
Online Supplement for “Maximizing throughput in zero-buffer tandem lines
with dedicated and flexible servers” by Mohammad H. Yarmand and

Douglas G. Down

Appendix A. Lemma 1 - the remaining cases

In this appendix, we provide the proof of the remaining cases of Lemma 1.

First scenario:

The details of Cases 1 and 2 of Lemma 1 for its first scenario is as follows.

Case 1: Assume d2p,t0 > f1k+1,t0
. Let t1 = f1k+1,t0

.

Case 1.1: Assume fω,2k,t0
− t1 < d2p,t0+t1 < fω

′,2
k,t0+t1

.

Case 1.2: Assume d2p,t0+t1 < fω,2k,t0
− t1. Let t2 = d2p,t0+t1 .

Case 1.2.1: Assume d1k+2,t0+t1+t2
< min{d2k+1,t0+t1+t2

, fω,2k,t0
−t1−t2}. This case is discussed

in Section ??.

Case 1.2.2: Assume d1k+2,t0+t1+t2
> min{d2k+1,t0+t1+t2

, fω,2k,t0
− t1− t2}. We divide this case

further.

Case 1.2.2.1: Further assume fω,2k,t0
− t1 − t2 < d2k+1,t0+t1+t2

. Let t3 = fω,2k,t0
− t1 −

t2. Consider the system at t0 + t1 + t2 + t3. Under ω we have d1k+2,t0+t1+t2+t3
,

fω,1k+3,t0+t1+t2+t3
, and d2k+1,t0+t1+t2+t3

as residual service times for jobs k + 2, k +

3, and k + 1, respectively. Under ω′ we have d1k+2,t0+t1+t2+t3
, fω

′,2
k,t0+t1+t2+t3

, and

d2k+1,t0+t1+t2+t3
as residual service times for jobs k+ 2, k+ 3, and k+ 1, respectively.

Figure A.1 illustrates this case. We divide this case further.

Figure A.1: Case 1.2.2.1

Preprint submitted to Elsevier February 11, 2014



Case 1.2.2.1.1: Define t4 = fω
′,2

k,t0+t1+t2+t3
and assume that job k has the smallest

residual service time. At t0 + t1 + t2 + t3 + t4, σ
1
d is serving job k + 2 and σ2d is

serving job k + 1 under both policies. Under ω the residual service time of job

k+ 3 is fω,2k+3,t0+t1+t2+t3
− t4 and under ω′ it is fω

′,2
k+3,t0+t1+t2+t3+t4

. This is similar

to Case 3.2, discussed below. Figure A.2 illustrates this case.

Figure A.2: Case 1.2.2.1.1

Case 1.2.2.1.2: Assume job k + 3 has the smallest residual service time. Then

Dω(n+ 2) < Dω′
(n+ 2).

Case 1.2.2.1.3: Assume job k + 1 has the smallest residual service time. This is

similar to Case 1.2.2.1.1.

Case 1.2.2.1.4: Assume job k + 2 has the smallest residual service time. The

policy ω performs a hand-off as job k + 2 is served and therefore Dω(n + 2) <

Dω′
(n+ 2).

Case 1.2.2.1.5: Assume the residual service times of jobs k + 2 and k + 3 are

equal to or less than the residual service time for job k + 1. This is similar to

Case 1.2.2.1.4.

Case 1.2.2.1.6: Assume the residual service times of jobs k + 1 and k + 2 are

equal to or less than the residual service time for job k + 3. This is similar to

Case 1.2.2.1.1.

Case 1.2.2.2: Further assume d2k+1,t0+t1+t2
< fω,2k,t0

− t1 − t2. Let t3 = d2k+1,t0+t1+t2
.

Consider the system at time t0 + t1 + t2 + t3. Jobs k + 2 and k + 3 are being served

at the first station under both policies. Under ω the residual service time of job k is

dω,2k,t0
− t1 − t2 − t3. Under ω′ the residual service time of job k is dω

′,2
k,t0+t1

− t2 − t3.

2



Figure A.3 illustrates this case. We have Dω(n+ 2) = Dω′
(n+ 2).

Figure A.3: Case 1.2.2.2

Case 1.2.2.3: Further assume d2k+1,t0+t1+t2
= fω,2k,t0

− t1 − t2. This is similar to Case

1.2.2.2.

Case 1.2.3: Assume d1k+2,t0+t1+t2
= d2k+1,t0+t1+t2

= fω,2k,t0
− t1 − t2. This is similar to Case

1.2.2.1.

