server off if there is a job it could be processing.
Or in other words, it is suboptimal to turn a server off, if the
number of jobs in the system is greater than or equal to the
number of servers currently on.

VI. CONCLUSION

We presented formalizations for an energy-aware system
with N homogeneous servers, where setups may or may not be
interruptible. It was shown that these systems can be modelled
and analysed as MDPs. Using these MDPs, the optimal policy
was shown to be a pure threshold policy with N(N + 1)
decision variables (threshold values). From here we derived a
partial ordering on these threshold values, showed that turning
a server off while there is at least one job in the queue is
always suboptimal under general cost functions, and showed
if setups are interruptible and the cost function is linear in the
expected number of jobs in the system as well as the expected
energy consumed by the system, then the optimal policy is a
bulk setup policy. These structural properties give confidence
to previously researched models, give us rules about the
optimal policy which help in constructing new models, and
provide simplifications to the feasible search space when
attempting to arrive at the optimal policy numerically.

Acknowledgement This research was funded by the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] J. R. Artalejo. A unified cost function for M/G/1 queueing systems
with removable server. Trabajos de Investigacion Operativa, 7(1):95–
104, 1992.

[2] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[3] M. Caramia and S. Giordani. Resource allocation in grid computing: An
economic model. WSEAS Transactions on Computer Research, 3(1):19–
27, 2008.

[4] H. Chen, Y. Li, and W. Shi. Fine-grained power management using
process-level profiling. Sustainable Computing: Informatics and Sys-
tems, 2(1):33–42, 2012.

[5] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam. Managing server energy and operational costs in hosting centers.
SIGMETRICS Performance Evaluation Review, 33(1):303–314, 2005.

[6] S. W. Fuhrmann and R. B. Cooper. Stochastic decompositions in
the M/G/1 queue with generalized vacations. Operations Research,
33:1117–1129, 1985.

[7] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact
analysis of the M/M/k/setup class of Markov chains via recursive
renewal reward. In ACM SIGMETRICS, 2013.

[8] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality
analysis of energy-performance trade-off for server farm management.
Performance Evaluation, 67(11):1155–1171, 2010.

[9] A. Gandhi, M. Harchol-Balter, and I. Adan. Server farms with setup
costs. Performance Evaluation, 67(11):1123–1138, 2010.

[10] M. E. Gebrehiwot, S. Aalto, and P. Lassila. Optimal sleep-state control
of energy-aware M/G/1 queues. In 8th International Conference on
Performance Evaluation Methodologies and Tools, 2014.

[11] M. Harchol-Balter. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, 2013.

[12] M. Hassan and M. Atiquzzaman. A delayed vacation model of an M/G/1
queue with setup time and its application to svcc-based atm networks.
IEICE TRANSACTIONS on Communications, pages 317–323, 1997.

[13] K. Li. Optimal power allocation among multiple heterogeneous servers
in a data center. Sustainable Computing: Informatics and Systems,
2(1):13–22, 2012.

[14] V. J. Maccio. On optimal policies for energy-aware servers. Master’s
thesis, McMaster University, 2013.

[15] V. J. Maccio and D. G. Down. On optimal control for energy-aware
queueing systems. Technical Report CAS-15-05-DD, Department of
Computing and Software, McMaster University.

[16] V. J. Maccio and D. G. Down. On optimal policies for energy-
aware servers. In the IEEE 21st International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 31–39, 2013.

[17] M. Mazzucco and D. Dyachuk. Optimizing cloud providers revenues via
energy efficient server allocation. Sustainable Computing: Informatics
and Systems, 2(1):1–12, 2012.

[18] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server
idle power. SIGPLAN Not., 44(3):205–216, 2009.

[19] A. Penttinen, E. Hyytia, and S. Aalto. Energy-aware dispatching in
parallel queues with on-off energy consumption. In IEEE International
Performance Computing and Communications Conference, pages 1–8,
2011.

[20] T. Phung-Duc. Exact solutions for M/M/c/setup queues.
arXiv:1406.3084.

[21] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 2005.

[22] J. Slegers, N. Thomas, and I. Mitrani. Dynamic server allocation
for power and performance. In SPEC International Workshop on
Performance Evaluation: Metrics, Models and Benchmarks, pages 247–
261, 2008.

[23] N. Tian and Z. G. Zhang. Vacation Queueing Models - Theory and
Applications. Springer Science, 2006.

[24] A. Wierman, L. L. H. Andrew, and M. Lin. Handbook on Energy-
Aware and Green Computing, chapter Speed Scaling: An Algorithmic
Perspective, pages 385–406. CRC Press, 2012.

[25] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling
in processor sharing systems. In INFOCOM, 2009.

[26] X. Xu and N. Tian. The M/M/c queue with (e, d) setup time. Journal
of Systems Science and Complexity, 21:446–455, 2008.


