
Action-Based Concurrency
and Synchronization for Objects∗

Ralph Back, Martin Büchi, Emil Sekerinski

Åbo Akademi University, Department of Computer Science
Lemminkäisenkatu 14A, 20520 Turku, Finland

{backrj, mbuechi, esekerin}@abo.fi

Abstract. We extend the Action-Oberon language for executing action systems
with type-bound actions. Type-bound actions combine the concepts of type-bound
procedures (methods) and actions, bringing object orientation to action systems.
Type-bound actions are created at runtime along with the objects of their bound
types. They permit the encapsulation of data and code in objects. Allowing an
action to have more than one participant gives us a mechanismfor expressing
n-ary communication between objects. By showing how type-bound actions can
logically be reduced to plain actions, we give our extensiona firm foundation in
the Refinement Calculus.

1 Introduction

Action-Oberon extends Oberon-2 [22] with actions for modeling parallel and distributed
computations. The extension is based on the theory of actionsystems [6] and was pro-
posed by Back and Sere [8] and implemented by Hedman [14]. An action system is a
parallel or distributed program where parallel activity isdescribed in terms of guarded
actions. Enabled actions are executed atomically in a nondeterministic order to model
parallelism. Atomicity of actions guarantees that a parallel execution of an action sys-
tem gives the same results as a sequential nondeterministicexecution in Action-Oberon
(serializability).

Action-Oberon supports only plain actions, which may optionally be replicated over
a constant range of integers. Plain actions describe updates to the variables visible in the
module in which they are declared. The new type-bound actions combine the principles
of type-bound procedures (methods) and actions. Bound to one or more types, they
are created dynamically whenever an object of a bound type iscreated. They describe
updates to the objects to which they are bound, as well as to the variables visible in their
declaration module. Järvinen and Kurki-Suonio first proposed the marriage of object-
oriented concepts and action systems in the DisCo language [16]. Their basic idea is
the same as ours, but the actual definitions differ greatly due to the form of object
orientation, the base language, the underlying logic, and the interpretation.

* Appeared in T. Rus, M. Bertran (Eds.)Transformation-Based Reactive System Develop-
ment, Fourth AMAST Workshop on Real-Time Systems, Concurrent, and Distributed Software,
Palma, Mallorca, Spain, Lecture Notes in Computer Science 1231, Springer-Verlag, 1997.

We have built an environment, in form of an Action-Oberon to Oberon-2 compiler
and an associated runtime/simulation system under Oberon/F [21], which allows ex-
tended Action-Oberon programs to be executed. The environment helps to debug spec-
ifications and isolate critical properties worth formal proofs. Our environment is a play
ground for action systems and not an attempt to add concurrency to the Oberon lan-
guage and/or system.

Section 2 presents the Action-Oberon base language, Sect. 3explains the type-
bound actions, Sect. 4 elaborates on the deactivation of type-bound actions and the
deallocation of objects, Sect. 5 discusses inheritance of type-bound actions, Sect. 6 pro-
vides a foundation for type-bound action in the Refinement Calculus, Sect. 7 points to
related work, and Sect. 8 draws the conclusions.

2 Action-Oberon Base Language

Oberon-2 [22] is the successor of Pascal and Modula-2. Modula-2 adds modularization
to Pascal. Oberon-2 extends Modula-2 with object-orientedconcepts in form of type
extension on record types (subtyping/inheritance) as wellas type-bound procedures
(methods). Oberon-2 has been chosen as a base language because of its simplicity and
its similarity to previously used ad-hoc notations of action systems.

Action-Oberon [8] adds actions and guarded procedures to Oberon-2. Action sys-
tems are represented by Oberon modules. All actions are executed repeatedly in a loop
until all actions are disabled. Selection of enabled actions is nondeterministic and is not
bound to a fairness pledge. The nondeterminism is demonic, in the sense that there is
no way of influencing which action is chosen. The simulation environment provides,

MODULE OneFish;

CONST
height=10;
width=20;

VAR
x, y: INTEGER;
right, up: BOOLEAN;

ACTION MoveRight
WHEN right & (x#width);

BEGIN INC(x)
END MoveRight;

ACTION MoveLeft
WHEN ˜right & (x#0);

BEGIN DEC(x)
END MoveLeft;

ACTION Bounce Right
WHEN right & (x=width);

BEGIN right:=FALSE
END BounceRight;

ACTION BounceLeft
WHEN ˜right & (x=0);

BEGIN right:=TRUE
END BounceLeft;

ACTION MoveUp (* code *)
ACTION Move Down (* code *)
ACTION BounceUp (* code *)
ACTION BounceDown (* code *)

BEGIN
x:=0; y:=0; right:=TRUE; up:=TRUE

END OneFish.