Case 1.3: Assume fω
′,2

k,t0+t1
≤ d2p,t0+t1 . Then Dω(n+ 1) = t0 + t1 + fω,2k,t0

− t1 and Dω′
(n+ 1) =

t0 + t1 + fω
′,2

k,t0+t1
. Therefore Dω(n+ 1) < Dω′

(n+ 1).

Case 1.4: Assume d2p,t0+t1 = fω,2k,t0
− t1. This is similar to Case 1.2.2.1.

Case 2: Assume d2p,t0 < f1k+1,t0
, meaning that the dedicated server completes its service before

the flexible server. Let t1 = d2p,t0 , assume σ1d is holding the kth job, and n − 1 departures from

the first station have occurred. Under ω′, t1 time units elapse before σ2d becomes available. So at

t0 + t1, the blocked job goes to the second station with residual service time dω
′,2

k,t0+t1
. The policy ω

performs a hand-off at t0 and sends the flexible server to the second station with a service time of

fω,2k,t0
. At t0 + t1, σ

2
d becomes available, and the flexible server hands off its job to σ2d with residual

service time dω,2k,t0
− t1. Therefore at t0 + t1, D

ω(n) < Dω′
(n). As the servers are indistinguishable,

without loss of generality, we can assume that under ω′ at time t0 + t1 the two servers at the first

station swap their jobs. Figure A.4 illustrates this case.

Figure A.4: Case 2

Consider the system at time t0 + t1 and let t2 = min{d1k+1,t0+t1
, f1k+2,t0+t1

}.

3



Case 2.1: Assume dω,2k,t0
− t1 < t2 < dω

′,2
k,t0+t1

. At time t0 + t1 + t2, ω sends σ1d’s job (job k+ 1)

to the second station and admits the k + 3rd job. At time t0 + t1 + t2, ω
′ performs a hand-off

between σ1d and σ1f (jobs k + 1 and k + 2) and the flexible server is sent to the second station.

Therefore Dω(n + 1) = Dω′
(n + 1) = t0 + t1 + t2. Let t3 = min{dω

′,2
k,t0+t1

− t2, f2k+1,t0+t1+t2
}.

Figure A.5 illustrates this case. We divide this case further.

Figure A.5: Case 2.1

Case 2.1.1: Assume min{fω,1k+3,t0+t1+t2
, d1k+2,t0+t1+t2

} < t3. This means that under ω

a service completion occurs in the first station earlier than a service completion in the

second station under ω′. Therefore Dω(n + 2) = t0 + t1 + t2 + t3 < Dω′
(n + 2). Figure

A.6 illustrates this case.

Figure A.6: Case 2.1.1

Case 2.1.2: Assume min{fω,1k+3,t0+t1+t2
, d1k+2,t0+t1+t2

} > t3. This case is similar to Case

1.2.1.1. Figure A.7 illustrates this case.

Figure A.7: Case 2.1.2

Case 2.2: Assume t2 < dω,2k,t0
− t1. This is similar to Case 1.2. Figure A.8 illustrates this case.

Case 2.3: Assume dω
′,2

k,t0+t1
< t2. Then at t0 + t1 + dω

′,2
k,t0+t1

the system is the same under both

4



Figure A.8: Case 2.2

policies. We have Dω(n+ 1) = Dω′
(n+ 1) = t0 + t1 + t2. Figure A.9 illustrates this case.

Figure A.9: Case 2.3

The ahead property is required when we make cross references between cases. For example, it

is stated that Case 1.2.2.1.1 is similar to Case 3.2. In order to be able to adapt Case 3.2, we need

to ensure all the assumptions made in Cases 3.2 and 3 hold. In other words, if Case 3.2 is applied

to a system in which the ahead property does not hold, it is possible to have earlier departures

under ω′. For example if Case 3.2 is applied to a system similar to Figure A.2, with the exception

that job k+ 3 has smaller residual service time under ω′, the ahead property would be violated and

departures would happen earlier under ω′.

Second scenario:

For the second scenario, we enumerate sub-cases of Cases 3 and 4 of Lemma 1 without presenting

the details.

The proof is by induction.

Basis step:

If time t0 is not reached, both systems remain the same and there is nothing to prove in the

basis step. Otherwise, start the system from the empty state and let the first departure from the

first station happen (Dω(1) = Dω′
(1)). If the flexible server serves the departed task in the second

station, the system follows scenario 2. The server σ1d is serving job 2, σ2f is serving job 1, and σ2d is

5



free. Up until time t0, the two policies are the same. When time t0 is reached, the following cases

are possible.

