

Proceedings of the 2nd International Workshop on

Logical Aspects of Fault-Tolerance (LAFT)

In conjunction with LICS’11

20 June 2011, Toronto, Canada

!"#$""%!"&'()'#*"+#%'&)%,"-%.'/0'+-%12)345

This book constitutes the refereed proceedings of the 2nd International Workshop on Formal

Aspects of Fault-Tolerance, LAFT 2011, held in Toronto, Canada, in June 2011.

The 3 revised full papers presented together with 3 invited talks were carefully reviewed and

selected from submitted papers. The papers are organized in topical sections on synthesis and

transitions systems, fault-tolerant distributed systems, and verification.

The international program committee included:

Roderick Bloem (Technical University of Graz, Austria)

Borzoo Bonakdarpour (co-chair, University of Waterloo, Canada)

Pablo Castro (University of Rio Cuarto, Argentina)

Stephane Devismes (VERIMAG/UJF, France)

Ali Ebnenasir (Michigan Technological University, USA)

Felix Freiling (University of Mannheim, Germany)

Alain Girault (INRIA-Grenoble, France)

Gregor Goessler (INRIA-Grenoble, France)

Mohamed Gouda (University of Texas at Austin, USA)

Barbara Jobstmann (VERIMAG/CNRS, France)

Sandeep Kulkarni (Michigan State University, USA)

Alexei Iliasov (University of New Castle, UK)

Tom Maibaum (co-chair, McMaster University, Canada)

Oded Maler (VERIMAG/CNRS, France)

Leo Marcus (The Aerospace Corporation, USA)

Paul Miner (NASA Langley Research Center, USA)

Chris Myers (University of Utah, USA)

Franck Petit (Paris 6, France)

Michel Raynal (IRISA, France)

Ulrich Schmid (Technical University of Vienna, Austria)

Sandeep Shukla (Virginia Tech., USA)

Neeraj Suri (Technical University of Darmstat, Germany)

1

Efficient Computation of Most Permissive

Observers in Dynamic Sensor Activation

Problems

Eric Dallal1 and Stéphane Lafortune2

1 University of Michigan
Department of EECS
edallal@umich.edu

2 University of Michigan
Department of EECS

stephane@eecs.umich.edu

Abstract. We consider the problem of dynamic fault diagnosis for dis-
crete event systems modeled by finite state automata under the con-
straint that any fault must be diagnosed within no more than K + 1
events after its occurrence, a property called K-diagnosability. We begin
by defining an appropriate notion of information state for the problem
and defining dynamic versions of the projection operator and informa-
tion state evolution. We continue by showing that the problem can be
reduced to that of state disambiguation, then we define the most permis-
sive observer structure that contains all the solutions to the problem, and
we recall previous results showing that maintining the K-diagnosability
property is equivalent to satisfying the extended specification of the state
disambiguation problem. We then prove a monotonicity property of the
extended specification, and show that this allows us to reduce our infor-
mation state, which in turn allows us to significantly reduce the com-
plexity of our solution. Finally, we show how to efficiently compute the
extended specification by reducing the problem to maximal weight paths
on a particular graph and provide an algorithm for constructing the most
permissive observer.

Keywords: dynamic fault diagnosis, discrete event systems, sensor se-
lection

1 Introduction

The problem under consideration in this work is that of dynamic fault diagnosis
for discrete event systems modeled by finite state automata. We assume that
there are sensors capable of detecting event occurrences for a subset of the events
of the automaton model of the system. Among those events that are monitorable,
it is further assumed that there is a subset whose sensors are costly to operate.
This may be because of limited availability of energy or bandwidth, out of a
desire to minimize communication for security reasons, or for any other reason.

2

2 Eric Dallal and Stéphane Lafortune

We use the sensor outputs and system model to diagnose past fault occurence.
In this work, we consider the K-diagnosability property, which stipulates that
faults must be diagnosed within no more thanK+1 events after their occurrence.
It is assumed that we do not have sensors capable of detecting these fault events.
Thus, the structure of the problem presents a trade-off: if sensors are turned on
too infrequently, we may fail to diagnose the fault in time; if sensors are turned on
too frequently, fault diagnosis will be needlessly costly. The problem is dynamic
because we assume that sensors can be turned on or off at different points in the
system’s execution. A controller in this problem is (in the most general sense)
a function mapping histories of past control decisions and observed events to a
set of sensor activations.

Other works to have considered the problem of sensor selection under some
diagnosability constraint include [1, 6, 7]. In [6], the emphasis is on finding a
single dynamic controller that solves the diagnosability problem optimally ac-
cording to a discounted numerical cost criterion. They use an information state
based approach in combination with dynamic programming. In [1], the solution
concept of most permissive observer (MPO) is introduced, which they use as a
basis for optimization according to a non-discounted numerical cost criterion.
Instead of an information state based approach, they use results from game the-
ory (particularly saftey games) and games on graphs. Finally, [7] considers the
decentralized version of the dynamic diagnosis problem. They use a “window-
based partition” approach to obtain polynomial time algorithms for computing
solutions in the centralized and decentralized cases.

In previous work [2], we redefined the MPO structure originally defined in [1]
by developping it through an information state based approach similar to that
used in [6]. We proved in that paper that our information state was sufficient
to fully determine the set of all control decisions (i.e., sensor activations) that
maintained the K-diagnosbility property. Our goals in redefining the MPO were
to obtain a more readily interpretable solution, to better study informational
properties of the MPO, and to have a method that could more easily be adapted
to other dynamic optimization problems in discrete event systems. In a recent
technical report [3], we showed that the fault diagnosis problem under consid-
eration could be reduced to a state disambiguation problem. We used this to
prove a number of monotonocity properties about the MPO and, most notably,
we showed that satisfying the K-diagnosability property was equivalent to sat-
isfying the extended specification of the state disambiguation problem. This will
be discussed in Sect. 4. In this paper, we prove a monotonicity property of the
extended specification, and show how this allows us to reduce our information
state, without losing any “useful” information for the purpose of diagnosis (see
Sect. 5). Significantly, this results in a substantial reduction in the complexity
in size of our solution. Our focus then moves to algorithmic aspects of the MPO
in Sect. 6. In Subsection 6.1, we show how to efficiently compute the extended
specification. In conjuction with a linear time algorithm for computing the re-
duced unobservable reach (see Def. 7 in Sect. 3 and Def. 20 in Sect. 5) presented
in Appendix 1, these new results allow for a very efficient algorithm for comput-

3

Sina
Stamp

Efficient Computation of Most Permissive Observers 3

ing satisfactory control decisions that is used in an algorithm for computing the
MPO, presented in Subsection 6.2.

The remainder of this paper is organized as follows. In Sect. 2, we recall
definitions related to our notion of information state. In Sect. 3, we formally
define the K-diagnosability and state disambiguation problems, and show how
the former can be mapped to the latter. In Sect. 4, we define the extended
specification and very briefly summarize the main results of [3]. Sections 5, 6
and Appendix 1 were discussed in the preceding paragraph. Finally, we conclude
in Sect. 7. Appendix 2 contains the proofs of our new results.

2 Towards an Information State

We begin by defining the dynamic diagnosability problem more precisely. As-
sume that the system to be diagnosed is modeled by a deterministic finite state
automaton. We use the standard deterministic model that has been adopted in
the literature on supervisory control [4] and diagnosis [5] in discrete event sys-
tems. Specifically, G = (X,E, f, x0), where X is the set of states, E is the set of
events, f : X×E → X is a partial transition function, and x0 is the initial state.
We denote by L(G) the language of automaton G, which is the set of all strings
of events that can occur through f . The set of events E is partitioned into four
categories: E = Eo ∪ Es ∪ Euo ∪ Ef , where Eo is the set of freely monitorable
events (the set of events for which we have zero cost sensors), Es is the set of
costly monitorable events (the set of events for which we have costly sensors),
Euo is the set of non-faulty unobservable events (the set of non-faulty events for
which we do not have sensors), and Ef is the set of fault events whose occurrence
we would like to diagnose. In this work, we assume that Ef is a singleton.

Our goal is to dynamically diagnose the occurrence of the fault event ef ∈ Ef

within no more than K + 1 events after the occurrence of the fault. Note that
this is K +1 events of any kind, whether we can observe the events or not. This
is referred to as the K-diagnosability property. A controller for this problem
is a function that chooses a set of events to monitor for each possible past
history of control decisions and observed events (see Def. 4). We wish to find all
controllers that allow us to maintain the K-diagnosability property throughout
system execution.

This section provides a number of definitions related to defining the infor-
mation state and its evolution. Many of these definitions were contained in our
two previous papers [2], and [3].

Definition 1 (Augmented State). The augmented state is a pair (x, n) ∈
X ×{−1, 0, 1, . . .}, where, n represents a “count” of the number of events (of all
kinds) that have occurred since a fault event occurred, or −1 if no fault event
has occurred. The set of such states is denoted by X+ = X×{−1, 0, 1, . . .}. The
initial augmented state is x+

0 = (x0,−1). For any augmented state x+ ∈ X+, let
the state and count components be denoted by S(x+) and N(x+), respectively,
so that x+ = (S(x+), N(x+)). ⊓⊔

4

Sina
Stamp

4 Eric Dallal and Stéphane Lafortune

Definition 2 (Augmented Transition Function). We next define the aug-
mented transition function g : X+ × E → X+ on augmented states that is
induced by the automaton G = (X,E, f, x0) and the partition of event set E.
Formally, for any u = (xu, nu) and event e, we have:

– Case 1: If nu = −1 and e /∈ Ef then g(u, e) = (f(xu, e),−1).
– Case 2: If nu = −1 and e ∈ Ef then g(u, e) = (f(xu, e), 0).
– Case 3: If nu ≥ 0 then g(u, e) = (f(xu, e), nu + 1).

For any U ⊆ X+, let g(U, e) =
⋃

u∈U g(u, e). This definition is extended to
strings (rather than merely events) in the usual way. Finally, we define g(s) =
g(x+

0 , s) for brevity. ⊓⊔

Remark 1 (Multiple fault occurrences in an execution). In our past work in this
domain, we defined a fourth case in the augmented transition function. Case
4 stated that, in the event of multiple fault occurrences, there would be two
transitions, one corresponding to a count of zero and one corresponding to
an increment of the count. That is, if nu ≥ 0 and e ∈ Ef , then g(u, e) =
{(f(xu, e), 0), (f(xu, e), nu + 1)}. As a consequence of this, g was defined as

g : X+ × E → 2X
+

. We ultimately determined that this added irrelevant infor-
mation for the purposes of maintaining K-diagnosability, and that none of the
theorems presented relied on this special case. However, the change in the form
of g does require us to alter a few definitions. ⊓⊔

Definition 3 (Run). A run ρ of length n is defined as a sequence C0, e0, . . . , Cn−1, en−1

of control decisions or sensor activations (the Ci’s, which are subsets of events
to monitor) and observed events (the ei’s). Since the events are observed, they
must be among the monitored events. That is, ei ∈ Ci, for all i = 0, . . . , n−1. On
the other hand, the strict alternation of control decisions and observed events
reflects the assumption that control decisions are only changed upon the ob-
servance of an event. Denote by Rn the set of runs of length n. Finally, let
ρ(k) = C0, e0, . . . , Ck−1, ek−1 denote the subsequence of ρ of length k. ⊓⊔

Definition 4 (Admissible Controller). An admissible controller is a sequence
C = (C0, C1, . . .) of functions Cn : Rn → 2E , n = 0, 1, . . . from runs to control
decisions that satisfies the following two conditions:

1. Cn(ρ) ⊇ Eo for all ρ ∈ Rn and all n = 0, 1, . . . (Cn includes the set of events
that are always monitored).

2. Cn(ρ)∩(Euo∪Ef) = ∅ for all ρ ∈ Rn and all n = 0, 1, . . . (Cn cannot include
any event that is unobservable, whether faulty or non-faulty). ⊓⊔

Note that Cn is used to denote both the controller and the control decision.
Hereafter, the context will make it clear which is which.

Definition 5 (Information State). An information state (IS) is a subset S ⊆

X+ of augmented states. We denote by I = 2X
+

the set of information states.
⊓⊔

5

Sina
Stamp

Efficient Computation of Most Permissive Observers 5

Definition 6 (Information State Based Controller). An information state
based controller (or IS-controller) is a function C : I → 2E that satisfies the two
conditions of an admissible controller (i.e., C(i) ⊇ Eo and C(i)∩ (Euo ∪Ef) = ∅
for all i ∈ I). ⊓⊔

Constructing an observer for an automaton and a fixed set of unobservable
events is a relatively simple task. To construct the observer when the set of
observable events is a dynamic control decision, we must explicitly model the
effect of the controller on the evolution of the information state.

Definition 7 (Total Observer). The total observer is defined as a directed
bipartite graph (Y ∪Z,A). Here, Y is the set of information states (i.e., Y = I),
Z is the set of information states augmented with monitored event decisions (i.e.,
Z = I × 2E), and A is the set of edges in the graph. A Y state is an information
state in which a control decision is taken and a Z state is a pair consisting of an
information state and a set of monitored events, in which an observable event
occurs, among those in the current set of monitored events. Thus, any run results
in the alternation between Y and Z states. The set A contains all transitions
from Y states to Z states (all admissible control decisions) and all transitions
from Z states to Y states (all observable events). The initial Y state is just the
initial information state, i.e. y0 = {x+

0 }. Specifically, a transition from a Y state
to a Z state represents the unobservable reach. As a transition from a Z state
to a Y state occurs upon the observance of a monitored event, it is necessary for
each Z state to “remember” the set of monitored events from the Y state that
led to it. Let I(z) and C(z) denote z’s information state and control decision
components, respectively, so that z = (I(z), C(z)). Formally, (y, z) ∈ A, labeled
with C(y) if:

I(z) = UR(y, C(y)) =

{

v ∈ X+ : (∃u ∈ y)(∃t ∈ (E \ C(y))∗)
s.t. v = g(u, t)

}

(1)

=
⋃

u∈y

⋃

t∈(E\C(y))∗

g(u, t) (2)

C(z) = C(y) (3)

where g(·, ·) is the augmented transition function. In words, this means that
I(z) is the set of augmented states reachable from some augmented state of
the preceding Y state through some string of unmonitored events, and that
C(z) is the set of monitored events chosen in the preceding Y state. We write
hY Z(y, C(y)) = z. Formally, (z, y) ∈ A, labeled with e ∈ C(z) if:

y = {v ∈ X+ : (∃u ∈ I(z)) [v = g(u, e)]} (4)

=
⋃

u∈I(z)

g(u, e) (5)

In words, this means that y is the set of augmented states reachable from some
augmented state of the information state component of the preceding Z state

6

Sina
Stamp

6 Eric Dallal and Stéphane Lafortune

through the single event e. As before, we write hZY (z, e) = y. The initial state
of the system is the Y state corresponding to the initial information state, i.e.,
y0 = {x+

0 }. ⊓⊔

Definition 8 (Y and Z State Controller Induced Information State
Evolution). Given a controller C, we define ISY

C (y, s) to be the Y state that
results from the occurrence of string s, when starting in Y state y. This can be
computed as follows:

ISY
C (y, ε) := y

ISY
C (y, e) :=

{

hZY (hY Z(y, C(y)), e) if e ∈ C(y)
y if e /∈ C(y)

ISY
C (y, es) := ISY

C (ISY
C (y, e), s)

(6)

For brevity, we define ISY
C (s) := ISY

C (y0, s). We define ISZ
C (z, s) analogously:

ISZ
C (z, ε) := z

ISZ
C (z, e) :=







hY Z(y
′, C(y′))

where y′ = hZY (z, e)
if e ∈ C(z)

z if e /∈ C(z)
ISZ

C (y, es) := ISZ
C (IS

Z
C (z, e), s)

(7)

As before, we define ISZ
C (s) := ISZ

C (z0, s), where z0 = C(y0) (which is well
defined for a fixed controller). ⊓⊔

For a fixed set of monitored events, it is a trivial task to define the projection
of a string. When the set of monitored events changes dynamically along the
string’s execution, in a way that depends on the particular controller C, it is
necessary to define a controller induced projection.

Definition 9 (Controller Induced Projection). Given a controller C, we
define PC(z, s) as the string t that is observed upon the occurrence of the string
s, when starting in Z state z. This can be computed as follows:

PC(z, ε) := ε

PC(z, e) :=

{

e if e ∈ C(z)
ε if e /∈ C(z)

PC(z, es) :=

{

e.[PC(z
′, s)] if e ∈ C(z)

PC(z, s) if e /∈ C(z)
where z′ = hY Z(y

′, C(y′)) and y′ = hZY (z, e)

(8)

For the last case, the first argument of PC must be updated with the new Z
state. If the event e is not monitored, then the system remains within the same
unobservable reach, and hence z remains the same. If e is observed, then we
must first determine the Y state to which the system transitions to, and then
determine the next Z state given the Y state and the controller C. For brevity,
we define PC(s) := PC(z0, s). ⊓⊔

7

Sina
Stamp

Efficient Computation of Most Permissive Observers 7

Remark 2 (IS-Controllers vs. General Controllers). Obviously, the total observer
is defined based on the information state, since the monitoring decision taken
at any point in time is a function of the information state. It must be noted
that, however, the functions hY Z and hZY are well defined without assuming
that that the controller is information state based. Indeed, we may simply define
them in terms of the run ρ = C0, e0, . . . as follows:

I(zk) = {v ∈ X+ : (∃u ∈ yk)(∃t ∈ (E \ Ck)
∗) s.t. v ∈ g(u, t)} (9)

C(zk) = Ck (10)

yk+1 = {v ∈ X+ : ∃u ∈ I(zk) s.t. v ∈ g(u, ek)} (11)

For any given run ρ = C0, e0, . . ., this leads to a sequence y0, z0, y1, z1, Thus,
the controller induced information state evolution and controller induced pro-
jection are also well defined without assuming that the controller is information
state based. In fact, these definitions need only be modified by changing y to
yk, z to zk, and both C(y) and C(z) to Ck. This also shows that both the Y
and Z states satisfy the two properties of proper information states. First, they
are both uniquely determined by the past sequence of observations (the ei’s)
and control decisions (the Ci’s). Second, the next Y or Z state is a function
of the current Y or Z state, the control decision, and the observation, which is
accomplished through the hY Z and hZY functions. ⊓⊔

Remark 3 (Feasible run). Remark 2 allows us to define the concept of a feasible
run by stating that a run is feasible if and only if ∃x ∈ S(I(zk)) : f(x, ek) is
defined, for k = 0, 1, In words, this means that a run is feasible if event ek
can occur from some state in the unobservable reach zk (i.e., event ek is feasible),
for all k. This definition is in a remark rather than a definition of its own because
none of the other definitions require a run to be feasible: a non-feasible event
leads to an empty information state, from which everything remains well defined
(we will simply have an empty information state from that point on). ⊓⊔

Lemma 1 (Relation between projection and information state). For
any string s and controller C, I(ISZ

C (s)) = {v ∈ X+ : ∃s′ s.t. PC(s) = PC(s
′)∧

v = g(s′)}.

This lemma shows the relationship between the string-based information
state defined in the first sections of [6] and our information state (which is
the analog of the information state they use when considering general untimed
cyclic automata, adapted to the problem of K-diagnosability). The first kind
of information state, which consists of the sets of undifferentiable strings, is in
some sense the most general form of information state for a partially observed
DES. Our information state is more compact but less general in two ways. First,
by being sets of augmented states rather than strings, there exists the possibility
that, for some string s, controller C and Z state z, u ∈ g(s) and u ∈ I(z), but
ISZ

C (s) 6= z (the same is true for Y states as well). This is because a particular
augmented state may be reached through many different strings (i.e., many paths
in the automaton G+), and these strings need not all have the same projection

8

Sina
Stamp

8 Eric Dallal and Stéphane Lafortune

or lead to the same information state. Second, a particular Y or Z state may be
reached through different strings that do not even share a common projection.
This occurs since there may be multiple paths to a particular Y or Z state in
the total observer, even if we restrict the total observer to the particular control
decisions made by some controller C. As we will see later on, this refinement of
the information state makes no difference when determining the set of control
decisions that maintain the K-diagnosability condition.

3 K-Diagnosability, State Disambiguation, and the Most

Permissive Observer

This section consists of three parts. In the first part, we formally define the
property of K-Diagnosability. In the second part, we briefly describe the state
disambiguation problem and show that the K diagnosability property can be
formulated as a state disambiguation problem. Finally, we define the Most Per-
missive Observer (MPO) in the last part.

Definition 10 (K-Diagnosability). We recall the standard definition of diag-
nosability from [5]. Adapted for a fixedK and the context of a dynamic observer,
we say that a system G is K-diagnosable given controller C if there do not exist
a pair of strings sY , sN ∈ L(G) such that:

1. sY has an occurrence of a fault event f ∈ Ef and sN does not.
2. sY has at least K + 1 events after the fault event f
3. PC(sY) = PC(sN), that is, the observed string of events is identical given

the controller.

We also say that a system G is K-diagnosable if there exists a controller C such
that G is K-diagnosable given controller C. We call such a controller safe. ⊓⊔

Definition 11 (State Disambiguation Problem). The state disambiguation
problem is defined as a triple 〈Gsd, Σo, Tspec〉, where Gsd = (Xsd, Σ, fsd, xsd

0) is
an automaton, Σo ⊆ Σ is a set of monitorable events, and Tspec ⊆ Xsd × Xsd

is a set of pairs that must not be confused. The state disambiguation problem
consists of finding a controller C for Gsd, which chooses sensors to activate,
such that the state of Gsd is never confused between any pair of states in the
specification Tspec. The controller C is defined as a sequence of functions from
runs to control decisions, as in the previous section. That is, C = (C0, C1, . . .),
where Cn : Rn → 2Σo , for n = 0, 1, Using the notation defined in the
previous section of this work, we can define the problem formally as that of
finding a controller C such that:

s1, s2 ∈ L(G) : PC(s1) = PC(s2)⇒ (f(x0, s1), f(x0, s2)) /∈ Tspec . (12)

⊓⊔

To formulate the K-diagnosability problem as a state disambiguation prob-
lem, we specify each of Gsd, Σo, and Tspec:

9

Sina
Stamp

Efficient Computation of Most Permissive Observers 9

– Gsd = G+
K which is the automaton G+ = (X+, E, g, x+

0), but restricted
to augmented states having counts no greater than K + 1, where G+ is
the automaton defined over augmented states (i.e., using the augmented
transition function g of Def. 2).

– Σo = Eo ∪ Es is the set of monitorable events (we assume that C is an
admissible controller).

– Finally, we define Tspec as:

Tspec = {(u, v) ∈ X+ ×X+ : N(u) = −1 ∧N(v) = K + 1} . (13)

Comparing definitions 10 and 11, we see that this state disambiguation problem
can be satisfied if and only if there do not exist two strings s1 and s2 with
PC(s1) = PC(s2), N(g(x+

0 , s1)) = −1, and N(g(x+
0 , s2)) = K + 1. Recall that

N(g(x+
0 , s)) is equal to −1 if there is no fault in s, and the number of events since

a fault event otherwise. If we take s1 and s2 in this problem to correspond to sN
and sY of definition 10, we see that the two problems are identical, except for
the fact that, in the definition of K-diagnosability sY must have at least K + 1
events after a fault, whereas in Tspec the string s2 has exactly K+1 events after
a fault. To see that this makes no difference, suppose that there exist two strings
sN and sY that violate K-diagnosability and that sY has r events after a fault.
Then we may simply truncate sY to obtain an s′Y with exactly K + 1 events
after a fault. If this shortens the projection PC(sY), we can shorten sN as well
so that PC(s

′
Y) = PC(s

′
N).

Definition 12 (K-diagnosable binary function for information states).
An information state i ∈ I violatesK-diagnosability if there exist two augmented
states x+

1 , x
+
2 ∈ i where x+

1 = (x1,−1) and x+
2 = (x2, n) for some n > K. In

light of the definition of Tspec, we define the K-diagnosibility binary function for
information states DI : I → {0, 1} as:

DI(i) =

{

0, ∃u, v,∈ I : (u, v) ∈ Tspec

1, else
(14)

In words, DI(i) = 1 if and only if i does not violate the K-diagnosability prop-
erty. ⊓⊔

Theorem 1 (Formulation of the K-diagnosability property through
the information state). Controller C maintains K-diagnosability if and only
if DI(I(z)) = 1, for all reachable Z states. Mathematically:

∃s ∈ L(G) : z = ISZ
C (s) ∧ ∃u, v ∈ I(z) s.t. N(u) = −1 and N(v) = K + 1

⇔ ∃sY , sN ∈ L(G) : PC(sY) = PC(sN), N(g(sN)) = −1 and N(g(sY)) = K + 1.

The above theorem has two consequences. The first is that we are justified
in using an information state based approach with our information state to
find safe controllers for the K-diagnosability problem. The second consequence

10

Sina
Stamp

10 Eric Dallal and Stéphane Lafortune

is that we have a test for determining whether or not a particular controller
is safe, in terms of the Z states that are reachable. Specifically, they must all
satisfy DI(I(z)) = 1. Mathematically, we can write that controller C is safe if
DI(I(IS

Z
C (s))) = 1, for all s ∈ L(G). A minor additional consequence is that we

can consider only Z states. This could have been guessed from the definition of
the Z state as the unobservable reach of the preceding Y state, from which it
follows that, for any y and any C(y), y ⊆ I(z) for z = hY Z(y, C(y)).

Definition 13 (K-diagnosibility binary functions for Y and Z states).
The purpose of defining the Most Permissive Observer is to capture all controllers
that satisfy the K-diagnosability property. In light of the preceding theorem and
the fact that we can deterministically compute future Z states from the current
Y or Z state and the the sequence of future control decisions and observed events,
we see that we can speak not only of safe controllers but also of safe information
states. Specifically, we say that Y -State y is safe if it currently satisfies the K
diagnosability property and there exists some controller that maintains the K-
diagnosability property for all future executions of the system. Since we can
choose control decisions but not event occurrences, we therefore define two K-
diagnosability binary functions, DY : Y → {0, 1} and DZ : Z → {0, 1} (similar
to DI , but for Y and Z states) as follows:

DY (y) =

{

1 if DI(y) = 1 and ∃C(y) : DZ(hY Z(y, C(y))) = 1
0 else

(15)

DZ(z) =

{

1 if DI(I(z)) = 1 and DY (hZY (z, e)) = 1 ∀e ∈ C(Z)
0 else

(16)

⊓⊔

From these definitions, we can say that G is K-diagnosable if and only
DI(y0) = 1, and ∃C(y0) : DI(hY Z(y0, C(y0))) = 1, and ∃C(y0)∀e0 ∈ C(y0) :
DI(hZY (hY Z(y0, C(y0)), e0)) = 1, etc... Put in terms of the information state
evolution, we can equivalently say that G is K-diagnosable if and only if ∃C
such that ∀s ∈ L(G), DI(IS

Y
C (s)) = 1 and DI(I(IS

Z
C (s))) = 1 (in practice,

the second condition is sufficient since y ⊆ I(z) whenever z = hY Z(y, C(y))).
Thus the alternation of existential and universal quantifiers implicitly captures
the idea that there must exist some controller such that some condition (namely
K-diagnosability in this case) must hold for all possible strings of events. This
is the same conclusion that is reached from Thm. 1.

Definition 14 (Safe Control Decision). The above development allows us
to define safe control decisions in terms of Y and Z states. Specifically, we
can say that control decision C(y) is safe in information state Y if and only if
DZ(hY Z(y, C(y))) = 1, since we know that there exists a future sequence of safe
control decisions in this case. ⊓⊔

The above definition has the consequence that after any run ρ resulting in Y
state y, the set of safe control decisions is uniquely determined by the information

11

Sina
Stamp

Efficient Computation of Most Permissive Observers 11

Fig. 1. A finite state automaton. Events are classified as follows: Eo = ∅, Es = {a, b},
Euo = {t}, and Ef = {f}.

state y. Thus there is no loss of generality in using information state based
controllers. A further consequence of this is that a safe run-based controller is
any controller that always makes control decisions within these safe sets. Finally,
we can also conclude that the existence of a safe run-based controller implies the
existence of a safe information state based controller.

Definition 15 (Fault diagnosis binary function). Define the fault diagnosis
binary function DF : Y → {0, 1} as follows:

DF (y) =

{

1 if N(u) 6= 1 ∀u ∈ y
0 else

(17)

In words, this means that DF (y) = 1 if and only if all possible executions
s ∈ L(G) resulting in information state y had a fault occurrence. A Y state y
satisfying DF (y) = 1 is called diagnosed. ⊓⊔

Definition 16 (Most Permissive Observer). The most permissive observer
is defined as the K-diagnosable connected subgraph of the total observer that
includes state y0, together with an additional state F (called the “fault detected”
state). By the K-diagnosable subgraph of the total observer, we mean the sub-
graph of the total observer consisting only of K-diagnosable Y and Z states, and
the transitions between them. The recursive structure of DY therefore captures
all “safe” control decisions C(y), for all y ∈ Y (and only safe control decisions),
where by safe we mean that these decisions do not violate K-diagnosability. The
single state F is used to denote any state where a fault has been diagnosed. That
is, a state y satisfying DF (y) = 1. All such Y states are replaced by the single
state F , which is a terminal node in the sense that there are no transitions out
of it (i.e., we make no further control decisions from F). ⊓⊔

An example of the MPO is useful at this point:

Example 1 (A simple example).
Consider the automaton shown in Figure 1. Initially, it is necessary to choose

to monitor event b, for otherwise it will not be possible to differentiate between
the string fbatn and the string a, which means K-diagnosability is violated for
any K. If, after choosing to monitor just {b}, the event b is observed, then it

12

Sina
Stamp

12 Eric Dallal and Stéphane Lafortune

Fig. 2. The MPO corresponding to the automaton of Fig. 1, for K ≥ 1.

is now necessary to monitor event a, for otherwise it will not be possible to
differentiate between the string ab and the string fbatn, which again violates
K-diagnosability for any K. The remaining decisions are made only in parts of
the graph where it is certain that no fault has occurred, and hence any decision
of events to monitor is valid (this part of the graph has been omitted). The
resulting MPO is shown in Figure 2. Notice that we can achieve 0-diagnosability
by choosing to monitor {a, b} initially, and only 1-diagnosability if we choose
to monitor only {b}. We used the convention of [1] by marking Y states with
squares and Z states with circles. ⊓⊔

4 The Extended Specification and Properties of the MPO

In this section, we present the extended specification and explain how it allows
for a simple test to determine the safety of the Y and Z states of the MPO.

Definition 17 (Natural Projection). The natural projection P : E∗ → (Eo∪
Es)

∗ is defined by:
P (ε) := ε

P (e) :=

{

e if e ∈ Eo ∪ Es

ε if e /∈ Eo ∪ Es

P (es) := P (e)P (s)

(18)

In words, the natural projection “filters out” all unobservable events. It is equiv-
alent to the controller induced projection with the dynamic controller Call that
always chooses to monitor Eo ∪ Es (i.e., all monitorable events). ⊓⊔

Definition 18 (Extended Specification). We repeat the definition of the
extended specification found in [8]:

T e
spec =

{(u, v) ∈ X+ ×X+ : ∃s1, s2 s.t. P (s1) = P (s2)
and (g(u, s1), g(v, s2)) ∈ Tspec}

(19)

In words, the extended specification is defined as the set of all augmented state
pairs that cannot be confused because even if all the sensors in Eo ∪ Es are

13

Sina
Stamp

Efficient Computation of Most Permissive Observers 13

turned on for the rest of time, there still exists some sequence of events such
that some pair in Tspec will be confused. ⊓⊔

Definition 19 (Extended specification binary function for information
states). In light of the definition of T e

spec, we define the extended specification
binary function for information states De

I : I → {0, 1} as follows:

De
I(i) =

{

0, ∃u, v,∈ I : (u, v) ∈ T e
spec

1, else
(20)

In words, De
I(i) = 1 if and only if i does not violate the extended specification.

⊓⊔

In [3], we proved a number of monotonicity properties about the MPO. These
can be paraphrased as: more information can never harm K-diagnosability. We
also proved two results demonstrating the usefulness of the extended specifica-
tion, which are merged into one theorem and presented here (for proofs, see [3]).

Restated Theorem 1 (Safety is equivalent to satisfying the extended
specification for Y and Z states). For any Y state y, DY (y) = De

I(y) and
for any Z state z, DZ(z) = De

I(I(z)).

Thus, control decision C(y) is safe in Y state y if and only ifDe
I(I(hY Z(y, C(y))) =

De
I(UR(y, C(y))) = 1. Determining whether or not a control decision is safe can

therefore be accomplished through two operations: computing the unobservable
reach and checking if the extended specification is satisfied.

5 Reducing the Information State

In this section, we prove new results using a monotonicity property on the ex-
tended specification. Specifically, we use this to show that we can “reduce” our
information state. That is, we will show that, as currently defined, our infor-
mation state carries more information than what is strictly necessary for the
problem of K-diagnosability.

Theorem 2 (Monotonicity Property for the Extended Specification).
Suppose that (u, v) ∈ T e

spec
. Then, for any v′ such that S(v′) = S(v) and N(v′) >

N(v), we also have (u, v′) ∈ T e
spec

.

The above theorem allows us to reduce the extended specification to a |X| ×
|X| table filled with elements of {−1, 0, . . . ,K + 1}, where an entry of n at
location (x1, x2) signifies that ((x1,−1), (x2, n)) ∈ T e

spec and that, for all n′ < n,
((x1,−1), (x2, n

′)) /∈ T e
spec. We will see with the next definition and theorems

that this has even more significant consequences.

