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Abstract. Poor data quality is a serious and costly problem affecting
organizations across all industries. Real data is often dirty, containing
missing, erroneous, incomplete, and duplicate values. Declarative data
cleaning techniques have been proposed to resolve some of these under-
lying errors by identifying the inconsistencies and proposing updates to
the data. However, much of this work has focused on cleaning data in
static environments. Given the Big Data era, modern applications are
operating in dynamic data environments where large scale data may be
frequently changing. For example, consider data in sensor environments
where there is a frequent stream of data arrivals, or financial data of
stock prices and trading volumes. Data cleaning in such dynamic en-
vironments requires understanding the properties of the incoming data
streams, and configuration of system parameters to maximize perfor-
mance and improved data quality. In this paper, we present a set of
queueing models, and analyze the impact of various system parameters
on the output quality of a data cleaning system and its performance. We
assume random routing in our models, and consider a variety of system
configurations that reflect potential data cleaning scenarios. We present
experimental results showing that our models are able to closely predict
expected system behaviour.
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1 Introduction

In the Big Data era, data quality has become a prolific issue spanning across all
industries. Data-driven decision making requires having access to high quality
data that is clean, consistent and accurate. Unfortunately, most real data is dirty.
Inconsistencies arise due to the integration of data from multiple, heterogeneous
data sources, where each source has its own data representation and format.
Data inconsistencies also arise when integrity constraints, the rules defined over
the data to keep the data accurate and consistent, are violated and not strictly
enforced. When integrity constraints are not strongly enforced, there is no mech-
anism to validate whether the data updates are correct, thereby leading to data
erTors.
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Existing data cleaning systems [1-7] have proposed techniques to repair the
data by suggesting modifications to the data that conform to user expectations
or to a given set of integrity constraints. However, most of these systems have
focused on cleaning static instances of the data. That is, a snapshot of the data
is taken, and if any changes in the data occur after the snapshot, then a new
snapshot must be taken. While existing techniques may work well for static
data environments, many modern applications are now operating in dynamic
data environments where the data is frequently changing. For example, data in
sensor, financial, retail transactions, and traffic environments require processing
large scale data in near real-time settings. This has led to the need for more
dynamic data cleaning solutions [8], particularly, those that can support large
scale datasets.

In this paper, we present a set of models for distributed large scale data clean-
ing, where the data cleaning task is delegated over a set of servers. Such models
are relevant for cleaning large data sets where the data can be partitioned and
distributed in a parallel server environment. Each server has its own properties,
such as the service time in which it cleanses the data, and the quality of the
output data. We apply principles from queueing theory to model a variety of
server configurations, and analyze the tradeoff between the system performance
and data quality. We consider variations in our model, such as job priorities, and
servers discarding data. Finally, we present our experimental results showing the
accuracy of our model predictions against simulation results using real datasets.

This paper is organized as follows. In Section 2, we present related work,
followed by preliminary background in Section 3. In Section 4, we present details
of our distributed data cleaning model, and the variations we consider that reflect
real application environments. Finally, we present our experimental results in
Section 5, and conclude in Section 6.

2 Related Work

Recent data cleaning systems such as AJAX [2], Nadeef [3], LLUNATIC [9] and
others, have focused on cleaning a static snapshot of the data for a given set
of constraints. While these solutions are effective for data environments where
the data and the constraints may not change frequently, they are expensive to
implement in environments where the data and the constraints may evolve, as
they require manual re-tuning of parameters, and acquisition of new data and
constraints. In our work, we focus on modelling distributed data cleaning in
dynamic environments, and study the influence of parameter changes on the
data quality output.

As data intensive applications increasingly operate in data environments
where rules and business policies may change, recent work in this area has pro-
posed repair techniques to consider evolving constraints, primarily focused on
functional dependencies (FDs) [10,11]. However, the objective of these tech-
niques is to propose specific modifications to the data and/or constraints to
resolve the inconsistency. Given the increasing need for scalable data cleaning
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systems, our objective is to analyze the behaviour of such a system under differ-
ent parameter settings and configurations. To the best of our knowledge, none
of the existing work has considered this.