Case 3: Assume d12,t0 < f21,t0 , meaning that the dedicated server completes its service before the

flexible server. Let t1 = d12,t0 . Under policy ω′, σ1d completes its service after t1 time units. So at

t0 + t1, the completed job is sent to the second station with corresponding residual service time

d22,t0+t1
. The policy ω performs a hand-off at time t0 and sends the flexible server to the first station

with residual service time fω,13,t0
. At time t0 + t1, σ

1
d completes its service, and the flexible server

hands off its job to σ1d with residual service time dω,13,t0
− t1. The flexible server goes to the second

station with residual service time f22,t0+t1
. Hence Dω(2) = Dω′

(2) = t0 + t1.

Case 4: Now assume d12,t0 > f21,t0 , meaning that the flexible server completes its service before

the dedicated server. Let t1 = f21,t0 . Under ω′, σ2f becomes available after t1 time units. So at

t0 + t1, the flexible server is sent to the first station with residual service time fω
′,1

3,t0+t1
and σ2d is

free. The policy ω performs a hand-off at t0 and sends the flexible server to the first station with

residual service time fω,13,t0
. Now if fω,13,t0

− t1 < d12,t0+t1
, Dω(2) < Dω′

(2). Otherwise Dω(2) = Dω′
(2).

Inductive step:

If t0 has occurred in the basis step, Lemma 2 shows that for each case considered in the inductive

step, the system respects the ahead property. Hence, under ω′, departures will not occur sooner

than under ω. If time t0 is not reached, the two systems remain the same and there will be nothing

to prove at this stage.

If time t0 occurs after the n−1st departure but before the nth departure, consider the following

configuration: a busy dedicated server at the first station (job k) and a free dedicated server and a

busy flexible server (job p) at the second station. Up until time t0, the two policies are the same.

When time t0 is reached, the following cases are possible.

Case 3: Assume d1k,t0 < f2p,t0 , meaning that the dedicated server completes its service before the

flexible server. Let t1 = d1k,t0 . Under policy ω′, σ1d completes its service after t1 time units. So at

t0 + t1, the completed job is sent to the second station with residual service time d2k,t0+t1
. There is

also an admission at the first station with residual service time dω
′,1

k+1,t0+t1
. The policy ω performs a

hand-off at t0 and sends the flexible server to the first station with residual service time fω,1k+1,t0
. At

t0 + t1, σ
1
d completes its service, and the flexible server hands off its job to σ1d with residual service

time dω,1k+1,t0
− t1. The flexible server goes to the second station with residual service time f2k,t0+t1

.

6



Let t2 = min{d2k,t0+t1
, f2p,t0+t1}.

Case 3.1: Assume dω
′,1

k+1,t0+t1
< t2.

Case 3.2: Assume dω,1k+1,t0
− t1 > t2.

Case 3.2.1: Assume min{dω,1k+1,t0
− t1 − t2, f1k+2,t0+t1+t2

} < d2k,t0+t1
.

Case 3.2.1.1: Further assume dω,1k+1,t0
− t1 − t2 < f1k+2,t0+t1+t2

< dω
′,1

k+1,t0+t1
− t2.

Case 3.2.1.2: Assume f1k+2,t0+t1+t2
< dω,1k+1,t0

− t1 − t2.

Case 3.2.1.3: Assume dω
′,1

k+1,t0+t1
− t2 < f1k+2,t0+t1+t2

.

Case 3.2.2: Assume min{dω,1k+1,t0
− t1 − t2, f1k+2,t0+t1+t2

} > d2k,t0+t1
.

Case 3.3: Assume dω,1k+1,t0
− t1 < t2 < dω

′,1
k+1,t0+t1

.

Case 4: Now assume d1k,t0 > f2p,t0 , meaning that the flexible server completes its service before the

dedicated server. Let t1 = f2p,t0 . Under policy ω′, server σ2f becomes available after t1 time units.

So at t0 + t1, the flexible server is sent to the first station with residual service time fω
′,1

k+1,t0+t1
and

σ2d is free. The policy ω performs a hand-off at t0 and sends the flexible server to the first station

with residual service time fω,1k+1,t0
.

Let t2 = d1k,t0+t1
.

Case 4.1: Assume fω,1k+1,t0
− t1 < t2.

Case 4.2: Assume fω,1k+1,t0
− t1 > t2.

(Lemma 1) �

Appendix B. Proof of Lemma 2

In this appendix, the proof of Lemma 2 is explained. The following lemma shows that after

each departure, the system state corresponds to one of the cases described in Lemma 1.