Definition 20 (Information State Reducing Function). Define R : I → I
by:

R(i) = {u ∈ i : [N(u) = −1] ∨ [∄v ∈ i s.t. S(v) = S(u) and N(v) > N(u)]} .
(21)

14

Sina
Stamp

14 Eric Dallal and Stéphane Lafortune

Also define R : Z → Z by R(z) = (R(I(z)), C(z)). Finally, define reduced
versions of hY Z , UR, hZY :

hR
Y Z(y, C(y)) = R(hY Z(y, C(y))) (22)

RUR(y, C(y)) = R(UR(y, C(y))) (23)

hR
ZY (z, e) = R(hZY (z, e)) (24)

⊓⊔

In words, R(·) reduces an information state by keeping only those augmented
states within it that have a count of -1 and, for each state in X, keeping only
the augmented state with that state component that has the highest count. As
the following corollary will show, this information is sufficient to determine the
safety of a Y or Z state.

Corollary 1 (Reduced information state carries all necessary infor-
mation in determining safety). For any information state i ∈ I, De

I(i) =
De

i (R(i)).

This proves that R(·) conserves all the necessary information for determining
the safety of a Y or Z state. However, it is still possible that this “filtering out”
of information in the present could change safety properties of Y or Z states in
the future (i.e., those Y and Z states that are reachable further in the execution
of the system). The following two theorems preclude this possibility.

Theorem 3 (There is no loss in applying hR
ZY to a reduced Z state).

For any Z state z and event e ∈ C(z), hR
ZY (z, e) = hR

ZY (R(z), e).

Theorem 4 (There is no loss in applying hR
Y Z to a reduced Y state).

For any Y state y and control decision C(y), hR
Y Z(y, C(y)) = hR

Y Z(R(y), C(y)).

Note that the proofs of these two theorems use a lemma that is presented
only in Appendix 2. By induction, Thms. 3 and 4 show that we do not lose
any information relevant to determining safety of Y or Z states by working
solely with reduced information states. Significantly, this substantially reduces
the number of “distinct” information states. Without this reduction, the number
of information states is 2(K+2)|X|, since there are |{−1, 0, 1, . . . ,K}| = K + 2
values for the count component of each augmented state in the information state.
For reduced information states, we must indicate, for each x ∈ X, whether or not
(x,−1) is present and what the maximal value of n is such that (x, n) is present.
Thus, there are only 2|X| · (K + 3)|X| distinct reduced information states (there
are K +3 rather than K +2 possibilities for the maximal count since it may be
that no (x, n) is present for any n).

6 Algorithmic Aspects of the MPO

This section consists of two subsections. In the first, we describe how to use
the reduced information state to efficiently compute the extended specification.

15

Sina
Stamp

Efficient Computation of Most Permissive Observers 15

In the second, we provide an algorithm for computing the MPO, as well as an
example that demonstrates how the reduction of the information state allows us
to reduce the size of the MPO.

6.1 Computing the Extended Specification

In this section, we show that computing the extended specification is equivalent
to finding maximal weight paths on a particular graph. This idea was presented
in [1], in which the authors reduced the problem of finding the minimal K for
which K-diagnosability can be achieved for a given automaton (i.e., the minimal
detection delay). Computing the extended specification is a similar, but more
general problem. In fact, in the notation to follow, the problem of computing
this minimal K is equivalent to determining the single value mF (x0, x0). The
method used here is effectively the same as that presented in [9], except that
they use the more general notion of masks and also only use the algorithm to
determine the minimal detection delay.

In what follows, let L = L(G) be the language of the automaton G =
(X,E, f, x0) and let LNF = L ∩ (E \ Ef)

∗, the language of G but excluding
strings with fault occurrences. Also, for any state x ∈ X, let L/x denote the
language L(G′), where G′ = (X,E, f, x). That is, L/x denotes the language
that is possible given the automaton G when starting in state x. Define LNF /x
analogously. Finally, for any string s and fault event ef , let s/ef denote the part
of s beginning at the first occurence of event ef in s, or ε if ef does not occur in
s. As before, we assume that there is only a single fault event, so that Ef = {ef}.

In previous work, we proved that safety is equivalent to satisfying the ex-
tended specification. By Thm. 2, it suffices to find (for each (x1, x2) ∈ X2)
the minimum count n2 such that ((x1,−1), (x2, n2)) ∈ T e

spec to compute the
extended specification. But by Def. 18, this is equivalent to finding:

min

{

n2 ∈ {−1, 0, 1, . . .} : ∃s1 ∈ L/x1, s2 ∈ L/x2 s.t. P (s1) = P (s2),
N(g((x1,−1), s1)) = −1, and N(g((x2, n2), s2)) = K + 1

}

(25)

Instead of computing this minimum, we compute the following two maxima:

m(x1, x2) = max
s1∈LNF /x1,s2∈L/x2:P (s1)=P (s2)

|s2| (26)

mF (x1, x2) = max
s1∈LNF /x1,s2∈L/x2:P (s1)=P (s2)

|s2/ef | (27)

Suppose that, for some (x1, x2) ∈ X2, we have mF (x1, x2) = c. Then we
know that there exist s1 ∈ LNF /x1 and s2 ∈ L/x2 such that P (s1) = P (s2) and
|s2/ef | = c. First, since s1 ∈ LNF /x1, it follows that N((g(x1,−1), s1)) = −1.
Second, since |s2/ef | is the number of events in s2 starting at the first occurrence
of ef , it follows that N((g(x2,−1), s2)) = c− 1. Thus, the minimum in equation
(25) is n2 = −1 if c − 1 ≥ K + 1. Now suppose that m(x1, x2) = c. Then we
know that there exist s1 ∈ LNF /x1 and s2 ∈ L/x2 such that P (s1) = P (s2) and
|s2| = c. As before, this implies that N((g(x1,−1), s1)) = −1. It also implies

16

Sina
Stamp

16 Eric Dallal and Stéphane Lafortune

that N((g(x2, n2), s2)) = c+ n2 if n2 ≥ 0. Thus, the solution to equation (25) is
max{0,K + 1−m(x1, x2)} if m

F (x1, x2) < K + 2 (otherwise, the solution is -1,
from the discussion above). An advantage to using this method for computing
the extended specification is that the values in equations (26) and (27) are not
dependent on the particlar value of K. This means that we do not need to
recompute the extended specification for different values of K. The procedure
for computing the values of m(·, ·) and mF (·, ·) is described below.

1. Create the graph Ge
spec = (V e

spec, A
e
spec), where V

e
spec = X×X×{N,Y }, and

Ae
spec ⊆ V e

spec×V e
spec is the set of (directed) edges between them, with labels

in the set E × E. Here, N and Y are fault labels, where N represents no
fault (i.e., a count of -1) and Y represents the occurence of a fault at some
point in the past (i.e., any count not equal to -1). We use FL = {N,Y } to
denote the set of fault labels. Define the function FLe

spec : V
e
spec → FL to be

the fault label associated with a vertex. That is:

FLe
spec(v) =

{

N, if v ∈ X ×X × {N}
Y, if v ∈ X ×X × {Y }

(28)

Also, let ELe
spec : A

e
spec → E×E be the function that assigns labels to edges.

The set of edges Ae
spec is defined by three cases:

Observed Events For any vertex v1 = (x1, x2, f l) and any event e ∈ Eo ∪
Es, if f(x1, e) and f(x2, e) are both defined, then there exists an edge
(v1, v2) ∈ Ae

spec with label (e, e), where v2 = (f(x1, e), f(x2, e), f l).
Unobservable Events For any vertex v1 = (x1, x2, f l) and any event e ∈

Euo, if f(x1, e) is defined, then there exists an edge (v1, v2) ∈ Ae
spec

with label (e, ε), where v2 = (f(x1, e), x2, f l). Similarly, if f(x2, e) is
defined, then there exists an edge (v1, v2) ∈ Ae

spec with label (ε, e), where
v2 = (x1, f(x2, e), f l.

Faulty Events For any vertex v1 = (x1, x2, f l) and any event e ∈ Ef , if
f(x2, e) is defined, then there exists an edge (v1, v2) ∈ Ae

spec with label
(ε, e), where v2 = (x1, f(x2, e), Y).

2. Assign weights to each edge of Ge
spec through the function W e

spec : Ae
spec →

{0, 1} as follows. For any a = (v1, v2) ∈ Ae
spec with label EL(a) = (e1, e2),

W e
spec(a) =

{

0, if [FLe
spec(v2) = N and e2 /∈ Ef] or [FLe

spec(v2) = Y and e2 = ε]
1, else

(29)
Thus, if W e

spec(a) = 1, then edge a corresponds either to a fault event or to
an event occuring after a fault event that causes a transition on the faulty
state. For any (x1, x2) ∈ X2, the value of m(x1, x2) is equal to the maximal
weight of a path starting at (x1, x2, Y). Similarly, the value of mF (x1, x2) is
equal to the maximal weight of a path starting at (x1, x2, N). Let the weight
of the maximal weight path starting from v ∈ V e

spec be denoted by despec(v)
3. Find the strongly connected components (SCCs) of the graph Ge

spec. For
any vertex v ∈ V e

spec, let SCC(v) denote the SCC containing vertex v. Since
all edge weights are non-negative, the maximal path weights starting from

17

Sina
Stamp

Efficient Computation of Most Permissive Observers 17

any two vertices in the same strongly connected components must be equal.
That is, SCC(v1) = SCC(v2) ⇒ despec(v1) = despec(v2). This is clearly true
if all edges in a SCC have weight zero. If there is a non-zero edge, it can be
traversed infinitely often on a maximal weight path starting from any vertex
in the SCC, in which case the maximal path weights will be infinite for any
vertex in the SCC.

4. Create a new graphGSCC
spec = (V SCC

spec , ASCC
spec), which is the graph over strongly

connected components. That is, V SCC
spec = {SCC(v) : v ∈ V e

spec} and ASCC
spec =

{(S1, S2) ∈ V SCC
spec × V SCC

spec : ∃v1 ∈ S1, v2 ∈ S2 s.t. (v1, v2) ∈ Ae
spec}. Also,

assign weights to each edge of GSCC
spec through the function WSCC

spec : ASCC
spec →

{0, 1} as follows. For any a = (S1, S2) ∈ ASCC
spec ,

WSCC
spec (a) = max

v1∈S1,v2∈S2:(v1,v2)∈Ae
spec

W e
spec((v1, v2)) . (30)

By definition, the graph GSCC
spec is a directed acyclic graph (DAG).

5. As previously noted, the maximal path weights from any two vertices of
V e
spec in the same strongly connected components must be equal. Thus, we

can define dSCC
spec (S) for any S ∈ V SCC

spec and give it the value of despec(v) for
any v ∈ S. There are three cases to consider:
– For any S ∈ V SCC

spec such that there exist two vertices v1, v2 ∈ S and an

edge a = (v1, v2) with weight 1, assign dSCC
spec (S) = ∞, since this edge

can be traversed an infinite number of times in the maximal weight path
starting from any v ∈ S.

– For any S1 ∈ V SCC
spec that has a path to some S2 ∈ V SCC

spec in GSCC
spec with

dSCC
spec (S2) = ∞, assign dSCC

spec (S1) = ∞, since there exists a path from
any v1 ∈ S1 to any v2 ∈ S2 in this case (and hence the weight of the
maximal weight path from any such v1 is at least as great as that of the
maximal weight path from any such v2).

– For the remainder of the vertices of GSCC
spec , we can do a topological sort,

assign dSCC
spec (S) = 0, for any S ∈ V SCC

spec that is a sink of GSCC
spec , and work

backwards from these to compute the remaining walues of dSCC
spec (S).

Proposition 1 (Running Time of Extended Specification Computa-
tion). The running time of the procedure described in this section is O(|X|2|E|)
if G is deterministic.

Remark 4. If G is not deterministic, it can be shown that the running time
becomes O(|X|4|E|), which occurs in the case that there exists a transition in
G from every state to every other state, one for each event. ⊓⊔

6.2 Computing the MPO

In this section, we provide an algorithm for the computation of the MPO and
determine its running time. We also give a simple example in which we construct
the MPO.

18

Sina
Stamp

18 Eric Dallal and Stéphane Lafortune

The basic outline of an implemented algorithm for constructing the MPO is
shown in algorithm 1. The algorithm simply performs a depth-first search (DFS).
The parameter G represents the finite-state automaton, the parameter y is a Y
state, and the parameter E contains the set of events Eo (E.eo in the algorithms),
Es (E.es in the algorithms), Euo and Ef . Algorithm 1 searches through the space
of Y states and, for each encountered Y state y, finds the safe control decisions.
Finding the safe control decisions is done in lines 1-12. This is accomplished by
considering each subset of events el ⊆ E.es, and determining whether it is safe
to choose to monitor only the events el∪E.eo. This determination is made by a
call to DeI, which simply computes the value of De

I(RUR(y, el∪E.eo)). This can
be very efficiently computed, thanks to the linear time algorithm for computing
the reduced unobservable reach presented in Appendix 1 and the reduced format
for the extended specification from Sect. 5. If the control decision is safe, it is
added to the list sl (state list) and y is marked as safe. Traversing the space of Y
states is done on lines 13-21. This is accomplished by considering all safe control
decisions of the current y state, determining the next Z state and, for each
such Z state, computing all possible successor Y states and making a recursive
call. Since there are a finite number of augmented states with count at most
K+1, there are a finite number of information states that will be traversed and
the algorithm must eventually terminate. The initial call to the algorithm (not
shown here) is: DoDFS(G, y0,K, ∅, E).

Algorithm 1 Algorithm for constructing the MPO

1: procedure DoDFS(G, y, Tespec, sl, E)
2: for all el ⊆ E.es do ⊲ Try all subsets of events
3: ur ← GetRUR(y,E.eo ∪ el) ⊲ Get reduced unobservable reach for next z

state
4: if DeI(ur, Tespec) = true then

5: Add (y,E.eo ∪ el) to sl ⊲ Control decision E.eo ∪ el in state y is safe
6: end if

7: end for

8: if y is not marked “safe” then

9: Mark y as “unsafe”
10: end if

11: for all el ⊆ es s.t. (y,E.eo ∪ el) ∈ sl do ⊲ Try all safe control decisions
12: ur ← GetRUR(y,E.eo ∪ el) ⊲ Get reduced unobservable reach for next z

state
13: for all e ∈ E.eo ∪ el do ⊲ Try all events
14: next← Next(ur, e) ⊲ Get next reduced y state
15: if next not marked then

16: DoDFS(G,next, Tespec, sl, E)
17: end if

18: end for

19: end for

20: end procedure

19

Sina
Stamp

Efficient Computation of Most Permissive Observers 19

Fig. 3. A finite state automaton. Events are classified as follows: Eo = ∅, Es = {a, b},
Euo = {t}, and Ef = {f}.

Proposition 2 (Running time of DoDFS). The running time of algorithm
1 is in O([(2(K + 2))|X|][2|Es|][|X|2]).

Remark 5 (Effect of reduced information states on running time). Recall from
the end of Sect. 5 that the size of the state space changes from 2(K+2)|X| to
(2(K + 2))|X| by using the reduced information state. For a small value of K,
say K = 2, this means algorithm 1 can run as fast with an automaton that is
twice as large. These savings are amplified for larger values of K. For K = 5,
the above algorithm 1 can run as fast with an automaton that is nine times as
large. ⊓⊔

Remark 6 (Multiple faults). If there are multiple different faults to diagnose, it is
actually preferable to define mutiple different MPOs, one for each fault, rather
than defining a single one that diagnoses all faults, since the latter method
would require keeping a separate count for each type of fault event, which would
dramatically increase the size of the state space. ⊓⊔

Following is a second MPO example that demonstrates the usefulness of the
reduced information state:

Example 2 (MPO with reduced information state).
Consider the automaton of Fig. 3. The entire extended specification consists

of 2|X|2 = 162 values. Of these, only four actually restrict behavior: m(0, 6) =
∞, m(3, 6) = 1, m(2, 7) =∞, and m(8, 8) =∞. These values can be determined
by inspection for this example, by computing longest strings with the same
projection for each pair. The remaining 158 values are either irrelevant because
the corresponding pair of states does not occur, or are relevant but do not require
any more events to be observed. If we choose not to monitor event a initially,
the unobservable reach will include both augmented states (0,−1) and (6, 1),
which causes a lack of K-diagnosability since m(0, 6) = ∞. From Y states y1,
y2, and y4, we must monitor event a since the unobservable reach from any of
these Y states would otherwise include both augmented states (3,−1) and (6, 2),
and m(3, 6) = 1. From Y states y2, y3, and y4, we must monitor event b since
the unobservable reach from any of these Y states would otherwise include both
augmented states (2,−1) and one of (7, 1) or (7, 2), and m(2, 7) = ∞. Finally,
it is also necessary to monitor event a from Y state y5, since the unobservable

20

Sina
Stamp

20 Eric Dallal and Stéphane Lafortune

Fig. 4. The MPO corresponding to the automaton of Fig. 3, with K = 2.

reach would otherwise include both augmented states (8,−1) and (8, 3), and
m(8, 8) =∞. As in the MPO of Ex. 1, we omitted the portion of the MPO after
which we can determine that no fault has occurred in the past and none can
occur in the future.

In fact, the MPO could have been “guessed” by comparing this example to
Ex. 1. In Ex. 1, the non-faulty labguage is abt∗ whereas the faulty language
is fbat∗. In this example, the non-faulty language is (ε + b)aabt∗ whereas the
faulty language is f(ε+ b)abat∗. Thus, once we have observed a first occurence
of event a, the structure of the MPO from that point on should be similar to
the structure of the MPO in Ex. 1. Indeed, upon observing event a we find
ourselves in one of Y states y2, y3, or y4. If we have potentially reached an
augmented state with a count of 2 (i.e., in y2 or y4), then the MPO from these
states onwards has the same structure as the MPO of Ex. 1, but with K = 0. If,
on the other hand, at most one event has occurred after a fault (i.e., in y3), then
the MPO from this state onwards has the same structure as the MPO of Ex. 1
(i.e., with K = 1). Notice that MPO states y2 and y4 have the same reduced
versions (namely (2,−1), (6, 2)) and the same structure from that point. On the
other hand, MPO state y3 is also very similar to y2 and y4, but has a different
reduced version (namely (2,−1), (6, 1)) and therefore a different structure from
that point on. ⊓⊔

21

Sina
Stamp

Efficient Computation of Most Permissive Observers 21

7 Conclusion

This paper considered the problem of dynamic fault diagnosis under the con-
straint of maintaining K-diagnosability. We presented a structure called the
MPO that contains all the solutions of the problem, developped from our notion
of the information state. After recalling from previous work how the problem of
finding safe controllers can be mapped to the state disambiguation problem, and
showing a equivalence between safety and satifying the extended specification,
we proceeded to prove a monotonicity result on the extended specification that
allows us to reduce our information state and the size of our MPO. Finally, we
described how to efficiently compute this extended specification and presented
an algorithm for computing the MPO. In future work, we will concentrate on
finding a single optimal controller (according to some numerical cost criterion),
using the MPO as a basis and present simlation results demonstrating the effi-
ciency of our algorithms when applied in practice.

Acknowledgment

The work of the authors is supported in part by NSF grant CNS-0930081 and
by a fellowship from Fonds FQRNT, Government of Québec, Canada. This work
also benefited from useful discussions with Franck Cassez and Tae-Sic Yoo.

References

1. F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers.
Fundamenta Informaticae, 88(4):497–540, 2008.

2. E. Dallal and S. Lafortune. On most permissive observers in dynamic sensor op-
timization problems for discrete event systems. In Proceedings of the 48th Annual
Allerton Conference on Communication, Control, and Computing, September 2010.

3. E. Dallal and S. Lafortune. A framework for optimization of sensor activation using
most permissive observers. Technical report, University of Michigan, 2011.

4. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81 –98, January 1989.

5. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
40(9):1555–1575, September 1995.

6. D. Thorsley and D. Teneketzis. Active acquisition of information for diagnosis and
supervisory control of discrete event systems. Discrete Event Dynamic Systems,
17(4):531–583, 2007.

7. W. Wang, S. Lafortune, A.R. Girard, and F. Lin. Optimal sensor activation for
diagnosing discrete event systems. Automatica, 46(7):1165 – 1175, 2010.

8. Weilin Wang, S. Lafortune, Feng Lin, and A.R. Girard. An online algorithm for
minimal sensor activation in discrete event systems. In Proceedings of the 48th
IEEE Conference on Decision and Control, CDC/CCC 2009, pages 2242 –2247,
December 2009.

9. Tae-Sic Yoo and Humberto E. Garcia. Diagnosis of behaviors of interest in partially-
observed discrete-event systems. Systems & Control Letters, 57(12):1023 – 1029,
2008.

22

Sina
Stamp

22 Eric Dallal and Stéphane Lafortune

Appendix 1: Computing the Reduced Unobservable Reach

In this section, we show how to efficiently compute the reduced unobservable
reach (i.e., how to compute rur = RUR(y, C(y))), so that the running time
of this computation does not surpass that of verifying if the extended spefica-
tion is satisfied. The procedure for this bears some similarity to the one used
to compute the extended specification in that we also make use of strongly con-
nected components and the topological sort. We assume that y is a reduced
information state (i.e., y = R(y)). We also assume that there is a single fault
event, namely ef . For notational convenience, let M(x; y, C(y)) denote the max-
imal count for state x ∈ X in the unobservable reach UR(y, C(y)). That is,
M(x; y, C(y)) = max{n ∈ {−1, 0, 1, . . .} : (x, n) ∈ UR(y, C(y))}, or −∞ if this
value is undefined (i.e., if ∄n : (x, n) ∈ UR(y, C(y))). Finally, we assume that
the computation of the unobservable reach is a step in determining whether or
not a particular control decision is safe.

1. Create the graph GNF
C(y) = (X,ANF

C(y)), where ANF
C(y) ⊆ X × X is the set of

(directed) edges. The set of edges ANF
C(y) corresponds simply to all unobserv-

able, non-faulty transitions of the automaton G, given the set of monitored
events C(y). That is, ANF

C(y) = {(x1, x2) ∈ X2 : ∃e ∈ E\(C(y)∪Ef) s.t. x2 =

f(x1, e).
2. Initialize rur ← y. For all u ∈ y such that N(u) = −1, determine all x ∈ X

such that there exists a path from S(u) to x in GNF
C(y) and set rur ← rur ∪

{(x,−1)}. This can be done through a single depth-first search on the graph
GNF

C(y) and gives the set of all v ∈ rur such that N(v) = −1.

3. For each u ∈ rur such that N(u) = −1 and for each x ∈ X such that
f(S(u), ef) = x, set rur ← rur ∪ {(x, 0)}, unless there exists some v ∈ rur
satisfying S(v) = x and N(v) > 0.

4. Create the graph GF
C(y) = (X,AF

C(y)), where A
F
C(y) ⊆ X×X is the set of (di-

rected) edges. The set of edges AF
C(y) corresponds simply to all unobservable

transitions of the automaton G (including faulty ones), given the set of mon-
itored events C(y). That is, AF

C(y) = {(x1, x2) ∈ X2 : ∃e ∈ E \C(y) s.t. x2 =

f(x1, e).
5. Create the graph GSCC

C(y) = (V SCC
C(y) , A

SCC
C(y)) of strongly connected components

(SCCs) from GF
C(y). For each x ∈ X, let SCCC(y)(x) denote the SCC that

contains x. For each strongly connected component, the maximal counts
are the same. That is, M(x; y, C(y)) is the same for all x ∈ S, for each
S ∈ V SCC

C(y) . This is obvious if |S| = 1. If |S| > 1 and there exists some x ∈ S

such that (x, n) ∈ UR(y, C(y)) for some n ≥ 0, then it is possible to form an
infinite length path from x to each node x′ ∈ SCCC(y)(x), in which case the
maximal counts are all infinite. Otherwise, the maximal counts will either
all be -1, or all be undefined. We can therefore define MSCC(S; y, C(y)) to
be equal to the value of M(x; y, C(y)) for any x ∈ S, for each S ∈ V SCC

C(y) .

Also, for any singleton S1 = {x1} ∈ V SCC
C(y) such that (x1, n) ∈ rur for some

23

Sina
Stamp

Efficient Computation of Most Permissive Observers 23

n ≥ 0 and there exists a path to some S2 ∈ V SCC
C(y) satisfying |S2| > 1, set

MSCC(S1; y, C(y)) = ∞ as well. Thus, if there exists any S ∈ V SCC
C(y) with

MSCC(S; y, C(y)) =∞, then we know that an infinite number of events can
occur after a fault, and hence we stop here and conclude that C(y) is not a
safe control decision from Y state y.

6. Suppose that there exists no S ∈ V SCC
C(y) with MSCC(S; y, C(y)) =∞. Topo-

logically sort the vertices of GSCC
C(y) . For each source node S ∈ V SCC

C(y) , set

MSCC(S; y, C(y)) = max{n ∈ {−1, 0, . . .} : ∃x ∈ S s.t. (x, n) ∈ rur}, or
−∞ if this value is undefined. By considering the nodes in topologically
sorted order, starting at source nodes, the remaining values of MSCC can
be computed. Finally, for each x ∈ X such that M(x; y, C(y)) 6= −∞, set
rur ← rur \ {(x, n) : n ∈ {0, 1, . . . , }} ∪ {(x,M(x; y, C(y)))}.

Proposition 3 (Running Time of Reduced Unobservable Reach Com-
putation). The running time of the procedure described in this section is O(|X||E|)
if G is deterministic.

Appendix 2: Proofs

Lemma 1 (Relation between projection and information state). For
any string s and controller C, I(ISZ

C (s)) = {v ∈ X+ : ∃s′ s.t. PC(s) = PC(s
′)∧

v ∈ g(s′)}.

Proof. The proof is established by induction on the length of PC(s). Let |PC(s)| =
n. Furthermore, for any string t, let t[k] denote the kth event in t, and let
t(k) denote the substring t[1] · · · t[k], with t(0) = ε. As further shorthand, let
sk = PC(s)(k) for k = 1, . . . , n and ek = PC(s)[k + 1] for k = 0, . . . , n − 1,
so that s0 = ε, s1 = e0, etc... Define y0 as usual. For k = 0, . . . , n, let zk =
hY Z(yk, C(yk)) and for k = 0, . . . , n− 1, define yk+1 = hZY (zk, ek). Finally, for
k = 0, . . . , k, define Ck by Ck = C(yk). First, notice that since unobserved events
do not change the information state, we have ISZ

C (sk) = zk and, in particular,
z = ISZ

C (s) = ISZ
C (PC(s)) = ISZ

C (sn) = zn. Thus, the inductive hypothesis will
be that:

I(zk) = {v ∈ X+ : ∃s′k s.t. PC(s
′
k) = sk ∧ v ∈ g(s′k)}, (31)

where we have dropped the PC(·) around sk since sk is already a projection. For
the base case z0, we have that:

I(z0) = hY Z(y0, C0) = {v ∈ X+ : (∃u ∈ y0)(∃t ∈ (E \ C0)
∗) s.t. v ∈ g(u, t)}

= {v ∈ X+ : ∃t ∈ (E \ C0)
∗ s.t. v ∈ g(x+

0 , t)}

= {v ∈ X+ : ∃t s.t. PC(t) = ε = s0 ∧ v ∈ g(t)}

24

Sina
Stamp

24 Eric Dallal and Stéphane Lafortune

Thus the base case is established, by taking s′k = t. Now suppose that the
inductive hypothesis is true at k. Then:

yk+1 = hZY (zk, ek) = {v ∈ X+ : ∃u ∈ I(zk) s.t. v ∈ g(u, ek)}

= {v ∈ X+ : ∃s′k s.t. PC(s
′
k) = sk ∧ v ∈ g(s′ke)}

zk+1 = hY Z(yk+1, Ck+1) = {v ∈ X+ : (∃u ∈ yk+1)(∃t ∈ (E \ Ck+1)
∗) s.t. v ∈ g(u, t)}

= {v ∈ X+ : (∃s′k)(∃t ∈ (E \ Ck+1)
∗) s.t. PC(s

′
k) = sk ∧ v ∈ g(s′kekt)}

= {v ∈ X+ : ∃s′k+1 s.t. PC(s
′
k+1) = sk+1 ∧ v ∈ g(s′k+1)},

where the last equality follows by taking s′k+1 = s′kekt and noting that, since
s′k can be any string satisfying PC(s

′
k) = sk and t can be any string satisfying

t ∈ (E \Ck+1)
∗ (which is equal to the set {t : PC(zk, t) = ε}), the concatenation

s′k+1 = s′kekt can be any string satisfying PC(s
′
k+1) = skek = sk+1. Thus the

induction step is proven and the lemma follows from this. ⊓⊔

Theorem 1 (Formulation of the K-diagnosability property through
the information state). Controller C maintains K-diagnosability if and only
if DI(I(z)) = 1, for all reachable Z states. Mathematically:

∃s ∈ L(G) : z = ISZ
C (s) ∧ ∃u, v ∈ I(z) s.t. N(u) = −1 and N(v) = K + 1

⇔ ∃sY , sN ∈ L(G) : PC(sY) = PC(sN) ∧N(g(sN)) = −1 and N(g(sY)) = K + 1.

Proof. (⇐) Since unobserved events cannot change the information state, we
have that ISZ

C (s) = ISZ
C (PC(s)). Thus, PC(sY) = PC(sN) implies ISZ

C (sY) =
ISZ

C (sN) = z. By definition, g(s) ∈ I(ISZ
C (s)), for all s. Thus, g(sN) ∈ I(ISZ

C (sN)) =
z and g(sY) ∈ I(ISZ

C (sY)) = z as well. We may therefore take s = sY , u = g(sN),
and v = g(sY).
(⇒) Recall from Lem. 1 that I(ISZ

C (s)) = {v ∈ X+ : ∃s′ s.t. PC(s) = PC(s
′) ∧

v ∈ g(s′)}. Then u, v,∈ I(z) implies that there exists s1, s2 such that PC(s1) =
PC(s2) = PC(s), u ∈ g(s1), and v ∈ g(s2). We simply take sN = s1 and sY = s2.

⊓⊔

Theorem 2 (Monotonicity Property for the Extended Specification).
Suppose that (u, v) ∈ T e

spec
. Then, for any v′ such that S(v′) = S(v) and N(v′) >

N(v), we also have (u, v′) ∈ T e
spec

.

Proof. Suppose that (u, v) ∈ T e
spec. Then:

∃s1, s2 : P (s1) = P (s2), (g(u, s1), g(v, s2)) ∈ Tspec .

We know that N(g(u, s1)) = −1 and N(g(v, s2)) = K + 1.
Case 1 (N(v) ≥ 0):
In this case, we know that |s2| = K + 1 − N(v). Let v′ ∈ X+ be such that
S(v′) = S(v) and N(v′) = N(v) + c, where c ∈ {1, . . . ,K + 1 − N(v)}. Then
N(g(v′, s2)) = K + 1 + c. Then define s′2 to be s2, shortened by c events (this
is possible since c ≤ K + 1 − N(v) = |s2|). Next, take s′1 to be equal to s1
shortened by an appropriate number of events such that P (s′1) = P (s′2). Then

25

Sina
Stamp

Efficient Computation of Most Permissive Observers 25

s′1 and s′2 satisfy the three conditions that P (s′1) = P (s′2), N(g(u, s′1)) = −1,
and N(g(v′, s′2)) = K + 1. Thus, we can conclude that (u, v′) ∈ T e

spec.
Case 2 (N(v) = −1):
In this case, we know that |s2| ≥ K +2 (s2 is of the form (E \ {Ef})

∗EfE
K+1).

We proceed as before. Let v′ ∈ X+ be such that S(v′) = S(v) and N(v′) = c,
where c ∈ {0, . . . ,K + 1}. Define s′2 to be the first K + 1 − c events of s2 (this
is possible since K + 1 − c ≤ K + 1 < |s2|). Next, take s′1 to be equal to s1
shortened by an appropriate number of events such that P (s′1) = P (s′2). Then
s′1 and s′2 satisfy the three conditions that P (s′1) = P (s′2), N(g(u, s′1)) = −1,
and N(g(v′, s′2)) = K + 1. Thus, we can conclude that (u, v′) ∈ T e

spec. ⊓⊔

Corollary 1 (Reduced information state carries all necessary infor-
mation in determining safety). For any information state i ∈ I, De

I(i) =
De

i (R(i)).

Proof. Obviously, R(i) ⊆ i, so that De
I(R(i)) ≥ De

I(i), ∀i ∈ I. Now suppose
to the contrary that for some i ∈ I, De

I(i) 6= De
i (R(i)). Then it must be that

De
i (R(i)) = 1 and De

I(i) = 0. Thus, ∃u, v ∈ i : (u, v) ∈ T e
spec. Since N(u) = −1,

we know that u ∈ R(i) as well. Then it must be that v /∈ R(i). Hence N(v) 6= −1
and ∃v′ ∈ X+ such that S(v′) = S(v) and N(v′) > N(v). Furthermore, there is
one such v′ that is also in R(i). But by Thm. 2, we know that (u, v′) ∈ T e

spec, so
that De

i (R(i)) = 0 also, a contradiction. ⊓⊔

Lemma 2. Let i ∈ I be any finite information state and let Q be any boolean-
valued function of an augmented state that is monotonic in count. That is, Q :
X+ → {T,F} satisfies Q(u) ⇒ Q(u′), for all u′ such that S(u′) = S(u) and
N(u′) ≥ N(u). Then the following equivalence holds:

∃u ∈ i : Q(u)⇔ ∃u ∈ R(i) : Q(u) (32)

Proof. (⇐) Clearly, R(i) ⊆ i, so that u ∈ R(i)⇒ u ∈ i.
(⇒) Suppose that ∃u ∈ i : Q(u). Define u′ by S(u′) = S(u) and N(u′) =
maxv∈i:S(v)=S(u) N(v). By the monotonicity property of Q, Q(u′) holds. But by
Def. 20, u′ ∈ R(i) as well. ⊓⊔

Theorem 3 (There is no loss in applying hR
ZY to a reduced Z state).