3 Preliminaries

In this section, we provide a brief background on simple queueing models. A
popular queueing model is the M/M/1 queue. This is used to represent a single
server system with the following characteristics. First, jobs arrive to the system
according to a Poisson process with rate A, that is, the time between arriving jobs
is exponentially distributed with rate A. Second, jobs that arrive to the system
are served one at a time following a First In First Out (FIFO) policy. Lastly, the
time that it takes for a job to be processed by the server, often referred to as
the service time, is exponentially distributed with rate u. We refer to response
time as the time from arrival to departure of a job in the system, and service
time as the time to service (clean) a job once it enters the server. The two M’s in
the M/M/1 notation denote the characteristics of the arrival process and service
time distribution, respectively, and represent for Markovian (or memoryless),
while the 1 denotes that it is a single server system.

We can analyze this system as a Continuous Time Markov Chain, and ex-
pressions for the expected number of jobs in the system, E[N], as well as the
expected response time, E[R], can be given by [12]:

1
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The assumption of the exponential service times in the M/M/1 model can
be limiting in some situations. In the M/G/1 queue, the service times follow a
general distribution, G, where the first and second moments are known. Similar

to the M/M/1 queue, closed form expressions for E[N] and E[R] are given by:
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where 0% denotes the variance of the service time distribution. More details
about these and related models can be found in [12-14].

E[N]=p+

4 Distributed Data Cleaning

We present models for large scale data cleaning in dynamic data environments.
We assume that there is some baseline data instance, and changes to the data
are reflected by incremental updates to the baseline instance. These incremental
updates occur with some frequency, which we call the arrival rate. As this data
arrives, there is a data cleaning task, a job, that needs to be done using this data
(in conjunction with the baseline data instance). Given a set of servers (each
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with its own properties), and a set of data arrival streams, what is the optimal
assignment of incoming data jobs to servers, such that the data quality output
is maximized and the overall system performance is stable?

To solve this problem, we assume several random routing settings, where
each server is independent. Furthermore, the decision of which server handles an
incoming data job is made independently of the current state of the servers. If
we do not make such assumptions, determining the optimal configuration would
be intractable as it would be an extension of the “slow server problem” [15], a
well-known problem in the queueing literature. We begin by considering a simple
base model with two servers, and extend this model to consider other variations.
For each variation, we provide analytic results expressing the performance vs.
data quality tradeoff, and provide our insights on system behaviour. We also
present our experimental results comparing our predicted model values against
a simulation using a real energy metering data stream. We believe our work
provides meaningful insights to a data analyst on the expected system behaviour
and quality of the data cleaning task for large scale data.

4.1 The Base Model

Consider a data cleaning system with two distinct servers, where jobs arrive
according to a Poisson process with rate A\. When a job arrives, it is sent to
the first server with probability p, and to the second server with probability
(1 — p). From the demultiplexing of the arrival stream via routing, each server
can be seen as an independent M/M/1 queue. Furthermore, each server has an
associated failure probability, denoted f; and fy, where 0 < f1, fo < 1. These
values represent the probability that a server incorrectly cleaned the data. That
is, after a job completes, the server either failed or the proposed updates to the
data were incorrect. We define a random variable F', such that 0 < F' < 1, that
denotes the proportion of jobs in the system that have been incorrectly cleaned
in steady state, and the data remains dirty. Let E[F] denote the expected value
of F. Figure 1(a) shows the base model.

We assume A\ < p1 + pe to ensure system stability, and that the user cannot
control A\, p1, pe, f1 nor fy, but can set the value for the routing probability p.
Since the user has control of p, the goal is to select a value for p that minimizes
expected response time, and maximizes the expected data quality (by minimizing
E[F]). We define a cost function to analyze this tradeoff.