Fig. 1. Screen saverOneFish

2

however, the possibility to install one’s own scheduler or to manually select actions.
The module body contains the initialization. Parallel composition of action systems
corresponds to loading several modules into memory at once.Actions from all loaded
modules are executed in one big loop; that is, they may be interleaved in any order. The
combined action system can only terminate when none of the loaded modules contains
an enabled action.

Actions are declared like procedures without parameters. The guard of an action is
given as a (side-effect free) boolean expression. Omittingthe guard corresponds to an
always enabled guard.

Throughout the paper we use the example of a fish screen saver.In our first version
OneFish (Fig. 1), a single fish swims around the screen. The fish’s current position is
given by cartesian coordinatesx (horizontal axis) andy (vertical axis). The fish is either
moving right (right = TRUE) or left and either up (up = TRUE) or down. When it reaches
a border it changes direction. Note that the lack of a fairness assumption means that the
fish might only move along one axis, although the guard for moving along the other
axis is infinitely often true.

Our screen saver is an example of an action system which neverterminates. Hence,
our interest does not lie in its input/output behavior, but in its possible traces (sequences
of states).

Actions may optionally be replicated over one or more constant ranges of integers,
generating a number of similar actions. We use this mechanism to add more fishes
to our screen saver in the next versionManyFishes (Fig. 2). The action declaration
ACTION MoveRight(i: 0..many-1) generates an action for eachi between0 andmany-1.
The replicatori can be used like a constant in the guard and body of the action.

Like actions, procedures may be protected by an optional guard [7]. If the evaluation
of the guard of an action or the execution of its body would lead to a call of a disabled
procedure, the action is considered to be disabled. Note that no waiting for the guard to
become true takes place, as is common with monitors or semaphores.

3 Type-Bound Actions

Being useful in certain cases, replication is awkward at best when we have to replicate
several actions over the same range, as in Fig. 2. It providesno encapsulation of data
and code within a single entity, (pseudo-) dynamic creationof new entities is cumber-
some and error-prone – even if we added dynamically extendible arrays and variable
replication ranges.

Thus, borrowing from the concept of object orientation, we add type-bound actions
to Action-Oberon. The declarationACTION (f: Fish) MoveRight leads to the dynamic
creation of an action for each object of typeFish that we create. The bound variable
f is called participant and may be used like a variable in the action. It corresponds to
the receiver (self) of a type-bound procedure. Figure 3 gives our screen saver using
type-bound actions.

Suppose we want to program some special behavior if two fishesmeet. We can
do this withACTION (f1, f2: Fish) Meet (Fig. 4). We allow an action to have several
participants, i.e.f1 and f2, of various types. An instance ofMeet will be created at

3

runtime for each tuple of fishes, including double instantiations of the same fish. Hence,
we have to explicitly strengthen the guard ofMeet if we do not desire fishes to meet
themselves (no aliasing). Actions withn participants lend themselves to symmetrically
expressn-ary communication, which is difficult in most other formalisms forn > 2.

Action names are treated as global identifiers of their modules. The complete EBNF
for actions is given in Fig. 5.

If we add actionMeet to OOFishes, it is not guaranteed thatMeet will be executed
whenever two fishes are at the same coordinates because the fishes’ move actions are
also enabled; their guards would have to be strengthened if desired.

We could imagine several behaviors if two fishes meet. We could for example
change the direction of one fish or we could have them produce ababy fish by in-
voking NEW. Without object-orientation, but only plain replication,we would have to
extend our data arrays and ranges separately to get the same effect.

