Action-Based Concurrency
and Synchronization for Objects*

Ralph Back, Martin Buchi, Emil Sekerinski

Abo Akademi University, Department of Computer Science
Lemminkaisenkatu 14A, 20520 Turku, Finland
{backrj, mbuechi, esekeri@abo.fi

Abstract. We extend the Action-Oberon language for executing actystess
with type-bound actions. Type-bound actions combine tineepts of type-bound
procedures (methods) and actions, bringing object ofiemntéo action systems.
Type-bound actions are created at runtime along with theatdbjof their bound
types. They permit the encapsulation of data and code irctshjéllowing an
action to have more than one participant gives us a mechafaisexpressing
n-ary communication between objects. By showing how typercactions can
logically be reduced to plain actions, we give our extensidinm foundation in
the Refinement Calculus.

1 Introduction

Action-Oberon extends Oberon-2 [22] with actions for maueparallel and distributed
computations. The extension is based on the theory of asyistems [6] and was pro-
posed by Back and Sere [8] and implemented by Hedman [14].cliarasystem is a
parallel or distributed program where parallel activity&scribed in terms of guarded
actions. Enabled actions are executed atomically in a ntemd@istic order to model
parallelism. Atomicity of actions guarantees that a patakecution of an action sys-
tem gives the same results as a sequential nondetermaxsticition in Action-Oberon
(serializability).

Action-Oberon supports only plain actions, which may omidy be replicated over
a constant range of integers. Plain actions describe upttatiee variables visible in the
module in which they are declared. The new type-bound agttombine the principles
of type-bound procedures (methods) and actions. Bound ¢ooormore types, they
are created dynamically whenever an object of a bound typeeited. They describe
updates to the objects to which they are bound, as well agtedtiables visible in their
declaration module. Jarvinen and Kurki-Suonio first pisgzbthe marriage of object-
oriented concepts and action systems in the DisCo langua&jeTheir basic idea is
the same as ours, but the actual definitions differ greatly tduthe form of object
orientation, the base language, the underlying logic, hadrterpretation.

* Appeared in T. Rus, M. Bertran (Edslyansformation-Based Reactive System Develop-
ment, Fourth AMAST Workshop on Real-Time Systems, Contuaral Distributed Software
Palma, Mallorca, Spain, Lecture Notes in Computer Scie@84 1Springer-Verlag, 1997.

We have built an environment, in form of an Action-Oberon toe@n-2 compiler
and an associated runtime/simulation system under Obeféd], which allows ex-
tended Action-Oberon programs to be executed. The envieohhelps to debug spec-
ifications and isolate critical properties worth formal @f® Our environment is a play
ground for action systems and not an attempt to add conayrternthe Oberon lan-
guage and/or system.

Section 2 presents the Action-Oberon base language, Seoipldins the type-
bound actions, Sect. 4 elaborates on the deactivation @flyund actions and the
deallocation of objects, Sect. 5 discusses inheritanggefbound actions, Sect. 6 pro-
vides a foundation for type-bound action in the Refinememt@as, Sect. 7 points to
related work, and Sect. 8 draws the conclusions.

2 Action-Oberon Base L anguage

Oberon-2 [22] is the successor of Pascal and Modula-2. Megadds modularization
to Pascal. Oberon-2 extends Modula-2 with object-oriectattepts in form of type
extension on record types (subtyping/inheritance) as agltype-bound procedures
(methods). Oberon-2 has been chosen as a base languagsébetas simplicity and
its similarity to previously used ad-hoc notations of agtaystems.

Action-Oberon [8] adds actions and guarded procedures &y@k2. Action sys-
tems are represented by Oberon modules. All actions areidrepeatedly in a loop
until all actions are disabled. Selection of enabled astiemondeterministic and is not
bound to a fairness pledge. The nondeterminism is demanibe sense that there is
no way of influencing which action is chosen. The simulatiomi®nment provides,

MODULE OneFish; ACTION Bounce Right
WHEN right & (x=width);
CONST BEGIN right:=FALSE
height=10; END BounceRight;
width=20;

ACTION Bounceleft
VAR WHEN ~right & (x=0);

X, y: INTEGER;
right, up: BOOLEAN;

ACTION MoveRight

WHEN right & (x#width);

BEGIN INC(x)
END MoveRight;

ACTION Moveleft
WHEN “right & (x#0);

BEGIN DEC(x)

END Moveleft;

BEGIN right:=TRUE
END BouncelLeft;

ACTION MoveUp (* code *)
ACTION Move Down (* code *)
ACTION BounceUp (* code *)
ACTION BounceDown (* code *)

BEGIN

x:=0; y:=0; right:=TRUE; up:=TRUE

END OneFish.