Lemma 2: ∀m > 2.ahead(m)⇒ ahead(m+ 1).

Proof : To show this we should connect the output of each case in Lemma 1 (the configuration

after n+1 departures) to the assumed state for some other case. However instead of performing an

exhaustive evaluation, we find that we can group cases together in a generic manner. We identify

these generic cases and describe how they connect.

Consider the following generic cases: g1 : different jobs in the first station and no blocking in the

future (until the next departure under ω); g2 : different jobs in the first station with blocking in

7



the future (until the next departure under ω); g3 : identical jobs with identical residual service

times in the first station and identical jobs in the second station; g4 : identical jobs with identical

residual service times in the first station and different jobs in the second station; g5 : identical jobs

with different residual service times in the first station and identical jobs in the second station;

g6 : identical jobs with identical residual service times in the first station and identical jobs with

different residual service times in the second station.

Note that in all of the generic cases, ahead(m) holds. Starting from a generic case, when a

departure occurs from the first station under ω, the system either navigates to another generic case

or it becomes the same under both policies (shown below). In either case, ahead(m+ 1) holds, as

both the generic cases and the situation when systems are the same respect the ahead property.

Assume ω′ is serving a job in the first station that is already served by ω (e.g. Case 1.1 or 1.2.1.1 in

Lemma 1). The worst case scenario (for keeping the system ahead under ω) is when ω′ serves its job

in the first station and admits the job ω is currently serving in the first station (label this job k).

Now the residual service time of this job is t time units less under ω compared to ω′. g1 : if there is

no blocking, job k departs sooner under ω than ω′ and the system stays in g1. g2 : otherwise if job

k is blocked under ω, the same would happen under ω′ up to t time units later, as the same jobs

(or jobs previously served at the second station by ω) will be served at the second station under

ω′ (Cases 1.3 and 1.2.2.1.4 in Lemma 1 are examples). From g2, the system can go to either of the

following generic cases (i.e. g3-g6 ).

For g3-g6, assume that a specific job is being served in the first station under both policies. Let

the residual service times of the job at the first station be identical. g3 : if the states of the jobs

are identical (i.e. the same jobs with identical residual service times) in the second station under

both policies, then the policies behave the same (e.g. Case 2.3 in Lemma 1). g4 : if ω has admitted

new jobs in the second station, ω is already ahead in the number of departures and ω′ needs to go

through the same steps (e.g. Case 1.2.2.1.2 in Lemma 1). The system stays in g4. g6 : if there are

identical jobs at the second station with smaller residual service time under ω, jobs depart earlier

from the second station under ω (e.g. Cases 1.2.1.2 and 1.2.2.2 in Lemma 1). The system either

stays in g6 or becomes the same under both policies. Now assume the residual service time under

ω is less in the first station. g5 : if jobs are in the same state (i.e. the same jobs with identical

residual service times) in the second station under both policies, ω can lead to earlier departures

8



from the first station (e.g. Cases 1.2.2.1.1 and 3.2 in Lemma 1). The system can go to g1 or g2.

(Lemma 2) �

Appendix C. Corollaries 1 and 2 proofs

In this appendix, we present the proofs of Corollaries 1 and 2.

Corollary 1: Theorems 1 and 2 hold for i) systems where jobs are waiting at the first station, ii)

systems with arrivals, and iii) clearing systems.

Proof :

In the following we show the proof for Theorem 1. To construct a proof for Theorem 2, replace ω

and ω′, with π and π′, respectively.

(i) The proofs of Theorems 1 and 2 assume that jobs are always waiting at the first station.

(ii) Whenever decisions are made, if there are jobs waiting at the first station, the proof follows

(i). If there are no jobs waiting at the first station, we show that ω′ does not gain any benefit

when there are no arrivals and ahead(m) is not violated. The following cases could occur:

(a) If there are no free servers at the first station under both policies, the proof follows (i) as

long as servers at the first station remain busy.

(b) If there are free servers at the first station under ω and no free servers at the first station

under ω′, ω′ is serving a job at the first station that ω has already served. Let r be the

time when the next arrival occurs and u be the remaining time until the systems become

identical under both policies (i.e. the systems are serving the same jobs with the same

residual service times). If r < u, the proof continues as (i). If r > u, the systems are

identical under both policies.

(c) If there are free servers at the first station under ω′ and no free servers at the first station

under ω, ω′ is waiting for a job that ω is serving or has already served. Let r be the

time when the next arrival occurs and u be the remaining time until a server becomes

idle at the first station under ω. If r < u, when the next arrival happens, under ω there

have been more departures and/or jobs have less residual service time (ahead(m)). If

r > u, both policies should wait for the next departure. However, the system under ω has

serviced more jobs and/or jobs have less residual service time (ahead(m)).