4 Deactivation and Deallocation

Consider the case where we would want one fish to eat the other.How do we remove
the dead fish from our system, that is how do we prevent it from participating in actions
and how do we recycle its allocated memory? In Oberon-2, objects may be garbage
collected if they are no longer referenced from one of the loaded modules. Having
introduced type-bound actions, we cannot simply adopt thiscondition. Consider the
case where we remove the last reference to an object. Should this object still be able
to have one of its type-bound actions executed until it is garbage collected? If so, this

MODULE ManyFishes;

CONST
many=5;
height=10;
width=20;

VAR
x, y: ARRAY many OF INTEGER;
right, up: ARRAY many OF BOOLEAN;
k: INTEGER;

ACTION MoveRight(i: 0..many-1)
WHEN right[i] & (x[i]#width);

BEGIN INC(x[i])
END MoveRight;

ACTION MoveLeft(i: 0..many-1)
WHEN ˜right[i] & (x[i]#0);

BEGIN DEC(x[i])
END MoveLeft;

ACTION Bounce Right(i: 0..many-1) (* code *)
ACTION BounceLeft(i: 0..many-1) (* code *)
ACTION MoveUp(i: 0..many-1) (* code *)
ACTION Move Down(i: 0..many-1) (* code *)
ACTION BounceUp(i: 0..many-1) (* code *)
ACTION BounceDown(i: 0..many-1) (* code *)

BEGIN
FOR k:=0 TO many-1 DO

x[k]:=k; y[k]:=k;
right[k]:=TRUE; up[k]:=TRUE

END
END ManyFishes.

Fig. 2. Screen saverManyFishes

4

action could again set a pointer to the object and, herewith,revive it. On the other hand,
if the object looses its eligibility to participate in actions with the removal of the last
reference, we unnecessarily restrict the independence of our active objects and – in an
extendible system where we often don’t know the number of references to an object –
loose control over the duration of an object’s active life cycle. We can prevent an object
from being collected by keeping a reference to it, but we cannot enforce an object to
be disabled. Given the undesirable properties of the ‘naturally’ extended conditions for
garbage collection, we enumerate the possible solutions which preserve pointer safety
(no dangling pointers) and summarize their properties in Fig. 6:

1. An object may be collected after the last reference to it vanishes. Until then, it is
eligible to participate in actions (as above).

2. An object may be collected after the last reference to it vanishes. An unreachable
object cannot have one of its bound actions executed (as above).

3. An object may only be garbage collected if it is no longer referenced and none of its
bound actions can ever be enabled again. Clearly, the secondcondition can in prac-
tice not be verified; hence, no automatic garbage collectioncan be implemented.

4. An objecto is deallocated with a special commandKILL(o). The precondition of
KILL(o) is thato is the only reference to the object. As the declaration of type-bound

MODULE OOFishes;

CONST
height=10;
width=20;
many=5;

TYPE
Fish=POINTER TO FishDesc;
FishDesc=RECORD

x, y: INTEGER;
right, up: BOOLEAN

END;

VAR
fi: Fish;
k: INTEGER;

ACTION (f: Fish) MoveRight
WHEN f.right & (f.x#width);

BEGIN INC(f.x)
END MoveRight;

ACTION (f: Fish) MoveLeft
WHEN ˜f.right & (f.x#0);

BEGIN DEC(f.x)
END MoveLeft;

ACTION (f: Fish) Bounce Right (* code *)
ACTION (f: Fish) BounceLeft (* code *)
ACTION (f: Fish) MoveUp (* code *)
ACTION (f: Fish) Move Down (* code *)
ACTION (f: Fish) BounceUp (* code *)
ACTION (f: Fish) BounceDown (* code *)

PROCEDURE CreateFish(VAR nf: Fish;
x, y: INTEGER; right, up: BOOLEAN);

BEGIN
NEW(nf); nf.x:=x; nf.y:=y;
nf.right:=right; nf.up:=up

END CreateFish;

BEGIN
FOR k:=0 TO many-1 DO

CreateFish(fi, k, k, TRUE, TRUE)
END

END OOFishes.

Fig. 3. Screen saverOOFishes

5

ACTION (f1, f2: Fish) Meet
WHEN (f1.x=f2.x) & (f1.y=f2.y) & (f1#f2);
VAR baby: Fish;

BEGIN
(* do something: i.e.

- change direction
- create new fish
- remove one of the fishes *)

END Meet;

Fig. 4. Type-bound actionMeet

Action = ACTION [Participants] IdentDef [Replicators] [Guard] ”;”
DeclSeq [BEGIN StatementSeq] END identifier.

Participants = ”(” VarDecl {”;” VarDecl} ”)”.
Replicators = ”(” Repl {”;” Repl} ”)”.
Repl = identifier ”:” ConstExpr ”..” ConstExpr.
Guard = WHEN Expr.