Fig.1. Screen saveDneFish

however, the possibility to install one’s own scheduler@ntanually select actions.
The module body contains the initialization. Parallel casifion of action systems
corresponds to loading several modules into memory at gkatéons from all loaded
modules are executed in one big loop; that is, they may bdéateed in any order. The
combined action system can only terminate when none of #aeld modules contains
an enabled action.

Actions are declared like procedures without parametdrs.duard of an action is
given as a (side-effect free) boolean expression. Omittiegguard corresponds to an
always enabled guard.

Throughout the paper we use the example of a fish screen Bawer. first version
OneFish (Fig. 1), a single fish swims around the screen. The fish’ssctiposition is
given by cartesian coordinateg¢horizontal axis) ang (vertical axis). The fish is either
moving right gight = TRUE) or left and either upup = TRUE) or down. When it reaches
a border it changes direction. Note that the lack of a faBresumption means that the
fish might only move along one axis, although the guard for imgpalong the other
axis is infinitely often true.

Our screen saver is an example of an action system which teweinates. Hence,
our interest does not lie in its input/output behavior, Iouts possible traces (sequences
of states).

Actions may optionally be replicated over one or more cartsi@nges of integers,
generating a number of similar actions. We use this mechatisadd more fishes
to our screen saver in the next versimanyFishes (Fig. 2). The action declaration
ACTION MoveRight(i: 0..many-1) generates an action for eaidhetweero andmany-1.
The replicatoi can be used like a constant in the guard and body of the action.

Like actions, procedures may be protected by an optionatididh If the evaluation
of the guard of an action or the execution of its body wouldilEaa call of a disabled
procedure, the action is considered to be disabled. Notathaaiting for the guard to
become true takes place, as is common with monitors or seonagh

3 Type-Bound Actions

Being useful in certain cases, replication is awkward at Wwaen we have to replicate
several actions over the same range, as in Fig. 2. It providemcapsulation of data
and code within a single entity, (pseudo-) dynamic creabbnew entities is cumber-
some and error-prone — even if we added dynamically extémditvays and variable
replication ranges.

Thus, borrowing from the concept of object orientation, wid t&ype-bound actions
to Action-Oberon. The declaratiokCTION (f: Fish) MoveRight leads to the dynamic
creation of an action for each object of typiah that we create. The bound variable
fis called participant and may be used like a variable in thm@aclt corresponds to
the receiver (self) of a type-bound procedure. Figure 3gyivar screen saver using
type-bound actions.

Suppose we want to program some special behavior if two fisfest. We can
do this withACTION (f1, f2: Fish) Meet (Fig. 4). We allow an action to have several
participants, i.efl andf2, of various types. An instance ofeet will be created at

runtime for each tuple of fishes, including double instdities of the same fish. Hence,
we have to explicitly strengthen the guardméet if we do not desire fishes to meet
themselves (no aliasing). Actions wittparticipants lend themselves to symmetrically
expressi-ary communication, which is difficult in most other fornsatis forn > 2.

Action names are treated as global identifiers of their mesliThe complete EBNF
for actions is given in Fig. 5.

If we add actiorMeet to OOFishes, it is not guaranteed thiteet will be executed
whenever two fishes are at the same coordinates becausehi® fisove actions are
also enabled; their guards would have to be strengthenedifet!.

We could imagine several behaviors if two fishes meet. Wedcéar example
change the direction of one fish or we could have them produsabg fish by in-
voking NEW. Without object-orientation, but only plain replicatiome would have to
extend our data arrays and ranges separately to get the ffacte e

4 Deactivation and Deallocation

Consider the case where we would want one fish to eat the dtberdo we remove
the dead fish from our system, that is how do we prevent it frartigpating in actions
and how do we recycle its allocated memory? In Oberon-2,cbbjmay be garbage
collected if they are no longer referenced from one of thelédsamodules. Having
introduced type-bound actions, we cannot simply adopt¢bigdition. Consider the
case where we remove the last reference to an object. SHusldlject still be able
to have one of its type-bound actions executed until it i9gge collected? If so, this