9



(d) If there are free servers at the first station under both policies and if both policies are

waiting for the same job, the systems are identical under both policies. Otherwise ω′ is

waiting for a job that ω has already served. Upon the next arrival, the systems continue

working with ω having a higher number of departures from the first station (ahead(m)).

In Theorem 2, let r be the time of the next arrival after time t0. If r ≥ t, the systems are the

same under π and π′. If r < t, t is replaced with t− r throughout the proof.

(iii) For a clearing system, the proof is the same as (i) up until the point where there are no more

jobs to admit under ω (assuming time t0 has passed). At this point either:

(a) the systems are identical; from here the policies behave the same and clear the system at

the same time.

(b) the same jobs are being served under both policies with smaller residual service times

under ω; there are only three jobs left in the system and from Theorems 1 and 2 we know

that under ω, the next departure does not happen later than under ω′. Therefore the

system reaches a time where there are two jobs in the system under ω and either two or

three jobs under ω′. In the best case for ω′, assume two jobs are in the system under both

policies with identical residual service times. From here the policies clear the system at

the same time.

(c) different jobs are being served under the two policies (i.e. ω has completed more jobs than

ω′); ω can be left with two jobs in the system sooner than ω′. Therefore it can never be

the case that ω′ clears the system sooner than ω.

If time t0 is reached after there are no more jobs to admit, the systems are identical at this

point. Employing Lemma 1, we know that the ahead property holds and therefore ω′ will not

complete jobs sooner than ω.

(Corollary 1) �

Corollary 2: Theorems 1 and 2 and Corollary 1 hold for arbitrary numbers of dedicated and flexible

servers.

Proof : The required extensions are as follows:

• Number of dedicated servers (N = 2, F = 1): the case with many dedicated servers is a

generalization of the case with one dedicated server at each station. The generalization is as

10



follows: a station including blocked servers is considered a blocked station; a station including

only busy servers is considered a busy station; and a station including free servers is considered

a free station. For example if the first station is blocked and the flexible server is at the first

station, hand-off is possible.

When a station has more than one dedicated server, extending the above proofs becomes

more complicated. With only one dedicated server at each station, we had to compare at

most three different residual service times. With more dedicated servers, more comparisons

are required. Moreover, the order in which the dedicated servers in a station should be

considered (for comparison), becomes an issue. In other words, when the system is compared

under two different policies, we need to determine the jobs that should be compared.

However, these additional complexities become conceptually easier to manage with the fol-

lowing considerations. Note that jobs are indistinguishable and service times depend only

on the station. For example, if more than one job is blocked in the first station, it does not

matter which one is chosen for departure (they are indistinguishable). However in order to

be able to adapt the proofs, without loss of generality, we assume that both policies choose

blocked servers in the same order, as the proofs try to compare the departure times or residual

service times of the same jobs (comparing different jobs in the proofs will lead to the same

results with the drawback that it would make it far harder for a reader to follow the proof).

In all of the above proofs if the first station is not blocked, consider the two dedicated servers

in each of the stations with the earliest completion times. If the first station is blocked, one of

the blocked servers and the dedicated server with the earliest completion time in the second

stations are considered. Note that the dedicated server with the earliest completion time in

the second station is a free dedicated server, if the second station is free.

• Number of flexible servers (N = 2, F > 1): introducing more than one flexible server compli-

cates the proofs. For example, if a station contains more than one flexible server, in which

order should they be picked for comparison? Or as another example, is it required to compare

the residual service times of flexible servers? Also, does the assignment of the flexible servers

affect the proofs?

It turns out that in all of the above proofs, we need to consider only one flexible server at a

11



time. Note that flexible servers do not affect each other in the proof scenarios, i.e. each case

of the proof involves only one flexible server and one or two dedicated servers. Assume a first

flexible server is assigned to a job. When assigning a second flexible server, the only difference

with F = 1 is that one of the busy servers is a flexible server. However when analysing the

behavior of the second flexible server, we ignore the first flexible server and only consider

dedicated servers to perform allocations.

The fact that flexible servers become idle once they complete a job at the second station or

hand off to a free dedicated server, makes it possible to treat the flexible servers independently.

Note that here we only consider the correctness of the stated properties and do not specify

the optimal policy. An optimal policy’s decision on allocation of a flexible server will depend

on the position of other flexible servers.

(Corollary 2) �

12