Fig. 5. EBNF of extended action declaration

actions is not restricted to their participants’ declaration modules (see below), we
stand the danger in an extendible system of prematurely killing an object. Addition-
ally, an unreferenced object, which will never again have one of its bound actions
enabled, cannot be deallocated and, therefore, creates a memory leak.

5. The eligibility of an objecto to participate in actions is removed with a special
commandDEACTIVATE(o). Meanwhile, all references are kept. An object can be

Property 1 2 3 4 5

pointer-safety yes yes yesyes yes
recycling of memory feasibleyes yes no yes yes
duality of constructor yes yes yesyes no
and destructor
manual disabling of actionsno no no yes yes
without explicit flag
revival impossible no yes yesyes yes
active lifespan no no yesyes yes
independent of references
execution model without no no yesyes yes
reference count
safe deallocation yes yes yesno yes
safe disabling of actions no1 no1 yesno2 no2

avoids memory leaks yes yes yesno no

1Due to dependency on references.
2Due to explicit termination withKILL, respectivelyDEACTIVATE.

Fig. 6. Properties of different deallocation schemes for objects with type-bound actions

6

garbage collected, if it has been deactivated and it is no longer referenced. We can
interpret this as a special case of situation 3 where each object has a flagalive which
is initially true, added as an implicit conjunct to each action guard, and can only be
set to false by invokingDEACTIVATE. Creation and deactivation are not duals, as
the latter only revokes an object’s active behavior. As withsolution 4, we have the
problem of memory leaks.

We can model any of the above choices in the Refinement Calculus (Sect. 6). How-
ever, the computation model is simpler if an object’s eligibility to participate in actions
does not depend on it being referenced and the model must not include a reference
count.

Going back to our consumed fish example, solutions 4 and 5 let us solve the prob-
lem without introducing a liveness flag and the corresponding guards in all actions. To
keep the theory simple, make recycling of memory feasible, avoid cluttering of code by
explicit flags, and prevent the introduction of aborts, we choose solution 5. Ifo has al-
ready been deactivatedDEACTIVATE(o) is skip;DEACTIVATE(NIL) is abort. So far, the
loss of duality between creation and destruction and the premature disabling of actions
have not caused any problems in our examples.

The existence of both modules and classes (types and associated type-bound pro-
cedures/actions) in Action-Oberon provides for more compositionality. Modules are
compile-time abstractions which provide for scoping and may contain several classes,
the latter providing for extensibility and being a run-timeabstraction that defines the
structucture and behavior of objects. This separation of concerns allows objects to be
bundled to components [23, 21]. In Action-Oberon this givesus more compositionality
on the module level by restricting the outside visibility ofattributes and methods and
still allows for privileged access between more closely related classes.

Unlike type-bound procedures, type-bound actions may be declared in any module
where the participant types are visible, with access to the fields (instance variables)
according to the Oberon-2 export/import visibility rules.This is needed for defining
actions with participants stemming from different modules.

5 Inheritance of Type-Bound Actions

We can add some variety to our aquarium by defining special kinds of fishes. If we
create a typeShark as subtype ofFish (Fig. 7), sharks have all actions of normal fishes
bound to them plus possibly additional ones, i.e.ShowTeeth.

We might also want to override (redefine, extend) some actions for sharks, i.e. have
sharks become hungrier whenever they move and eat another fish they meet when they
are hungry enough. We could create an actionACTION (s: Shark; f: Fish) Meet, if we
permitted overriding. This would immediately raise two problems. Consider a fishϕ
and a sharkσ. Should we now have two actionsMeet, the original one for(ϕ,σ) and
the redefined for the reversed tuple(σ,ϕ) (Fig. 8 a)?

Secondly, this would require multiple dispatch, as actionscan have several partic-
ipants. Assume that we also define a subtypePiranha of Fish and override the meet
action forACTION (f: Fish; p: Piranha) Meet. Which action body would we choose for

7

TYPE
Shark=POINTER TO SharkDesc;
SharkDesc=RECORD (Fish)

hunger: INTEGER
END;

ACTION (s: Shark) ShowTeeth;
BEGIN (* show teeth *)
END ShowTeeth;

Fig. 7. SubtypeShark

a tuple of a shark and a piranha (Fig. 8 b)? Requiring each combination of (normal)
fishes, sharks and piranhas (Fig. 8 c) to be defined is not practical in a modular system
where the different subtypes can be defined in different modules and where modules
are not statically linked. The solution of Chambers and Leavens for multiple dispatch
of methods [10], which requires a designated topmost moduleand flags errors of other
modules when compiling this module, is against the spirit ofopen systems and inde-
pendent extension [24]. While the first problem could be partly solved by introducing a
special notation for symmetrical participants, the secondone has no solution which is
orthogonal to separate extension. Hence, we do not permit overriding of actions.