For any Z state z and event e ∈ C(z), hR
ZY (z, e) = hR

ZY (R(z), e).

Proof. We prove this by showing that, for any Z state z and any e ∈ Eo ∪Es ⊇
C(z), v ∈ hR

ZY (z, e) ⇔ v ∈ hR
ZY (R(z), e). We consider two cases, depending on

whether v has a count of −1 or a maximal count:

v ∈ hR
ZY (z, e) ∧N(v) = −1

⇔ v ∈ hZY (z, e) ∧N(v) = −1

⇔ ∃u ∈ I(z) : v = g(u, e) ∧N(u) = −1

⇔ ∃u ∈ I(R(z)) : v = g(u, e) ∧N(u) = −1

⇔ v ∈ hZY (R(z), e) ∧N(v) = −1

⇔ v ∈ hR
ZY (R(z), e) ∧N(v) = −1

26

Sina
Stamp

26 Eric Dallal and Stéphane Lafortune

The first, third, and fifth equivalences follow from Def. 20 whereas the second
and fourth equivalences follow by taking u to be the predecessor of v (or v the
successor of u).

v ∈ hR
ZY (z, e) : ∄v

′ ∈ hR
ZY (z, e) s.t. S(v

′) = S(v) ∧N(v′) > N(v)

⇔ v ∈ hZY (z, e) : ∄v
′ ∈ hZY (z, e) s.t. S(v

′) = S(v) ∧N(v′) > N(v)

⇔ ∃u ∈ I(z) : f(S(u), e) = S(v) ∧ ∄u′ ∈ I(z) s.t. f(S(u′), e) = S(v) ∧N(u′) > N(u)

⇔ ∃u ∈ I(R(z)) : f(S(u), e) = S(v) ∧ ∄u′ ∈ I(R(z)) s.t. f(S(u′), e) = S(v) ∧N(u′) > N(u)

⇔ v ∈ hZY (R(z), e) : ∄v′ ∈ hZY (R(z), e) s.t. S(v′) = S(v) ∧N(v′) > N(v)

⇔ v ∈ hR
ZY (R(z), e) : ∄v′ ∈ hR

ZY (R(z), e) s.t. S(v′) = S(v) ∧N(v′) > N(v)

The first and fifth equivalences follow from Def. 20, the second and fourth equiv-
alences follow by taking u to be the predecessor of v (or v the successor of u),
and the third equivalence follows by two applications of Lem. 2, first to the inner
(∄) expression and then to the outer (∃) expression. ⊓⊔

Theorem 4 (There is no loss in applying hR
Y Z to a reduced Y state).

For any Y state y and control decision C(y), hR
Y Z(y, C(y)) = hR

Y Z(R(y), C(y)).

Proof. We prove this by showing that, for any Y state y, v ∈ RUR(y, C(y)) ⇔
v ∈ RUR(R(y), C(y)). As before, We consider two cases, depending on whether
v has a count of −1 or a maximal count:

v ∈ RUR(y, C(y)) ∧N(v) = −1

⇔ v ∈ UR(y, C(y)) ∧N(v) = −1

⇔ ∃u ∈ y, t ∈ (E \ (C(y) ∪ Ef))
∗ : v = g(u, t) ∧N(u) = −1

⇔ ∃u ∈ R(y), t ∈ (E \ (C(y) ∪ Ef))
∗ : v = g(u, t) ∧N(u) = −1

⇔ v ∈ UR(R(y), C(y)) ∧N(v) = −1

⇔ v ∈ RUR(R(y), C(y)) ∧N(v) = −1

The first, third, and fifth equivalences follow from Def. 20 whereas the second
and fourth equivalences follow by taking u to be the predecessor of v (or v the
successor of u).

v ∈ RUR(y, C(y)) : ∄v′ ∈ RUR(y, C(y)) s.t. S(v′) = S(v) ∧N(v′) > N(v)

⇔ v ∈ UR(y, C(y)) : ∄v′ ∈ UR(y, C(y)) s.t. S(v′) = S(v) ∧N(v′) > N(v)

⇔ ∃u ∈ y, t ∈ (E \ C(y))∗ :
f(S(u), t) = S(v) ∧ ∄u′ ∈ y, t′ ∈ (E \ C(y))∗

s.t. f(S(u′), t′) = S(v) ∧N(g(u′, t′)) > N(g(u, t))

⇔ ∃u ∈ R(y), t ∈ (E \ C(y))∗ :
f(S(u), t) = S(v) ∧ ∄u′ ∈ R(y), t′ ∈ (E \ C(y))∗

s.t. f(S(u′), t′) = S(v) ∧N(g(u′, t′)) > N(g(u, t))

⇔ v ∈ UR(R(y), C(y)) : ∄v′ ∈ UR(R(y), C(y)) s.t. S(v′) = S(v) ∧N(v′) > N(v)

⇔ v ∈ RUR(R(y), C(y)) : ∄v′ ∈ RUR(R(y), C(y)) s.t. S(v′) = S(v) ∧N(v′) > N(v)

The first and fifth equivalences follow from Def. 20, the second and fourth equiv-
alences follow by taking u to be the predecessor of v (or v the successor of u),

27

Sina
Stamp

Efficient Computation of Most Permissive Observers 27

and the third equivalence follows by two applications of Lem. 2, first to the inner
(∄) expression and then to the outer (∃) expression. ⊓⊔

Proposition 1 (Running Time of Extended Specification Computa-
tion). The running time of the procedure described in this section is O(|X|2|E|)
if G is deterministic.

Proof. The graph created in step 1 has |V e
spec| = 2|X|2 vertices. For a determin-

istic automaton, there is at most one transition defined for a given initial state
and event. Thus, for each of the 2|X|2 vertices of Ge

spec, there is at most one
outgoing edge for each event e ∈ Eo ∪ Es (labeled (e, e)), at most two outgoing
edges for each event e ∈ Euo (labeled either (e, ε) or (ε, e)), and at most one
outgoing edge for each event e ∈ Ef (labeled (ε, e)). Hence, the graph created
in step 1 has |Ae

spec| ≤ [2|X|2][2|E|] = 4|X|2|E| edges. Step 2 consists only of
labeling edges and is done at the same time as step 1. Finding the strongly con-
nected components in step 3 can be done in time O(|V e

spec|+ |A
e
spec|) [reference?].

Creating GSCC
spec in step 4 can also be done in linear time, i.e., O(|V e

spec|+ |A
e
spec|).

Furthermore, |V SCC
spec | ≤ |V

SCC
spec | = 2|X|2 and |ASCC

spec | = |V
SCC
spec |− 1 < 2|X|2 The

first part of step 5 can be done with step 4 and thus takes no additional time. The
second part of step 5 can be done through a single depth-first search on GSCC

spec ,
and hence takes O(|X|2) time. For the last part of step 5, finding a topological
sort can be done at the same time as determining strongly connected compo-
nents. The remainder of the algorithm takes linear time in the size of GSCC

spec by
considering this graph’s vertices in topologically sorted order, starting from sink
nodes. Thus, the total running time is in O(|X|2|E|). ⊓⊔

Proposition 2 (Running time of DoDFS). The running time of algorithm
1 is in O([(2(K + 2))|X|][2|Es|][|X|2]).

Proof. There are (2(K + 2))|X| reduced information states. For each informa-
tion state encountered, a maximum of 2|Es| control decisions are considered.
Finally, for each control decision, it is necessary to compute De

I(i), where i =
I(hR

Y Z(y, C(y))). By using an efficient encoding, this can be done in timeO(|X|2).
⊓⊔

Proposition 3 (Running Time of Reduced Unobservable Reach Com-
putation). The running time of the procedure described in this section is O(|X||E|)
if G is deterministic.

Proof. The graph created in step 1 has |X| vertices and at most |E \ (C(y) ∪
Ef)| ≤ |Es| + |Euo| ≤ |E| outgoing edges per vertex and can therefore be con-
structed in time O(|X||E|). The depth-first search in step 2 takes linear time
in the size of the graph GC(y). Step 3 requires considering all fault transitions
in the automaton. Since G is deterministic, and there is only one fault event,
there are at most |X| such transitions and hence this step is done in O(|X|)
time. Similarly to GNF

C(y), the graph GF
C(y) created at the beginning of step 4 has

size O(|X||E|) and can be computed in time O(|X||E|). In step 5, computing

28

Sina
Stamp

28 Eric Dallal and Stéphane Lafortune

strongly connected components (SCCs) can be done in linear time in the size of
the graph GF

C(y). Checking if there exists any x ∈ X satisfying (x, n) ∈ rur for

some n ≥ 0 and |SCCC(y)(x)| > 1 takes time O(|X|). Checking if there exists
any singleton S1 = {x1} ∈ V SCC

C(y) satisfying (x1, n) ∈ rur for some n ≥ 0 and

there exists a path to some S2 ∈ V SCC
C(y) such that |S2| > 1 can be done through a

depth-first search on GSCC
C(y) . Topologically sorting vertices in step 6 can be done

at the same time as finding strongly connected components. Finally, the compu-
tation of the MSCC values can be achieved in linear time in the size of GSCC

C(y) , by
considering the nodes in topologically sorted order, starting from source nodes.
The overall running time is therefore O(|X||E|). ⊓⊔

29

Sina
Stamp

Effectiveness of Transition Systems to Model Faults

Jingshu Chen and Sandeep Kulkarni

Michigan State University,
3115 Engineering Building, 48824 East Lansing, US
Email: {chenji15,sandeep}@cse.msu.edu

Web:http://www.cse.msu.edu/ ˜ {chenji15,sandeep}

Abstract. The goal of this paper is to bridge the gap between the theory and practice in fault-tolerant
systems. Specifically, our goal is to model faults uniformly using transition systems so that techniques
such as model checking and model revision can be applied effectively.
We begin with the taxonomy of faults that is based on the practitioner’s view of fault-tolerant systems.
For each of 31 categories in this taxonomy, we identify whether it is feasible to model faults in that
category using transition systems. We argue that (1) such modeling is feasible and cost-effective for 18
categories; (2) Also, it is feasible but not cost-effective for 2 categories; (3) And, it is not feasible for
the remaining 11 categories. The results in this paper provide an update on the (unproven) folk theorem
about fault modeling while identifying its limitations.

Key words: Fault Modeling, Transition Systems, High Assurance, Fault Tolerance.

1 Introduction

The goal of this paper to evaluate theeffectivenessof transition systems to model faults affecting different
types of computer systems. Specifically, we find that there is a serious dichotomy about this topic among
researchers as well as practitioners. In particular, some researchers take it as a folk theorem that any fault
(whether a software fault or a hardware fault, transient fault or a permanent fault, detectable fault or an
undetectable fault) could be modeled using transition systems. Regarding this aspect, some existing work
(e.g., [5, 6, 10–12]) in literature has shown that used this approach for modeling certain specific types of
faults. On the other hand, some researches view this folk theorem with skepticism. Some of the questions
raised include the following

– How can physical faults be modeled by adding transitions? Faults such as stuck-at faults effectively
remove transitions.

– While the use of transitions may be appropriate for hardware faults, how can it be used model faults
such as buffer overflow?

– How can permanent faults be modeled as transitions? For example faults such as byzantine faults cannot
be modeled using transitions since byzantine process may behave arbitrarily.

– How can faults such as failure of a processor (failstop) be modeled as transitions?
– Faults such as physical degradation are continuous in nature and, hence, not suitable for being modeled

asdiscretetransition systems.

A second question regarding fault modeling is:Even if it ispossible to model faults using transition
systems, is itappropriate and reasonable. Specifically, this question focuses on thecomplexityof mod-
eling faults in terms of transition systems. The complexity of modeling faults depends upon the desired
objective in modeling faults. One of the main reasons for modeling faults is to enable verification and/or
synthesis of fault-tolerant models/programs. Thus, there may be circumstances where modeling of faults
in terms of transition systems may be feasible but expensive thereby making it difficult (or impossible) to
utilize it.

A third question regarding fault modeling is:How can we know if we have represented all types of
faults that may affect a computer system?This question is crucial since it characterizes the completeness
of transitions systems to be used to model faults. While answering this question is beyond the scope of
formal methods, we can consider this question in the context of a fault classification for practical systems.

30

2 Jingshu Chen and Sandeep Kulkarni

In particular, we can begin with a classification of faults from the perspective of practitioners and then
evaluate whether faults from those models can be effectively represented using transition systems.

Based on these questions, in this paper, we focus on thefeasibilityandpracticalityof modeling faults as
transition systems. We begin with the third question. Specifically, we utilize the classification from seminal
paper by Avizienis et al. [7]. This classification provides different causes of faults and their effects. Since this
classification is based on practitioner’s viewpoint, it provides the basis for answering the first two questions.
Specifically, in this paper, we focus on how/if each category of fault identified here can be modeled in terms
of transitions. From the point of view of formal methods, it is necessary to model the effect of the fault as
opposed to the cause of the fault. Hence, our work will focus on how effect of faults from each category
can be modeled.

Additionally, we also evaluate the complexity introduced by modeling faults as transition systems. We
consider the complexity in terms of two objectives:model checkingandmodel revision. Specifically, model
checking [1, 2] is one of the most successful strategies for providing assurance for model of hardware
and software design. It focuses on deciding whether a given model of system, sayM satisfies the given
propertypr. Since model checking computes (directly or indirectly) all computations ofM to determine
whetherpr is satisfied, it is especially useful in providing assurance about a system developed from that
model. The related problem of model revision [3, 4] focuses on scenarios where model checking produces
a counterexample or where an existing model needs to be revised to add new properties (such as safety,
liveness and timing constraints). Thus, the goal in model revision is to modify the given modelM so that
it satisfies the given propertypr. Since the revised model is correct by construction, it can assist us in
obtaining a correct model of system when model checking ends up finding a counterexample.

We view the fault modeling inonlinesetting where faults occurduringsystem execution as opposed to
offlinesetting where faults have already occurred at the beginning and the goal of the system is to provide
acceptable service even in the presence of faults. This is due to the fact that in offline setting, often, there
is no need to model faults explicitly; instead it suffices to model the system based on which components
are still active. Hence, offline setting requires us to model a degraded version of the original system itself
rather than modeling faults. In online setting however, system may initially execute without faults. Then,
one or more faults could occur and change subsequent system behavior. Hence, in online setting, it is often
necessary to model faults explicitly.

The main contributions of the paper are as follows:

– Of the 31 categories from [7], we show that faults from 20 categories can be modeled using transition
systems. These faults include byzantine actions in a networked system, physical deterioration of brake
in a braking control system and so on.

– We show that faults from 11 categories cannot (or should not be) represented using transition systems.
These include faults such as buffer overflow, hardware errata and so on.

– We also describe the feasibility and practicability of modeling faults as transition systems. We show
that (1) the modeling of faults from 18 categories as transition systems is practical and feasible and (2)
the modeling of faults from 2 categories as transition systems is not practical although feasible.

– Besides, we discuss the relative completeness of the proposed approach with recent literature in the
appendix.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we recall the
classification of different categories of faults from [7]. In Section 3, we briefly define transition systems.
In Section 4, we discuss feasibility of modeling of faults from different categories and its effect on model
verification and revision. In Section 5, we identify practicability of modeling faults in terms of transition
system. Related work is discussed in Section 6. Section 7 makes concluding remarks. Appendix discusses
the relative completeness of the proposed approach with recent literature and identifies each fault with the
corresponding approach.

2 A Taxonomy of Faults

In this section, we recall the terminology of fault classification from [7]. The classification is based on eight
basic viewpoints about faults. Figure 1 illustrates this classification. This figure combines the classification

31

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 3

Fig. 1: Fault Categories

from [7] with results in this paper about the ability and effect of modeling faults from the respective category.
In particular, for each category from [7], we discuss how to model it in Section 4. Then we discuss about
the effect of such modeling in model checking and revision. We summarize the feasibility and practicability
of modeling faults in transtion systems in 5.

Next, we briefly describe the viewpoints considered in this classification.

One viewpoint is based on how the fault occurs. In this viewpoint, there are two possibilities:develop-
ment faults andoperational faults. The former corresponds to the case where fault occurs due to mistakes
during development. This category includes faults such as buffer overflows, incorrect results of certain float-
ing point division caused by Pentium FDIV bug etc. The latter corresponds to the case where fault occurs
while the system is deployed.

The second viewpoint is based on whether the fault occurs inside system boundary (internal faults)
or whether it occurs outside system boundary, i.e., in the environment (external faults). The former cor-
responds to faults such as physical deterioration of brakes in the vehicle and logic bomb. And, the latter
corresponds to faults such as bit flip in memory caused by cosmic ray and wrong parameter configuration.

The third viewpoint is based on the cause of the fault. In this viewpoint, a fault can be eithernatural
fault or human made fault. The former corresponds to random events that may occur naturally. Exam-
ples of such faults include internet and telecoms connectivity disrupted by Taiwan earthquake. The latter
corresponds to (intentional or otherwise) mistakes caused by humans. Examples of such faults include de-
velopment failure of the AAS system [29].

The fourth viewpoint is based on how the fault affects the system. In this viewpoint, a fault can be either
hardware fault or asoftware fault. Examples of former include loss of network switch and deflated car
tie whereas examples of latter include Y2038 problem of software system and Trojan horses.

The fifth viewpoint is based on the objective of the fault. In this viewpoint, the fault can be either a
malicious fault or anon-malicious fault. In the former case, the goal of the (human responsible for the)
fault is to intentionally disrupt the system execution. Examples of such faults include attacker and worm. In
the latter case, there is no malicious objective. Examples of such faults include physical deterioration and
heating/cooling caused by natural environments.

32

Sina
Stamp

4 Jingshu Chen and Sandeep Kulkarni

The sixth viewpoint is based on in the intent of the fault. In this viewpoint, the fault can be either a
deliberate fault or a non-deliberate fault. The former case is due to bad decisions. Examples of such
faults include wrong configuration that can affect security, networking, storage, middleware, etc [30]. The
latter one is caused by mistakes. Examples of such faults include software flaws and physical production
defects.

The seventh viewpoint is based on whether the fault is causedaccidentlyor due toincompetence. And,
finally, the eighth viewpoint is based on whether the fault is atransient fault that occurs occasionally and
does not persist for a long duration. Or apersistent fault where the fault persists for a long time (possibly
forever).

3 Transition Systems

Since our goal is to demonstrate the use of transition systems to describe faults, we briefly define them
next. Our formulation is based on the use of guarded commands [48] where a guarded command is of the
form g −→ st whereg identifies constraints under which the guarded command can be executed andst

identifies the effect of such execution. Thus, guarded commands are suitable for programs that are ‘event-
based’ whereg identifies the event andst identifies the action taken by the program while responding to the
event. Guarded commands are also suitable for ‘time-based’ programs whereg corresponds to a clock tick
andst denotes the action taken by the program for that clock tick.

As mentioned in the Introduction, we chose this representation as it can be easily utilized in model
checkers such as SPIN, SMV, PRISM, UPPAAL, etc [1, 2, 31, 32] as well as model revision tools such as
SYCRAFT [4].

Given a program and a fault where both are specified in terms of one or more guarded commands, con-
current execution of the program and faults corresponds to interleaved execution guarded commands from
both the program and faults. We do not make explicit assumptions about fairness of execution between
program and fault actions. This fairness will depend upon the application at hand and can be modeled or-
thogonally. For example, in some applications, it is assumed that faults will eventually stop. In some cases,
probabilities are assigned to execution of each action. Alternatively, in some cases, one may specify parame-
ters such as priority of different actions. Depending upon the nature of such assumptions and the limitations
of the tools being used, these fairness requirements can be modeled in an orthogonal manner. Likewise, in
some systems (especially hardware-based), it is expected that all actions execute at a particular speed. One
instance of this is maximum-parallelism semantics where in every step, all actions whose guard is true are
executed. Again, modeling of such semantics is orthogonal to the issue of fault modeling considered in this
paper.

4 Uniform Modeling of Faults

In this section, we discuss modeling of faults from different categories in Figure 1. Based on the charac-
teristics of the faults, we partition our discussion among Sections 4.1-4.5. For each section, we identify the
abstract model of fault from one category first. Then we introduce how to mapping to the abstract model
with concrete example. We also discuss variations of the same fault that are considered in the literature and
evaluate its effect on modeling that fault. Subsequently, we identify related fault categories, i.e., fault cate-
gories where the modeling would be similar. Finally, we identify the effect of such modeling in verification
and revisions.

4.1 Operational, External, Human-made, Persistent, Malicious and Software Faults

In this section, we focus on faults that are operational, external, human made, persistent, malicious and soft-
ware. (This corresponds to category 24 in Figure 1.) Thus, these faults occur during the system execution.
Generally, they are caused by malicious users or attackers. And they persist permanently (or long enough
time). It is expected that the system will continue to function even when the faults are present. While some
attempts may be made to prevent such faults from occurring, it is possible that such preventions would not
be fully successful. Hence, for assurance in the context of these faults, it is necessary that one considers

33

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 5

the system execution where the faults (exhibited in terms of compromised hosts, malicious users or attacks)
continue to occur potentially frequently. Often, in such systems, assumptions are made about the number of
faults that may exist at a given time. These assumptions ensure that sufficiently many ‘good resources’ are
available to solve the problem at hand.

Abstract Model. To capture the impact that this type of fault has on the underlying system state, there
are three types of abstract actions in the model for fault from this category.

– Access Actions. These actions allow user to get knowledge about the current system state. An example
of access action is that an user get the data from remote server and make a local copy. We use variable
v to denote user’s copy of system state and variables to denote the value of the current system state.
Hence this type of actions can be modeled as follows:

ACCESS action:
v := s ;

– Update Actions. These actions create a change to the system state. Examples of update actions include
writing data to file in the server and updating value of a flag which is used to denote whether a file is
changed. We use variablev to denote the system state andx to denote the value which is used to update
system state byUpdateActions. Hence this type of actions can be modeled as follows:

Update action:
v := x ;

– Fault Actions. These actions, (which may be conducted by malicious users or attackers), perturb the
system to a random state. An example of a fault action is that a malicious user changes the value of
accessible data randomly. We introduce variablev to denote the state which is corrupted by fault actions.
We also introduce an extra variablem to model whether malicious user exists in the environment. The
fault actions can be modeled as follows:

Fault action 1:
true −→m := true;

Fault action 2:
m −→ v := random();

Mapping to Abstract Model - From a concrete example. Next we discuss how to mapping raw
actions in the real example to the abstract actions in the model described above.

A typical example of the faults from this category occurs in the context of distributed system where
the system is organized as a network of nodes and some of these nodes may not work as expected and
behave arbitrarily because of some reasons, such as attackers. One such example is Farsite [26]. Farsite is
a serverless distributed file system that provides centralized file-system service. Farsite aims at providing
secure, scalable and strongly consistent file storage service. In Farsite, the concept of servers in the system
is virtual and the system actually runs on a network of untrusted PCs some of which may be controlled by a
malicious user. Hence, the whole infrastructure is highly susceptible to a fault that the virtual server behaves
arbitrarily. This fact brings the challenge of guaranteeing the delivery of correct service in the presence of
such faults.

Since our goal is to illustrate the modeling of such fault and not the details of Farsite, without loss
of generality, we describe how one can model operations for a single file, sayfl. In particular, labeling
UpdateAction andAccessAction is straightforward. In this example, for these Read operations that allows
users to get the data from servers, we mapping them asAccessActionwhereas we mapping Write operation
that allows users to write data to servers toUpdateAction. In each operation, the client identifies the list
of server nodes that contain (or are likely to contain) a copy of the file. We use indexj to quantify over the
list of such servers. Furthermore, we use the termdata.j to denote data maintained by the serverj for file
fl and the termcopy.j to denote local copy of filefl.

34

Sina
Stamp

6 Jingshu Chen and Sandeep Kulkarni

In read operation, the client obtains a copy of the file from all (or a subset of) servers. In write operation,
the data is written to the respective servers. In order to capture system semantics of fault tolerance mech-
anism designed in this example, we make extend ofAccessAction in the basic abstract model. There are
several copies of stored files. Since some of the copies may be incorrect due to malicious users, the client
performs an agreement algorithm (e.g., majority computation) first, then return the agreed data to the user
who requests filefl.

Thus, the operations in Farsite can be modeled as shown next.

Acess action:
∀j :: copy.j := data.j ;
getResouce := agreement(copy.j);
return getResource;

Update action to writev to file:
∀j :: data.j := v;

Obviously our above model in transition system can capture system semantic of this example.
Observe that the above model only describes the program actions. Next, we show that the actions of

malicious users can also be modeled in terms offaultaction in the abstract model. In particular, to denote
whether processj is malicious, we introduce a variablem.j that denotes whetherj is malicious. The fault
actions can be modeled as follows:

Fault action 1:
true −→ m.j := true;

Fault action 2:
m.j −→ data.j := random();

Thus, Fault action 1 denotes that machinej is compromised. Fault action 2 denotes that the compro-
mised machine can change the local data arbitrarily. Observe that along with the write action that assumes
that data is written to all replicas, the fault action allows the malicious user to change the data stored in a
compromised machine.

Completeness of this approach for modeling faults from this category. Next, we argue that this
approach is generic for faults from this category. Specifically, the faults are operational in nature, i.e., at the
time system is created (and deployed), there are no faults perturbing the system. (Note that this is not true
for development faults.) Thus, faults become operational at some point after (possibly, before the system
executes even one of its actions) the system is deployed. Thus, any modeling must include an action by
which the malicious components/processes appear in the system. In other words, there must be one action
(similar to Fault action 1) where some components/process becomes faulty. Moreover, since the faults are
permanent, it is required that it must be possible for the fault to persist forever. In other words, the actions
modeling faults should be such that they can execute forever (such as that indicated by the guard of Fault
action 2). Finally, because the fault is human made and malicious, the faulty component/process can change
the data that it controls arbitrarily (as in the statement of Fault action 2). Thus, any fault that is operational,
human made, persistent and malicious, can be modeled using an approach similar to the one presented
earlier. Additionally, we note that we have reviewed faults from recent publications in ICDCS and DSN and
list these faults that can be modeled using this approach in Table 3.

Modeling variations of this fault. There are several possible variations that one may consider in this
category of faults, as follows.

– A malicious user may intend to remain hidden. In this case, Fault action 2 will have to be changed so
that instead of changing the data arbitrarily, it will change it only in a way that allows prevents it from
being discovered.

– The system may have a mechanism to clean up affected nodes (e.g., through antivirus programs etc.)
If such a mechanism exists then it can be modeled by the dual of Fault action 1 wherem.j is changed
from true to false.

35

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 7

– Also, often assumptions are made about the number of malicious users that can exist in the system at a
given time. For example, a standard assumption is that the number of malicious replicas is less than a
third of the total replicas. If such an assumption is desired, it can be achieved by changing Fault action
1 so that a node can become malicious only if the total number of malicious nodes will not exceed
the bound. Note that this will require one to read the valuem variable of all nodes. However, this is
acceptable since we are simply recording the assumption.

Modeling faults from related categories. Approach similar to the one in this section also applies
for faults from other categories. For example, the above modeling can be applied when the fault is caused
by hardware. Also, if one were to model the fault which persists for some duration and then disappears,
we only need to slightly modify the aboved modeling (the case where fault is permanent (long-lasting) in
nature), by adding the modeling of another fault action (similar to Fault action 1) wherem.j changes from
true to false. Based on this discussion, we can model faults from category 22-25 (cf. Figure 1) using the
approach in this section. A special case when the fault is transient and occurs only once, we can simplify
the modeling of faults by the approach in Section 4.3.

Additionally, a similar approach could also be used for modeling malicious and deliberate development
faults (category 5 and 6 in Figure 1). Examples of faults from these categories include logic bomb. For
faults from these categories, the modeling in this section may be used if there are several designer teams
producing different parts of the system (e.g., with N-version programming) and sufficient redundancy exists
to deal with such faults. However, for the case where one design team is creating the given system or where
sufficient redundancy is unavailable, the only suitable approach is to use fault prevention where the goal
is to ensure that the fault cannot happen. And, when fault prevention is used, there is no need to model
faults explicitly, as proving that fault prevention work requires one to only consider system behavior in the
absence of faults.

Effect during verification of fault-tolerance. If one were to verify a program that models malicious
users in the above fashion, we can observe that the introduction of the variablem.j increases the state space
of the program. Additionally, to ensure that the variablem.j is not used improperly, we need to syntactically
check the program; specifically, we need to ensure that actions at machinej do not reference variablem.k,
wherej 6= k.

Effect during revision for adding fault-tolerance. One important characteristic of above formulation
is that variablem.j is readable only to nodej. Other nodes cannot read it. If model revision is used for a
fault from this category, it is necessary that this restriction is continued to be satisfied in the revised model.
Additionally, variablem.j cannot be changed by any node; it may be changed only by a fault action. These
restrictions have been shown to increase complexity from P to NP-complete in some instances [22].

4.2 Operational, Internal, Natural, Hardware, Non-malicious, Non-deliberate, Accidental and
Persistent Faults

In this section, we focus on faults that are operational, internal, natural, hardware, non-malicious, non-
deliberate, accidental and persistent. (This corresponds to category 12 (cf. Figure 1).)

Abstract Model. Obviously, the fault from this category occurs during the system execution. Generally,
they occur due to hardware degradation over time. And, it is expected that they last for a significant duration
of time. Similar to the faults from Section 4.1, it is expected that the system will continue to function even
when the faults are present. Periodic maintenance would be used to replace the hardware as necessary to
correct this fault.

Taking these impacts that this category of fault has on the underlying system state into account, we
introduceg to denote the hardware state and then the corresponding abstract action in our model is as
follows, whereǫ is a small real number.

Fault action 1:
g ≥ ǫ −→ g := g − ǫ;

Mapping to abstract model - From a concrete example.A typical example from this category occurs
in the context of a braking control system where the brake may wear out due to physical deterioration thus
system failures may occur with accidents and severe damage and human injuries as consequences.

36

Sina
Stamp

8 Jingshu Chen and Sandeep Kulkarni

The basic modeling of braking system includes the speed of the vehicle, the status of brakes (e.g.,
applied or not) and their reliability.

One such fault in this system can be caused by the case where wear and tear on brakes (or other factors)
reduces their effectiveness. Modeling such fault into abstract action is straightforward. If we useg to denote
the specified level of performance and integrity of the brake, we can apply abstract action in the basic
model directly. To capture system semantics of this example, we assume value ofg is in the range[0, 1]
whereg = 1 corresponds the ideal brake andg = 0 corresponds to a nonfunctioning brake in this case.

Besides, in order to model program actions, we use variables to denote the speed of the vehicle. And,
we use a Boolean variableb to denote whether the brake is pressed. (Similar tog, b could also be modeled
as a continuous variable. However, this extension is straightforward and, hence omitted.) Thus, when the
brake is pressed, the vehicle reduces the speed. We model this as a reduction in speed by a fixed value
(denoted as C in the below program action) that depends on the reliability of brakes. Hence, one possible
way to define such program action in this context is as follows:

Brake Action:
b == true −→ s := MAX(s− g ∗ C, 0);

Completeness of this approach for modeling faults from this category. Next, we argue that this
approach is generic for faults from this category. Since the faults are operational in nature, faults occur
at some point after the system is deployed and thus any modeling must include some action where some
component/process becomes faulty. Also considering the faults are internal, natural, non-malicious and non-
deliberate, the fault action should not be triggered by outsider. In other words, the guard of the fault action
should be some status of fault component or process itself, like Fault action 1. Moreover, since the faults are
permanent, it is required that it must be possible for the fault to persist forever (until the faulty component
loses its capability totally).

Thus, any fault that is operational, internal, natural, hardware, nonmalicious, non-deliberate, accidental
and persistent Faults, can be modeled using an approach similar to the one presented earlier. Additionally,
we review faults from recent relevant publications and list how these faults can be modeled using this
approach in Table 3.

Modeling variations of this fault. The above modeling is discrete in nature. It models that when the
brake is pressed, speed reduces by a certain amount. A more accurate model would be to utilize timing
based information for modeling both programs as well as faults. Examples of such approach include the
timed automata [37] that combines transition systems with time. In particular, with such an approach, we
could model speed reducing at a particular rate depending upon the reliability of brakes and the pressure
applied on brakes.

Modeling faults from related categories. Approach similar to the one in this section also applies for
faults from other categories. The above modeling is for the case where fault is permanent in nature. If the
faults persist for some duration and then disappears then we need to model another fault action (similar
to the above fault actiong ≥ ǫ −→ g := g − ǫ) whereg can be increasedǫ and reach at most1 as
range required. Based on this discussion, we can model faults from category 12-13 (cf. Figure 1) using the
approach in this section.

However, similar to Section 4.1, for the case where physical elements play a sole role in the structure of
the whole system, when that elements totally loss the functions, e.g. a deflated tire of car, there is no need
to model the fault explicitly. And, the only suitable approach is to use fault prevention to ensure such faults
cannot happen.