CBase = E[R] + ﬁE[F] (3)

where the value ( represents the relative weight of the expected data quality
over the expected response time. We assume [ is given by the user. The cost
CBase models our objective to minimize system response time, and to minimize
failure (poor data quality results). We consider Cpgse as an initial cost function.
As future work, we plan to extend Cpgse to include more complex, constrained
models that minimize E[R] subject to E[F] satisfying minimum threshold levels.
We can determine closed form expressions for E[R] and E[F] by noting that the
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Fig. 1. Graphical queueing models

inputs to the two queues are a demultiplexed Poisson process, and therefore can
be viewed as M/M/1 queues. By applying equation (1) we obtain:

_p 1-p
T TR R W
E[F] =pfi + (1 —p)fo. (5)

Equations (4) and (5) can be applied to compute expected response time
and expected data quality output, respectively. Without loss of generality, such
closed form expressions can also be computed for more complex, constrained
models as mentioned above. Substituting (4) and (5) into (3) yields a closed
form cost function.

P l—p
CBase 6(pf1+(1 p)f2)+,u*p>\+,u*(1*p))\ (6)
Unfortunately, taking the derivative of (6), and setting it to zero does not
yield a closed form expression in terms of p. However, we can analyze the tradeoff
between p and the remaining parameters in (6) by plotting the cost Cpgse against
p for several configurations, as shown in Figure 2. We will refer to the optimal
value of p as p*.

Figures 2(a) and 2(b) show two system configurations where each system has
data jobs arriving at the same rate in which they can be processed (A = 1 = ps2).
In Figure 2(a), the second server produces lower quality data than the first server
(f1 < f2). In Figure 2(b), there is a greater weight (5) on improved data quality
than system response time. In both Figure 2(a) and 2(b), p should be selected
at the point where the cost is minimal. We observe that in both graphs, the
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Fig. 2. Base model configurations

cost is fairly low for a wide range of p values, ranging from [0.1, 0.9], indicating
that both systems are fairly stable. It is only at the endpoints (p — 0,p — 1)
where the cost sharply increases and the system becomes unstable. Hence, a
conservative approach is to assign arriving data jobs equally to both servers
(p = 0.5) to maintain system stability.

Figure 2(c) and Figure 2(d) show less stable systems (than Figures 2(a) and
2(b)), where selecting a different p value yields more dramatic effects on the cost,
and ultimately in the system response times. Selecting p must be done carefully
to minimize the cost, as can be seen in Figure 2(d), where for p > 0.6, steeper
curves reflect increasing instability in the system.

4.2 The Discard Model

In this section, we consider the case where a server may choose to discard par-
ticular data jobs. We consider discarding jobs for two reasons:
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1. If the overall system is overloaded (A > p1), then arriving data jobs must be
discarded to resume stability.

2. When service level agreements (SLAs) must be met, some incoming data
jobs may need to be discarded.

At the routing step, if the decision is made to discard a job, then the failure
rate f = 1, and the response time of the discarded job is instantaneous. There is
no longer a restriction on A to ensure stability, as incoming jobs can simply be
removed from the system until the server is able to handle the incoming data.
The discard model can be viewed as an instantiation of the base model (described
in Section 4.1), where fo =1 and ps — oo. The resulting cost function is,

p
CDiscard = 5(p(f1 - 1) + 1) + A (7)
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Fig. 3. Discard model configurations

Figure 3(a) shows a system at full capacity (u = A). The value f is varied
from 0 (where the system always produces clean data and jobs are not discarded)
to 0.9 (where most of the data will be incorrectly cleaned). We observe that for
f = 0, with only one server, the system is quite unstable as seen by the wide
fluctuation in cost values for p € [0.1, 0.9]. As f — 0.9, the system performance
improves as incoming data jobs may be discarded to achieve stability.