We could allow overriding for actions with only one participant as this does not
require multiple dispatch and, therefore, does not create the problems described here.
For simplicity’s and orthogonality’s sake we do not. Instead, we simulate overriding
of type-bound actions by using overriding of type-bound procedures. Figure 9 shows
how we overrideMoveRight by replacing the body with a single call to a type-bound
procedure. In the implementation ofMoveRight for Shark, s.MoveRightˆ is a super-call
to the overridden type-bound procedure which in our case is acall to MoveRight for
Fish. Instead of replacing the complete guard with a call to a type-bound procedure,
we choose in this example to explicitly state the conjuncts common to all extensions.
This form of overriding requires explicit provisions to be made, i.e. introducing the

(Fish, Fish)

(Shark, Fish)

(,)(,)

 : Fish

a) b) (Fish, Fish)

(Shark, Fish)(Fish, Piranha)

(,)

 : Shark

c) (F,F)

(F,S) (F,P)(S,F) (P,F)

(P,S) (S,P)(S,S) (P,P)

F = Fish, S = Shark,
 : Shark : Piranha P = Piranha

Fig. 8. Problems of overriding actions with more than one participant

8

PROCEDURE (f: Fish) MoveRight;
BEGIN INC(f.x)
END MoveRight;

PROCEDURE (s: Shark) MoveRight;
BEGIN s.MoveRightˆ; INC(s.hunger)
END MoveRight;

PROCEDURE (f: Fish) WantToMove(): BOOLEAN;
BEGIN RETURN TRUE
END WantToMove;

PROCEDURE (s: Shark) WantToMove(): BOOLEAN;
BEGIN RETURN s.hunger<10
END WantToMove;

ACTION (me: Fish) MoveRight
WHEN me.right & (me.x#width) & me.WantToMove;

BEGIN me.MoveRight
END MoveRight;

Fig. 9. Simulating overriding for actions with only one participant

constant functionWantToMove which we override for our lazy sharks which don’t move
if they are too hungry. However, there is also the argument that unless the designer has
arranged for it, reuse and overriding never work in practiceanyhow [17]. Overriding of
type-bound procedures and dynamic type tests give all that is needed.

Another approach would be not to inherit actions, i.e. aShark would not automat-
ically have all actions defined forFish. This would be orthogonal to polymorphism as
actions are not called explicitly; it would not create the danger of invoking undefined
actions as the method deletion mechanism of Smalltalk does.Because inheritance of
type-bound actions has proved to be desirable in practice, we have adopted it in Action-
Oberon. E.g. without inheritance of type-bound actions, wewould have to explicitly
give all the move actions for sharks.

6 A Semantics for Type-Bound Actions

In this section we give a formal semantics to type-bound actions by reducing them
to plain actions. We have four levels to express an action system: Action-Oberon with
type-bound actions, Action-Oberon without type-bound actions, action systems, and the
Refinement Calculus. The translation from Action-Oberon without type-bound actions
to action systems is given by Back and Sere [8], the translation from action systems
to the Refinement Calculus and the mathematical treatment ofaction systems is due
to Back, Kurki-Suonio and von Wright [6, 3, 4, 9]. Figure 10 shows these three levels
for a sample program. A plain actionACTION A WHEN G; BEGIN S END A; translates
to the guarded statementG → S which is only enabled ifG holds. An Action-Oberon
module with several actions translates to a do loop with a demonic choice between
the actions. On the Refinement Calculus level, a predicate insquare brackets denotes a

9

MODULE M init; init;
do while G1∨G2do

ACTION A1 WHEN G1; G1→ S1 [G1];S1u [G2];S2
BEGIN S1 [] G2→ S2 od

END A1; od

Sugared Refinement Calculus
ACTION A2 WHEN G2;
BEGIN S2
END A2; init;

(µX• ([G1];S1u [G2];S2);Xuskip);
BEGIN init [¬(G1∨G2)]
END M.