Effect during verification and revision of fault-tolerance. It is expected that the fault from this
category will generally require one to consider hybrid models where both discrete and continuous variables
are considered. The effect/effects of such hybrid model in verification is/are considered in [38]. Regarding
revision, revising timed automata is considered in [36]. However, the cost of such revision is often higher
(exponential in the constants involved in specifying timing constraints).

37

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 9

4.3 Operational, External, Natural, Hardware, Non-malicious, Non-deliberate, Accidental and
Transient Faults

In this section, we focus on faults that are operational, external, natural, hardware, non-malicious, non-
deliberate, accidental and transient. (This corresponds to category 15 in Figure 1.)

Abstract Model. Obviously, the fault from this category occurs during the system execution. Gener-
ally, they occur due to unexpected transient issues that are unlikely to happen again. They are not malicious
in nature but may cause system to behave in an incorrect manner. One approach for dealing with such faults
is self-stabilization [43] where the system is guaranteed to recover from an arbitrary state to a legitimate
state.

Modeling of the fault from this category in terms of transition systems is straightforward since the fault
occurs once (or rarely) and the impact is to change the system state into random value. Specifically, we
introducex to denote system state then the fault can be modeled by the following action:

true −→ x := random();

Mapping to Abstract Model- From a concrete example.A typical example from this category in-
cludes faults that cause memory to change to an arbitrary state. A possible reason why such errors occur is
cosmic rays, for example. Typically, it is assumed that such faults are not detectable and, hence, the system
continues to operate in spite of them. Another related example in this class includes the use of uninitialized
variables. Such a fault will result in the program starting in an arbitrary state. Moreover, other types of faults
such as crash and message loss can exhibit a behavior that is similar to a fault from this category. Specif-
ically, in [42], authors have shown that in the presence of these faults, the program may be (essentially)
perturbed to an arbitrary state.

Mapping the raw actions in the real example to the abstract action in the model is straightforward. First,
we map the variable (denoted asv) changed by the raw actions intox in the abstract action first. Second,
we map the actual way to change the value ofv to random() in the abstract action. By these two steps, we
can apply the basic abstract model to model fault actions in the real example directly.

Completeness of this approach for modeling faults from this category. Next, we argue that this
approach is generic for faults from this category. Consider the faults are operational in nature, there must be
some fault action (similar to Fault action 1) occuring after the system is deployed. These faults may affect
the entire system or a part of it. Since the faults are transient, this implies that their effect is temporary and
the system continues to execute its actions after faults occur. Moreover, since the fault is accidental and not
deliberate, the effect of fault on the affected part (like var x in Fault action 1) is random. Thus, any fault
that is operational, human made, persistent and malicious, can be modeled using an approach similar to the
one presented earlier. Additionally, In Table 3, we identify faults from recent literature in the aspect of fault
tolerance that can be modeled using this approach.

Modeling variations of this fault. There are several possible variations that one may consider in this
category. For example, the most common assumption used in the literature states that the fault will change
the variable to only a value that is legitimate in some configuration. In other words, the fault will assign the
variable a value that is from its domain; intuitively, this assumption is based on the fact that if the value
assigned to the variable is outside the domain then it would be detected before the variable value is used.
Also, often assumptions are made about inability of the fault to change the code itself, i.e., the fault only
changes data. If faults are allowed to disrupt code then this can be modeled using the approach in Section
4.1. Alternatively, it could also be modeled using the approach in Section 4.4 if it is expected that the fault
will render the corresponding component in a state from where it cannot continue its execution.

Modeling faults from related categories. Approach similar to the one in this section also applies
for faults from other categories. For example, the above modeling can also be applied when the fault is
caused by human being’s non-malicious action. Also, the modeling can be applied where fault is caused by
software. Hence, we can model faults from category 15-16, 18-19, 21, 26, 28-29, 31 (cf. Figure 1) using the
approach in this section.

Effect during verification of fault-tolerance. If one were to verify a system that models transient
faults in the above fashion, then one has to consider system execution from arbitrary (respectively, large
number of) states. In particular, if the fault can corrupt all program variables then this corresponds to con-
sidering execution from arbitrary states. The topic of such verification is considered in the context of self-

38

Sina
Stamp

10 Jingshu Chen and Sandeep Kulkarni

stabilization; in [39], authors have shown the feasibility of verifying self-stabilization using model checker
SMV [2].

Effect during revision for adding fault-tolerance. Other than the state space issue, this fault category
does not introduce new difficulties in model revision. This is due to the fact that no auxiliary variables are
needed to model this fault. An example where such fault modeling is used in model revision includes [40].

4.4 Operational, External, Hardware, Non-malicious and Persistent Faults

In this section, we focus on the class of faults that are operational, external, hardware, non-malicious and
persistent. (They correspond to category 14, 17 and 20 (cf. Figure 1).) These categories differ in terms of
whether the fault is human-made or natural as well as whether the fault is deliberate or non-deliberate.
However, the exact cause is not important in modeling effect of such faults.

Abstract Model. Unlike the faults from Section 4.1, where faults are malicious in nature, the faults in
category 14, 17 and 20 are non-malicious. It is expected that these faults are persistent in nature. Examples
of such faults include failure of nodes, failure of channels etc.

Modeling of such fault in terms of transition is similar to that in Section 4.1. Specifically, since the
faulty component is permanently ‘killed’ we can model it with an auxiliary variableC that denotes whether
the given component is correct or whether it has failed. Also, letdata denote state of a node (including its
buffered messages). Now, the fault action can be modeled as follows:

Fault action 1:
C = true −→C := false, data := empty;

Additionally, all program actions would have to be modified so that they only execute when the switch
is functioning correctly. In other words, all actions by which one node communicates with another would
have to be modified so that it can occur only if the respective nodes have not failed.

Mapping to Abstract Model- From a concrete example.A typical example of the faults from this
category occurs in context of networking systems where a fault may cause one or more nodes to fail in a
manner where it completely stops working.

One example of such a system is from [33] where authors have focused on developing a failstop pro-
cessor: A failstop processor works correctly before a fault occurs and it performs no actions when it fails.
Moreover, data maintained at the failed processor is lost.

Another example is SafetyNet [27]. SafetyNet is a lightweight global checkpoint/recovery scheme. It
aims at providing stable and reliable system services even in the situation of either dropped coherence
messages or the loss of an interconnection network switch (and its buffered messages).

Mapping raw actions in the real example to abstract action in the model described above is very straight-
forward. The steps is similar with Section 4.3(, and hence omitted).

Completeness of this approach for modeling faults from this category. Next, we argue that this
approach is generic for faults from this category. Specifically, considering the faults are operational, it is
required to include in the modeling such an action to denote faulty components/processes appear in the
system. Also, since faults of this category are persistent, it is required that it must be possible for the fault to
persist forever (such as that indicated by Fault action 1). Since the fault is external and non-malicious, the
occurrence of fault is due to some change of environment condition and hence there must be some variable
to denote this change in the modeling (like var c in the Fault action 1). Thus, any fault that is operational,
external, persistent, hardware and non-malicious, can be modeled using an approach similar to the one
presented earlier. We review faults from recent literature in the area of fault tolerance, and find that how
these faults identified in Table 3 can be modeled using this approach.

Modeling variations of this fault. There are several possible variations that one may consider in this
category of faults. For example, a 2D torus topology is considered in [27] to prevent a single point-of-failure
by splitting each switch into two half-switches. Execution may resume after reconfiguration to route around
the lost switch [28] although at reduced bandwidth. In this case, we can use two variables to denote the
link status and buffered data of each half-switch independently. The link status of the whole switch can
be modeled as disjunction of the link status of each half element. Also often redundancy is used in the
networking system. For example, the configuration of a specific point-to-point path may consist of several

39

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 11

available links. If such an assumption is desired, one can model the fault action for each available switch
first. Then, the link status of the whole configuration can be modeled as disjunction value of these available
switches.

The fault modeling from this section assumes that the fault is permanent, i.e., the failed node remains
failed forever. A variation of this model is one where the faulty node is repaired and integrated in the system.
In this case, a dual of the fault action whereC is set to true must be added. Depending upon how such an
action restores the node, the data associated with the node would change. For example, if the restore is
equivalent to reboot where the node starts from some fixed state, data will be changed accordingly.

Modeling faults from related categories. Approach similar to the one in this section also applies for
faults from other categories. For example, the above modeling can be used whether faults affect hardware
or software. Hence, we can model faults from category 27 and 30 (cf. Figure 1) using the approach in this
section.

Effect during verification and revision of fault-tolerance. The effect on verification and revision
is similar to that in Section 4.1. There are some possible changes depending upon the assumptions about
faults. In particular, variableC introduced in fault actions may or may not be readable by other processes
depending upon whether one assumes that a fault is detectable or not. Furthermore, approaches such as
failure detectors [41] could be used to model more fine tuned assumptions about delectability of the fault.

4.5 Development Faults

In this section, we focus on faults that occur during development. This corresponds to category 1-11 in the
Figure 1. Typical examples of such faults cause software flaws, logic bombs and hardware errata, etc. If the
developer(s) or operator(s) did not realize at the time that the consequence of their decision was a fault (or
conceal faulty actions like logic bombs with the malicious purpose), and furthermore, design or decision is
accepted for use, these faults can be treated as intrinsic nature of system and the occurrence of the faults is
unavoidable.

A concrete example. A typical example from this class includes Pentium FDIV bug in the Intel P5
Pentium floating point unit(FPU) that was caused by few missing entries in the lookup table used by the
divide operation. Another example is that of buffer overflows where one copies a longer string into a shorter
string thereby affecting other parts of memory.

We argue that for such faults, formal methods for modeling faults explicitly are either undesirable or
impossible. For such faults, a more practical approach is fault prevention where the goal is to ensure that
the fault does not occur. For example, a thorough analysis of code could be useful to ensure that logic
bombs do not occur. Likewise, analysis of Pentium FPU with theorem provers [34] has been successful in
identifying the missing table entries in Pentium. Likewise, approaches such as [35] can be used to prevent
buffer overflows.

In other words, for faults from this category, one needs to considerfault-free executionto show that the
fault does not occur. Since this requires consideration of onlyfault-freeexecution, it does not require one to
model faults explicitly.

That said, in certain instances, one may consider these faults explicitly and tolerate them, as preventing
them may be impossible. In such cases, one needs to consider theeffectof the development faults. We expect
most such development faults to exhibit themselves as malicious faults (cf. Section 4.1) or as failstop (cf.
Section 4.4) faults. In particular, we have discussed modeling of faults from category 5 and 6 in Section 4.1.

5 Practicability of Modeling during Verification and Revision

In Section 4, we considered thefeasibilityof modeling faults in terms of transition systems. In this section,
we utilize those results in identifying thepracticabilityof such modeling. Specifically, our goal is to evaluate
thecostof such modeling in two contexts:model-checkingandmodel revision. In case of model checking,
we want to compare the cost of verifying afault-intolerantprogram with that of verifyingfault-tolerant
program. And, in case of model revision, we want to compare the cost ofverifying fault-intolerantprogram
with that ofrevising it to add fault-tolerance. Both these tasks are feasible only if we can model the faults
during the verification and/or revision process.

40

Sina
Stamp

12 Jingshu Chen and Sandeep Kulkarni

5.1 Cost of Modeling Faults during Model Checking

Model checking focuses on deciding whether a given model of system, sayM satisfies the given property
pr. While the cost of model checking depends upon several factors, one important factor is the state space
of the resulting model. Since modeling of faults in terms of transitions has the potential to increase the state
space of the program, we evaluate the cost in terms of the increased state space. Specifically, we consider
the increased cost of modeling faults from Sections 4.1-4.4.

Observe that for modeling persistent and malicious faults, in Section 4.1, we needed to add a variable
m.j for every user. Essentially, this would double the state space of that user. Moreover, if there aren users
in the system, then the total state space will be2n times more than that of the fault-intolerant system.

For faults from Section 4.2, the cost depends upon whether the physical degradation can be modeled
using discrete values or whether continuous modeling is required. If the physical degradation is modeled
using discrete values as in Section 4.2, the total state space will increase by a constant factor when com-
pared with that of the fault-intolerant system. If the physical is modeled using continuous values, especially
modeling in hybrid automata [38], the total reachability problem is potentially undecidable.

If one were to verify a system that models transient fault as in Section 4.3, then one has to consider all
possible states that could be subtantially larger. However, the total state space will be unchanged compared
with that of fault-intolerant system.

Since the modeling approach of faults from Section 4.4 is similar to that in Section 4.1, the increased
state space on verification of modeling faults from Section 4.4 is similar to that of Section 4.1.

Based on the above discussion, we summarize the increased cost of modeling faults from Sections
4.1-4.4 in Table 1.

Increased Cost of Modeling Faults during Model Checking
Faults from Section 4.1Increased by a factor of2n.

Faults from Section 4.2
Increased by a constant factor if discrete degradation is considered.
Potentially undecidable if continuous degradation is considered.

Faults from Section 4.3Unchanged in statespace.
Faults from Section 4.4Increased by a factor of2n.

Table 1: Cost of Modeling Faults during Model Checkingin terms of the Increased State Space

According to the results in Table 1, we argue that the increased cost due to modeling faults in 18
categories (identifed in Section 4.1, 4.3 and 4.4) is reasonable. However, the increased cost due to modeling
faults in 2 categories (identified in Section 4.2) is high.

5.2 Cost of Modeling Faults during Model Revision

Since model checking computes (directly or indirectly) all computations ofM to determine whetherpr
is satisfied, it is especially useful in providing assurance about a system developed from that model. The
related problem of model revision [3,4] focuses on scenarios where model checking produces a counterex-
ample or where an existing model needs to be revised to add new properties (such as safety, liveness and
timing constraints). Thus, the goal in model revision is to modify the given modelM so that it satisfies the
given propertypr. Since the revised model is correct by construction, it can assist us in obtaining a correct
model of system when model checking ends up finding a counterexample.

Considering read-write restriction must be continued to be satisfied in the revised model, for modeling
persistent and malicious faults in Section 4.1, variablem.j is readable only to nodej. Other nodes cannot
read it. Besides, variablem.j cannot be changed by any node; it may be changed only by a fault action.
These restrictions have been shown to increase complexity from P to NP-complete in some instances [22].

Regarding revision for the modeling of faults from Section 4.2, revising timed automata is considered in
[36]. However, the cost of such revision is often higher (exponential in the constants involved in specifying
timing constraints. In some circumstance, the problem is even undecidable.

41

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 13

For modeling transient faults in Section 4.3, it does not introduce new difficulties in model revision.
This is due to the fact that no auxiliary variables are needed to model this fault. An example where such
fault modeling is used in model revision includes [40].

Similarly to modeling of faults from Section 4.1, the complexity of modeling faults from Section 4.4 is
increased from P to NP-complte in certain circumstance.

As discussed above, we summarize the complexity issues caused by modeling faults from Sections
4.1-4.4 during model revision in Table 2.

Complexity of Modeling Faults during Model Revision
Faults from Section 4.1From P to NP-complete in size of statespace.
Faults from Section 4.2Undecidable in certain circumstance.

Faults from Section 4.3
For centralized system, unchanged in complexity class.
For distributed system, conjectured to NP-complete.

Faults from Section 4.4From P to NP-complete in size of statespace.
Table 2: Complexity of Modeling Faults during Model Revision

Based on these results in Table 2, the complexity increases substantially for model revision. However,
efficient heuristics have been found to mitigate the complexity for modeling faults identified in Section 4.1,
4.3 and 4.4. Hence, we argue that model revision for faults from these categories is practical. And for faults
discussed in Section 4.2, the increased complexity may be too high.

6 Related work

Formally modeling of faults is studied from different perspectives. One approach focuses on representing
the faults in a formal expression (e.g. process algebra, higher-order logic, atomic actions, etc) and thus fa-
cilitates the development of the fault-tolerant system. More specifically, modeling faults by process algebra
represents fault as process as well as the system processes, and hence the system behavior in the presence
of faults with this modeling approach can be a composition of processes. Subsequently, designer can utilize
the existing verification techniques (e.g. model checking) to guarantee the correctness of design. The typ-
ical examples utilizing process algebra include [13, 19–21]. In [23], fault is modeled in a typed-system in
higher-order logic and such a modeling approach can utilize the PVS system prover to specify and verify the
design and implementation of the system. In [24,25], authors model the fault as a set of atomic actions and
design recovery actions from faults. Then, they show that the union of the program actions and the recovery
actions meets system requirements in the presence of faults. However, these approaches seem tedious when
one needs to differentiate and model the diversity of fault classes. By contrast, our approach will advance
the applicability of the uniform modeling approach by allowing designers to model different classes of
faults. Hence our approach is desirable when one needs to designing different levels of fault-tolerance to
different classes of faults.

Our work is orthogonal to several existing approaches (e.g. [44–47]) foridentifying faultsin early stages
of design and anticipating all possible faults that could occur in the system. The results in this paper are
intended towards modeling faults identified using techniques such as those in [44–47] so that one can utilize
techniques from model checking and revision.

Some formal specifications (e.g., in [14–18]) have addressed the problem of modeling only one specific
class of fault. However, there are many situations where a system may be subject to multiple classes of
faults. Our approach pursues to achieve uniform modeling of faults from different classes. The uniform
formal modeling in our approach is necessary especially when we need to design or test the system where
multiple classes of faults may occur.

7 Conclusion

This paper focused on bridging the gap between theory and practice of fault-tolerant systems by identifying
a uniform model for different categories of faults. Towards this end, we began with the classification that

42

Sina
Stamp

14 Jingshu Chen and Sandeep Kulkarni

is based on practitioner’s point of view [7] and for each category, either (1) identified how that fault can
be modeled using transition systems or (2) argued that fault prevention techniques should be used for the
corresponding fault thereby obviating the need for modeling that fault explicitly.

We show that (1) for 18 categories of the 31 catetories from [7], modeling faults using transition systems
is practical and feasible; (2) for 2 categories, modeling faults using transition systems is feasible but not
practical and (3) for 11 categories, modeling faults using transition system is not feasible.

Our approach for modeling faults is analogous with the approach for modeling fault-free behavior in
model checking and the latter has been shown to be one of the most successful strategies for analyzing
fault-free models. Also, our approach has been used in verifying and revising fault-tolerant programs in the
context of specific instances of faults [4,5,25]. Hence, we expect the results in this paper to bridge the gap
between theory and practice in providing assurance about fault-tolerant system design. Moreover, as the
examples in Section 4 illustrate, our uniform fault modeling approach is beneficial in the situation where
the system is subject to multiple faults from different classes (e.g., node crash vs message loss vs malicious
attacker). Particularly, our uniform modeling of faults will assist in analyzing the system that is subject
to multiple faults and furthermore utilizing the existing technologies (e.g., [8, 9]) to analyze and provide
tolerance to such situations.

References

1. Holzmann, G.J.: The model checker SPIN, IEEE Trans. Software Eng., vol. 23, no.5, pp.279-295, May 1997.
2. McMillan, K. L.: Symbolic Model Checking. Kluwer Academic, 1993.
3. Borzoo Bonakdarpour and Sandeep S. Kulkarni: Exploiting Symbolic Techniques in Automated Synthesis of Dis-

tributed Programs. In IEEE International Conference on Distributed Computing Systems(ICDCS), pp. 3-10, 2007.
4. Borzoo Bonakdarpour and Sandeep S. Kulkarni, SYCRAFT: A Tool for Automated Synthesis of Fault-Tolerant Dis-

tributed Programs. In International Conference on Concurrency Theory (CONCUR), LNCS 5201, pp. 167-171,2008.
5. Felix C. Gartner: Specifications for Fault Tolerance: A Comedy of Failures, Technical Report TUD-BS-1998-03.

Darmstadt University of Technology, Darmstadt, Germany, 1998.
6. M. Demirbas, A. Arora, V. Mittal and V. Kulathumani. A fault-local self-stabilizing clustering service for wireless ad

hoc networks . IEEE Transactions on Parallel and Distributed Systems, Special issue on Localized Communication
and Topology Protocols for Ad Hoc Networks, 17(4), 2006.

7. Avizienis, Algirdas and Laprie, Jean-Claude and Randell, Brian and Landwehr, Carl: Basic Concepts and Taxonomy
of Dependable and Secure Computing, IEEE Trans. Dependable Secur. Comput., 2004.

8. S. S. Kulkarni and A. Ebnenasir: Automated Synthesis of Multitolerance, International Conference on Dependable
Systems and Networks, Palazzo dei Congressi, Florence, Italy, June 2004

9. Jingshu Chen and Sandeep S. Kulkarni: Complexity Analysis of Weak Multitolerance. In IEEE International Con-
ference on Distributed Computing Systems(ICDCS) 2010, Genoa, Italy

10. Sukumar Ghosh, Arobinda Gupta, Ted Herman, Sriram Pemmaraju, Fault-containing Self-stabilizing Distributed
Protocols, Distributed Computing, 20:53-73, 2007.

11. Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein: Preserving the Fault-Containment of Ring Protocols
Executed on Trees, British Computer Journal, volume 52, number 4, pages 483-498, July 2009.

12. S. Kutten and D. Peleg: Fault-Local Mending, Journal of Algorithms, Vol. 30, No. 1, January 1999: 144-165. Also
appeared in Proceedings of the Fourteenth Annual ACM Symposium on Principle of Distributed Computing (PODC
95) , Ottawa, Canada, August 1995: 20-27.

13. K. V. S. Prasad, Specification and proof of a simple fault tolerant system in CCS, Dep. Comput. Sci., Univ. Edin-
burgh, Int. Rep. CSR-178-84, 1984

14. Roxana Geambasu, Andrew Birrell, and John MacCormick: Experiences with Formal Specification of Fault-
tolerant File Systems, In: Proceedings of the 38th Annual International Conference on Dependable Systems and
Networks, 2008

15. J.F. Martins, P. J. Costa Branco, A.J. Pires, J.A. Dente: Fault Detection using Immune-Based Systems and Formal
Language Algorithms,in IEEE Conference on Decision and Control (CDC2000).

16. Mahlstedt, U., Heinitz, M., Alt, J., Test Generation for IDDQ Testing and Leakage Fault Detection in CMOS
Circuits, EURODAC 92, pp.486-491

17. Eldred, R.D., Test Routines Based on Symbolic Logical Statements, Journal ACM, vol.6, no.1, 1959, pp.33-36.
18. Su, Chauchin and Chiang, Shenshung and Jou, Shyh-Jye: Impulse response fault model and fault extraction for

functional level analog circuit diagnosis,ICCAD ’95: Proceedings of the 1995 IEEE/ACM international conference
on Computer-aided design, 1995.

43

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 15

19. Peleska, J. 1991. Design and verification of fault tolerant systems with csp. Distributed Computing 5, 95C106
20. Bernardeschi, C., Fantechi, A., and Simoncini, L. 2000. Formally verifying fault tolerant system designs. The

computer journal 43, 3, 191C205
21. Gnesi, S., Lenzini, G., and Martinelli, F. 2005. Logical specification and analysis of fault tolerant systems through

partial model checking. Electronic Notes in Theoretical Computer Science 118, 57-70
22. S. S. Kulkarni and A. Arora. Automating the Addition of Fault-Tolerance Formal Techniques in Real-Time and

Fault Tolerant Systems, 2000.
23. Pike, L., Maddalon, J., Miner, P. S., and Geser, A. 2004. Abstractions for fault-tolerant distributed system verifica-

tion. In 17th International Conference Theorem Proving in Higher Order Logics (TPHOLs). 257C27
24. Lin, F. and Wonham, W. M. 1990. Decentralized control and coordination of discrete-event systems with partial

observation. IEEE Transactions On Automatic Control 35, 12 (December),1330-1337
25. Liu, Z. and Joseph, M. 1992. Transformation of programs for fault-tolerance. Formal Aspects of Computing 4, 5,

442C469
26. William J. Bolosky, John R. Douceur, and Jon Howell, The Farsite project: a retrospective, in ACM SIGOPS

Operating Systems Review 41 (2), Association for Computing Machinery, Inc., April 2007.
27. Sorin, Daniel J. and Martin, Milo M. K. and Hill, Mark D. and Wood, David A.: SafetyNet: improving the availabil-

ity of shared memory multiprocessors with global checkpoint/recovery, ISCA ’02: Proceedings of the 29th annual
international symposium on Computer architecture, 2002.

28. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Network. IEEE Computer Society Press, 1997.
29. USA Department of Transportation, Office of Inspector General, Audit Report: Advance Automation System,

Report Av-1998-113, Apr. 1998.
30. J. Gray: Functionality, Availability, Agility, Manageability, Scalability – The new priorities of application design,

Proc. Int’l Workshop High Performance Trans. Systems, 2001.
31. Johan Bengtsson and Fredrik Larsson.: Uppaal a Tool for Automatic Verification of Real-Time Systems. DoCS

Technical Report Nr 96/67, Uppsala University, ISSN 0283-0574, January 1996.
32. Hinton, A; Kwiatkowska, M; Norman, G; Parker, D. PRISM: A Tool for Automatic Verification of Probabilistic

Systems. Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920 of Lecture Notes in Computer Science, pages 441-444, Springer. 2006.

33. Schlichting, Richard D. and Schneider, Fred B.: Fail-stop processors: an approach to designing fault-tolerant com-
puting systems, ACM Trans. Comput. Syst.,1983.

34. Ruess, Harald and Shankar, Natarajan and Srivas, Mandayam K.: Modular Verification of SRT Division, Form.
Methods Syst. Des., v.14, 1999.

35. Tuck, Nathan and Calder, Brad and Varghese, George, Hardware and Binary Modification Support for Code Pointer
Protection From Buffer Overflow, MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium
on Microarchitecture, 2004.

36. Borzoo Bonakdarpour: Automated Revision of Distributed and Real-Time Programs, PH.D. dissertation, Michigan
State University, 2008.

37. R. Alur and D.L. Dill: A theory of timed automata. Theoretical Computer Science 126:183-235, 1994 (preliminary
versions appeared in Proc. 17th ICALP, LNCS 443, 1990, and Real Time: Theory in Practice, LNCS 600, 1991).

38. R. Alur, C. Courcoubetis, T.A. Henzinger, P.-H. Ho. Hybrid Automata: An algorithmic approach to the specification
and verification of hybrid systems. In Hybrid Systems, LNCS 736, pp. 209-229, 1993.

39. Tsuchiya, Tatsuhiro and Nagano, Shin’ichi and Paidi, Rohayu Bt and Kikuno, Tohru: Symbolic Model Checking
for Self-Stabilizing Algorithms. IEEE Trans. Parallel Distrib. Syst. 12, 81–95 (2001).

40. Fuad Abujarad, and Sandeep S. Kulkarni. Constraint Based Automated Synthesis of Nonmasking and Stabilizing
Fault-Tolerance. 28th International Symposium on Reliable Distributed Systems (SRDS), pp. 19-128, September-
2009.

41. Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 1996.
42. Jayaram, Mahesh and Varghese, George, Crash failures can drive protocols to arbitrary states, PODC ’96: Proceed-

ings of the fifteenth annual ACM symposium on Principles of distributed computing, 1996.
43. Dijkstra, Edsger W.: Self-stabilizing systems in spite of distributed control, Commun. ACM, 1974.
44. ARP-4761: Aerospace recommended practice: guidelines and methods for conducting the safety assessment pro-

cess on civil airborne systems and equipment. 12th edition, Society of Automotive Engineers (SAE), 400 Common-
wealth Drive Warrendale PA United States. 1996.

45. Vesely, W. Fault tree handbook. US Nuclear Regulatory Committee Report NUREG-0492, US NRC, Washington
DC, United States. 1981.

46. Palady, P. Failure modes and effects analysis. PT Publications Inc. 1995.
47. Kletz, T. A. HAZOP and HAZAN: Identifying and assessing process industry standards. CRC (4 edition). 1999.
48. Anish Arora , Mohamed Gouda, Closure and Convergence: A Foundation of Fault-Tolerant Computing, IEEE

Transactions on Software Engineering, v.19 n.11, 1992.

44

Sina
Stamp

16 Jingshu Chen and Sandeep Kulkarni

A Relative Completeness of this approach with Recent Literature

In this section, we evaluate relative completeness of modeling approach proposed in our paper with recent
literature. In particular, we study the papers from two premier conferences in the area of fault tolerance:
the International Conference On Distributed Computing Systems (ICDCS) and the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) since 2007.

Of 139 fault-tolerant relevant papers, we evaluate each paper whether modeling of those faults is feasible
using the approaches mentioned in our paper. We find that faults mentioned from 51 papers can be modeled
in the approach proposed in Section 4.1. Faults mentioned from 13 papers can be modeled in the approach
proposed in Section 4.2. The fault model in the Section 4.3 can be applied to modeling faults from 40
papers. And the fault model in the Section 4.4 can be used in modeling faults from 31 papers. Besides, there
are faults from 4 papers that can’t be modeled in the approach proposed in our paper. We summarize our
evaluation that how these faults can be modeled in the our proposed approaches in Table 3.

Appropriate Model Faults proposed in the publications from DSN and
ICDCSsince 2007

Approach in Section 4.1

DDoS Attacks in [2], [23]
Selfishness of Node/Host in distributed system in [4],
[16], [17], [18], [21], [28], [50], [55], [56], [60], [70],
[71], [74], [123], [135], [136], [137], [138], [139]
Attacks in [11], [19], [20], [24], [25], [26], [58], [59],
[61], [66], [67], [68], [76], [77], [96], [99], [100], [104],
[105], [109], [110], [112], [117], [124], [127], [133],
[134]
Worms in [12], [111], [114],

Approach in Section 4.2
Power degradation of Battery in MANETs mentioned
in [5],
Energy consumption in [13], [35], [39], [40], [41], [42],
[45], [52], [57], [62], [65],
Aging-related bug in [129],

Approach in Section 4.3

Data Incoherency in [3], [8], [14], [27], [30], [32], [34],
[37], [38], [43], [44], [46], [49], [72], [87], [116], [130],
[131]
Noise in WSN [10],
User’s misbehavior in [22], [67], [94], [106]
Uncertain data in [53], [93], [103], [108], [122]
Transient bugs in [64], [73], [75], [83], [84], [85], [89],
[91], [107], [115], [120], [121], [128], [132]

Approach in Section 4.4
Message Loss in [1], [15], [80], [102]
Crash Failure in [6], [7], [36], [47], [48], [51], [54],
[63], [69], [78], [79], [81], [82], [86], [90], [92], [95],
[113], [125], [126], [128]
Disconnection in distributed system in [8], [29], [31],
[97] [33], [98], [101].

No approach is feasiblecode injection in [88], OS bugs in [118], Security flaw
of web service in [119], program bugs in [140]

Table 3: Classification of Faults proposed in the publicationof DSN and ICDCSsince 2007

References

1. Yu Wang, Hongyi Wu, Feng Li and Nian-Feng Tzeng: Protocol Design and Optimization for Delay/Fault-Tolerant
Mobile Sensor, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Comput-
ing Systems IEEE Computer Society Washington, DC, USA, 2007.

45

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 17

2. Minos Garofalakis, Rajeev Rastogi and Krishan Sabnani: Streaming Algorithms for Robust, Real-time Detection of
DDoS Attacks, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Comput-
ing Systems IEEE Computer Society Washington, DC, USA, 2007.

3. Manish Bhide, Krithi Ramamritham and Mukund Agrawal: Efficient Execution of Continuous Incoherency Bounded
Queries over Multi-Source Streaming Data, in Proceeding ICDCS ’07 Proceedings of the 27th International Confer-
ence on Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

4. Lin Chen and Jean Leneutre: Selfishness, Not Always A Nightmare: Modeling Selfish MAC Behaviors in Wireless
Mobile Ad Hoc Networks,in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed
Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

5. Shan-Hung Wu, Chung-Min Chen and Ming-Syan Chen: An Asymmetric Quorum-base Power Saving Protocol
for Clustered Ad Hoc Networks, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on
Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

6. Rachid Guerraoui, Dejan Kostic, Ron Levy and Vivien Quema: A High Throughput Atomic Storage Algorithm, in
Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems IEEE
Computer Society Washington, DC, USA, 2007.

7. Vijay K. Garg and Vinit Ogale: Fusible Data Structures for Fault-Tolerance,in Proceeding ICDCS ’07 Proceedings
of the 27th International Conference on Distributed Computing Systems IEEE Computer Society Washington, DC,
USA, 2007.

8. Philippe Bergheaud, Dinesh Subhraveti and Marc Vertes: Fault Tolerance in Multiprocessor Systems via Application
Cloning,in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing
Systems IEEE Computer Society Washington, DC, USA, 2007.

9. Sylvia Bianchi, Ajoy Datta, Pascal Felber and Maria Gradinariu: Stabilizing Peer-to-Peer Spatial Filters, in Pro-
ceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems IEEE
Computer Society Washington, DC, USA, 2007.

10. Yongzhen Zhuang, Lei Chen, Xiaoyang, X. Sean Wang and Jie Lian: A Weighted Moving Average-Based Approach
for Cleaning Sensor Data, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed
Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

11. Donggang Liu: Resilient Cluster Formation for Sensor Networks, in Proceeding ICDCS ’07 Proceedings of the
27th International Conference on Distributed Computing Systems IEEE Computer Society Washington, DC, USA,
2007.

12. Guanhua Yan and Stephan Eidenbenz: Modeling Propagation Dynamics of Bluetooth Worms, in Proceeding
ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems IEEE Computer
Society Washington, DC, USA, 2007.