In Figure 3(b), we investigate the influence of 8 on the overall system per-
formance (recall 8 is a weight of the relative importance between data quality
vs. system response time). As 8 ranges from [1,100], we want the system to
produce increasingly higher quality output. For increasing [ values, the sys-
tem becomes increasingly unstable, as shown by the increasingly steep (negative
sloped) curves. This indicates that in such a single server system, if we want to
achieve improved data quality, we must be willing to tolerate wide fluctuations
in system response time and stability.
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4.3 Classes and Priorities

The models we have considered thus far include a single data arrival stream, and
follow a FIFO policy. In this section, we explore how adding another data arrival
stream, and including priorities influence the system behaviour. We consider
two incoming data streams, where jobs still follow a FIFO policy. The data
jobs arrive to each server at a rate of A; and As, and both are assumed to
be Poisson processes. Each of the servers service incoming jobs following an
exponential distribution, but depending on which stream the job arrived from,
it may process the jobs with different service rates. We consider this preferential
notion to model priority between data jobs, which exists in many applications
systems to guarantee service level agreements.

For simplicity, we assume that the two servers are homogeneous with respect
to their processing rates. Therefore, ;1 and uo, denote the service rate of data
jobs arriving from the first and second stream, respectively. We let p and ¢
represent the probability that a data job is sent to the first server from the first
and second stream, respectively. Similarly, an incoming job is sent to the second
server with probability (1 — p) and (1 — g), from the first and second streams,
respectively. Hence, a data analyst must determine appropriate values for p and
q to maximize the data quality output from the servers, and minimize system
response time. The system can be seen in Figure 1(b).

Our analysis here differs from prior models as we no longer have two M/M/1
queues, due to the differing service rates p; and pe. However, we observe that
while the service time distribution is not exponential, it is hyper-exponential.
Therefore, an M/G/1 queue can be fitted to the system, and the Pollaczek-
Khinchine formula, (2), can be used. This leads to the following cost function,

B p1 | pit (AT)20§1>
Cotmmes =Bl + i + (2= p =)o) + (o-+0) (5 + LU
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The physical interpretation of these parameters are: A} and A3 are the arrival
rates, p; and py are the utilizations, and o%; and 0%, are the variances of the
service time distributions, for the first and second server, respectively. These fol-
low from equation (2), and the definitions of the hyper-exponential distribution
[12].
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Fig. 4. Modelling with priorities

Using the above formulas, we plot a set of configurations as shown in Figure 4.
In both Figures 4(a) and 4(b), the optimal parameter setting has a small value
for ¢ (approximately 0.2), but a large value for p (approximately 0.9). In both
configurations, the first server is more reliable and produces higher quality data
(f1 < f2). Our recommendation in this case is to assign incoming jobs to the first
server without overloading it, so as to minimize the cost and maintain system
stability. The remaining jobs can be sent to the second server so that it does not
remain idle.

We now consider priorities between the incoming data streams, also referred
to as classes. Although the analysis becomes more difficult, it remains tractable.
Consider the system in Figure 1(b), where jobs that arrive from the first stream
have higher priority than (i.e., they preempt) jobs from the second stream. Fur-
thermore, if a high priority job arrives to the system while a low priority job is
being processed, it preempts its execution, and takes its place.

We assume two priority classes: low and high. Each arriving high priority job
views the system as a simple M/M/1 queue where only high priority jobs exist,
with arrival rate pA;. We restrict the two job classes to share the same service
time distribution, relative to the server. That is, pu; represents the service rate,
for jobs of both classes, at the first server, while us represents the service rate
for jobs of both classes at the second server. Since traditional M/M/1 queues
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can now be applied, we view the arrival rate as pA; + g\o. Interestingly, we can
derive expressions for the number of jobs in the system, for each priority class,
as given below.