Action-Oberon action systemRefinement Calculus

Fig. 10. Translation of an Action-Oberon module

guard, which is equivalent toskip if the predicate holds andmagic otherwise. The
meet (u) denotes the demonic choice, andµstands for the least fixpoint. The refinement
calculus level only applies to the input/output, but not to the trace semantics.

A type-bound action is defined as follows: There is only one instance of each type-
bound action. The guard implicitly stands for ‘there existsa tuple that satisfies the stated
guard’ and the first statement demonically (nondeterministically) chooses one such tu-
ple. We first use this intuition to sketch a simulation of type-bound actions in Action-
Oberon without type-bound actions. Thereafter, we also provide a direct translation to
action systems by formalizing this idea.

We keep a data structure of all types and their inheritance relation as well as a set of
all active objects of each type. We turn each type-bound action into a plain action of the
same name by replacing the guard by a traversal function which returns true, if it finds a
tuple of possible participants from the respective sets of active participants. We add an
additional first statement, which demonically chooses one possible tuple and assigns it
to the participant variables. This is, up to optimizations,how the current implementation
works.

Alternatively, we can map type-bound actions directly to their action system equiv-
alent. Using the Refinement Calculus typed higher-order logic, we denote the record
types byR1, . . . ,Rn and the corresponding pointer types byP1, . . . ,Pn. Records are
represented as tuples and type extension ([width] subtyping/inheritance) corresponds
to tuple extension. We model the heap as a partial function (functional relation) from
pointers to records and use a boolean flag for each record to indicate whether an object
is active:

heap: P1 + . . .+Pn+NIL 7→ (R1 + . . .+Rn)×Bool

Initially, heapis empty. To manipulate the sum types (disjoint union), we define fami-
lies of injection functionsini : Pi → P1 + . . .+Pn +NIL (also for records), projection
functionsouti : P1 + . . .+ Pn + NIL→ Pi , and corresponding discriminator functions

10

isi : R1+ . . .+Rn → Bool. NIL is the one-element type{nil} for modelingNIL point-
ers, for which we get the following invariant:inNIL nil /∈ dom heap. We also defineis∗i
to be the transitive closure ofisi with respect to the direct subtype/inheritance relation

(Rj <: Ri
def
= Rj=RECORD (Ri) . . . END):

is∗i r
def
= (isi r)∨ (∃j.Rj <: Ri ∧is∗j r)

In fact, is∗i corresponds to Oberon’sIS statement:r IS Ri ≡ is∗i r. Furthermore, we
definedom to return the domain of a partial function. We definefst andsnd as the first
and second projections of a tuple, andprjk as thekth projection.

We expressNEW as a family of predicate transformers. For pointerp of Action-
Oberon typePi we get:

NEWi(p)
def
= (ux : Pi |ini x /∈ dom heap•p := ini x);

heap:= heap∪{p 7→ (ini 0Ri ,T)}

The only change toNEW with respect to Oberon-2 is the initialization of the boolean
flag indicating that the object is active: First we demonically – indicated by the meet
– choose a free location in the heap and assign it top and then augment the partial
heap function by the mapping fromp to the 0-record with unspecified values of the
referenced type. To exhibit the fact thatDEACTIVATE only changes the activity flag of
the referenced record, we give it in terms of a relational override<+ defined for relations
r,s:

r <+ s
def
= {(x 7→ y) ∈ r|x /∈ dom s}∪s

DEACTIVATE(p)
def
= {p∈ dom heap};

heap:= heap<+ {p 7→ (fst (heap p),F)}

DEACTIVATE asserts – indicated by the braces – thatp is a valid pointer and then sets
the activity flag of the referenced record to false. We can nowgive the translation for a
type-bound action:

ACTION (p: Pi) A WHEN G; BEGIN S END A;
def
= (uq∈ dom heap|is∗i (fst (heap q))∧snd (heap q)•

begin var p : P1 + . . .+Pn+NIL;p := q;G→ Send)

The quantified variableq is a logical variable, whereasp, which is only visible within
the block bracketed bybegin andend, is a program variable which may also appear on
the left hand side of assignments. The action is enabled if there is at least one possible
participant for whichG holds. More formally, the guard and the body of a predicate
transformerS are defined asgA = ¬wp(A, false) andsA= {gA};A. This allows us to
view a type-bound action as a guarded statement. The generalization to actions with
more than one participant is straightforward.