MODULE ManyFishes; ACTION Bounce Right(i: 0..many-1) (* code *)
ACTION BouncelLeft(i: 0..many-1) (* code *)
CONST ACTION MoveUp(i: 0..many-1) (* code *)
many=5; ACTION Move Down(i: 0..many-1) (* code *)
height=10; ACTION BounceUp(i: 0..many-1) (* code *)
width=20; ACTION BounceDown(i: 0..many-1) (* code *)
VAR BEGIN
X, Y: ARRAY many OF INTEGER,; FOR k:=0 TO many-1 DO
right, up: ARRAY many OF BOOLEAN,; x[K]:=k; y[K]:=k;
k: INTEGER; right[k]:=TRUE; up[k]:=TRUE
END
ACTION MoveRight(i: 0..many-1) END ManyFishes.
WHEN right[i] & (x[iJ#width);
BEGIN INC(x]i])
END MoveRight;
ACTION MovelLeft(i: 0..many-1)
WHEN ~right[i] & (x[i]#0);
BEGIN DEC(x]i])
END Moveleft;

Fig. 2. Screen savevlanyFishes

action could again set a pointer to the object and, herevetlive it. On the other hand,

if the object looses its eligibility to participate in aati® with the removal of the last
reference, we unnecessarily restrict the independenceratative objects and — in an
extendible system where we often don’t know the number @fregfces to an object —
loose control over the duration of an object’s active lifeleyWe can prevent an object
from being collected by keeping a reference to it, but we oaenforce an object to

be disabled. Given the undesirable properties of the ‘alijtiextended conditions for

garbage collection, we enumerate the possible solutionghwireserve pointer safety
(no dangling pointers) and summarize their propertiesgn €

1. An object may be collected after the last reference tornistes. Until then, it is
eligible to participate in actions (as above).

2. An object may be collected after the last reference tonisles. An unreachable
object cannot have one of its bound actions executed (agabov

3. An object may only be garbage collected if it is no longésrenced and none of its
bound actions can ever be enabled again. Clearly, the secowiition can in prac-
tice not be verified; hence, no automatic garbage collect@mbe implemented.

4. An objecto is deallocated with a special commaktL(o). The precondition of
KILL(o) is thato is the only reference to the object. As the declaration oétgpund

MODULE OOFishes;

CONST
height=10;
width=20;
many=5;

TYPE

Fish=POINTER TO FishDesc;

FishDesc=RECORD

X, y: INTEGER;
right, up: BOOLEAN
END;

VAR
fi: Fish;
k: INTEGER,;

ACTION (f: Fish) MoveRight
WHEN f.right & (f.x#width);

BEGIN INC(f.x)

END MoveRight;

ACTION (f: Fish) MoveLeft
WHEN “f.right & (f.x#0);

BEGIN DEC(f.x)

END Moveleft;

ACTION (f: Fish) Bounce Right (* code *)
ACTION (f: Fish) BounceLeft (* code *)
ACTION (f: Fish) MoveUp (* code *)
ACTION (f: Fish) Move Down (* code *)
ACTION (f: Fish) BounceUp (* code *)
ACTION (f: Fish) BounceDown (* code *)

PROCEDURE CreateFish(VAR nf: Fish;
X, y: INTEGER; right, up: BOOLEAN);
BEGIN
NEW(nf); nf.x:=x; nfy:=y;
nf.right:=right; nf.up:=up
END CreateFish;

BEGIN
FOR k:=0 TO many-1 DO
CreateFish(fi, k, k, TRUE, TRUE)
END
END OOFishes.

Fig. 3. Screen save®DOFishes

ACTION (f1, f2: Fish) Meet
WHEN (f1.x=f2.x) & (f1.y=f2.y) & (f1#f2);
VAR baby: Fish;
BEGIN
(* do something: i.e.
- change direction
- create new fish
- remove one of the fishes *)
END Meet;

Fig. 4. Type-bound actioMeet

Action = ACTION [Participants] IdentDef [Replicators] [Guard] ";”
DeclSeq [BEGIN StatementSeq] END identifier.

Participants = "(" VarDecl {";" VarDecl} ")".

Replicators = "(" Repl {";” Repl} ")".

Repl = identifier ":” ConstExpr ".."” ConstExpr.

Guard = WHEN Expr.