13. Cigdem Sengul and Robin Kravets: Heuristic Approaches to Energy-Efficient Network Design Problem, in Pro-
ceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems IEEE
Computer Society Washington, DC, USA, 2007.

14. Yunfeng Lin, Baochun Li and Ben Liang: Differentiated Data Persistence with Priority Random Linear Codes, in
Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems IEEE
Computer Society Washington, DC, USA, 2007.

15. Mahmoud Elhaddad, Hammad Iqbal, Taieb Znati and Rami Melhem: Scheduling to minimize the worst-case loss
rate, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference on Distributed Computing Systems
IEEE Computer Society Washington, DC, USA, 2007.

16. Ramses Morales and Indranil Gupta: AVMON: Optimal and Scalable Discovery of Consistent Availability Moni-
toring Overlays for Distributed Systems, in Proceeding ICDCS ’07 Proceedings of the 27th International Conference
on Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

17. An Empirical Study of Collusion Behavior in the Maze P2P File-Sharing System, Qiao Lian, Zheng Zhang, Mao
Yang, Ben Y. Zhao, Yafei Dai and Xiaoming Li: in Proceeding ICDCS ’07 Proceedings of the 27th International
Conference on Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

18. Robust and Secure Interactions in Open Distributed Systems through Recovery of Trust Negotiations, Anna Cinzia
Squicciarini, Alberto Trombetta and Elisa Bertino: in Proceeding ICDCS ’07 Proceedings of the 27th International
Conference on Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2007.

19. Kai Xing, Fang Liu, Xiuzhen Cheng, David Hung-Chang Du: Real-Time Detection of Clone Attacks in Wireless
Sensor Networks,28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20
June 2008, Beijing, China. IEEE Computer Society 2008.

20. Wenjun Gu, Zhimin Yang, Can Que, Dong Xuan, Weijia Jia: On Security Vulnerabilities of Null Data Frames
in IEEE 802.11 Based WLANs,28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

21. Radu Sion: Strong WORM, 28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

46

Sina
Stamp

18 Jingshu Chen and Sandeep Kulkarni

22. Linfeng Zhang, Yong Guan:Detecting Click Fraud in Pay-Per-Click Streams of Online Advertising Networks, 28th
IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China.
IEEE Computer Society 2008.

23. Muthusrinivasan Muthuprasanna, Govindarasu Manimaran: Distributed Divide-and-Conquer Techniques for Ef-
fective DDoS Attack Defenses, 28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

24. P. Kumar Manna, Sanjay Ranka, Shigang Chen: Analysis of Maximum Executable Length for Detecting Text-
Based Malware. 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June
2008, Beijing, China. IEEE Computer Society 2008.

25. Jose Carlos Brustoloni, David Kyle: Updates and Asynchronous Communication in Trusted Computing Systems.
28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing,
China. IEEE Computer Society 2008.

26. My T. Thai, Ying Xuan, Incheol Shin, Taieb Znati: On Detection of Malicious Users Using Group Testing Tech-
niques. 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008,
Beijing, China. IEEE Computer Society 2008.

27. Xuejun Yang, Panfeng Wang, Hongyi Fu, Yunfei Du, Zhiyuan Wang, Jia Jia: Compiler-Assisted Application-Level
Checkpointing for MPI Programs. 28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

28. Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, Kenneth J. Goldman: Byzantine Fault-Tolerant Web Services for
n-Tier and Service Oriented Architectures. 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

29. Michio Honda, Jin Nakazawa, Yoshifumi Nishida, Masahiro Kozuka, Hideyuki Tokuda: A Connectivity-Driven Re-
transmission Scheme Based On Transport Layer Readdressing. 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

30. Qing Ye, Liang Cheng: DTP: Double-Pairwise Time Protocol for Disruption Tolerant Networks. 28th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE
Computer Society 2008.

31. Zhao Zhang, Weili Wu, Shashi Shekhar: Optimal Placements in Ring Network for Data Replicas in Distributed
Database with MajorityVoting Protocol. 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

32. Reza Curtmola, Osama Khan, Randal C. Burns, Giuseppe Ateniese: MR-PDP: Multiple-Replica Provable Data
Possession. 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June
2008, Beijing, China. IEEE Computer Society 2008.

33. Guang Tan, Stephen A. Jarvis, Anne-Marie Kermarrec: Connectivity-Guaranteed and Obstacle-Adaptive Deploy-
ment Schemes for Mobile Sensor Networks. 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

34. Yun Wang, Jie Wu: A Nonblocking Approach for Reaching an Agreement on Request Total Orders. 28th IEEE
International Conference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE
Computer Society 2008.

35. Yingshu Li, Chunyu Ai, Wiwek P. Deshmukh, Yiwei Wu: Data Estimation in Sensor Networks Using Physical and
Statistical Methodologies. 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008),
17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

36. Weijun Xiao, Qing Yang: Can We Really Recover Data if Storage Subsystem Fails? 28th IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Soci-
ety 2008.

37. Samer Al-Kiswany, Matei Ripeanu, Sudharshan S. Vazhkudai, Abdullah Gharaibeh: stdchk: A Checkpoint Stor-
age System for Desktop Grid Computing.28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

38. Chang Xu, Shing-Chi Cheung, Wing Kwong Chan, Chunyang Ye: Heuristics-Based Strategies for Resolving Con-
text Inconsistencies in Pervasive Computing Applications. 28th IEEE International Conference on Distributed Com-
puting Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

39. Shan-Hung Wu, Ming-Syan Chen, Chung-Min Chen: Fully Adaptive Power Saving Protocols for Ad Hoc Networks
Using the Hyper Quorum System. 28th IEEE International Conference on Distributed Computing Systems (ICDCS
2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

40. Dong Li, Yanmin Zhu, Li Cui, Lionel M. Ni: Hotness-Aware Sensor Networks. 28th IEEE International Conference
on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

41. Cigdem Sengul, Mehedi Bakht, Albert F. Harris III, Tarek F. Abdelzaher, Robin Kravets: Improving Energy Conser-
vation Using Bulk Transmission over High-Power Radios in Sensor Networks. 28th IEEE International Conference
on Distributed Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China. IEEE Computer Society 2008.

47

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 19

42. Jiayu Gong, Xiliang Zhong, Cheng-Zhong Xu: Energy and Timing Constrained System Reward Maximization on
Wireless Networks. 28th IEEE International Conference on Distributed Computing Systems (ICDCS 2008), 17-20
June 2008, Beijing, China. IEEE Computer Society 2008.

43. Maintaining Probabilistic Consistency for Frequently Offline Devices in Mobile Ad Hoc Networks, Wenzhong Li,
Edward Chan, Daoxu Chen, Sanglu Lu. Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International
Conference on Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2009.

44. Andrey Brito, Christof Fetzer, Pascal Felber: Minimizing Latency in Fault-Tolerant Distributed Stream Processing
Systems. Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems IEEE Computer Society Washington, DC, USA, 2009.

45. Min Yeol Lim, Freeman L. Rawson III, Tyler K. Bletsch, Vincent W. Freeh: PADD: Power Aware Domain Dis-
tribution. Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems IEEE Computer Society Washington, DC, USA, 2009.

46. Weihan Wang, Cristiana Amza: On Optimal Concurrency Control for Optimistic Replication.Published in ICDCS
’09 Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems IEEE Computer
Society Washington, DC, USA, 2009.

47. Carole Delporte-Gallet, Hugues Fauconnier, Andreas Tielmann: Fault-Tolerant Consensus in Unknown and Anony-
mous Networks. Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on Dis-
tributed Computing Systems IEEE Computer Society Washington, DC, USA, 2009.

48. Lanyue Lu, Prasenjit Sarkar, Dinesh Subhraveti, Soumitra Sarkar, Mark Seaman, Reshu Jain, Ahmed Bashir:
CARP: Handling Silent Data Errors and Site Failures in an Integrated Program and Storage Replication Mechanism.
Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on Distributed Computing
Systems IEEE Computer Society Washington, DC, USA, 2009.

49. Stephane Weiss, Pascal Urso, Pascal Molli: Logoot: A Scalable Optimistic Replication Algorithm for Collaborative
Editing on P2P Networks. Published in ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on
Distributed Computing Systems IEEE Computer Society Washington, DC, USA, 2009.

50. Donggang Liu: Protecting Neighbor Discovery Against Node Compromises in Sensor Networks. Published in
ICDCS ’09 Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems IEEE
Computer Society Washington, DC, USA, 2009.

51. Tao Xie, Abhinav Sharma: Collaboration-Oriented Data Recovery for Mobile Disk Arrays. Published in ICDCS ’09
Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems IEEE Computer
Society Washington, DC, USA, 2009.

52. Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D. Schlichting, Calton Pu: Mistral: Dynamically
Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures. in Proceedings of 2010 International
Conference on Distributed Computing Systems, Genova, Italy.

53. Xiaofeng Ding, Hai Jin: Efficient and Progressive Algorithms for Distributed Skyline Queries over Uncertain Data.
in Proceedings of 2010 International Conference on Distributed Computing Systems, Genova, Italy.

54. Wenbo He, Xue Liu, Long Zheng, Hao Yang: Reliability Calculus: A Theoretical Framework to Analyze Commu-
nication Reliability. in Proceedings of 2010 International Conference on Distributed Computing Systems, Genova,
Italy.

55. Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, Steve J. Chapin: ESCUDO: A Fine-Grained Protec-
tion Model for Web Browsers. in Proceedings of 2010 International Conference on Distributed Computing Systems,
Genova, Italy.

56. Maxwell Young, Aniket Kate, Ian Goldberg, Martin Karsten: Practical Robust Communication in DHTs Tolerat-
ing a Byzantine Adversary. in Proceedings of 2010 International Conference on Distributed Computing Systems,
Genova, Italy.

57. Yinliang Yue, Lei Tian, Hong Jiang, Fang Wang, Dan Feng, Quan Zhang, Pan Zeng: RoLo: A Rotated Logging
Storage Architecture for Enterprise Data Centers. in Proceedings of 2010 International Conference on Distributed
Computing Systems, Genova, Italy.

58. Jong Chun Park, Jedidiah R. Crandall: Empirical Study of a National-Scale Distributed Intrusion Detection Sys-
tem: Backbone-Level Filtering of HTML Responses in China. in Proceedings of 2010 International Conference on
Distributed Computing Systems, Genova, Italy.

59. Soo Bum Lee, Virgil D. Gligor: FLoc : Dependable Link Access for Legitimate Traffic in Flooding Attacks. in
Proceedings of 2010 International Conference on Distributed Computing Systems, Genova, Italy.

60. Marin Bertier, Anne-Marie Kermarrec, Guang Tan: Message-Efficient Byzantine Fault-Tolerant Broadcast in a
Multi-hop Wireless Sensor Network. in Proceedings of 2010 International Conference on Distributed Computing
Systems, Genova, Italy.

61. Qi Dong, Donggang Liu: Adaptive Jamming-Resistant Broadcast Systems with Partial Channel Sharing. in Pro-
ceedings of 2010 International Conference on Distributed Computing Systems, Genova, Italy.

48

Sina
Stamp

20 Jingshu Chen and Sandeep Kulkarni

62. Bin Tong, Zi Li, Guiling Wang, Wensheng Zhang: How Wireless Power Charging Technology Affects Sensor
Network Deployment and Routing. in Proceedings of 2010 International Conference on Distributed Computing
Systems, Genova, Italy.

63. Taylor Johnson, Sayan Mitra, Karthik Manamcheri: Safe and Stabilizing Distributed Cellular Flows. in Proceedings
of 2010 International Conference on Distributed Computing Systems, Genova, Italy.

64. Yangfan Zhou, Xinyu Chen, Michael R. Lyu, Jiangchuan Liu: Sentomist: Unveiling Transient Sensor Network
Bugs via Symptom Mining. in Proceedings of 2010 International Conference on Distributed Computing Systems,
Genova, Italy.

65. Yu Gu, Tian He: Bounding Communication Delay in Energy Harvesting Sensor Networks.in Proceedings of 2010
International Conference on Distributed Computing Systems, Genova, Italy.

66. Yixin Shi, Gyungho Lee: Augmenting Branch Predictor to Secure Program Execution. in The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edin-
burgh, UK, Proceedings. IEEE Computer Society 2007.

67. Ying Zhang, Zhuoqing Morley Mao, Jia Wang: A Firewall for Routers: Protecting against Routing Misbehavior.
in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

68. Ryan Riley, Xuxian Jiang, Dongyan Xu: An Architectural Approach to Preventing Code Injection Attacks. in The
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June
2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

69. Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, Andrew S. Tanenbaum: Failure Resilience for Device
Drivers. in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007,
25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

70. Nicolas Salatge, Jean-Charles Fabre: Fault Tolerance Connectors for Unreliable Web Services. in The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edin-
burgh, UK, Proceedings. IEEE Computer Society 2007.

71. Piotr Zielinski: Automatic Verification and Discovery of Byzantine Consensus Protocols. in The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edin-
burgh, UK, Proceedings. IEEE Computer Society 2007.

72. Fabiola Greve, Sebastien Tixeuil: Knowledge Connectivity vs. Synchrony Requirements for Fault-Tolerant Agree-
ment in Unknown Networks. in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007

73. Martin Hutle, Andre Schiper: Communication Predicates: A High-Level Abstraction for Coping with Transient and
Dynamic Faults. in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

74. Josef Widder, Gunther Gridling, Bettina Weiss, Jean-Paul Blanquart: Synchronous Consensus with Mortal Byzan-
tines. in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007,
25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

75. Ahmad Rahmati, Lin Zhong, Matti A. Hiltunen, Rittwik Jana: Reliability Techniques for RFID-Based Object
Tracking Applications. in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

76. Daniel Ramsbrock, Robin Berthier, Michel Cukier: Profiling Attacker Behavior Following SSH Compromises. in
The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

77. Keith Harrison, Shouhuai Xu: Protecting Cryptographic Keys from Memory Disclosure Attacks. in The 37th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007,
Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

78. Marco Serafini, Neeraj Suri, Jonny Vinter, Astrit Ademaj, Wolfgang Brandstatter, Fulvio Tagliabo, Jens Koch: A
Tunable Add-On Diagnostic Protocol for Time-Triggered Systems. in The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings.
IEEE Computer Society 2007.

79. Jon G. Elerath, Michael Pecht: Enhanced Reliability Modeling of RAID Storage Systems. in The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edin-
burgh, UK, Proceedings. IEEE Computer Society 2007.

80. James W. Mickens, Brian D. Noble: Concilium: Collaborative Diagnosis of Broken Overlay Routes. in The 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007,
Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

81. Shengchao Yu, Yanyong Zhang: R-Sentry: Providing Continuous Sensor Services against Random Node Failures.
in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

49

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 21

82. Kenichi Kourai, Shigeru Chiba: A Fast Rejuvenation Technique for Server Consolidation with Virtual Machines.
in The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

83. Teruaki Sakata, Teppei Hirotsu, Hiromichi Yamada, Takeshi Kataoka: A Cost-Effective Dependable Microcon-
troller Architecture with Instruction-Level Rollback for Soft Error Recovery. in The 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceed-
ings. IEEE Computer Society 2007.

84. Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, Daniel A. Connors: Using Process-Level Re-
dundancy to Exploit Multiple Cores for Transient Fault Tolerance. in The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings.
IEEE Computer Society 2007.

85. Qijun Zhu, Chun Yuan: A Reinforcement Learning Approach to Automatic Error Recovery. in The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edin-
burgh, UK, Proceedings. IEEE Computer Society 2007.

86. Tiejun Ma, Jane Hillston, Stuart Anderson: On the Quality of Service of Crash-Recovery Failure Detectors. in The
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June
2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

87. Marcos Kawazoe Aguilera, Kimberly Keeton, Arif Merchant, Kiran-Kumar Muniswamy-Reddy, Mustafa Uysal:
Improving Recoverability in Multi-tier Storage Systems. in The 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings. IEEE Computer
Society 2007.

88. Ryan Riley, Xuxian Jiang, Dongyan Xu: An Architectural Approach to Preventing Code Injection Attacks. in The
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25-28 June
2007, Edinburgh, UK, Proceedings. IEEE Computer Society 2007.

89. Vimal K. Reddy, Eric Rotenberg: Coverage of a microarchitecture-level fault check regimen in a superscalar pro-
cessor. The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008,
June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008

90. Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S. Adve, Yuanyuan Zhou:
Trace-based microarchitecture-level diagnosis of permanent hardware faults. The 38th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA,
Proceedings. IEEE Computer Society 2008.

91. Hisashige Ando, Ryuji Kan, Yoshiharu Tosaka, Keiji Takahisa, Kichiji Hatanaka: Validation of hardware error
recovery mechanisms for the SPARC64 V microprocessor. The 38th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE
Computer Society 2008.

92. Albert Meixner, Daniel J. Sorin: Detouring: Translating software to circumvent hard faults in simple cores. The
38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27,
2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

93. Cristian Constantinescu, Ishwar Parulkar, R. Harper, Sarah Michalak: Silent Data Corruption - Myth or reality? The
38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27,
2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

94. Lorenzo Keller, Prasang Upadhyaya, George Candea: ConfErr: A tool for assessing resilience to human configura-
tion errors.The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008,
June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

95. Manish Marwah, Shivakant Mishra, Christof Fetzer: Enhanced server fault-tolerance for improved user experience.
The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-
27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

96. Yair Amir, Brian A. Coan, Jonathan Kirsch, John Lane:Byzantine replication under attack. The 38th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, An-
chorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

97. Nicolas Schiper, Sam Toueg: A robust and lightweight stable leader election service for dynamic systems. The 38th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008,
Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

98. Yawei Li, Zhiling Lan: A fast restart mechanism for checkpoint/recovery protocols in networked environments. The
38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27,
2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

99. Jose Fonseca, Marco Vieira: Mapping software faults with web security vulnerabilities. The 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska,
USA, Proceedings. IEEE Computer Society 2008.

50

Sina
Stamp

22 Jingshu Chen and Sandeep Kulkarni

100. Wei Yu, Nan Zhang, Xinwen Fu, Riccardo Bettati, Wei Zhao: On localization attacks to Internet Threat Monitors:
An information-theoretic framework. The 38th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

101. Poul E. Heegaard, Kishor S. Trivedi: Survivability quantification of communication services. The 38th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchor-
age, Alaska, USA, Proceedings. IEEE Computer Society 2008.

102. Ningfang Mi, Alma Riska, Evgenia Smirni, Erik Riedel: Enhancing data availability in disk drives through back-
ground activities. The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA, Proceedings. IEEE Computer Society 2008.

103. Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Michael M. Swift: Analyzing the effects of disk-pointer corruption. The 38th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA,
Proceedings. IEEE Computer Society 2008.

104. Roberto Perdisci, Manos Antonakakis, Xiapu Luo, Wenke Lee: WSEC DNS: Protecting recursive DNS resolvers
from poisoning attacks. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

105. Yao Zhao, Sagar Vemuri, Jiazhen Chen, Yan Chen, Hai Zhou, Zhi Fu: Exception triggered DoS attacks on wireless
networks. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

106. Ying Zhang, Zheng Zhang, Zhuoqing Morley Mao, Y. Charlie Hu: HC-BGP: A light-weight and flexible scheme
for securing prefix ownership. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

107. Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, Andrew S. Tanenbaum: Fault isolation for device
drivers. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

108. Eric Rozier, Wendy Belluomini, Veera Deenadhayalan, Jim Hafner, K. K. Rao, Pin Zhou: Evaluating the impact
of Undetected Disk Errors in RAID systems. in Proceedings of the 2009 IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

109. Hari Kannan, Michael Dalton, Christos Kozyrakis: Decoupling Dynamic Information Flow Tracking with a ded-
icated coprocessor. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

110. Kevin S. Killourhy, Roy A. Maxion: Comparing anomaly-detection algorithms for keystroke dynamics. in Pro-
ceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2009, Estoril,
Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

111. Filipe Freitas, Edgar Marques, Rodrigo Rodrigues, Carlos Ribeiro, Paulo Ferreira, Lus Rodrigues: Verme: Worm
containment in overlay networks. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

112. Paulo Sousa, Alysson Neves Bessani, Wagner Saback Dantas, Fabio Souto, Miguel Correia, Nuno Ferreira Neves:
Intrusion-tolerant self-healing devices for critical infrastructure protection. in Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 -
July 2, 2009. IEEE 2009.

113. Luiz Eduardo Buzato, Gustavo M. D. Vieira, Willy Zwaenepoel: Dynamic content web applications: Crash,
failover, and recovery analysis. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

114. Guanhua Yan, Leticia Cuellar, Stephan Eidenbenz, Nicolas W. Hengartner: Blue-Watchdog: Detecting Bluetooth
worm propagation in public areas. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

115. Derek Graham, Per Strid, Scott Roy, Fernando Rodriguez: A low-tech solution to avoid the severe impact of tran-
sient errors on the IP interconnect. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

116. Jon G. Elerath: A simple equation for estimating reliability of an N+1 redundant array of independent disks
(RAID). in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

117. Christian Cachin, Idit Keidar, Alexander Shraer: Fail-Aware Untrusted Storage. in Proceedings of the 2009
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal,
June 29 - July 2, 2009. IEEE 2009.

118. Lawall, J.L.;Brunel, J.;Palix, N.; Hansen, R.R.; Stuart, H.; Muller, G.;: A declarative approach to finding API
protocols and bugs in Linux code. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

51

Sina
Stamp

Effectivenessof Transition Systems to Model Faults 23

119. Marco Vieira, Nuno Antunes, and Henrique Madeir;: using web security scanners to detect vulnerabilities in web
services. in Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE 2009.

120. Towards Understanding the Effects of Intermittent Hardware Faults on Programs, Layali Rashid, Karthik Pattabi-
raman, Sathish Gopalakrishnan,in: Dependable Systems and Networks Workshops (DSN-W), 2010 International
Conference on June 28 2010-July 1 2010.

121. Gate Input Reconfiguration for Combating Soft Errors in Combinational Circuits, Warin Sootkaneung, Kewal
K. Saluja,in: Dependable Systems and Networks Workshops (DSN-W), 2010 International Conference on June 28
2010-July 1 2010.

122. A Concept of a Trust Management Architecture to Increase the Robustness of Nano Age Devices Thilo Pio-
nteck, University of Lbeck; Werner Brockmann,in: Dependable Systems and Networks Workshops (DSN-W), 2010
International Conference on June 28 2010-July 1 2010.

123. Detecting selfish carrier-sense behavior in WiFi networks by passive monitoring,Paul, U., Das, S.R., Maheshwari,
R., in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July
1 2010.

124. Detecting Sybil Nodes in Wireless Networks with Physical Layer Network Coding Weichao Wang (University of
North Carolina, Charlotte), Di Pu, Alex Wyglinski (Worcester Polytechnic Institute) , in: Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

125. Code-M: A non-MDS erasure code scheme to support fast recovery from up to two-disk failures in storage sys-
tems, Shenggang Wan,Qiang Cao,Changsheng Xie,Eckart, B.,Xubin He; in: Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

126. Decoding STAR Code for Tolerating Simultaneous Disk Failure and Silent Errors, Jianqiang Luo (Wayne State
University), Cheng Huang (Microsoft Research), Lihao Xu (Wayne State University), in: Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

127. Data Recovery for Web Applications, Istemi Ekin Akkus, Ashvin Goel (University of Toronto), in: Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

128. Experimental Validation of a Fault Tolerant Microcomputer System against Intermittent Faults. J. Gracia-Moran,
D. Gil-Tomas, L. J. Saiz-Adalid, J. C. Baraza, P. J. Gil-Vicente (Universidad Politcnica de Valencia, in: Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

129. An Empirical Investigation of Fault Types in Space Mission System Software, Michael Grottke (University of
Erlangen-Nuremberg), Allen P. Nikora (California Institute of Technology), Kishor S. Trivedi (Duke University) in:
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

130. Efficient Eventual Consistency in Pahoehoe, an Erasure-Coded Key-Blob Archive ,Eric Anderson, Xiaozhou Li,
Arif Merchant, Mehul A. Shah, Kevin Smathers, Joseph Tucek, Mustafa Uysal, Jay J. Wylie (Hewlett-Packard
Laboratories), in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28
2010-July 1 2010.

131. Checkpointing Orchestration for Performance Improvement ,Hui Jin (Illinois Institute of Technology), in: De-
pendable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

132. Transient Fault Models and AVF Estimation Revisited, Nishant J. George, Carl R. Elks, Barry W. Johnson, John
Lach (University of Virginia), in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Confer-
ence on June 28 2010-July 1 2010.

133. DataGuard: Dynamic Data Attestation in Wireless Sensor Networks ,Dazhi Zhang, Donggang Liu (The University
of Texas at Arlington), in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on
June 28 2010-July 1 2010.

134. Making Hadoop MapReduce Byzantine Fault-Tolerant ,Alysson N. Bessani, Vinicius V. Cogo, Miguel Correia,
Pedro Costa, Marcelo Pasin, Fabricio Silva; Universidade de Lisboa, Faculdade de Ciencias, LASIGE Lisboa, Por-
tugal Luciana Arantes, Olivier Marin, Pierre Sens, Julien Sopena; LIP6, Universite de Paris 6, INRIA Rocquencourt
Paris, France, in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28
2010-July 1 2010.

135. Turquois: Byzantine Consensus in Wireless Ad Hoc Networks, Henrique Moniz, Nuno Ferreira Neves, Miguel
Correia (University of Lisboa), in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Con-
ference on June 28 2010-July 1 2010.

136. Generic Construction of Consensus Algorithms for Benign and Byzantine Faults Olivier Rutti, Zarko Milosevic,
Andre Schiper (Ecole Polytechnique Federale de Lausanne) , in: Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on June 28 2010-July 1 2010.

137. Scrooge: Reducing the Costs of Fast Byzantine Replication in Presence of Unresponsive Replicas , Marco Ser-
afini, Peter Bokor, Dan Dobre, Matthias Majuntke, Neeraj Suri (Technische Universitat Darmstadt) , in: Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

52

Sina
Stamp

24 Jingshu Chen and Sandeep Kulkarni

138. Zzyzx: Scalable Fault Tolerance through Byzantine Locking, James Hendricks, Shafeeq Sinnamohideen, Gregory
R. Ganger (Carnegie Mellon University), Michael K. Reiter (University of North Carolina at Chapel Hill), , in:
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June 28 2010-July 1 2010.

139. Doubly-Expedited One-Step Byzantine Consensus , Nazreen Banu, Taisuke Izumi, Koichi Wada (Nagoya Institute
of Technology),, in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on June
28 2010-July 1 2010.

140. Detecting vulnerabilities in C programs using trace-based testing , DAzhi Zhang, Donggang liu, Yu Lei, David
Kung, Christoph Csallner, Wenhua Wang, in: Dependable Systems and Networks (DSN), 2010 IEEE/IFIP Interna-
tional Conference on June 28 2010-July 1 2010.

53

Sina
Stamp

Power and Limits of
Distributed Computing Shared Memory Models

Sergio Rajsbaum† Michel Raynal⋆,‡

† Instituto de Matemáticas, UNAM, Mexico City, D.F. 04510, Mexico
⋆Institut Universitaire de France

‡IRISA, Université de Rennes1, France
rajsbaum@math.unam.mx, raynal@irisa.fr

Abstract. Due to the advent of multicore machines, shared memory distributed
computing models taking into account asynchrony and process crashes are be-
coming more and more important. This paper visits some of the models for these
systems, and analyses their properties from a computability point of view. Among
them, the snapshot model and the iterated model are particularly investigated. The
paper visits also several approaches that have been proposed to model crash fail-
ures. Among them, thewait-freecase where any number of processes can crash is
fundamental. The paper also considers models where up tot processes can crash,
and where the crashes are not independent. The aim of this survey is to help the
reader to better understand recent advances on what is known about the power
and limits of distributed computing shared memory models and their underlying
mathematics.

Keywords: Adversary, Agreement, Asynchronous system, Borowsky-Gafni’s sim-
ulation, Concurrency, Core, Crash failure, Distributed computability, Distributed
computing model, Fault-Tolerance, Iterated model, Liveness, Model equivalence,
Obstruction-freedom, Progress condition, Recursion, Resilience, Shared memory
system, Snapshot, Survivor set, Task, Topology, Wait-freedom.

1 Introduction

Sequential computing vs distributed computingModern computer science was born
with the discovery of the Turing machine model, that captures the nature and the power
of sequential computing, and with the proofs of equivalence of this model with all other
known models of a computer (e.g., Post systems, Church’s lambda calculus, etc.). This
means that thefunctionsthat can be computed in one model are exactly the same that
the ones that can be computed in another model: these sequential computing models are
defined by the same set of computable functions.

An asynchronous distributed computing model consists of a set of processes (in-
dividual state machines) that communicate through some communication medium and
satisfy some failure assumptions.Asynchronousmeans that the speed of processes is
entirely arbitrary: each one proceeds at its own speed which can vary and is always
independent of the speed of other processes. Other timing assumptions are also of in-
terest. In asynchronousmodel, processes progress in a lock-step manner, while in a
partially synchronoussystem the speed of processes is not as tightly related.

54

If the components (processes and communication media) cannot fail, and each pro-
cess is a Turing machine, then the distributed system is equivalent to a sequential Turing
machine, from the computability point of view. Namely, processes can communicate to
each other everything they know, and they compute locally any (Turing-computable)
function. In this sense the power of failure-free distributed computing is the same as the
one of sequential computing. Unfortunately the situation is different when processes
are prone to failures.

Asynchronous distributed computing in presence of failuresWe consider here the case
of the most benign process failure model, namely, the crash failure model. This means
that, in addition to proceeding asynchronously, a process may crash in an unpredictable
way (premature stop). Moreover, crashes are stable: a crashed process does not recover.

The net effect of asynchrony and process crashes gives rise to a fundamental feature
of distributed computing: a process may always have uncertainty about the state of other
processes. Processes cannot compute the same global state of the system, to simulate a
sequential computation. Actually, in distributed computing we are interested in focusing
on distributedaspects of computation, and thus we eliminate any restrictions on local,
sequential computation. That is, when studying distributed computability (and disregard
complexity issues), we model each process by an infinite state machine. We get models
whose power is orthogonal to the power of a Turing machine. Namely, each process can
compute functions that are not Turing-computable, but the system as a whole cannot
solve problems that are easily solvable by a Turing machine (in a centralized manner).

The decision problems encountered in distributed systems, calledtasks, are indeed
distributed: each process has only part of the input to the problem. After communicat-
ing with each other, each process computes a part of the solution to the problem. A
task specifies the possible inputs, and which part of the input gets each process. The
input/output relation of the task, specifies the legal outputs for each input, and which
part of the output can be produced by each process. From a computability point of view,
a distributed system where even a single process may crash cannot solve tasks that can
be computed by a Turing machine.

The multiplicity of distributed computing modelsIn this paper we consider the sim-
plest case, where processes can fail only by crashing. Even in the case of crash failures,
several models have been considered in the past, by specifying how many processes
can fail, if these failures are independent or not, and if the shared memory can also
fail or not. The underlying communication model can also take many forms. The most
basic is when processes communicate by reading and writing to a shared memory. How-
ever, stronger communication objects are needed to be able to compute certain tasks.
Also, some systems are better modeled by message passing channels. Plenty of dis-
tributed computing models are encountered in the literature, with combination of these
and other assumptions. A “holy grail” quest is the discovery of a basic distributed model
that could be used to study essential computability properties, and then generalize or ex-
trapolate results to other models, by systematic reductions and simulations. This would
be great because, we would be able to completely depart from the situation of early
distributed computing research, and instead of working on specific results suited to par-

55

ticular models only, a basic model allow us to have more general positive (algorithms)
or negative (lower bounds and impossibility) results.

There is evidence that the basic model where processes communicate by atomically
reading and writing a shared memory, and any number of them can crash, is fundamen-
tal. This paper considers this base,wait-freemodel, motivated by the following reasons.
First, the asynchronous read/write communication model is the least powerful non-
trivial shared memory model. Second, it is possible to simulate an atomic read/write
register on top of a message-passing system as soon as less than half of the processes
may crash [6,55] (but if more than half of the processes may crash, a message passing
system is less powerful). Third, it has been observed that techniques used to analyze the
read/write model can be extended to analyze models with more powerful shared objects
(e.g., [32]), and that results about task computability when bounds on the number of
failures are known can be reduced to the wait-free case via simulations e.g. [13].

Safety and liveness propertiesAs far as safety an liveness properties are concerned,
the paper considers mainly linearizability and wait-freedom.Linearizabilitymeans that
the shared memory operations appear as if they have been executed sequentially, each
operation appearing as being executed between its start event and its end event [36] (lin-
earizability generalizes the atomicity notion introduced for shared read/write registers
in [43] to any object type).Wait-freedommeans that any operation on a shared object
invoked by a non-faulty process (a process that does not crash) does terminate whatever
the behavior of the other processes, i.e., whatever their asynchrony and failure pattern
[29] (wait-freedom can be seen as starvation-freedom despite any number of process
crashes).

Content of the paperThis survey is on the power and limits of shared memory dis-
tributed computing models to solve tasks, in environments where processes can fail by
crashing. It takes the approach that the write-snapshot wait-free iterated model is at the
center of distributed computing theory. Results and techniques about this model can
be extrapolated to the usual read/write models (where registers can be accessed many
times) and message passing modes. Also, they can be extrapolated to models where
bounds on the number of failures are known, or where failures are correlated.