A statement containing a record field access is the sum of predicate transformers
over all record, respectively pointer types. Let for example p be a pointer to a record

11

whosekth field isx: INTEGER and leth: INTEGER. The assignmenth:=p.x in Action-
Oberon then corresponds to the following predicate transformer:

h:=p.x
def
= {p∈ dom heap};

(h := prjk (out1 (fst (heap p))))+
. . .+
(h := prjk (outn (fst (heap p))))+
abort

The properties of the summation operator for predicated transformers were explored by
Back and Butler [5], based on Nauman’s [20] and Martin’s [19]category theoretical
considerations. Late binding of type-bound procedures is modeled analogously.

Hence, we can use type-bound actions in our extended Action-Oberon programs
and use their unsugared form for reasoning in the Refinement Calculus or use the above
correspondence to give a sugared form of the relevant inference rules.

Interestingly, there are two other ‘natural’ explanationsfor type-boundactions which
give identical semantics:

1. Whenever an object is created, the set of actions is augmented by the correspond-
ing bound actions. Dually, when an object’s eligibility to participate in actions is
revoked, the associated actions are removed. This model is possible as the action
system formalism does not require the set of actions to be constant or finite.

2. We start with an infinite number of objects in a special not-yet-created state and an
infinite number of corresponding actions the guards of whichtest that all participant
are in the created state. Creating an object corresponds to changing its state to
created.

7 Related Work

Our work on Action-Oberon was inspired by the original Action-Oberon and DisCo.
Other related work includes Unity, its successor Seuss, IP,and a number of frameworks
for active objects.

DisCo [16] first introduced type-bound actions. DisCo’s concept of ‘inheritance’
corresponds to having a field of the inherited type in our terminology; hence, there is no
overriding. DisCo does not have any type-bound procedures,making it lack any form
of dynamic binding. The language contains no loops or recursion. Guarded procedures
do not exist.

In Unity [11] ‘actions’ are restricted to (quantified) multiple deterministic assign-
ments, and the set of actions must be finite and constant; on the other hand, it has
fairness and progress properties. We are not aware of anything like type-bound actions
in Unity. Due to the lack of nondeterminism in assignments and the restriction to a fi-
nite constant set of ‘actions’ none of our explanations for type-bound actions could be
applied in Unity.

Seuss [12] gives the notion of boxes which correspond to our object types and clones
which are instantiations thereof. Boxes have local variables (non-exported instance vari-
ables), actions (type-bound actions), and procedures (type-bound procedures) which

12

may also be partial (guarded). The set of clones is static. Byalso requiring all actions to
terminate, Seuss can provide fairness. As all actions reside within one clone, there is no
possibility to create an action with more than one participant. As in our model, an action
calling a disabled procedure fails. However, the disabled procedure can still change the
state of the callee, by executing the code associated to a ‘negative alternative’.

In IP [13], processes are the main structuring elements rather than implementation
details arising from the target machine’s architecture. Multiparty interactions provide
for communication, synchronization, and agreement. Processes can only access non-
local variables within interactions. Interprocess communication abstraction is realised
in form of teams which facilitate dynamic process creation.Teams are often used anal-
ogously to type-bound actions; roles in teams correspond toparticipants. Conflict prop-
agation in coordinated enrolement causes lookahead computation similar to guarded
procedures.

Formalisms and languages for active objects are characterized by different objects
executing in parallel. New objects can be created dynamically. Objects communicate
by message passing, which is the only way to have an object do something. Generally,
objects do not contain any actions. Triggered procedures inobject-oriented databases
are a notable exception to this rule; however, the triggered(guarded) procedures are
usually executed as part of the transaction setting off the trigger. Due to the lack of
actions, the condition for garbage collection is simple reachability, respectively knowl-
edge of an object’s mail address.N-ary communication between objects can generally
not be expressed in a symmetric fashion. Hewitt’s actor model [15, 1] was the first for-
mal model of active objects. More recently, CCS and theπ-calculus have been used to
give a semantics to members of the POOL family [2, 18, 25].

8 Conclusions

We have extended the Action-Oberon language with type-bound actions encapsulating
both data and actions in objects by combining the principlesof object-orientation and
action systems. Actions withn participants provide a symmetrical mechanism to ex-
pressn-ary communication between objects. Of the solutions for disabling an object
as participant of any action and recycling its allocated memory, we found the explicit
DEACTIVATE command to have the most desirable properties. Due to the conflict be-
tween multiple dispatch and independent extensibility, overriding of type-bound actions
is prohibited. Overriding of type-bound procedures and dynamic type tests provide for
selective overriding. By reducing type-bound actions to plain actions they are given
a formal semantics in the Refinement Calculus framework which allows for concise
mathematical reasoning.