Fig.5. EBNF of extended action declaration

actions is not restricted to their participants’ declamatmodules (see below), we
stand the danger in an extendible system of prematureigdg@in object. Addition-
ally, an unreferenced object, which will never again have ohits bound actions
enabled, cannot be deallocated and, therefore, createmamieak.

5. The eligibility of an objecb to participate in actions is removed with a special
commandDEACTIVATE(o). Meanwhile, all references are kept. An object can be

|Property 12 34]5]
pointer-safety yes|yes|yegyes|yes|
recycling of memory feasiblges|yes|no |yes|yes|
duality of constructor yes|yes|yegyes|no

and destructor
manual disabling of actiongno |no |no |yes|yes|
without explicit flag
revival impossible no |yes|yegyes|yes
active lifespan no [no |yegyes|yes
independent of references
execution model without [no |no |yegyes|yes|
reference count

safe deallocation yes|yes|yegno |yes|
safe disabling of actions |not|not|yedno?|nd?
avoids memory leaks yes|yes|yegno [no

IDue to dependency on references.
2Due to explicit termination withKILL, respectivelyDEACTIVATE.

Fig. 6. Properties of different deallocation schemes for objedtis type-bound actions

garbage collected, if it has been deactivated and it is ngdoreferenced. We can
interpret this as a special case of situation 3 where eadttings a flaglive which

is initially true, added as an implicit conjunct to each actguard, and can only be
set to false by invokin@EACTIVATE. Creation and deactivation are not duals, as
the latter only revokes an object’s active behavior. As withution 4, we have the
problem of memory leaks.

We can model any of the above choices in the Refinement Cal¢8kct. 6). How-
ever, the computation model is simpler if an object’s eligibto participate in actions
does not depend on it being referenced and the model mushdote a reference
count.

Going back to our consumed fish example, solutions 4 and Slsblve the prob-
lem without introducing a liveness flag and the correspamdumards in all actions. To
keep the theory simple, make recycling of memory feasimeidecluttering of code by
explicit flags, and prevent the introduction of aborts, weade solution 5. Ib has al-
ready been deactivat@EACTIVATE(o) is skip; DEACTIVATE(NIL) is abort. So far, the
loss of duality between creation and destruction and theatere disabling of actions
have not caused any problems in our examples.

The existence of both modules and classes (types and assbtyipe-bound pro-
cedures/actions) in Action-Oberon provides for more cositpnality. Modules are
compile-time abstractions which provide for scoping ang/ mentain several classes,
the latter providing for extensibility and being a run-timlestraction that defines the
structucture and behavior of objects. This separation nEems allows objects to be
bundled to components [23, 21]. In Action-Oberon this givesnore compositionality
on the module level by restricting the outside visibilityaifributes and methods and
still allows for privileged access between more closelgted classes.

Unlike type-bound procedures, type-bound actions may bk in any module
where the participant types are visible, with access to #lddi(instance variables)
according to the Oberon-2 export/import visibility rul@his is needed for defining
actions with participants stemming from different modules

5 Inheritance of Type-Bound Actions

We can add some variety to our aquarium by defining specialskof fishes. If we
create a typshark as subtype oFish (Fig. 7), sharks have all actions of normal fishes
bound to them plus possibly additional ones, $igowTeeth.

We might also want to override (redefine, extend) some agfionsharks, i.e. have
sharks become hungrier whenever they move and eat anothéndis meet when they
are hungry enough. We could create an ac@TION (s: Shark; f: Fish) Meet, if we
permitted overriding. This would immediately raise two Iplems. Consider a fisth
and a sharlo. Should we now have two actiomgeet, the original one for(¢, o) and
the redefined for the reversed tugte ¢) (Fig. 8 a)?

Secondly, this would require multiple dispatch, as acticars have several partic-
ipants. Assume that we also define a subtpenha of Fish and override the meet
action forACTION (f: Fish; p: Piranha) Meet. Which action body would we choose for

TYPE
Shark=POINTER TO SharkDesc;
SharkDesc=RECORD (Fish)
hunger: INTEGER
END;

ACTION (s: Shark) ShowTeeth;
BEGIN (* show teeth *)
END ShowTeeth;

Fig. 7. SubtypeShark

a tuple of a shark and a piranha (Fig. 8 b)? Requiring each oatibn of (normal)
fishes, sharks and piranhas (Fig. 8 c) to be defined is notigabict a modular system
where the different subtypes can be defined in different resdand where modules
are not statically linked. The solution of Chambers and e@avfor multiple dispatch
of methods [10], which requires a designated topmost maatudiflags errors of other
modules when compiling this module, is against the spiribpén systems and inde-
pendent extension [24]. While the first problem could belpailved by introducing a
special notation for symmetrical participants, the secomel has no solution which is
orthogonal to separate extension. Hence, we do not permitiding of actions.