It first defines what is a task (the distributed counterpart of a function in sequen-
tial computing) in Section 2. Then, Section 3 presents and investigates the base asyn-
chronous read/write distributed computing model and its associated snapshot abstrac-
tion that makes programs easier to write, analyze and prove. Next, Section 4 considers
the iterated write-snapshot model that is more structured than the base write/snapshot
model. Interestingly, this model has a nice mathematical structure that makes it very
attractive to study properties of shared memory-based distributed computing.

Section 5 considers the case where the previous models are enriched with failure
detectors. It shows that there is a tradeoff between the computational structure of the
model and the power added by a failure detector. Section 6 considers the case of a very
general failure model, namely the adversary failure model. Section 7 discusses the BG
simulation (and its variants) that reduces questions about task solvability under other
adversaries, to the simplest adversary, namely to the wait-free case. The BG simulation
relies on a new object type that is calledsafe agreement. Section 8 presents a new

56

implementation of the safe agreement object type based on theiterated model. Finally,
Section 9 concludes the paper.

2 What is a task?

As already indicated, atask is the distributed counterpart of the notion of afunction
encountered in sequential computing. In a taskT , each of then processes starts with an
input value and each process that does not crash has to decide on an output value such
the set of output values has to be permitted by the task specification. More formally
we have the following where all vectors aren-dimensional (n being the number of
processes) [34].

Definition A taskT is a triple(I,O, ∆) whereI is a set of input vectors,O is a set of
output vectors, and∆ is a relation that associates with eachI ∈ I at least oneO ∈ O.

The vectorI ∈ I is the input vector where, for each entryi, I[i] is the private input
of processpi. Similarly O describes the output vector whereO[i] is the output that
should be produced by processpi. ∆(I) defines which are the output vectors legal for
the input vectorI.

Solving a taskRoughly speaking, an algorithmA wait-free solves a taskT if the fol-
lowing holds. In any run ofA, each processpi starts with an input valueini such that
∃I ∈ I with I[i] = ini (we say “pi proposesini”) and each non-faulty processpj even-
tually computes an output valueoutj (we say “pj decidesoutj”) such that∃O ∈ ∆(I)
with O[j] = outj for all processespj that have computed an output value.

Examples of tasksThe most famous task isconsensus[20]. Each input vectorI defines
the values proposed by the processes. An output vectorO is a vector whose entries
contain the same value and∆ is such that∆(I) contains all vectors whose single value
is a value ofI. Thek-set agreement task relaxes consensus allowing up tok different
values to be decided [18]. Other examples of tasks are renaming [7] and weak symmetry
breaking (see [15] for an introductory survey), andk-simultaneous consensus [4].

3 Base shared memory models

3.1 The wait-free read/write model

Base wait-free modelThis computational model is defined byn sequential asynchronous
processesp1, ..., pn that communicate by reading and writing one-writer/multi-reader
(1WMR) reliable atomic registers. Moreover up ton− 1 processes may crash. Given a
run of an algorithm, a process that crashes isfaulty in that run, otherwise it isnon-faulty
(or correct).

This is the well-knowwait-freeshared memory distributed model. As processes are
asynchronous and the only means they have to communicate is reading and writing
atomic registers, it follows that the main feature of this model is the impossibility for a
processpi to know if another processpj is slow or has crashed. This “indistinguisha-
bility” feature lies at the source of several impossibility results (e.g., the consensus
impossibility [44]).

57

The case of an unreliable shared memoryThe previous model assumes that the atomic
registers arereliable: a read or a write always returns and the atomicity behavior is
always provided.

In a real distributed system potentially any of its components could fail. As we
are interested in benign crash failures (the simplest kind of failures), we might also
consider register crash failures, i.e., the case where registers stop working. Two types
of such failures can be distinguished: responsive and non-responsive. In the responsive
type, a register fails if it behaves correctly until some time, after which every read or
write operation returns the default value⊥ . hence, the register behaves correctly until
it crashes (if it ever crashes) and then the failure can be detected. Responsive crash is
sometimes calledfail-stop. In the non-responsive type, after a register has crashed, its
read and write operations never terminate, they remain pending forever. Non-responsive
crash is sometimes calledfail-silent.

It is possible to build reliable atomic registers on top of crash-prone base atomic reg-
isters. More precisely, let us assume that we want to cope with the crash of up tot unre-
liable base registers (t-register-resilience). There aret-register-resilient wait-free algo-
rithms that build an atomic register [27]. If failure are responsive (resp., non-responsive)
t+1 (resp.,2t+1) base registers are necessary and sufficient. As register crash failures
can be overcome, we consider only reliable registers in the rest of the paper.

3.2 The snapshot abstraction

Designing correct distributed algorithms is hard. Thus, it is interesting to construct out
of read/write registers communication abstractions of higher level. A very useful ab-
straction (which can be efficiently constructed from read/write registers) is asnapshot
object [1] (more developments on snapshot objects can be found in [5,8,37]).

A snapshot abstracts an array of 1WMR atomic registers with one entry per pro-
cess and provides them with two operations denotedX.write(v) and X.snapshot()
whereX is the corresponding snapshot object [1]. The former assignsv to X [i] (and
is consequently also denotedX [i] ← v). Only pi can writeX [i]. The latter operation,
X.snapshot(), returns to the invoking processpi the current value of the whole arrayX .
The fundamental property of a snapshot object is that all write and snapshot operations
appear as if they have been executed atomically, which means that a snapshot object is
linearizable [36]. These operations can be wait-free built on top of atomic read/write
registers (the best implementation known so far hasO(n log n) time complexity [3]).
Hence, a snapshot object provides the programmer with a high level shared memory
abstraction but does not provide her/him with additional computational power.

3.3 A progress condition weaker than wait-freedom

As already indicated, the progress condition associated with an algorithm solving a task
in the base shared memory distributed computing model is wait-freedom (any correct
process has to decide has a value whatever the behavior of the other processes). This
is the strongest progress condition one can think of but is not the only one. We present
here a weaker progress condition.

58

Obstruction-freedomWait-freedom is independent of the concurrency pattern. Differ-
ently, obstruction-freedom involves the concurrency pattern. It states that, if a correct
process executes alone during a long enough period, it has to decide a value [30]. The
words “long enough period” are due to asynchrony, they capture the fact that a process
needs time to execute the algorithm.

As we can see, there are concurrency patterns in which no process is required to
decide when we consider the obstruction-freedom progress condition. The important
point to notice is that any algorithm that solves a task with the obstruction-freedom
progress condition has to always ensure the task safety property: if processes decide,
the decided values have to be correct.

Obstruction-freedom vs wait-freedomObstruction-freedom is a progress condition that
is trivially weaker (i.e., less constraining) than wait-freedom. This has a consequence
on task computability. As an example, while it is impossible to wait-free solves the
consensus problem in the base read/write (or snapshot) shared memory model, it is
possible to solve it in the same model when the wait-freedom requirement is replaced
by obstruction-freedom.

More generally, when conflicts are rare, obstruction-freedom can be used instead of
wait-freedom.

4 The iterated write-snapshot model

4.1 The iterated write-snapshot model

Attempts at unifying different read/write distributed computing models have restricted
their attention to a subset ofround-basedexecutions e.g. [14,33,46]. The approach in-
troduced in [12] proposes aniterated model in which processes execute an infinite
sequence of rounds, and in each round communicate through a specific object called
one-shot write-snapshotobject. This section presents this shared memory distributed
computing model [49].

One-shot write-snapshot objectA one-shot write-snapshotobject abstracts an array
WS [1..n] that can be accessed by a single operation denotedwrite snapshot() that
each process invokes at most once. That operation pieces together thewrite() and
snapshot() operations presented previously [11]. Intuitively, when a processpi invokes
write snapshot(v) it is as if it instantaneously executes a writeWS [i] ← v operation
followed by anWS .snapshot() operation. If severalIS .write snapshot() operations
are executed simultaneously, then their corresponding writes are executed concurrently,
and then their corresponding snapshots are also executed concurrently (each of the con-
current operations sees the values written by the other concurrent operations): they are
set-linearizable [48].WS [1..n] is initialized to[⊥, . . . ,⊥].

When invoked by a processpi, the semantics of thewrite snapshot() operation is
characterized by the following properties, wherevi is the value written bypi andsmi,
the value (orview) it gets back from the operation. A viewsmi is a set of pairs(k, vk),
wherevk corresponds to the value inpk’s entry of the array. IfWS [k] = ⊥, the pair

59

(k,⊥) is not placed insmi. Moreover, we assume thatsmi = ∅, if the processpi never
invokesWS .write snapshot(). These properties are:

– Self-inclusion. ∀i : (i, vi) ∈ smi.
– Containment. ∀i, j : smi ⊆ smj ∨ smj ⊆ smi.
– Immediacy. ∀i, j : [(i, vi) ∈ smj ∧ (j, vj) ∈ smi] ⇒ (smi = smj).
– Termination. Any invocation ofWS .write snapshot() by a correct process termi-

nates.

The self-inclusion property states that a process sees its write, while the containment
properties states that the views obtained by processes are totally ordered. Finally, the
immediacy property states that if two processes “see each other”, they obtain the same
view (the size of which corresponds to theconcurrencydegree of the corresponding
write snapshot() invocations).

The iterated modelIn the iterated write-snapshot model(IWS) the shared memory is
made up of an infinite number of one-shot write-snapshot objectsWS [1],WS [2], . . .
These objects are accessed sequentially and asynchronously by each process, according
to the round-based pattern described in Figure 1 whereri is pi’s current round number.

ri ← 0;
loop forever ri ← ri + 1;

local computations; computevi;
smi ←WS [ri].write snapshot(vi);
local computations

end loop.

Fig. 1. Generic algorithm for the iterated write-snapshot model

A fundamental resultLet us observe that the IWS model requires each correct process
to execute an infinite number of rounds. However, it is possible that a correct process
p1 is unable to receive information from another correct processp2. Consider a run
where both execute an infinite number of rounds, butp1 is scheduled beforep2 in every
round. Thus,p1 never reads a value written to a write-snapshot object byp2. Of course,
in the usual (non-iterated read/write shared memory) asynchronous model, two correct
processes can always eventually communicate with each other. Thus, at first glance, one
could intuitively think that the base read/write model and the IWS model have different
computability power. The fundamental result associated with the IWS model is captured
by the following theorem that shows that the previous intuition is incorrect.

Definition 1. A task isboundedif its set of input vectorsI is finite.

Theorem 1. [12] A bounded task can be wait-free solved in the1WMR shared memory
model if and only if it can be wait-free solved in theIWS model.

60

Why the IWS model?The interest of the IWS model comes from its elegant and sim-
ple round-by-round iterative structure. It restricts the set of interleavings of the shared
memory model without restricting the power of the model. Its runs have an elegant re-
cursive structure: the structure of the global state afterr + 1 rounds is easily obtained
from the structure of the global state afterr rounds. This implies a strong correlation
with topology (see the next section) which allows for an easier analysis of wait-free
asynchronous computations to prove impossibility results, e.g. [31,32]. The recursive
structure of runs also facilitates the design and analysis of algorithms (see Section 7 for
an example), e.g. [25].

4.2 A mathematical view

The properties that characterize thewrite snapshot() operation are represented in Fig-
ure 2 for the case of three processes. In the topology parlance, this picture represents
a simplicial complex,, i.e., a family of sets closed under containment. Each set, which
is called asimplex, represents the views of the processes after accessing the one-shot
write-snapshot object associated with the corresponding round. Theverticesare 0-
simplexes (size one); edges are1-simplexes (size two); triangles are2-simplexes (size
three) and so on. Each vertex is associated with a processpi and labeled with its name.

The highlighted2-simplex on the picture at the left represents a run wherep1 andp3

access the object concurrently, both get the same views seeing each other, but not seeing
p2, which accesses the object later, and gets back a view with the 3 values written to
the object. Butp2 cannot tell the order in whichp1 andp3 access the object; the other
two runs are indistinguishable top2, wherep1 accesses the object beforep3 and hence
gets back only its own value or the opposite. These two runs are represented by the
2-simplexes at the bottom corners of the left picture. Thus, the vertices at the corners of
the complex represents the runs where only one processpi accesses the object, and the
vertices in the edges connecting the corners represent runs where only two processes
access the object. The triangle in the center of the complex represents the run where all
three processes access the object concurrently, and get back the same view.

p1 p1

p3

p2

p3

p2

p3

p1

p3

p2

p2

p1

Fig. 2. One, two and three rounds in the iterated write-snapshot (IWS) model

61

Hence, the state of an execution after the first round (with which is associated the
write-snapshot objectWS [1]) is represented by one of the internal triangles of the left
picture (e.g., the one discussed previously that is represented by the bold triangle in
the pictures). Then, the state of that execution after the second round (with which is
associated the write-snapshot objectWS [2]) is represented by one of the small triangles
inside the bold triangle in the picture in the middle. Etc. More generally, as shown in
Figure 2, one can see that, in the write-snapshot iterated model, at every round, a new
complex is constructed recursively by replacing each simplex by a one-round complex.

4.3 A recursive write-snapshot algorithm

Figure 3 presents a read/write algorithm that implements thewrite snapshot() opera-
tion. Interestingly, this algorithm is recursive [15,25]. A proof can be found in [15]. To
allow for a recursive formulation, an additional recursion parameter is used. More pre-
cisely, in a roundr, a process invokesSM .write snapshot(n, v) where the initial value
of the recursion parameter isn andSM stands forWS [r].

SM is a shared array of sizen (initialized to [⊥, . . . ,⊥] and such that eachSM [x]
is an array ofn 1WnR atomic registers. The atomic registerSM [x][i] can be read by
all processes but written only bypi.

Let us consider the invocationSM .write snapshot(x, v) issued bypi. Processpi

first writesSM [x][i] and reads (not atomically) the arraySM [x][1..n] that is associated
with the recursion parameterx (lines 01-02). Then,pi computes the set of processes that
have already attained the recursion levelx (line 03; let us note that recursion levels are
decreasing fromn to n− 1, etc.). If the set of processes that have attained the recursion
level x (from pi’s point of view) contains exactlyx processes,pi returns this set as a
result (lines 04-05). Otherwise less thanx processes have attained the recursion level
x. In that case,pi recursively invokesSM .write snapshot(x − 1) (line 06) in order to
attain and stop at the recursion levely attained by exactlyy processes.

operation SM .write snapshot(x, v):
% x (n ≥ x ≥ 1) is the recursion parameter %

(01) SM [x][i]← v;
(02) for 1 ≤ j ≤ n do auxi[j]← SM [x][j] end for ;
(03) pairs i ← {(j, v

′) | ∃j such thatauxi[j] = v′ 6= ⊥};
(04) if (|pairs i| = x)
(05) then smi ← pairs i

(06) else smi ← SM .write snapshot(x− 1, v)
(07) end if;
(08) return(smi).

Fig. 3. A recursive write-snapshot algorithm (code forpi)

The cost of a shared memory distributed algorithm is usually measured by the num-
ber of shared memory accesses, calledstep complexity.The step complexity ofpi’s
invocation isO(n(n − |smi|+ 1)).

62

4.4 Iterative model vs recursive algorithm

It is interesting to observe that the iterative structure that defines the IWS model and
the recursion-based formulation of the previous algorithm are closely related notions.
In one case iterations are at the core of the model while in the other case recursion is
only an algorithmic tool. However, the runs of a recursion-based algorithm are of an
iterated nature: in each iteration only one array of registers is accessed, and the array is
accessed only in this iteration.

5 Enriching a system with a failure detector

5.1 Adding failure detectors to the IWS model

The concept of a failure detectorThis concept has been introduced by Chandra and
Toueg [17] (see [53] for an introductory survey). Informally, a failure detector is a
device that provides each processpi with information about process failures, through
a local variablefdi that pi can only read. Several classes of failure detectors can be
defined according to the kind and the quality of the information on failures that has to
be delivered to the processes.

Of course, a non-trivial failure detector requires that the system satisfies additional
behavioral assumptions in order to be implemented. The interested reader will find such
additional behavioral assumptions and corresponding algorithms implementing failure
detectors of several classes in chapter 7 of [55].

An example One of the most known failure detectors is the eventual leader failure
detector denotedΩ [16]. This failure detector is fundamental because it encapsulates
the weakest information on failures that allows consensus to solved in a base read/write
asynchronous system.

The output provided byΩ to each (non crashed) processpi is such thatfdi always
contains a process identity (validity). Moreover, there is a finite timeτ after which all
local failure detector outputsfdi contains forever the same process identity and it is the
identity of a correct process (eventual leadership). The timeτ is never explicitly know
by the processes. Beforeτ , there is an anarchy period during which the local failure
detector outputs can be arbitrary.

A result As indicated, the consensus problem cannot be solved in the base read read/write
system [44] but can be solved as soon as this system is enriched withΩ.

On another side (see Theorem 1), the base shared memory model and the IWS
model have the same wait-free computability power for bounded tasks. Hence a nat-
ural question: Is this computability power equivalence preserved when both models
are enriched with the same failure detector? Somehow surprisingly, the answer to this
question is negative. More precisely, we have the following.

Theorem 2. [51] For any failure detectorFD and bounded taskT , if T is wait-free
solvable in the modelIWS enriched withFD , thenT is wait-free solvable in the base
shared memory model without failure detector.

Intuitively, this negative result is due to the fact that the IWS model is too much
structured to benefit from the help of a failure detector.

63

5.2 How to circumvent the previous negative result

A way to circumvent the previous negative result consists in “embedding” the failure
detector inside thewrite snapshot() operation. More precisely, the infinite sequence
of invocationsWS [1].write snapshot(), WS [2].write snapshot(), etc., issued by any
processpi has to satisfy an additional property that depends on the corresponding failure
detector. This approach has given rise to the IRIS model described in [52].

The property to obtain the power ofΩ Let us enrich the IWS model with the following
property

PR(Ω) ≡
(

∃ℓ, ∃r : ∀r′ ≥ r : smr′

ℓ = {ℓ}
)

.

PR(Ω) means that there is a roundr and a processpℓ such that, at every round
r′ ≥ r, any processpi that executessmi ← IS [r ′].write snapshot() seesℓ in its
view smi (i.e.,ℓ ∈ smi). Said differently, whatever the concurrency degree among the
IS [r ′].write snapshot() invocations issued by processes duringr′, the invocation issued
by pℓ is always set-linearized alone and before the other invocations. So,pℓ always
obtains the same view that contains only itself, namely,∀r′ ≥ r: smr′

ℓ = smr
ℓ = {ℓ}. It

then follows from the containment property of the immediate snapshot operation, that
the viewsmr′

j obtained by any processpj that executes a roundr′ ≥ r is such that

ℓ ∈ smr′

j .

The IWS model enriched withPR(Ω) at work It is shown in [50,52] that the base
reader/write (snapshot) model enriched withΩ and the IWS model enriched withPR(Ω)
have the same computability power for bounded tasks. In order to illustrate this com-
putability equivalence, let us consider the well-known consensus problem. Let us re-
member that, in this decision problem, each process proposes a value, and each correct
process has to decide a value (termination) such that a decided value is a proposed value
(validity) and no two processes decide different values (agreement).

Several distributed algorithms solving consensus in the base read/write model en-
riched withΩ are described in the literature (e.g., [9,28]). A consensus algorithm suited
to the IWS model enriched withPR(Ω) is described in Figure 4 (this algorithm is from
[50]).

The value proposed bypi is vi and⊥ is a default value that cannot be proposed by a
process. In addition tori (the current round number), a process and manages four local
variables:

– The local variablesesti anddeci are directly related to the decision value:esti

(initialized to vi) containspi’s current estimate of the decision value, whiledeci

is a write-once local variable (initialized to⊥) that eventually contains the value
decided bypi.

– smi andtmi are two local variables used to contain the snapshot value returned
by the invocations to the operationwrite snapshot() at the odd and even round
numbers, respectively. The variablesmi contains a set of triples, whiletmi contains
a set of set of triples (i.e., a set oftmj values).

64

ri ← 0; esti ← vi; deci ← ⊥;
(01) loop forever
(02) ri ← ri + 1;
(03) smi ←WS [ri].write snapshot(〈i, esti, deci〉);
(04) ri ← ri + 1;
(05) tmi ←WS [ri].write snapshot(smi);
(06) if

�
∃sm : (sm ∈ tmi) ∧ (〈−,−, dec〉 ∈ sm with dec 6= ⊥) �

(07) then if deci = ⊥ then esti ← dec; deci ← dec end if
(08) else if

�
∃sm : (sm ∈ tmi) ∧ (sm = {〈−, est,−〉}) �

(09) then esti ← est;
(10) if tmi = {sm} ∧ sm = {〈i, est,−〉} then deci ← esti end if
(11) end if
(12) end if
(13) end loop.

Fig. 4. A consensus algorithm for the IWS model enriched withPR(Ω) (code forpi) [50]

A processpi executes a sequence of pairs of rounds, namely,(1, 2), then(3, 4),
etc. During the first round (r − 1)), pi writes the triple〈i, esti, deci〉 in the one-shot
immediate snapshot objectWS [r− 1], from which it obtains a set of such triples (lines
02-03). During the second round,pi writes intoWS [r], the set of triplessmi it has just
obtained, and obtains a corresponding set of set of triplestmi (lines 04-05).

Then,pi considers the values it has obtained from the one-shot immediate snapshot
objectsWS [r − 1] andWS [r]. If pi sees that a value (dec) has already been decided
(line 06) while itself has not yet decided, it decides that value (line 07). Otherwise,
if the set of set of triplestmi it has obtained fromWS [r] contains a setsm with a
single triple (line 08),pi adopts the estimate value of that triplesm (line 09) as its
new estimate. Moreover, if additionally,tmi contains a single triple and that triple
is from pi itself (tmi = {{〈i, esti,−〉}}, line 10), thenpi decides its current esti-
mate. Let us observe thattmi = {{〈i, esti,−〉}} means thatpi was the only “win-
ner” of both the roundsr − 1 andr (the invocationsWS [r − 1].write snapshot() and
WS [r].restricited w snapshot() issued bypi have been set-linearized before the invo-
cations from the other processes).

6 From the wait-free model to the adversary model

Adversariesare a very useful abstraction to represent subsets of executions of a dis-
tributed system. The idea is that, if one restricts the set of possible executions, the sys-
tem should be able to compute more tasks. For example, thecondition based approach
[47] restricts the set of inputs of a task (and hence the corresponding executions), and
allows to solve more tasks, or to solve tasks faster. Various adversaries have been con-
sidered in the past to model failure restrictions, as we shall now describe.

65

6.1 The notion of an adversary

In the wait-free model, any number of process can crash. In practice one sometimes
estimates a boundt on how many processes can be expected to crash. However, often
the crashes are not independent, due to processes running on the same core, or on the
same subnetwork, for example.

Wait-freedomIt is easy to see that wait-freedom is the least restrictive adversary, i.e.,
the adversary that contains all the (non-empty) subsets of processes, namely, the sets
of processes that may be alive in some execution. Hence, a wait-free algorithm has to
work whatever the number of process crashes.

t-Faulty process resilienceThe t-faulty process resilientfailure model (also calledt-
thresholdmodel) considers that, in any run, at mostt processes may crash. Hence, the
corresponding adversary is the set of all the sets of(n − t) processes plus all their
supersets: for each such set, there are executions where the processes that do not crash
consist of this set.

Cores and survivor setsThe notion oft-process resilience is not suited to capture the
case where processes fail in a dependent way. This has motivated the introduction of
the notions ofcoreandsurvivor set[42].

A coreC is a minimal set of processes such that, in any run, some process inC does
not fail. A survivor setS is a minimal set of processes such that there is a run in which
the set of non-faulty processes is exactlyS. Let us observe that cores and survivor sets
are dual notions (any of them can be obtained from the other one). As an example let us
consider a system of 4 processesp1,p2, p3 andp4 where two cores are defined, namely
{p1, p2} and{p3, p4}. The corresponding survivor sets are{p1, p3}, {p1, p4}, {p2, p3}
and{p, p4}.1.

Computability results associated with the set agreement problem have been gener-
alized fromt-resilience to cores in [31]. A connection relating any adversaryA (see the
definition below) that is superset-closed (i.e.,(s ∈ A) ⇒ (∀s′ : s ⊆ s′ : s′ ∈ A))
and wait-freedom is presented in [24]. It is easy to see that the notion of survivor sets
is more general than the notion oft-threshold resilience. It is also possible to see that
more general notions failures are possible as shown below.

AdversariesThe most general notion of an adversary with respect to failure dependence
has been introduced in [19]. AnadversaryA is a set of sets of processes. It states that
an algorithm solving a task must terminate in all the runs whose the corresponding set
of correct processes is (exactly) a set ofA.

As an example, Let us considers a system with four processes denotedp1, ..., p4.
The setA = {{p1, p2},{p1, p4},{p1, p3, p4}} defines an adversary. An algorithmA-
resiliently solves a task if it terminates in all the runs where the set of correct processes

1 Borrowing the quorum terminology and considering cores asquorums, the corresponding sur-
vivor sets are then theirantiquorums[10].

66

is exactly either{p1, p2} or {p1, p4} or {p1, p3, p4}. This means that anA-resilient al-
gorithm is not required to terminate in an execution in which the set of correct processes
is exactly the set{p3, p4} or the set{p1, p2, p3}.

Adversaries are more general than the notion of survivor sets (this is because when
we build the adversary corresponding to a set of survivor sets, due the “minimality”
feature of each survivor set, we have to include all its supersets in the corresponding
adversary).

On progress conditionsIt is easy to see that an adversary can be viewed as a live-
ness property that specifies the crash patterns in which the correct processes must
progress. The interested reader will find more developments on progress conditions
in [23,24,41,58].

6.2 Simulating the snapshot model in the iterated model

The iterated write-snapshot model (IWS) has been presented in Section 4 where we
have seen that the base read/write (or snapshot) shared memory model and the IWS
model are equivalent from a wait-free (bounded) task solvability point of view [12].

This section shows that this equivalence remains true when wait-freedom is replaced
by an adversary-based progress condition. To that end, this section presents the simu-
lation of the base write/snapshot memory model in a simple variant of the IWS model
where wait-freedom is replaced by the adversary defined by survivor sets. This simula-
tion is from [26].

The snapshot-based algorithmLetA be the snapshot-based algorithm we want to sim-
ulate. We assume without loss of generality that it is afull informationalgorithm, i.e.,
each time a process writes, it writes its full local state. Initially, each processpi has an
input value denotedinputi. Then, each process alternates between writing its state in
the shared memory, taking a snapshot of the shared memory and taking this snapshot as
its new local state.

The algorithmA solves a task with respect to an adversaryA if each correct process
decides a value based on its current local state in every run that isfair with respect to
A (which means that each time a process takes a snapshot it reads new values writ-
ten by processes of a survivor set of the adversaryA). This means that as in [26],
given a snapshot objectWS , a process writes it only once but can repeatedly invokes
WS .snapshot() until it sees new values from a survivor set ofA.

Given a local state of a process, we assume that the algorithmA has a predicate
undecided(state) and a decision functiondecide(state). Once a process has decided,
its predicateundecided(state) remains forever false. Thekth snapshot issued bypi is
denotedsnapshot(k, i) and itskth write is denotedwrite(k, i).

As it does not lead to confusion, we use “pi” to denote both the simulated process
and the process that simulates it.

Simulation: the operationWS [r].write & snapshot(v) This is the simulation operation
that allows processes to coordinate and communicate. When a processpi invokes it,
it does the following. The valuev is written inWS [r][i] andpi waits until the set of

67

processes that have written intoWS [r] contains a survivor set ofA. When this happens,
a snapshot ofWS [r] is taken and returned. To simplify the presentation we consider that
the snapshot value that is returned is an arraysm[1..n].

(01) ri ← 0; statei.clock ← [0, . . . , 0]; statei[i]← (1, inputi);
(02) loop forever
(03) ri ← ri + 1;
(04) smi[1..n]←WS [ri].write & snapshot(statei);
(05) foreach j do
(06) statei[j]← sm[x][j] such that∀y : sm[x][j].clock ≥ sm[y][j].clock;
(07) end for;
(08) if (Σ1≤j≤nstatei[j].clock) = ri then

% simulation ofsnapshot(k, i) (with k = statei[i].clock) which returnsstatei.val

(09) if undecided(statei.val)
(10) then statei[i]← (statei[i].val, statei[i].clock + 1)

% simul. ofwrite(k, i) (with k = statei[i].clock) which writesstatei[i].val

(11) else decide(statei.val) if not yet done
(12) end if
(13) end if
(14) end loop.

Fig. 5. The iterated simulation for adversaryA (code forpi)

Simulation: local variablesA processpi manages the following local variables.

– ri is the local current round number of the iterated model (initially0).
– statei[1..n] is an array of pairs such thatstatei[x].clock is a clock value (integer)

that measures the progress ofpx as know bypi andstatei[x].val is the correspond-
ing local state ofpx; statei[i].val is initialized toinputi (the input value ofpi), the
initial values of the otherstatei[j].val are irrelevant. The notationstatei.clock
is used to denote the array[statei[1].clock, . . . , statei[n].clock] and similarly for
statei.val.

Simulation: behavior of a processDuring a roundr, the behavior of a processpi is
made up of two parts.

– First pi writes its current local statestatei in WS [r] and saves insmi the view of
the global state it obtains for that round (line 04). Then (lines 05-07)pi computes
its new local state as follows: it saves instatei[j] the most recent local state ofpj

it knows (“most recent” refers to the clock values that measurespj progress).
– Then the simulationpi strives for making the simulation of the simulated process

to progress.
The quantityΣ1≤j≤nstatei[j].clock represents the current date of the global simu-
lation frompi’s point of view. If this date is different frompi’s current round num-
berr, thenpi is late (as far as its round number is concerned) and it consequently

68

proceeds to the next simulation round in order to catch up. (The proof shows that
the predicateΣ1≤j≤nstatei[j].clock ≤ r remains invariant.)
If Σ1≤j≤nstatei[j].clock = r, the round number is OK forpi to simulate the
invocationsnapshot(k, i) of the simulated process wherek = statei[i].clock.
The corresponding value that is returned isstatei.val.
Then, if its state is undecided (line 09),pi makes the simulation progress by simu-
latingwrite(k, i) wherek = statei[i].clock+1 and the value written isstatei[i].val
(line 10).
If the state ofpi can allow for a decision,pi decides if not yet done (line 11). Let
us notice that, as soon as a processpi has decided, it continues looping (this is
necessary to prevent permanent blocking ifpi belongs to survivor sets) but its local
clock is no longer increased in order to allow the correct processes to decide.

A proof of this simulation can be found in [26]. It is based on the observation that if for
two processes the round number is OK, then theirsstate variables agree.

7 Simulating adversary models in the wait-free model: the BG
simulation

7.1 The base BG simulation

The simulation of Section 6.2 showed that the same tasks can be solved in the iterated
write-snapshot (IWS) model and in the base read/write (or snapshot) shared memory
model, in the presence of failures. More precisely, considering adversaries defined by
survivor sets, a task can be solved in the IWS model under some adversary if and only
if it can be solved in the base model under the same adversary. As we have seen, the
simplest adversary is the wait-free adversary. So it would be nice to reduce questions
about task solvability under other adversaries to the wait-free case. This is exactly what
the BGsimulation[13] and its variants (e.g. [22,38,39]) do when considering the set of
adversaries defined byt-resilience.

BG simulation: motivation and aimLet us consider an algorithmA that is assumed
to solve a taskT in an asynchronous read/write shared memory system made up ofn
processes, and where any subset of at mostt processes may crash. Given algorithmA
as input, the BG simulation is an algorithm that solvesT in an asynchronous read/write
system made up oft + 1 processes, where up tot processes may crash. Hence, the BG
simulation is a wait-free algorithm.

The BG simulation has been used to prove solvability and unsolvability results in
crash-prone read/write shared memory systems. It works only for a particular class of
tasks calledcolorlesstasks. These are the tasks where, if a process decides a value, any
other process is allowed to decide the very same value and, if a process has an input
valuev, then any other processes can exchange its own input byv. Thus, for colorless
tasks, the BG simulation characterizest-resilience in terms of wait-freedom, and it is
not hard to see that the same holds for any other adversary defined by survivor sets.

As an example, let us assume thatA solves consensus, despite up tot = 1 crash,
amongn processes in a read/write shared memory system. TakingA as input, the BG

69

simulation builds a(t + 1)-process (i.e., 2-process) algorithmA′ that solves consensus
despitet = 1 crash, i.e., wait-free. But, we know that consensus cannot be wait-free
solved in a crash-prone asynchronous system where processes communicate by access-
ing shared read/write registers only [20,29,44] in particular if it is made up of only two
processes. It then follows that, whatever the numbern of processes the system is made
up of, there is no1-resilient consensus algorithm.

The BG simulation algorithm has been extended to work with general tasks (called
coloredtasks) [22,38] and for algorithms that have access to more powerful communi-
cation objects (e.g., [39] that extends the BG simulation to objects with any consensus
numberx).

BG simulation: how does it work?LetA be an algorithm that solves a colorless deci-
sion task in thet-resilient model forn processes. The basic aim is to design a wait-free
algorithmA′ that simulatesA in a model witht + 1 processes. A simulated process is
denotedpj, while a simulator process is denotedqj , with 1 ≤ j ≤ n.