E[N] = E[Nhign] + E[Niow]

where E[N] denotes the number of jobs in a specific queue. Due to the previous
observation that high priority jobs can be modelled as an M/M/1 queue with
arrival rate pA;, we can derive the number of low priority jobs at the first queue.

pA1L + gA2 pA
S N VR Ty ®)
M1 —PAL — QA2 1 —DPA1
Equation 8 allows us to compute the expected number of low priority jobs in
the system. In addition to the expression for E[/V], we can specify constraints on
the system that limit the total number of (low priority) jobs. For example, if we
have SLAs, we can impose constraints on the system that allow a proportion of
the servers to only handle low priority jobs. Furthermore, given the arrival rate,
service rate, and probabilities p and ¢, we can directly compute the estimated
number of jobs per class, which can enable a data analyst to predict system
behaviour. In addition, we can also consider how the server failure rates, per job
class priority, will be affected by changes in these parameters. For example, high
priority jobs should be serviced by reliable servers where f is close to 0. We plan
to investigate this direction as future work.

E[Nlow} =

5 Experiments

In this section, we validate the accuracy of our proposed models by comparing the
optimal routing probabilities (p*), to the values given by our simulated system. In
our simulations, we assume our data arrival streams follow a Poisson process. We
simulated 100,000 arriving jobs using the CSIM 19 library [16]. Our simulation
was run on a server with Intel Xeon E5-2960 processors, 4 vCPUs, and 16GB of
RAM. We used real data describing energy usage across our University campus,
that reported values such as water, hydro usage, and air temperature readings.
The readings are reported every 15 minutes.

Figure 5 shows our simulation results. Figure 5(a) shows a lightly loaded
system where the base model is used. We observe that the shape of the curves
are quite similar, and as expected, the cost from the simulation is less than that
of the model. The value of p*, predicted by our model is within 10% of the
simulated p value. If we chose to use the predicted routing probability from the
queueing model, our results in the simulated system would yield a cost that is
within 10% of the minimum. We note that the difference in p* values occurs in
the insensitive portion of the curve (p € [0.05,0.4]) where the cost is relatively
constant, and the model predictions closely follow the simulation results. Our
results in Figure 5(b) show very promising results. Figure 5(b) shows a heavily



Models for Distributed, Large Scale Data Cleaning 11

~ v o0
g8 8
g8 3 8

g
cvon
Ny |1l

(a) ;1 = 1/15,u2 =(Db) w1 = 003, 2 =(c) p=0.07,Xx=1/15,f =
1/10,A = 1/15,fi =005, 1 = 1/15,f1 =0, fo = 0, 8 = 25
0, fo = 0.5,8 = 50 0.7, 8 = 200

Fig. 5. Experiments

loaded base model system, which can become unstable depending on the choice
of p. We found that the values of p* predicted by the queueing and simulation
models were equal.

In our last experiment, we simulated the discard model. Figure 5(c) shows
that the values of p* from the queueing and simulations models differ by ap-
proximately 0.08. If we apply the values predicted by the queueing model in our
system, our cost would be within 2.5% of the minimal cost for this workload.
Overall, our evaluation has provided very promising initial results showing that
our models are able to closely predict optimal routing probabilities for incoming
data cleaning tasks. By having these optimal values, data analysts are able to
better understand and predict anticipated system load, and stability, in order to
maximize the data quality output from the system.

6 Conclusion

In this paper, we have taken a first step towards modelling a distributed data
cleaning environment where each job represents the incoming data that needs
to be cleaned with respect to a baseline data instance. We have presented a set
of models that reflect different data cleaning system configurations. Specifically,
we have presented analytic models, expressions, and insights for a base model,
discard model (where jobs can be discarded), and a priority-class model. We
have investigated the stability (and response time) to data quality tradeoff for
each of these models, and revealed some interesting insights. For example, we
have observed that particular configurations can lead to unstable system perfor-
mance, and provided cases when discarding incoming jobs may be necessary. Our
evaluation revealed promising accuracy results, where our model predictions are
all within 10% of the simulated results. Avenues for future work include further
model validation, extending the models to consider n servers, and investigating
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constrained models where the parameters are subject to a set of cost or threshold
constraints.
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