We could allow overriding for actions with only one partiait as this does not
require multiple dispatch and, therefore, does not créaeptoblems described here.
For simplicity’s and orthogonality’s sake we do not. Insteae simulate overriding
of type-bound actions by using overriding of type-boundcedures. Figure 9 shows
how we overrideMoveRight by replacing the body with a single call to a type-bound
procedure. In the implementation EbveRight for Shark, s.MoveRight” is a super-call
to the overridden type-bound procedure which in our casedallao MoveRight for
Fish. Instead of replacing the complete guard with a call to a 4ypend procedure,
we choose in this example to explicitly state the conjunotamon to all extensions.
This form of overriding requires explicit provisions to beade, i.e. introducing the

a) (Fish, Fish) b) (Fish, Fish) c) (F.F)
t

(Shark: Fish) (Fish,‘Piranha) (Shark', Fish) (S,F) (F,S) (F,P) (P,F)

|
|
|
| ~

- ~
| ! ~ -

<~ -
-~

1 |
(¢, 0) (o,9) (o,) (5,8 (P,S) (SP) (PP)
@ : Fish o : Shark F = Fish, S = Shark,
o : Shark nt : Piranha P = Piranha

Fig. 8. Problems of overriding actions with more than one participa

PROCEDURE (f: Fish) MoveRight;
BEGIN INC(f.x)
END MoveRight;

PROCEDURE (s: Shark) MoveRight;
BEGIN s.MoveRight™; INC(s.hunger)
END MoveRight;

PROCEDURE (f: Fish) WantToMove(): BOOLEAN,;
BEGIN RETURN TRUE
END WantToMove;

PROCEDURE (s: Shark) WantToMove(): BOOLEAN;
BEGIN RETURN s.hunger<10
END WantToMove;

ACTION (me: Fish) MoveRight

WHEN me.right & (me.x#width) & me.WantToMove;
BEGIN me.MoveRight
END MoveRight;

Fig. 9. Simulating overriding for actions with only one participan

constant functiofvantToMove which we override for our lazy sharks which don't move
if they are too hungry. However, there is also the argumaattihless the designer has
arranged for it, reuse and overriding never work in pracicghow [17]. Overriding of
type-bound procedures and dynamic type tests give all shateded.

Another approach would be not to inherit actions, i.€hark would not automat-
ically have all actions defined fdiish. This would be orthogonal to polymorphism as
actions are not called explicitly; it would not create theger of invoking undefined
actions as the method deletion mechanism of Smalltalk d@&sause inheritance of
type-bound actions has proved to be desirable in practiedave adopted it in Action-
Oberon. E.g. without inheritance of type-bound actions,weelld have to explicitly
give all the move actions for sharks.

6 A Semanticsfor Type-Bound Actions

In this section we give a formal semantics to type-boundoastiby reducing them
to plain actions. We have four levels to express an actiotesysAction-Oberon with
type-bound actions, Action-Oberon without type-boundbas, action systems, and the
Refinement Calculus. The translation from Action-Oberothaut type-bound actions
to action systems is given by Back and Sere [8], the traasidtiom action systems
to the Refinement Calculus and the mathematical treatmeattain systems is due
to Back, Kurki-Suonio and von Wright [6, 3, 4, 9]. Figure 10pals these three levels
for a sample program. A plain acti®®CTION A WHEN G; BEGIN S END A, translates
to the guarded stateme@t— Swhich is only enabled if5 holds. An Action-Oberon
module with several actions translates to a do loop with aatéenchoice between
the actions. On the Refinement Calculus level, a predicatquare brackets denotes a

MODULE M init; init;

do while G1Vv G2do
ACTION A1 WHEN G1;| Gl1—S1 [G1];S1M[G2);
BEGIN S1 [G2— 2 |od
END A1; od

Sugared Refinement Calculus
ACTION A2 WHEN G2;

BEGIN S2
END A2; init;
(uXe ([G1]; S1M[G2]; 2); XM skip);
BEGIN init [-(G1lvG2)]
END M.
Action-Oberon action systenfRefinement Calculus

Fig. 10. Translation of an Action-Oberon module

guard, which is equivalent teki p if the predicate holds anaagi ¢ otherwise. The
meet (1) denotes the demonic choice, gustands for the least fixpoint. The refinement
calculus level only applies to the input/output, but notite trace semantics.