Each simulatorqj is given the code of every simulated processp1, . . . , pn. It man-
agesn threads, each one associated with a simulated process, and locally executes these
threads in a fair way (e.g., using a round-robin mechanism). It also manages a local copy
memi of the snapshot memorymem shared by the simulated processes. The code of a
simulated processpj contains invocations ofmem[j].write() and ofmem.snapshot().
These are the only operations used by the processesp1, . . . , pn to cooperate. So, the
core of the simulation is the design of algorithms that describe how a simulatorqi sim-
ulates these operations. These simulation algorithms are denotedsim writei,j(), and
sim snapshoti,j() whose implement-ion relies on the following object type.

The safe agreement object typeThis type is at the core of the BG simulation. It provides
each simulatorqi with two operations, denotedsa propose(v) and sa decide(), thatqi

can invoke at most once, and in that order. The operationsa propose(v) allows qi to
propose a valuev while sa decide() allows it to decide a value. The properties satisfied
by an object of the type safe agreement are the following.

– Termination. If no simulator crashes while executingsa propose(v), then any cor-
rect simulator that invokessa decide() returns from that invocation.

– Agreement. At most one value is decided.
– Validity. A decided value is a proposed value.

7.2 The BG simulation when base objects are stronger than read/write registers

The BG simulation considers that processes communicate through base atomic read/write
registers. Hence, the question: What does happen when processes can communicate
with objects that are more powerful than base read/write registers?

Consensus number of a concurrent objectThe synchronization/coordination power of
a concurrent object in presence of asynchrony and process failures can be characterized
by its consensus number[29]. More precisely, the consensus number of an objectO
is the greatest integerx such that consensus can be solved from objectsO and atomic

70

read/write registers amongx processes. If there is no such finitex, the consensus num-
ber of objectO is +∞.

The consensus of read/write objects is1, the one ofTest&Set objects,Fetch&Add
objects, shared queues is2, etc., untilCompare&Swap orLL/SC objects whose con-
sensus number is+∞. (The interested reader will find a description of these objects in
several books and articles, e.g., [2,35,45,54,56,57]). More generally, consensus num-
bers define an infinite hierarchy of concurrent objects such that objects at levelx can
solve consensus among up tox processes but nots + 1.

The multiplicative power of consensus numbersLet ASM(n, t, x) denote an asyn-
chronous system in which up tot processes may crash and where the processes can
communicate through objects whose consensus number isx where1 ≤ x ≤ t < n.

The base BG simulation shows that the systems modelsASM(n, t, 1) andASM(t+
1, t, x) have the same computability power (for bounded tasks). A generalization of the
BG simulation is presented in [39] where it is shown that the system modelsASM(n, t1, x1)
andASM(n, t2, x2) have the same computability power if and only if⌊ t2

x2

⌋ = ⌊ t1
x1

⌋.
This simulation shows that consensus numbers have a multiplicative power with re-
spect to process failures, namely,ASM(n, t′, x) andASM(n, t, 1) are equivalent if
and only if(t× x) ≤ t′ ≤ (t× x) + x− 1.

8 Safe agreement object type and the iterated model

Simple implementations of the safe agreement object type are described in [13,40]. We
introduce here an alternative implementation that works in the iterated write-snapshot
model (IWS). Actually, the proposed implementation of the operationssa propose()
and sa decide() associated with the safe agreement type needs two iterations of the
IWS model. As the safe agreement object is at the core of the BG simulation, doing so
connects the BG simulation with the “iterated model” research line.

The two underlying write-snapshot objects used to implement a safe agreement ob-
ject are denotedWS [1] andWS [2]. As seen in Section 4.1 the semantics of the associ-
atedwrite snapshot() operation is defined by the propertiesSelf-inclusion, Containment,
Immediacy, andTermination which have been described in that section.

operation sa propose(vi):
(01) sm1

i ←WS [1].write snapshot(vi);
(02) sm2

i ←WS [2].write snapshot(sm1

i).

Fig. 6.Operationsa propose(vi) in the iterated model (code forqi)

Implementing the operationsa propose() An algorithm implementing the safe agree-
ment operationsa propose() is described in Figure 6. When a simulator processqi

invokessa propose(vi), wherevi is the value it proposes, it writesvi into the first

71

write-snapshot objectWS [1] and stores the set obtained fromWS [1] into a local vari-
ablesm1

i (line 01). It then writes this resultsm1

i into the second write-snapshot object
WS [2] and stores the value obtained fromWS [2] into its local variablesm2

i (line 02).
An important point here is thatqi writes atomically intoWS [2] (let us notice that

the value that it obtains fromWS [2] and saves insm2

i is not used). Let us also insist on
the fact thatsm1

i is a set of pairs(k, vk) (wherevk is the value proposed byqk to the
safe agreement object) that contains at least the pair(i, vi) written by qi. Differently,
WS [2] is a set of pairs(x, viewx) whereviewx is the value ofsm1

x, i.e., the set of pairs
obtained fromWS [1] by qx. Let us also remark that, afterWS [2].write snapshot() has
been invoked byqi, WS [2] contains at least the pair(i, sm1

i).

operation sa decide():
(03) repeatsm3

i ←WS [2].scan()
(04) until

�
∀ k : (k,−) ∈ sm1

i ⇒ (k, viewk) ∈ sm3

i �
(05) end repeat;
(06) sm3

i ← {(k, viewk) ∈ sm3

i | (k,−) ∈ sm1

i };
(07) (−, min viewi)← (k, viewk) ∈ sm3

i such that∀(x, viewx) ∈ sm3

i : |viewk| ≤ |viewx|;
(08) let deci = min{vx | (x, vx) ∈ min viewi}
(09) return(deci).

Fig. 7. Operationsa decide() in the iterated model (code forqi)

Implementing the operationsa decide() An algorithm implementing the second oper-
ation of the safe agreement object type, namelysa decide(), is described in Figure 7. It
is made up of two parts.

– In the first part (lines 03-05),qi repeatedly readsWS [2] until some closure property
is satisfied2). The value read from the write-snapshot objectWS [2] is saved in the
local variablesm3

i . Hence,sm3

i is a set of pairs(x, viewx) containing at least the
pair (i, sm1

i) (and in turnsm1

i contains at least the pair(i, vi)).
The closure property that allowsqi to exit the loop is the following: for any pair
(k, vk) ∈ (i, sm1

i) we have(k, viewk) ∈ sm3

i . This means that, fromqi’s point
of view, each simulator processqk that has written intoWS [1] has also written
into WS [2] (more precisely, it has written the viewsm1

k that it has obtained from
WS [1]). (Let us observe that, interestingly,sm1

i is used byqi as a survivor set.)
– The simulator processqi considers then the value ofsm3

i that allowed it to exit the
loop (line 06) and selects from it the view that has the smallest size, i.e., the view
viewk such that∀(x, viewx) ∈ sm3

i we have|viewk| ≤ |viewx| (line 07).
As we will see in the proof, for any two simulator processesqi andqj which exit
the loop we havemin viewi = min viewj . Consequently, any deterministic rule

2 Recall that, as in the simulation of Section 6.2, we are assuming that, although writing a write-
snapshot object is done only once, it can be read many times. Hence, we assume here an
operationWS [2].scan() that read non-atomicallyWS [2].

72

(e.g.,min()) that extracts a decided value from such a set of pairs(x, vx) can be
used to compute the valuedeci decided by the safe agreement object (lines 08-09).

Theorem 3. The algorithms described in Figure 6 for the operationsa propose() and
in Figure 7 for the operationsa decide() are a correct implementation of the safe agree-
ment object type.

Proof Let us first recall that it is assumed that a processqi that invokessa decide() has
previously invokedsa propose().

Proof of the termination property. We have to show that, if no simulator process
crashes while executingsa propose(), then any correct simulator that invokessa decide()
returns from its invocation.

If no process crashes while executingsa propose(), it follows that any simula-
tor process that executes this operation executes bothWS [1].write snapshot() and
WS [2].write snapshot(). Hence, as any simulator processqi that executessa decide()
repeatedly readsWS [2], we eventually have∀ (k,−) ∈ sm1

i : (k, viewk) ∈ sm3

i (this
is because(k,−) ∈ sm1

i means thatpk has invokedWS [1].write snapshot() and aspk

eventually invokesWS [2].write snapshot(), we eventually have(k, viewk) ∈ sm3

i).
When this happensqi stops looping. Moreover, as -at least-(i, sm1

i) ∈ sm3

i and
(i, vi) ∈ sm1

i it follows that the minimum operations of lines 07 and 09 are well de-
fined and do terminate. Consequentlyqi terminates its invocation ofsa decide() which
concludes the proof of the termination property.

Proof of the validity property. We have to show that a decided value is a proposed
value. Letv be the value decided by a simulator processqi andview = min viewi

(computed at line 06). It follows from lines 07-08 that∃(x, v) ∈ min viewi = view
and (−, view) ∈ sm3

i , from which we conclude that some simulator processqj has
executedWS [2].write snapshot(sm1

j) wheresm1

j = view. Hence,qj has obtained
sm1

j = view from its invocationWS [1].write snapshot(). It then follows from the va-
lidity property of the write-snapshot objectWS [1] and the fact that(x, v) ∈ view, that
the valuev has been proposed by some simulator process which concludes the proof of
the validity property.

Proof of the agreement property. We have to show that no two processes decide
different values. Letqi andqj be two simulator processes that decide. We show that
the setsmin viewi andmin viewj of pairs computed at line 07 are equal (from which
follows the agreement property).

Let us first observe that, due to containment property of the write-snapshot object
WS [1], any two pairs(x, sm1

x) and(y, sm1

y) written in WS [2] (line 02) are such that
sm1

x ⊆ sm1

y ∨ sm1

y ⊆ sm1

x (Observation O1). Moreover, we can conclude from the
self-inclusion and containment properties ofWS [1], that((x, vx) /∈ sm1

y) ⇒ (sm1

y (

sm1

x) (Observation O2).
Let sm3

i andsm3

j denote the last values of the corresponding local variables ob-
tained at line 06. As a simulator writes only once in bothWS [1] andWS [2], we have
sm3

i = {(k, viewk) | (k,−) ∈ sm1

i } andsm3

j = {(k′, viewk′) | (k′,−) ∈ sm1

j}. If

73

sm1

i = sm1

j we havesm3

i = sm3

j which impliesmin viewi = min viewj and agree-
ment follows. Hence, due to observation O1, the remaining case issm1

i (sm1

j or,
equivalently,sm1

j (sm1

i . Without loss of generality let us assumesm1

i (sm1

j , from
which we havesm3

i (sm3

j . To showmin viewi = min viewj whensm1

i (sm1

j , we
show that∀ (ℓ, viewℓ) = (ℓ, sm1

ℓ) ∈ (sm3

j \ sm3

i) it exists(ℓ′, viewℓ′) = (ℓ′, sm1

ℓ′) ∈

sm3

j such thatsm1

ℓ′ (sm1

ℓ . Then we will have|sm1

ℓ′ | < |sm
1

ℓ | and, assm3

i (sm3

j , it
will follow that the smallest view insm3

j is the smallest view insm3

i .
To show that there isℓ′ such that(ℓ′, sm1

ℓ′) ∈ sm3

j andsm1

ℓ′ (sm1

ℓ , let us consider
ℓ′ = i. As (ℓ, sm1

ℓ) ∈ (sm3

j \ sm
3

i) we have(ℓ, vℓ) ∈ sm1

j \ sm
1

i , i.e.,(ℓ, vℓ) /∈ sm1

i . It
then follows from Observation O2 thatsm1

i (sm1

ℓ from which we have|sm1

i | < |sm
1

ℓ |
and concludes the proof of the agreement property. 2Theorem 3

9 Conclusion

This paper has presented an introductory survey of recent advances in asynchronous
shared memory models where processes can commit unexpected crash failures. To
that end the base snapshot model and iterated models have been presented. As far as
resilience is concerned, the wait-free model and the adversary model have been dis-
cussed. Moreover, the essence of the Borowsky-Gafni’s simulation has been described
and a new implementation of the safe agreement object type (that lies at the core of the
BG simulation) has been presented. It is hoped that this introductory survey will help
a larger audience of the distributed computing community to understand the power,
subtleties and limits of crash-prone asynchronous shared memory models.

References

1. Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots of
Shared Memory.Journal of the ACM, 40(4):873-890, 1993.

2. Afek Y., Weisberger E. and Weisman H., A Completeness Theorem for a Class of Synchro-
nization Objects.Proc. 12th Int’l ACM Symposium on Principles of Distributed Computing
(PODC’93), pp. 159-168, 1993.

3. Attiya H., Rachman O., Atomic Snapshots inO(n log n) Operations.SIAM Journal of Com-
puting, 27(2): 319–340, 1998.

4. Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C., The k-Simultaneous Consensus
Problem.Distributed Computing, 22(3):185-195, 2010.

5. Anderson J., Multi-writer Composite Registers.Distributed Computing, 7(4):175-195, 1994.
6. Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Robustly in Message Passing Sys-

tems.Journal of the ACM, 42(1):121-132, 1995.
7. Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an Asynchronous

Environment.Journal of the ACM, 37(3):524-548, 1990.
8. Attiya H., Guerraoui R. and Ruppert E., Partial Snapshot Objects.Proc. 20th ACM Sympo-

sium on Parallel Architectures and Algorithms (SPAA’08), ACM Press, pp. 336-343, 2008.
9. Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced

Topics (2d Edition),Wiley-Interscience, 414 pages, 2004.

74

10. Barbara D. and Garcia Molina H., Mutual Exclusion in Partitioned Distributed Systems.
Distributed Computing, 1:119-132, 1986.

11. Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming.Proc. 12th
ACM Symposium on Principles of Distributed Computing (PODC’93), pp. 41-51, 1993.

12. Borowsky E. and Gafni E., A Simple Algorithmically Reasoned Characterization of Wait-
free Computations.Proc. 16th ACM Symposium on Principles of Distributed Computing
(PODC’97), ACM Press, pp. 189-198, 1997.

13. Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algo-
rithm. Distributed Computing, 14(3):127-146, 2001.

14. Charron-Bost B. and Schiper A., The Heard-Of model: computing in distributed systems
with benign faults.Distributed Computing,22(1), 49–71, 2009.

15. Castañeda A., Rajsbaum S. and Raynal M., The Renaming Problem in Shared Memory Sys-
tems: an Introduction.Computer Science Review, to appear, 2011.

16. Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consen-
sus.Journal of the ACM, 43(4):685-722, 1996.

17. Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, 1996.

18. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems.Information and Computation, 105(1):132-158, 1993.

19. Delporte-Gallet C., Fauconnier H., Guerraoui R. and Tielmann A., The Disagreement Power
of an Adversary.Proc. 23th Int’l Symposium on Distributed Computing (DISC’09), Springer-
Verlag LNCS 5805, pp. 8-21, 2009.

20. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process.Journal of the ACM, 32(2):374-382, 1985.

21. Gafni E., The01-Exclusion Families of Tasks.Proc. 12th Int’l Conference on Principles of
Distributed Systems (OPODIS’08, Springer Verlag LNCS 5401, pp. 246-258, 2008.

22. Gafni E., The Extended BG Simulation and the Characterization oft-Resiliency.Proc. 41th
ACM Symposium on Theory of Computing (STOC’09), ACM Press, pp. 85-92, 2009.

23. Gafni E. and Kuznetsov P., Turning Adversaries into Friends: Simplified, Made Con-
structive and Extended.Proc. 14th Int’l Conference on Principles of Distributed Systems
(OPODIS’10), Springer-Verlag, LNCS 6490, pp. 380-394, 2010.

24. Gafni E. and Kuznetsov P., RelatingL-Resilience and Wait-freedom with Hitting Sets.Proc.
12th Int’l Conference on Distributed Computing and Networking (ICDCN’11), Springer-
Verlag, LNCS 6522, pp. 191-202, 2011.

25. Gafni E. and Rajsbaum S., Recursion in Distributed Computing.Proc. 12th Int’l Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS’10), Springer-Verlag,
LNCS 6366, pp. 362-376, 2010.

26. Gafni E. and Rajsbaum S., Distributed Programming with Tasks.Proc. 14th Int’l Conference
on Principles of Distributed Systems (OPODIS’10), Springer-Verlag, LNCS 6490, pp. 205-
218, 2010.

27. Guerraoui R. and Raynal M., From Unreliable Objects to Reliable Objects: the Case of
atomic Registers and Consensus.9th Int’l Conference on Parallel Computing Technologies
(PaCT’07), Springer Verlag LNCS LNCS 4671, pp. 47-61, 2007.

28. Guerraoui R. and Raynal M., The Alpha of Indulgent Consensus.The Computer Journal,
50(1):53-67, 2007.

29. Herlihy M.P., Wait-Free Synchronization.ACM Transactions on Programming Languages
and Systems, 13(1):124-149, 1991.

30. Herlihy M.P., Luchangco V. and Moir M., Obstruction-free Synchronization: Double-ended
Queues as an Example.Proc. 23th Int’l IEEE Conference on Distributed Computing Systems
(ICDCS’03), pp. 522-529, 2003.

75

31. Herlihy M. P. and Rajsbaum S., The Topology of Shared MemoryAdversaries.Proc. 29th
ACM Symposium on Principles of Distributed Computing (PODC’10), ACM Press, pp. 105-
113, 2010.

32. Herlihy M.P. and Rajsbaum S., Concurrent Computing and Shellable Complexes.Proc. 24th
Int’l Symposium on Distributed Computing (DISC’10), Springer Verlag LNCS 6343, pp.
109-123, 2010.

33. Herlihy M.P., Rajsbaum S., and Tuttle, M., Unifying Synchronous and Asynchronous
Message-Passing Models.Proc. 17th ACM Symposium on Principles of Distributed Com-
puting (PODC’98), ACM Press, pp. 133–142, 1998.

34. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability.
Journal of the ACM, 46(6):858-923, 1999.

35. Herlihy M.P. and Shavit N., The Art of Multiprocessor Programming,Morgan Kaufman
Pub., San Francisco (CA), 508 pages, 2008.

36. Herlihy M.P. and Wing J.L., Linearizability: a Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

37. Imbs D. and Raynal M., Help when Needed, but no More: Efficient Read/Write Partial
Snapshot.Proc. 23th Int’l Symposium on Distributed Computing (DISC’09), Springer-Verlag
LNCS 5805, pp. 142-156, 2009.

38. Imbs D. and Raynal M., Visiting Gafni’s Reduction Land: from the BG Simulation to the
Extended BG Simulation.Proc. 11th Int’l Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS’09), Springer-Verlag LNCS 5873, pp. 369-383, 2009.

39. Imbs D. and Raynal M., The Multiplicative Power of Consensus Numbers.Proc. 29th ACM
Symposium on Principles of Distributed Computing (PODC’10), ACM Press, pp. 26-35,
2010.

40. Imbs D. and Raynal M., A Liveness Condition for Concurrent Objects:x-Wait-freedom. To
appear inConcurrency and Computation: Practice and experience, 2011.

41. Imbs D., Raynal M. and Taubenfeld G., On Asymmetric Progress Conditions.Proc. 29th
ACM Symposium on Principles of Distributed Computing (PODC’10), ACM Press, pp. 55-
64, 2010.

42. Junqueira F. and Marzullo K., Designing Algorithms for Dependent Process Failures.Future
Directions in Distributed Computing, Springer-Verlag, LNCS 2584, pp. 24-28, 2003.

43. Lamport. L., On Interprocess Communication, Part 1: Basic formalism, Part II: Algorithms.
Distributed Computing, 1(2):77-101,1986.

44. Loui M.C., and Abu-Amara H.H., Memory Requirements for Agreement Among Unreli-
able Asynchronous Processes.Par. and Distributed Computing: vol. 4 of Advances in Comp.
Research,JAI Press, 4:163-183, 1987.

45. Moir M., Practical Implementation of Non-Blocking Synchronization Primitives.Proc. 16th
ACM Symposium on Principles of Distributed Computing (PODC’97), ACM Press, pp. 219-
228, 1997.

46. Moses Y. and Rajsbaum S., A Layered Analysis of Consensus.SIAM Journal Computing
31(4): 989-1021, 2002.

47. Mostéfaoui A., Rajsbaum S. and Raynal M., Conditions on Input Vectors for Consensus
Solvability in Asynchronous Distributed Systems.Journal of the ACM, 50(6):922-954, 2003.

48. Neiger G., Set Linearizability.Brief Announcement, Proc. 13th ACM Symposium on Princi-
ples of Distributed Computing (PODC’94), ACM Press, pp. 396, 1994.

49. Rajsbaum S., Iterated Shared Memory Models.Proc. 9th Latin American Symposium Theo-
retical Informatics (LATIN’10), Springer Verlag LNCS 6034, pp. 407-416, 2010.

50. Rajsbaum S., Raynal M. and Travers C., The Iterated Restricted Immediate Snapshot Model.
Tech Report #1874, 21 pages, IRISA, Université de Rennes (France), 2007.

51. Rajsbaum S., Raynal M. and Travers C., An Impossibility about Failure Detectors in the
Iterated Immediate Snapshot Model.Information Processing Letters, 108(3):160-164, 2008.

76

52. Rajsbaum S., Raynal M. and Travers C., The Iterated Restricted Immediate Snapshot (IRIS)
Model. 14th Int’l Computing and Combinatorics Conference (COCOON’08), Springer-
Verlag LNCS 5092, pp.487-496, 2008.

53. Raynal M., Failure Detectors for Asynchronous Distributed Systems: an Introduction.Wiley
Encyclopedia of Computer Science and Engineering, Vol. 2, pp. 1181-1191, 2009.

54. Raynal M., Shared Memory Synchronization in Presence of Failures: an Exercise-based In-
troduction.IEEE Int’l Conference on Complex, Intelligent and Software Intensive Systems
(CISIS’09), pp. 9-18, IEEE Press, New York, 2009.

55. Raynal M., Communication and Agreement Abstractions for Fault-Tolerant Asynchronous
Distributed Systems.Morgan & Claypool Publishers, 251 pages, 2010 (ISBN 978-1-60845-
293-4).

56. Raynal M., On the Implementation of Concurrent Objects.Proc. of the Conference dedicated
to Brian Randell’s 75th Birtday, Springer Verlag LNCS series, 2011.

57. Taubenfeld G., Synchronization Algorithms and Concurrent Programming.Pearson
Prentice-Hall, 423 pages ISBN 0-131-97259-6, 2006.

58. Taubenfeld G., The Computational Structure of Progress Conditions.Proc. 24th Int’l Sym-
posium on Distributed Computing (DISC’10), Springer Verlag LNCS 6343, pp. 221-235,
2010.

77

Fault Tolerant Clock Synchronization for Arbitrary

Start-Up Conditions

Natasha Neogi

National Institute for Aerospace

Abstract. The issue of self stabilization in clock synchronization protocols for

arbitrary initial conditions is examined in this paper, in the context of the fault

tolerant digital clocking system implemented by Daly, Hopkins and McKenna

in 1973 at the C. S. Draper Laboratory [1]. We develop formal hybrid input-

output automata (HIOA) models of the clocks, communications channels and

logical decision-making (voting) protocols housed on each processor; given their

implementation description and logical circuit diagrams. We then analyze these

models under composition for arbitrary initial conditions to evaluate whether the

non-faulty processors all achieve correct and valid clock synchronization. Using

a simulation relation between the hybrid dynamical system representation of the

hybrid automata and the actual composed HIOA, under restricted Lipschitz con-

ditions for their evolving dynamics, we are able to demonstrate the convergence

of the protocol under realistic arbitrary starting conditions.

1 Introduction

Distributed systems consisting of a set of processors that communicate by message

transmission and that do not have access to a central clock are prevalent in safety critical

applications, such as aircraft, spacecraft, military applications and enterprise systems.

These systems must possess stringent guarantees with respect to timing properties and

invariant properties related to safety, security and availability. It is oftentimes necessary

that these systems possess a common notion of time, be it an integer-valued counter

or a real-valued continuum. The ability of these processors to obtain and maintain a

common notion of time, within a given bound of error, is traditionally know as clock

synchronization.

We wish to prove that, for a given clock synchronization protocol structure and an

arbitrary start up state, for a given number of clocks (of which a number are faulty), that

the entire system will converge into a synchronous notion of time, modulo a fixed band

of error, within a pre-defined bounded period of time. This will require us to address

the issues of both convergence of the protocol on each non-faulty node to a common

notion of time, as well as closure of the protocol such that all good nodes do not diverge

from that common notion of time after achieving convergence, barring any illegal global

system state that would necessitate a restart of the entire protocol.

Given the breath and scope of clock synchronization algorithms currently available,

we will attempt to generalize the basic components of the problem by specifying the

common elements in a formal language. We choose to utilize the Hybrid Input Output

Automata (HIOA) formalism for this task. A formal description of the clock and com-

munication channel models is given in the HIOA language, and the fault models utilized

78

are outlined. An equivalent dynamical systems representation for the clock automaton is

derived, as is a graph theoretic model for the communications network. Validity, agree-

ment and termination properties necessary for the convergence of clock synchroniza-

tion are stated in this context. The decision logic of the Daly, Hopkins and McKenna

[1] algorithm is outlined, and a dynamical system representation with Lipschitz ordi-

nary differential equations (ODEs) is constructed in order to prove the convergence of

the protocol under realistic arbitrary start-up conditions. The result is placed in context

of current work, and future directions are outlined. The next section provides a brief

overview of the clock synchronization problem, and its many solutions. After that, the

hybrid input/output automata formalism is introduced in Section 3, as are the failure

models. Formal HIOA templates of a clock with drift, and a timed indexed channel are

provided in Section 4. We then develop a dynamical system of Lipschitz ordinary differ-

ential equations in Section 5 to express a clock with drift, and prove that it is equivalent

to the clock HIOA in section 4. This enables us to derive sufficient constraints, in Sec-

tion 7 on a clock synchronization voting algorithm to ensure that the composed system,

under stable network assumptions discussed in Section 6, will be self-stabilizing under

arbitrary startup, given a set of initial assumptions. We evaluate these conditions in the

context of the Daly, Hopkins and McKenna [1] fault tolerant digital clocking system,

discuss implications and avenues for future investigation in Section 8.

2 Clock Synchronization Algorithms in Literature

The main goal of a clock synchronization algorithm is to ensure that the clocks of non

faulty processors never divert by more than some fixed amount, usually referred to as γ,

and is called the precision or agreement condition. Another condition often imposed is

the accuracy or validity condition, which requires that the clocks stay close to real time,

i.e. that the drift of the clocks away from real time be limited. Yet another common goal

is that of minimizing the number of messages exchanged during synchronization.

The algorithms in [2],[3],[4],[5],[6], [7] , handle Byzantine (i.e. arbitrary) processor

faults, as long as the number of nodesN is greater than three times the number of faulty

nodes F i.e. N > 3F (except where noted). They also all require that the processors be

initially synchronized and that there be known bounds on the message delays and clock

drift. Finally, they all run in rounds, or successive periods of resynchronization activity

(necessitated by clock drift).

At every round of the interactive convergence algorithm of [2], each processor ob-

tains a value for each of the other processors’ clocks, and sets its clock to the average

of those values that are not too different from its own. The closeness of synchronization

achieved is about 2Nδlatency (where δlatency is the uncertainty in the message delay).

Accuracy is close to that of the underlying hardware clocks (although it is not explicitly

discussed). The size of the adjustment is about (2N + 1)δlatency. Reintegration and

initialization are not discussed in [2]. The algorithm in [3] also collects clock values

at each round, but they are averaged using a fault-tolerant averaging function based on

those in [8] to calculate an adjustment. It first throws out the F highest and F lowest

values, and then takes the midpoint of the range of the remaining values. Clocks stay

synchronized to within about 4δlatency. The synchronized clock’s rate of drift does not

79

exceed the drift of the underlying hardware clocks by overmuch. The size of the ad-

justment at each round is about 5δlatency. Superficially this performance looks better

than [2]; however in converting between the different models, it may be the case that

δlatency in the [3] model equals Nδlatency in the [2] model. The reason is that in the [2]

algorithm a processor can obtain another processor’s clock value by sending the other

processor a request, and is busy waiting until that processor replies, whereas in the [3]

algorithm a processor can receive a clock value from any processor during an interval,

necessitating the processor to cycle through polling N queues for incoming messages

(this argument is expanded on in [2]). This is an example of the many pitfalls encoun-

tered in comparing clock synchronization algorithms. The algorithms of [5] are also

based on the interactive convergence algorithm of [2]. At each round, clock values are

exchanged. All values that are not close enough to N −F other values (thus are clearly

faulty) are discarded, and the remaining values are averaged. However, the performance

is analyzed in different terms, with more emphasis on how the clock values are related

before and after a single round, so agreement, accuracy, and adjustment size values are

not readily available. Reintegration and initialization are not discussed. A useful aspect

of this algorithm is that it degrades gracefully if more than a third of the processors fail.

The next set of algorithms (those in [9], [4], and [7]) do not require a fully connected

network. Again, every processor communicates with all its neighbors at each round, but

since the network is not necessarily fully connected, the message complexity per round

could be less than O(N2). The estimates of agreement, accuracy, and adjustment size

presented in the rest of this section for these algorithms are made assumingN = 3F+1,

and a fully connected network with no link failures, in order to facilitate comparison

although, as mentioned above, the algorithms do not require that these conditions hold.

Marzullo and Owicki [10] extended their previous algorithm to handle Byzantine

faults without authentication by calculating the new interval in a more complicated,

and thus fault-tolerant, manner, and altering the clock rates, in addition to the clock

times. Since the algorithm’s performance is analyzed probabilistically, assuming var-

ious probability distributions for the clock rates over time, it is difficult to compare

results with the analyses of the other algorithms, which make worst-case assumptions.

The algorithm of Halpern et al. [4] can tolerate any number of processor and link

failures as long as the non faulty processors can still communicate. However, the price

paid for this extra fault tolerance is that authentication is needed. When a processor’s

clock reaches the next in a series of values (decided on in advance), the processor begins

the next round by broadcasting that value. If the processor receives a message contain-

ing the value not too long before its clock reaches that value, it updates its clock to

the value and relays the message. The closeness of synchronization achievable is about

(δlatency + ρmax), where ρmax is the maximum drift rate. By sending messages too

early, the faulty processors can cause the non-faulty ones to speed up their clocks, and

the slope of the synchronized clocks can exceed 1 by an amount that increases as F
increases. The size of the adjustment is about (F +1)(δlatency + ρmax), again depend-

ing on F . An algorithm to reintegrate a repaired processor is mentioned; although it

is complicated, it has the property of not forcing the processor to wait until the next

resynchronization, but instead starting as soon as the processor requests it. However, no

overall system initialization is discussed. In the revised version of their paper [11], they

80

present a simpler reintegration algorithm that joins processors at predetermined fixed

times that occur with much greater frequency than the predetermined fixed standard

synchronization times.

The algorithm of Srikanth and Toueg [7] is very similar to that of [4], but only

handles fewer thanN = 2 processor failures and does not handle link failures. However,

they can relax the necessity of authentication (ifN > 3F). Agreement, as in [4] is about

(δlatency+ρmax). Accuracy is optimal, in that it is provided by the underlying hardware

clocks. The size of the adjustment is about 3(δlatency+ρmax). There are twice as many

messages per round as in [4] when digital signatures are not used. Reintegration is based

on the method in [3]. A simple modification to the algorithm gives an elegant algorithm

for initially synchronizing the clocks.

Given the breath and scope of clock synchronization algorithms currently available,

we will attempt to generalize the basic components of the problem by specifying the

common elements in a formal language. We choose to utilize the Hybrid Input Output

Automata formalism for this task.

3 Hybrid Input Output Automata (HIOA) Formalism

A HIOA is a formalism for modeling state machines that evolve both discretely and

continuously with time [12]. For the ease of presentation we describe the essential con-

cepts in this framework ignoring some of the technical details.

The state of a system is captured by valuations of variables. For a variable v, its

type, denoted by type(v), is the set of values that v can take. For a set of variables V ,

a valuation v is a function that maps each v ∈ V to a point type(v). The set of all

valuations for V is denoted by val(V). A trajectory for V models continuous evolution

of the values of the variables over a interval of time. A variable is said to be contin-

uous if all its trajectories are piece-wise continuous. A discrete variable is a special

type of continuous variable whose trajectories are piece-wise constant. Typically, con-

tinuous variables are used to model physical state such as time, position, velocity, and

orientation, while discrete variables are used to model software or program state.

Definition 1 (Hybrid Automaton) A hybrid automaton A is a tuple (V,Θ,A,D, T)
where (a) V is a set of discrete and continuous variables and val(V) is called the

state space. (b) Θ ⊆ val(V) is a set of start states; (c) A is a set of actions, (d) D ⊆
val(V) × A × val(V) is a set of discrete transitions. A transition (v, a,v′) ∈ D is

written in short as v

a
→A v

′ and we say that action a is enabled at v. (e) T is set

of trajectories for V that satisfies certain basic axioms about closure, continuity, and

admissibility.

An execution of A records the evolution of all the variables along a particular run

of the modeled system. Formally, its a (possibly infinite) alternating sequence of trajec-

tories and actions τ0a1τ1a2 . . ., such that the first state of τ(0) is in Θ and for all i in

the sequence, ai ∈ A, τi ∈ T , and there exists a transition labeled by ai from the last

state of τi to the first state of τi+1. A state v ∈ val(V) is reachable if it is the last state

of some finite execution. We denote the set of executions and reachable states of A by

81

ExecsA and ReachA. Properties of interest for A such as safety, stability, progress and

timeliness are specified in terms of predicates on ExecsA and ReachA. Specifically, a

safety property is stated as a predicate S of val(V) and A is said to be safe with respect

to S if ReachA ⊆ S. The notion of stability applies closely to the idea of convergence

around a bounded interval for a given set of dynamics, or in this case, differing clocks.