We are interested in increasing our collection of examples manifesting the useful-
ness of type-bound actions. Simulation of mechanical systems is a very promising ap-
plication. We are also interested in adding fairness and/orpriorities to Action-Oberon.
Additionally, we are trying to show the value of object-encapsulation for atomicity re-
finement of actions and for synchrony-loosening refinements.

We would like to thank Wolfgang Weck, Jim Grundy, Kaisa Sere,and Philipp
Heuberger for a number of clarifying and fruitful discussions on the topic of this paper.

13

References

1. Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

2. Pierre America. Issues in the design of a parallel object-oriented language.Formal Aspects
of Computing, 1(4):366–411, 1989.

3. R. Back. Refinement calculus, part II: Parallel and reactive programs. InStepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness.Proceedings. LNCS 430, Springer
Verlag, 1990.

4. R. Back. Refinement of parallel and reactive programs. In M. Broy, editor,Program Design
Calculi, NATO ASI Series, pages 73–92. Springer-Verlag, 1993.

5. R. Back and M. Butler. Exploring summation and product operators in the refinement calcu-
lus. Technical Report on Computer Science & Mathematics, Ser. A. No 152,Åbo Akademi,
1994.

6. R. Back and R. Kurki-Suonio. Distributed co-operation with action systems.ACM Transac-
tions on Programming Languages and Systems 10:513–554, 1988.

7. R. Back and K. Sere. Action systems with synchronous communication. In IFIP TC 2
Working Conference on Programming Concepts, Methods and Calculi (PROCOMET ’94),
pages 107–126. Elsevier, 1994.

8. R. Back and K. Sere. From action systems to modular systems. In Proceeding of Formal
Methods Europe ’94. LNCS 873, Springer Verlag, 1994.

9. R. Back and J. von Wright. Trace refinement of action systems. In CONCUR 94, pages
367–384. LNCS 836, Springer Verlag, 1994.

10. Craig Chambers and Gary T. Leavens. Type checking and modules for multi-methods. Tech-
nical Report #95-19, Iowa State University, August 1995.

11. K. M. Chandy and J. Misra.Parallel Program Design – A Foundation. Addison Wesley,
1988.

12. K.M. Chandy. A discipline of multiprogramming. Available from the PSP group’s ftp site
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z, June 1996.

13. N. Francez and I. Forman.Interacting Processes: A Multiparty Approach to Coordinated
Distributed Programming. ACM Press, 1996.

14. Eric J. Hedman. Action-Oberon. Master’s thesis,Åbo Akademi University, 1995.
15. Carl Hewitt. Viewing control structures as patterns of passing messages.Artificial Intelli-

gence, 8(3), 1977.
16. H.-M. Järvinen and R. Kurki-Suonio. DisCo specification language: Marriage of action and

objects. InProceedings of 11th International Conference on Distributed Computing Systems,
pages 142–151, Arlington, Texas, 1991. IEEE Computer Society Press.

17. R.E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Pro-
gramming, June 1:2 1988.

18. Cliff B. Jones. Aπ-calculus semantics for an object-based design notation. In Proceedings
of CONCUR 93, pages 158–172. LNCS 715, Springer Verlag, 1993.

19. C.E. Martin.Preordered Categories and Predicate Transformers. PhD thesis, Programming
Research Group, Oxford University, 1991.

20. D.A. Naumann.Two-Categories and Program Structure: Data Types, Refinement Calculi,
and Predicate Transformers. PhD thesis, University of Texas at Austin, 1992.

21. Oberon microsystems, Inc.Oberon/F. http://www.oberon.ch, 1995.
22. P. Mössenböck and N. Wirth. The programming language Oberon-2. Structured Program-

ming 12:179–195, 1991.
23. Clemens A. Szyperski. Import is not inheritance – Why we need both: Modules and classes.

In Proceedings of ECOOP 92, pages 19–32. LNCS 615, Springer Verlag, 1992.

14

24. Clemens A. Szyperski. Independently extensible systems – software engineering potential
and challenges. InProceedings of the 19th Austalasian Computer Science Conference, Mel-
bourne, 1996.

25. D.J. Walker. Objects in theπ-calculus. Information and Computation, 116(2):253–271,
1995.

15