A type-bound action is defined as follows: There is only orstance of each type-
bound action. The guard implicitly stands for ‘there exéstaple that satisfies the stated
guard’ and the first statement demonically (nondetermaaby) chooses one such tu-
ple. We first use this intuition to sketch a simulation of tlpmund actions in Action-
Oberon without type-bound actions. Thereafter, we alsoigeoa direct translation to
action systems by formalizing this idea.

We keep a data structure of all types and their inheritarletioa as well as a set of
all active objects of each type. We turn each type-boundadtito a plain action of the
same name by replacing the guard by a traversal functiontwhktarns true, if it finds a
tuple of possible participants from the respective setctiv@participants. We add an
additional first statement, which demonically chooses mssible tuple and assigns it
to the participant variables. This is, up to optimizatidrsy the current implementation
works.

Alternatively, we can map type-bound actions directly ®itlaction system equiv-
alent. Using the Refinement Calculus typed higher-ordeicjoge denote the record
types byRy,...,R, and the corresponding pointer types By,...,P,. Records are
represented as tuples and type extension ([width] subdyipineritance) corresponds
to tuple extension. We model the heap as a partial functiemcffonal relation) from
pointers to records and use a boolean flag for each recorditaie whether an object
is active:

heap: P1+...+Ph+NIL + (Ri+ ...+ Ry) x Bool

Initially, heapis empty. To manipulate the sum types (disjoint union), wigngefami-
lies of injection functionsin; : P — P1+ ...+ Py + NIL (also for records), projection
functionsout; : P1+ ...+ Ph+NIL — Pj, and corresponding discriminator functions

10

is; :Ri+...+ Ry — Bool NIL is the one-element typgil} for modelingNIL point-
ers, for which we get the following invarianithy;, nil ¢ dom heap We also define s}
to be the transitive closure ak; with respect to the direct subtype/inheritance relation

(R <: R £'R=RECORD (R) ... END):

isir ' (is; 1) V(IR < RAisT)

In fact, is} corresponds to Oberonl§ statementr IS R, = is} r. Furthermore, we
definedom to return the domain of a partial function. We deffise andsnd as the first
and second projections of a tuple, g, as thekth projection.
We expres;NEW as a family of predicate transformers. For poirpesf Action-
Oberon typeP; we get:
NEW (p) def (Mx: Pj|in; X ¢ dom heape p:= in; X);
heap:= heapJ {p— (in; Or,T)}

The only change tolEW with respect to Oberon-2 is the initialization of the boalea
flag indicating that the object is active: First we demorjcalindicated by the meet
— choose a free location in the heap and assign fi &md then augment the partial
heap function by the mapping fromto the O-record with unspecified values of the
referenced type. To exhibit the fact tHBEACTIVATE only changes the activity flag of
the referenced record, we give it in terms of a relationaftioge < defined for relations
r,s

r<¥sd=ef{(x'—>y) €r|x¢ doms}Us

DEACTIVATEp) &' {p € dom heap;
heap:= heap< {p+— (fst (heapp,F)}

DEACTIVATE asserts — indicated by the braces — that a valid pointer and then sets
the activity flag of the referenced record to false. We can givw the translation for a
type-bound action:

ACTION (p: P;) AWHEN G; BEGIN S END A;
def (Mg € dom heagis} (fst (heap Q) Asnd (heap ge

beginvarp:Pi1+...4+ Py+NIL;p:=(q;G — Send)

The quantified variablg is a logical variable, wheregs which is only visible within
the block bracketed byegin andend, is a program variable which may also appear on
the left hand side of assignments. The action is enable@iétls at least one possible
participant for whichG holds. More formally, the guard and the body of a predicate
transformerS are defined agA = —wp(A,false) andsA= {gA}; A. This allows us to
view a type-bound action as a guarded statement. The gerai@h to actions with
more than one participant is straightforward.

A statement containing a record field access is the sum ofqatedtransformers
over all record, respectively pointer types. Let for exaepbe a pointer to a record

11

whosekth field isx: INTEGER and leth: INTEGER. The assignmerit:=p.x in Action-
Oberon then corresponds to the following predicate transto:
h:=p.x
gef {p € domheap};
(h:=prjx (outs (fst (heapp)))+
st
(h:=prjx (out, (fst (heapp)))+
abort

The properties of the summation operator for predicatatsfoamers were explored by
Back and Butler [5], based on Nauman'’s [20] and Martin’s [¢8fegory theoretical
considerations. Late binding of type-bound proceduresideted analogously.

Hence, we can use type-bound actions in our extended AQlmeron programs
and use their unsugared form for reasoning in the Refinermaoulds or use the above
correspondence to give a sugared form of the relevant infereules.

Interestingly, there are two other ‘natural’ explanatifarsype-bound actions which
give identical semantics:

1. Whenever an object is created, the set of actions is aughéy the correspond-
ing bound actions. Dually, when an object’s eligibility tarficipate in actions is
revoked, the associated actions are removed. This modekgitge as the action
system formalism does not require the set of actions to bstannor finite.

2. We start with an infinite number of objects in a special yeitcreated state and an
infinite number of corresponding actions the guards of wteshthat all participant
are in the created state. Creating an object correspondsataging its state to
created.

7 Redated Work

Our work on Action-Oberon was inspired by the original Acti®beron and DisCo.
Other related work includes Unity, its successor Seusanida number of frameworks
for active objects.

DisCo [16] first introduced type-bound actions. DisCo’s cgpt of ‘inheritance’
corresponds to having a field of the inherited type in our teohogy; hence, there is no
overriding. DisCo does not have any type-bound proceduneking it lack any form
of dynamic binding. The language contains no loops or réaar§&Suarded procedures
do not exist.

In Unity [11] ‘actions’ are restricted to (quantified) mylke deterministic assign-
ments, and the set of actions must be finite and constant; ewttier hand, it has
fairness and progress properties. We are not aware of agylike type-bound actions
in Unity. Due to the lack of hondeterminism in assignments #re restriction to a fi-
nite constant set of ‘actions’ none of our explanationsypetbound actions could be
applied in Unity.

Seuss [12] gives the notion of boxes which correspond to lojgcbtypes and clones
which are instantiations thereof. Boxes have local vaeafhon-exported instance vari-
ables), actions (type-bound actions), and procedureg{yund procedures) which

12

may also be partial (guarded). The set of clones is stati@l8yrequiring all actions to

terminate, Seuss can provide fairness. As all actionseaewiithin one clone, there is no
possibility to create an action with more than one participAs in our model, an action

calling a disabled procedure fails. However, the disabledgdure can still change the
state of the callee, by executing the code associated tgyative alternative’.

In IP [13], processes are the main structuring elementeraltan implementation
details arising from the target machine’s architectureltidarty interactions provide
for communication, synchronization, and agreement. RsE®can only access non-
local variables within interactions. Interprocess comiuation abstraction is realised
in form of teams which facilitate dynamic process creatitgams are often used anal-
ogously to type-bound actions; roles in teams correspopditiicipants. Conflict prop-
agation in coordinated enrolement causes lookahead camgusimilar to guarded
procedures.

Formalisms and languages for active objects are charaeteby different objects
executing in parallel. New objects can be created dynatyic@bjects communicate
by message passing, which is the only way to have an objecirdething. Generally,
objects do not contain any actions. Triggered proceduredbject-oriented databases
are a notable exception to this rule; however, the triggégedrded) procedures are
usually executed as part of the transaction setting off tigger. Due to the lack of
actions, the condition for garbage collection is simplehedility, respectively knowl-
edge of an object’s mail addres¢-ary communication between objects can generally
not be expressed in a symmetric fashion. Hewitt’s actor mjd@e 1] was the first for-
mal model of active objects. More recently, CCS andrtealculus have been used to
give a semantics to members of the POOL family [2, 18, 25].

8 Conclusions

We have extended the Action-Oberon language with type-thagtions encapsulating
both data and actions in objects by combining the principfesbject-orientation and
action systems. Actions with participants provide a symmetrical mechanism to ex-
pressn-ary communication between objects. Of the solutions feabling an object
as participant of any action and recycling its allocated memwe found the explicit
DEACTIVATE command to have the most desirable properties. Due to thiiatdoe-
tween multiple dispatch and independent extensibilitgrading of type-bound actions
is prohibited. Overriding of type-bound procedures andadlyit type tests provide for
selective overriding. By reducing type-bound actions tairplactions they are given
a formal semantics in the Refinement Calculus framework hitows for concise
mathematical reasoning.

We are interested in increasing our collection of examplasifasting the useful-
ness of type-bound actions. Simulation of mechanical sysis a very promising ap-
plication. We are also interested in adding fairness angtiorities to Action-Oberon.
Additionally, we are trying to show the value of object-epsalation for atomicity re-
finement of actions and for synchrony-loosening refinements

We would like to thank Wolfgang Weck, Jim Grundy, Kaisa Sexed Philipp
Heuberger for a number of clarifying and fruitful discusgan the topic of this paper.

13

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.
22.

23.

. Gul Agha. ACTORS: A Model of Concurrent Computation in Distributedt&ns MIT

Press, 1986.

. Pierre America. Issues in the design of a parallel oljeietated language-ormal Aspects

of Computing1(4):366—411, 1989.

. R.Back. Refinement calculus, part II: Parallel and reagirograms. IiBtepwise Refinement

of Distributed Systems: Models, Formalisms, CorrectnessceedingsLNCS 430, Springer
Verlag, 1990.

. R. Back. Refinement of parallel and reactive programs. IBiy, editor,Program Design

Calculi, NATO ASI Series, pages 73-92. Springer-Verlag, 1993.

. R.Back and M. Butler. Exploring summation and productrapms in the refinement calcu-

lus. Technical Report on Computer Science & Mathematics,/SéNo 152,,&bo Akademi,
1994,

. R. Back and R. Kurki-Suonio. Distributed co-operatiothvdction systemsACM Transac-

tions on Programming Languages and Systems 10:513-1%88.

. R. Back and K. Sere. Action systems with synchronous canication. InIFIP TC 2

Working Conference on Programming Concepts, Methods ancuCdPROCOMET '94)
pages 107-126. Elsevier, 1994.

. R. Back and K. Sere. From action systems to modular systémBroceeding of Formal

Methods Europe '94LNCS 873, Springer Verlag, 1994.

. R. Back and J. von Wright. Trace refinement of action systeimn CONCUR 94 pages

367-384. LNCS 836, Springer Verlag, 1994.

Craig Chambers and Gary T. Leavens. Type checking andle®fbr multi-methods. Tech-
nical Report #95-19, lowa State University, August 1995.

K. M. Chandy and J. MisraParallel Program Design — A FoundationAddison Wesley,
1988.

K.M. Chandy. A discipline of multiprogramming. Availabfrom the PSP group’s ftp site
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipling,piine 1996.

N. Francez and I. Formarinteracting Processes: A Multiparty Approach to Coordiedt
Distributed ProgrammingACM Press, 1996.

Eric J. Hedman. Action-Oberon. Master's the8isp Akademi University, 1995.

Carl Hewitt. Viewing control structures as patterns agging messageirtificial Intelli-
gence 8(3), 1977.

H.-M. Jarvinen and R. Kurki-Suonio. DisCo specificatianguage: Marriage of action and
objects. InProceedings of 11th International Conference on Distr#ab€omputing Systems
pages 142-151, Arlington, Texas, 1991. IEEE Computer 8oPiess.

R.E. Johnson and B. Foote. Designing reusable claseesnal of Object-Oriented Pro-
gramming June 1:2 1988.

Cliff B. Jones. Arrcalculus semantics for an object-based design notatioRrdceedings
of CONCUR 93pages 158-172. LNCS 715, Springer Verlag, 1993.

C.E. Martin.Preordered Categories and Predicate TransforméthD thesis, Programming
Research Group, Oxford University, 1991.

D.A. Naumann.Two-Categories and Program Structure: Data Types, Refinei@alculi,
and Predicate Transformer$hD thesis, University of Texas at Austin, 1992.

Oberon microsystems, In@beron/E http://www.oberon.ch, 1995.

P. Mdssenbock and N. Wirth. The programming languager@n-2. Structured Program-
ming 12:179-1951991.

Clemens A. Szyperski. Import is not inheritance — Why wechboth: Modules and classes.
In Proceedings of ECOOP 9pages 19-32. LNCS 615, Springer Verlag, 1992.

14

24. Clemens A. Szyperski. Independently extensible systesoftware engineering potential
and challenges. IRroceedings of the 19th Austalasian Computer Science Gorde, Mel-

bourne 1996.
25. D.J. Walker. Objects in tha-calculus. Information and Computatignl16(2):253-271,

1995.

15