Thus, if an idea of convergence of all non-faulty processors to a common notion of real

time can be thought of as the convergence of all clocks to a bounded interval about the

actual global time, then all good nodes must converge to within a bounded distance of

the formal analytical description of the evolution of real time.

3.1 Fault Model Description

In order to self-stabilize and tolerate Byzantine failures, it is essential to assume that

eventually the bound on the permanent number of Byzantine failures is strictly less

than one third of the number of processors in the network. Formally, that is, after any

start/restart state, by some bounded time C there will be at most F Byzantine faults,

where N = 3F +1, in the system of N nodes. We consider a component being labeled

as faulty if it sends differing incorrect messages to some subset of the receiving parties.

Note that this behavior degenerates to a purely Byzantine case, where any message can

be sent to any receiver at will; with no correct messages being sent. Clearly, these faults

are the most difficult to handle in the context of clock synchronization. In our modeling

formalism, this is represented by the sending party i sending a possibly different mes-

sage (or no message at all) to each receiving party j. This requires additional rounds

of communication, as well as a more complex decision making function in order to

determine when all non-faulty clocks have converged to within the desired tolerance,

enabling the transition to the closure mode of protocol operation.

4 Formal Description of Generic Components Common to Most

Clock Synchronization Algorithms

Generically speaking, every clock synchronization protocol will have certain key el-

ements in common. A series of clocks must start up, and then evolve according to

given rate. Processors which possess evolving clocks then communicate amongst one

another, exchanging adjusted clock signals. A protocol for logical decision making,

regarding the synchronization of clocks, must be present on each functioning processor.

This protocol then evaluates the messages received to decide which clocks fall within

the required tolerance to be regarded as synchronous. This framework can be broken

down into a set of clock automata, a set of timed channel automata, and a set of uni-

form (logical) decision making automata. This is a useful abstraction, and will allow

for many protocols to be represented in the same general framework. Additionally, as

we formally model these elements, we must consider the fashion in which faults will

manifest in each component, both at startup and during the evolution of the system.

Figure 1 illustrates the major components.

82

Hardware Clock1
QN:(N-F)

QN:(F+1)

V1

V()1
Adjusted Clock1

p1

Hardware Clock2
QN:(N-F)

QN:(F+1)

V2

V()2
Adjusted Clock2

p2

Hardware ClockN
QN:(N-F)

QN:(F+1)

VN

V()N
Adjusted ClockN

pN

send/receive channels

Messages: Adjusted Clocki

…

Fig. 1. Components for Clock Synchronization

4.1 Clock Automaton

The clock automaton is a standard physical clock, which can have an arbitrary start-up

state, and evolves with a constant bounded drift rate. The clock outputs the time (in

an hour-minute format, which is an arbitrary choice). The clock can send messages of

its output to all other processors, and does on a fixed periodical schedule. There is the

option of having the clock adjusted by an external input (i.e. a voting function). The

description is shown in the formal HIOA language in Table 4.1.

4.2 Indexed Channel Automaton

The indexed channel automaton is a an indexed channel (i, j) going from the sending

process i to the receiving process j. It can have an arbitrary start-up state, and possesses

timing properties. It evolves time forward at a constant rate and is capable of timing

out a message that has been in its queue too long (i.e for more that δlatency. It delivers

messages in a first in, first out manner, as long as a message has not been timed out (note

that dropped messages can be simulated by incorrect timeouts). Its invariant preserves

the ordering of messages in this FIFO manner, while respecting latency issues. The

description in the formal HIOA language can be seen in Table 4.2.

4.3 Logical Decision Making Automaton

The logical decision making automaton is the main part of the clock synchronization

protocol which manipulates the messages its receives from clocks in order to converge

to a coarse degree of synchrony. When it receives a message from a clock, it is able to

identify the sending clock (due to the indexed channel), and can determine whether the

message meets the valid latency conditions associated with that clock. It then uses the

time-stamped message received to logically determine the state of the system with re-

spect to clock synchrony. By repeated message passing between clocks and processors,

and the application of the logical decision making function (such as a majority voting or

quorum function), a correct node, possessing a correct clock and correct voter, is able to

83

synchronize itself with all other correct nodes, within a bounded time period, dependent

on the fault hypothesis. The constraints of the decision logic can be derived such that,

when composed with valid clock and channel automata, they will yield a stabilizing

clock synchronization solution in the face of arbitrary start-up conditions. The logic of

the particular decision making protocol under study in this paper, referred to in short as

the Draper Protocol [1] is discussed in further detail in Subsection 7.1.

4.4 Proof Sketch

We wish to compose the clock automata, channel automata and voting protocol au-

tomata into a single system. Composing a clock automata A with a voting automata B
to create the set of processor execution traces ExecsA‖B and reachable states ReachA‖B
can be considered notionally as follows. The continuous functions describing the ex-

ecution traces and reachable states of the voting automata are further discretized by

the clock transitions. Thus, for every clock tick, an action is inserted into the execu-

tion traces of the voting automata. This is as simple as imagining a continuous function

f(x), which has finitely many discontinuities, having further discontinuities inserted

along the integer axis at each value. The only possible point of confusion can arise

when the inserted action for the clock tick arrives at the same time as an action of the

actual voting automaton. At this point, there are two possible values for the composed

function at that instant, depending on whether we process the voter’s action first, and

then discretize or vice versa. Without loss of generality, we create a policy for resolv-

ing this issue by always processing the clock tick prior to the voter’s action. Thus, the

voting system will always start the new time interval with the new dynamical equations

(if the voter action resulted in a mode switch). The evolution of the execution traces is

then governed by the set of differential equations which describes the dynamics of the

(clock, voter) system.

If we then compose N of these (clock,voter) processors in the context of a stable

communications network, wherein at most F processors are faulty, the set of execution

traces for the whole system can be constructed by taking the union of the execution

traces over each of the N individual processors. These execution traces can then be

described as the union over the differential dynamics governing each (clock, voter) au-

tomaton. If this system is described by a set of ordinary differential equations that pos-

sess a bounded evolution over time (i.e. they are Lipschitz), then the composed system

is guaranteed to possess a unique solution, which implies the convergence of all execu-

tion traces. In the next section, we will construct the dynamical system which possess

Lipschitz ordinary differential equations that describes the clock automata, and illus-

trate what conditions will be needed to be imposed on the voter in order to guarantee

this unique solution, for our assumed fault and network model.

5 Asynchronous Oscillators as Clocks Under Arbitrary Startup

In order to illustrate the notion of self stabilization of clock synchronization under ar-

bitrary startup, we must first be able to implement the notion of precise timing pulses

84

in a hybrid automaton, under arbitrary initial reset conditions. This allows for the sim-

ulation of powerful differential equations through the composition of the hybrid clock

automaton under arbitrary startup, with other hybrid automata with complex governing

dynamics (such as dynamic communication channels or voting protocols).

5.1 Clocks and Dynamical Systems

To this end, we use the dynamical system definition of the notion of the hybrid clock

automaton as an exact clock [13].

Definition 2 A dynamical system is defined as F = {X,Γ, φ}, where X is an arbitrary

topological space (and the state space of F) defined on R
n (the real space of dimension

n), Γ is a topological semigroup, and φ is the extended transition map where φ : X ×
Γ → X which satisfies the identity, semigroup and continuity properties.

Definition 3 An exact clock is a function S: R+ → Z and is an exact m-ary clock with

pulse width 2∆, or simply an (m,2∆)-clock, if:

1. It is piecewise continuous with finite image Q = {0, 1, ...,m− 1},m ≥ 2.

2. ∀t ∈ (2k∆, 2(k + 1)∆), S(t) = i if k ≡ i (mod m).

The idea of turning on and off separate systems of differential equations (ODEs)

is the key to this definition. We can then implement a (2, 2∆)-clock (an oscillator of

pulse width∆) with a single ordinary differential equation (ODE), which has dimension

n = 1.

Theorem 1 The hybrid automaton H that implements an exact (2,2∆)-clock S and al-

lows for the arbitrary resetting of continuous valued parameters on clock edges (i.e. the

pasting of an initial condition into a new set of dynamical equations), has an equivalent

formulation as a discrete dynamical system F with continuous ODEs on R
2n. Thus the

hybrid automaton H can be simulated by the discrete dynamical system F .

Proof 1 By construction.

Define the set of differential equations that govern the trajectories of H as G ≡
F (X,ψ, 1), that is, the dynamical system with the identity transition map. Both systems

are initialized at t = 0 with c = x(0) = x0, x0 ∈ domain(G).
1. Initialize the function z(t) as z(0) = x0.

Use:

ẋ(t) = (2∆)−1[G̃(z)− z](1− S(t)), (1)

ż(t) = (2∆)−1[G̃(x− c)]S(t). (2)

where G̃ is the continuous extension of F , that is, where every continuous interval

ends with the copying of the final conditions into a legal starting state of the next interval

(and its governing differential equations). The constant c is set to z when t = 2k∆, for

k odd. So, we have that x(4k∆) = z(4k∆) = Gk(x0). Choose ψ(x, z) = x for x = z,

x ∈ domain(G).
2. Use:

85

ẋ(t) = (2∆)−1[G̃(c)− c](1− S(t)). (3)

The constant c is set to x when t = 2k∆, for k even. So, we have that x(4k∆) =
Gk(x0). Choose ψ(x, z) = x, x ∈ domain(G), ∀z.

⊓⊔

This theorem allows us to demonstrate the exact equivalence of the formal HIOA clock

specification in Table 4.1 with drift rate set to zero, to the constructed dynamical sys-

tem F . Note that the continuity property of the transition map refers to the fact that φ is

continuous in both arguments simultaneously, i.e. for any neighborhood W of the point

φ(g), with g ∈ Γ , there exist neighborhoods U and V of the point x and the element

g respectively such that φ(U, V) ⊂ W . Note that if F is not invertible, forward trajec-

tories of the above system of equations may merge. To allow for clocks with drift, we

define a valid inexact (2,2∆)-clock as follows.

Definition 4 A valid inexact oscillatory clock S1,2(τ) is described by defining τ̇(t) =
1/(2∆), initialized at τ(0) = 0. Now, define

S1,2(τ) = h±[sin(πτ)], (4)

where

h+(l) =











0, l ≤ η/2,

2r/η − 1, η/2 < r ≤ η,

1, η < r,

(5)

and h−(l) = h+(−l), and 0 < η <
√
2
2 .

Note that η and r are parameters which are used to characterize the drift rate ρ. Thus,

one switches between two different systems of ODEs with Lipschitz continuous func-

tions of the state of another Lipschitz ODE. This requires (2n+ 1) ODEs to simulate a

hybrid automaton which has n different sets of governing equations. In this case, there

are 3 different sets of governing dynamical equations, which can be switched between

depending on the evolution of τ and value of ρ(δ, r). In order to ensure the boundedness

of the differential equations, we impose the notions of finite gain and non degeneracy.

As before, n is the dimension of the topological space X , while N is the number of

clocks (and processors). For exact clocks, the composed topological space for all N
clocks would be of dimension n = N , but for inexact clocks, this becomes n = 3N .

Definition 5 (Non-Degeneracy and Finite Gain) A function f : R
n → R

n, is non-

degenerate and possesses a finite gain if there exists constants β ≥ 0,M ≥ 0, such

that

‖x‖ ≤M‖f(x)‖+ β, ∀x ∈ X (6)

‖f(x)‖ ≤M‖x‖+ β, ∀x ∈ X (7)

We can now introduce our main result for hybrid automaton composition using

inexact oscillatory clocks.

86

Theorem 2 Every discrete dynamical system F , which simulates a hybrid automaton

H that is governed by a system of continuous Lipschitz ODEs in R
n, and is defined on

Y ⊂ Z
N can be: (1) composed with a valid inexact oscillatory clock automaton S1,2,

where (2) F is finite gain and non-degenerate and is governed by a system of continuous

Lipschitz ODEs in R
(2n+1), and (3) Y is bounded.

Note that the theorem is divided into three major conditionals, and its proof is di-

vided thusly.

Proof 2 By construction. Let G ≡ F(X,ψ, 1) and 0 < ζ < 1/3. S1,2 and η are as

defined in the description of the inexact oscillatory clock. For each y ∈ Y , define the

set:

Hy = {(x, z, τ) | ‖x− y‖∞ < ζ, ‖z − y‖∞ < ζ,

sin(πτ) < η/2, τmod2 < 1/2},

for the continuous mod function.

Set ψ(x, z, τ) = Π(z) = y if (x, z, τ) ∈ Hy . This means that ψ−1(y) = Hy are

open and disjoint. Initialize x(0), z(0), τ(0) in ψ−1(y), y ∈ Y .

1. Choose:

ẋ = −ζ−2[x− G̃(Π(z))]3S1(τ), (8)

ż = −ζ−2[z − (Π(z))]3S2(τ), (9)

τ̇ = 1. (10)

This selection yields Π(z(4k∆)) = Gk(y), k ∈ Z+, for | τ |< ±π−1 sin−1(η/2).
2. Let α and P be the finite gain constants of G, and β andM be the non-degeneracy

constants of G under the infinity norm. Choose

ẋ = −2ζ−1[x− G̃(Π(z))]S1(τ), (11)

ż = −2ζ−1[z − (Π(z))]S2 (τ), (12)

τ̇ = 1/[1 + (P + 1)‖z‖∞ + α+ (M + 1)‖x‖∞ + β]. (13)

This selection yields Π(z(t)) = Gk(y) on an interval about the time tk where

τ(tk) = 2k, k ∈ Z+.

3. Let β = max{‖i− j‖}∞ | i, j ∈ Y }. Choose

ẋ = −2βζ−1[x− G̃(Π(z))]S1(τ), (14)

ż = −2βζ−1[z − (Π(z))]S2(τ), (15)

τ̇ = 1. (16)

This selection yields Π(z(4k∆)) = Gk(y), k ∈ Z+, for | τ |< ±π−1 sin−1(η/2).
⊓⊔

87

Note that this rather complicated mathematical exercise is merely a proof that the

pasting policy described in Subsection 4.4 will yield a set of Lipzchitz ODEs for the

composed system of the inexact clock and any dynamical system F that can be ex-

pressed as a set of Lipschitz ODEs. The non-degeneracy and finite gain of the con-

tinuous extension of G do not need to hold for points not in Y . There is a bounded

neighborhood of initial conditions that will lead to a bounded reachable set of behav-

iors. The import of condition 2 is that if G ≡ F(., 1) is non degenerate and may be

extended to a Lipschitz function, then the ODEs that govern both the dynamics of the

hybrid automaton H as well as its discrete transitions are Lipschitz. That is, the ODEs

that switch between the vector fields described by each mode governed by continu-

ous Lipschitz ODE dynamics, are also Lipschitz [13]. So, G is notionally defined as a

switching map that determines the change in dynamics from each set of ordinary dif-

ferential equations that characterize the dynamics of F . For instance, since an inexact

clock has three different sets of dynamical equations, G will govern the switching be-

tween them, as the system can only evolve according to one set at a time. Note that this

holds for any dynamical system defined on Y ⊂ R
n such that there is some minimum

separation between any two distinct points of Y , where Y is the domain on which the

dynamical system is defined.

This powerful result allows us to composeN diverse inexact oscillatory clocks each

with copies of the same hybrid automaton described by a set of 2n+1 Lipschitz ODEs,

and define the global dynamics of the system using (2n + 1)N(N−1) Lipschitz ODEs.

While this is exponential in the number of clocks, if the system starts within the bounded

set of acceptable initial conditions defined in Y , then the system can be guaranteed to

be stable. That is, if the composed decision-making protocol and channel automata are

described by Lipschitz ODEs, the composed system will be stable, under bounded start

conditions. So, it only remains to demonstrate that a given voting protocol can be rep-

resented by a set of Lipschitz ODEs (for a stable connected network configuration)

in order to assure that the composed system converges to synchrony. Obviously, the

stability of the hybrid automaton decision making protocol is impacted by the com-

munication between clocks and decision making protocols. The network topology and

each communication channel must also be stable in composition with the inexact clocks

and decision making protocol.

6 Network Stabilization: Channels and System Reset

If a bound on the physical channel is known, a finite state self stabilizing protocol may

be feasible [14]. We assume that we are given indexed input/output communication

channels that can store at most one outstanding message in the event of a system wide

communication reset. If we consider the wires connecting the components as channels,

this is a reasonable approximation of the behaviour. We assume a message can remain

in a channel for at most a duration of δlatency, which is much smaller than the network

stabilization time P . We assume that at startup or reset, the network can experience

Byzantine behavior, but that after a predetermined period of time, all faulty behavior

can be predicted (until the advent of reset). For 3F + 1 nodes, F of which may be

88

faulty, there must be at least 2F (2F + 1) correctly operating indexed channels in order

to tolerate Byzantine behavior in the F faulty nodes.

The strategy of many protocols (including the Draper protocol) is to evaluate each

message in the channel to see if it is a valid value, and if this is not the case, the value

is re-written or reset to a valid value by the processor. For a non-faulty channel, we

assume that after a time period P , the channel stabilizes, that is, for e = (i, j) the

message m sent from node i to j is delivered. The behavior of the channel is regarded

as correct when it exhibits the following characteristics.

Definition 6 (Correctness) Using regular expression operators, the behavior of a cor-

rect channel must be able to be broken into segments of the form

α = empty∗send(m, i, j)receive(m, i, j)empty∗ (17)

within a finite execution time bounded above by δlatency ≪ P for e = (i, j).

We assume all correct channels will exhibit this behavior after a predefined time

P from startup/reset. We wish to guarantee that, after all topological changes cease, if

one of the valid nodes attains an invalid state, and no valid node attains an invalid state

infinitely often, then we can assure the notions of validity, and termination for a given

node running a clock synchronization protocol.

Corollary 1 (Validity). If e = (i, j) is a valid indexed channel in the final topology,

then the execution sequence α of Send(m, i, j) input at i after time C + P is identical

to the execution sequence α̃ of Receive(m, i, j) output at j.

Corollary 2 (Termination). All valid nodes will terminate a correct clock synchroniza-

tion protocol if: 1. In finite time all of the valid nodes with valid channels will receive all

messages from every other valid node. 2. No valid node receives infinitely many invalid

messages.

6.1 Startup and Reset

Given the perspective of a non faulty processor during clock synchronization, we as-

sume that it is able to communication with all other valid inexact clocks and all other

non faulty processors through a correct channel (from definitions 1-2).

Theorem 3 Assume that there is a set S of (2F + 1) valid and terminating decision

making protocol hybrid automata in the network of at least 3F + 1 nodes. Each valid

indexed channel is a link whose correctness is checked at minimum consistent intervals

P , and each decision making protocol hybrid automaton has stabilization time C. The

projected system state [s]e, ∀i, j ∈ S from time max(C,P) onwards, is correct unless

the network topology is reset.

Proof 3 By contradiction. Suppose not. This implies that there exists a correct link be-

tween two valid nodes (i, j), which possesses an execution trace not of the form

α = empty∗send(m, i, j)receive(m, i, j)empty∗ (18)

89

over an interval P for e = (i, j). This can occur in one of two ways.

Case 1: A valid message m, sent from the valid node i ∈ S was not received at a

valid node j ∈ S after the interval P . This implies that the message is still in a valid

channel. However, since messages can dwell for at most δlatency in valid given channel,

and δlatency ≪ P , we have a contradiction.

Case 2: A valid message m, received by the valid node j ∈ S was not sent from a

valid node i ∈ S within the prior interval P . This implies that either the valid message

m did not originate from any valid node i ∈ S, in which case we have a contradiction,

or the valid message m was in the channel for a period longer than P , which contra-

dicts the assumption that all valid messages are delivered by the maximum latency time

δlatency.

⊓⊔

Thus, once the network topology has stabilized, and each valid inexact clock is

composed with a logical decision making hybrid automaton, the condition remaining to

ensure stabilization in the face of arbitrary startup condition reduces to demonstrating

that the hybrid automaton representing the decision making protocol can be represented

by a discrete dynamical system of Lipschitz ODEs.

7 Decision Making Protocol

The difficulty arises in the determination of the initial conditions used during the first

iteration of the decision making protocol. Without sufficient boundedness arguments, it

becomes impossible to limit the reachable set of states for the system. As long as the

hybrid automaton H containing the decision protocol for synchronization, associated

with a given clock, receives a value picked from a bounded initial set, then the hybrid

automaton will propagate according to its logical execution. For an arbitrary start up

value of that clock, or the channel that communicates that clock value to the decision

making automaton, it becomes necessary to replace arbitrary initial values of the ini-

tial states for the clocks with an acceptable value (i.e. a 0 or a 1). This requires the

introduction of a device, which can select the requisite value to replace an unacceptable

initial clock value in the decision protocol. Unfortunately, an undefined input can be

interpreted under disparate fashions by each protocol, that is, some may interpret it as

high (1), some may interpret it as low (0), or some may interpret it as undefined.

Each valid inexact clock evolves according to a constant rate in addition to a bounded

drift rate of ρ, with respect to actual time. Before convergence is achieved, the sys-

tem may behave arbitrarily, as it can start up from an unknown state. However, after a

bounded time max(C + P), there can be at most (N − 1)/3 permanent faults in the

system. Furthermore, it is assumed that the logical execution of the implemented deci-

sion making protocols cannot be affected by faults from other nodes, for all non faulty

nodes. Synchronization is defined as being the state in which all good nodes have their

clock automata within a pre-defined tolerance, γ. We define a non-faulty node:

Definition 7 (Non-Faulty Node) Given two hybrid automata defined as the inexact log-

ical clock A = S1,2 and a logical decision making automaton B = (V ′, Θ′, A,D′, T ′),

90

their composition A‖B = (V,Θ,A,D, T) is regarded as being non-faulty at times

when it displays the following properties: (a) The clock automaton S1,2 obeys a global

bound on the drift rate ρ, defined as 0 ≤ ρ ≤ 1, such that for every closed continuous

time interval [t1, t2], (1− ρ)(t2 − t1) ≤ val(V (t2))− val(V (t1)) ≤ (1 + ρ)(t2 − t1)
(b) The logical decision making automaton B executes correctly. (c) The node must

process all messages received from all other non-faulty nodes within a bounded time

tprocessing .

The composed system A‖B is considered faulty if it violates any of the above condi-

tions. The automata A and B are disjoint in their internal actions, and cannot block

each other’s progress. For a fuller description of the mathematical details, we refer the

reader to [12]. Note that a faulty node may recover and begin behaving correctly at any

time; however, it will not be regarded as being correct until at least max(C,P) time has

elapsed and the necessary number of communications rounds for that node have been

established as being passed by another correct node. Furthermore, a faulty node which

begins behaving correctly can be considered correct by other correct nodes only after

it has demonstrated that it is in synchrony with all other correct nodes. That is, it must

have undergone the process of a node that, from an arbitrary start up state, manages to

synchronize with all other correct nodes.

Definition 8 (Convergence) The system is in a synchronized clock state at the real time

t if for all correct nodes (A‖B)i: | val(A‖B)i(t)− val(A‖B)j(t) |≤ γ.

7.1 Fault Tolerant Digital Clocking System (Draper Protocol)

The fault tolerant digital clocking system implemented in [1] assumes that a central ar-

ray of N = 3F + 1 clock elements interact with one another to produce N = 3F + 1
mutually synchronized adjusted processor clock signals, ACi, for each valid ith node.

Each of these valid clock signals maintained at each processor can be synchronized

with all other processors except those clock signals that have failed. Failures during the

course of operation are assumed to be arbitrary and variable, with any time dependence

whatsoever. While every node can start up in an arbitrary state, the 2F + 1 nodes must

possess valid hardware clocks (whose initial state may be arbitrary, but who behave

correctly for all time afterward). The phase relation between them is determined by the

maximum differential in the desired frequencies (i.e. from the difference between ωmax

and ωmin), which is specified via hardware implementation, and is fixed. A description

of the implemented system, including its voting logic (referred to as the Draper Proto-

col) follows.

Each of theN processors of the central array receives theN−1 other adjusted clock

signals (ACs) for synchronization purposes. Intrinsic synchronization and valid clock

signal generation at the ith node are achieved as follows. Once the adjusted clock ACi

has changed state, two time delay mechanisms are triggered: (a) No further change of

state can occur before at least some minimum time tmin has elapsed and, (b) If a change

of state has not occurred by some maximum time tmax, then the state is changed at that

time irrespective of the other elements. Note that if F + 1 other processors’ adjusted

91

clock signals change state (after tmin and before tmax), then the current processor also

changes the state of its adjusted clock signal.

Thus, the logical decision making protocol on the processor changes state in the

following fashion: (a) The output of the protocol Vi is set to 1 when all but F of the

N clock elements are 1. (b) The output of the protocol Vi is set to 0 when all but F of

the N clock elements are 0. (c) Otherwise, the protocol output Vi retains its previous

value, until tmax time has elapsed, and a state change is forced. This protocol output

Vi is delayed by the desired half period (∆ = 1/2πω) to form the signal Vi(∆), which

serves as the local clock signal on the processor,ACi, and is synchronized with all other

non-faulty processors. Thus, the processors exchange as messages the value ACi,

which is (upon network stabilization) a delayed version of the voter output Vi. This

procedure can be encapsulated using a quorum function, defined over N elements QN
i ,

such that QN
i has a value of 1 if i or more inputs are 1, and otherwise has the value 0.

The quorum function evaluates based on the exchanged values ACi. Vi is set to 1 if

QN
N−F at the processor changes from 0 to 1; Vi is set to 0 if QN

F+1 changes from 1

to 0.

Sample Execution If we consider the case where there are N = 4 nodes, of which

F = 1 are Byzantine faulty, we can define the relevant quorum functions Q4
3 and Q4

2.

If we consider the condition where a valid node j has its own clock reading 1, and has

received messages from the three other clocks of (1, 1, 0.4) (recall one is Byzantine

faulty), we evaluate Q4
3 = 1 and Q4

2 = 1. Thus, its own clock output retains the value

Vj = 1. Now, after some time t1 < tmax has passed, one of the other valid clock

outputs switch to zero, and the message set becomes (1, 0, 0.4), with Q4
3 = 0 and

Q4
2 = 1. The node maintains its output Vj = 1. After some further time another valid

clock switches its output, and the message set becomes (0, 0, 0.4) with Q4
3 = 0 and

Q4
2 = 0. The falling edge of Q4

2 triggers the switch to low, so Vj = 0. After the

minimum settling time has passed, and the message sets (1, 0, 0.4) (leading edge of

Q4
2 = 1) and (1, 1, 0.4) (leading edge of Q4

3 = 1) have been received, the clock output

returns to high on the leading edge of Q4
3, with Vj = 1 (see Figure 7.1). Note that the

failed clock has been modeled as being ”stuck at” a particular value. The value of the

failed clock can be dynamic and influence the quorum functions; however, the set to

high on the rising edge of Q4
3 (and the set to low on the falling edge of Q4

2) require that

at least one valid clock has changed its state ACi to high (or low), respectively.

A valid adjusted clock signal is then formed at each processor via the described

hysteresis voting protocol. A sketch (for brevity) of the hybrid input output automata

used to model the protocol can be seen in Table 7.1. We are primarily concerned with

the behavior of the decision making logic when at least one inexact valid clock starts

with an arbitrary value (and all state variables are arbitrary at start-up).

Consider the initial conditions such that each good clock component starts with a

valid state, except for one, labeled k, which starts from an arbitrary state, that is Vk = a.

That is, each good ith clock excepting Vk starts at 0 or 1, and each ith voter is initialized

to an arbitrary value Vi. As described above, the signal Vi is delayed by ∆i, which is

the desired half period for the signal Vi. Then, we have that the clock output ACi will

go to 1 on the leading edge of QN
F+1 or the falling edge of Vi (modulo the delay ∆i).

Similarly, the ACi goes low on the falling edge of QN
N−F or the leading edge of Vi.

92

Clock 1

1

t

Clock 2

1

t

Clock 3

1

t

Clock 4

1

t

Q4:3

1

t

Q4:2

1

t

V_i

1

t

Fig. 2. Example Execution Trace of the Draper Protocol with N=4, F=1

In order to ensure that all valid adjusted clocks ACi eventually change their state

due to a change in a quorum function (and not just due to timeout parameters), which is

based on the change in at least one other valid adjusted clock , each valid processor must

be able to arbitrarily distinguish and assign the value of the clock Vk into a leading or

falling edge. With the introduction of a threshold function:

val(ACk) =

{

1, ACk < Threshold,

0, otherwise
(19)

for each processor, it is possible that this condition is probabilistically achieved. The

threshold function can be implemented in hardware as a Schmitt trigger. Thus for any

number of arbitrary non-valid initial clock states, which eventually after C become

valid, each successive non-valid initial clock message received by a non faulty processor

is arbitrarily assigned a valid message value of 0 or 1. Thus, after a time max(C,P) and

at least 2F + 1 valid messages from distinct processors, will have a state change of the

adjusted clock ACi via a change in a quorum function. This boundedness condition on

the ACi input messages to a valid processor guarantees that the values of the quorum

functions and voter outputs (Vi, Vi(∆), ACi) are always bounded after receiving at most

3F + 1 distinct processor messages.

Theorem 4 A node S1,2‖B composed of a clock automaton S1,2 and a logical decision

making automaton B = (V ′, Θ′, A,D′, T ′) is self-stabilizing under arbitrary startup

93

conditions in the context of a global system S of N = 3F + 1 such automata (of

which at most F are Byzantine faulty) connected by correct indexed channels (whose

topology is described by [s]e, ∀i, j ∈ S) if the hybrid decision making automaton B can

be represented by a discrete dynamical system F which is Lipschitz.

Proof 4 By construction. For all non-faulty processors in the set I ⊂ S to eventually

converge to clock synchronization under arbitrary state start-up conditions, the values

for | val(Bi)(t)− val(Bj)(t) |≤ γ, ∀i, j ∈ I .

If the quorum function (modulo a delay ∆, and the maximum and minimum dwell

times), determines the output value of Vi, then a bound on the quorum function would

naturally result in a bound on the output Vi. Given that all invalid values Vj sent from

other clocks and processors can be resolved into a 0 or 1 (in a probabilistic fashion),

the only unbounded values occur in the processor’s own initial conditions. Namely, the

initial values for the processor’s quorum functions, as well as its own initial value for

Vi. As the quorum functions:

QN
N−F =

N−F
∨

i=N−F

(QN−F
i QF

N−F−i) (20)

triggers a leading edge and

QN
F+1(x, y) =

F+1
∨

i=1

(QN−F
i QF

F+1−i) (21)

triggers a falling edge, when they each change value to one and zero, respectively,

they however can be initialized to an arbitrary value at startup. At least one of the

quorum functions will be forced to change into a valid value once 2F + 1 distinct

processors have sent at least three distinct messages each in time tmin < ∆t < tmax.

If this has not occurred by the time tmax, the processor will change its own arbitrary

initial value of Vi to either one or zero (again, in a probabilistic fashion), and broadcast

this new, valid value of Vi to all other processors. The processor must again wait for

at most 2F + 1 distinct processors to have sent at least three distinct messages each in

time tmin < ∆t < tmax before a state value (quorum function) is changed, forcing a

change in the value Vi, and so forth.

Thus, the rate of change of the value of Vi is strictly bounded from above by (tmin)
−1

and from below by (tmax)
−1 after the first valid value of Vi is generated. Since for a

non-faulty processor, after a time max(C,P)+tmax has elapsed, the first valid value of

Vi must be generated, the only difficulty occurs if the value of Vi is initially unbounded

before this switch (i.e. possibly infinite). If we eliminate this case from the set of permis-

sible initial conditions, it is always possible to choose a bound B such that the value of

| Vi(h)− Vi(0) |≤ B | h |.
Note that if the value was undefined, then the derivative at this point would simply

not exist, creating no difficulties (as the derivative is not required to exist everywhere).

Thus, the dynamical system F governing the decision making logic for the Draper

protocol is Lipschitz. If we define val(Bi) = Vi, then for all non-faulty processors

after time max(C,P) + 3∆, | val(Bi)(t) − val(Bj)(t) |=| Vi(t) − Vj(t) |≤ 2 ∗

94

(tmax)
−1, ∀i, j ∈ I . However, at this point, all values of the quorum function and Vi

are now valid for all non-faulty processors.

⊓⊔

7.2 Precision

Once all valid clock elements of all non-faulty processors have each received at least

(2F + 1) valid messages (and t > max(C,P)), they must become phased locked

in the following manner. Without loss of generality, we assume that the clocks phase

lock based on an initial leading edge (value 1). Since the first leading edge of the first

valid clock output must be triggered by the falling edge of its own corresponding Vi,
the valid clock output leading edge must follow the falling edge of its Vi by at least

δmin = 1/(2πωmax), the smallest of the delays of the valid clock elements (clock with

the highest frequency), and by at most δmax = 1/(2πωmin), the largest of the clock

delays (clock with lowest frequency).

Theorem 5 (Precision) . After the stabilization time of max(C,P), where there are N
nodes, at most F of which possess Byzantine faults, the (N−F) valid clocks will phase

lock to within a precision γ = 3δmax + 3δlatency + (F + 3)tprocessing .

Proof 5 By Construction. The leading edge of Vi in a valid clock element cannot pre-

cede the leading edge of any other quorum function QN
F+1 in another valid clock ele-

ment k by more than δmax+δlatency+(F+3)tprocessing . That is, if the leading edge of

a valid clock output Vk is triggered by the leading edge of its own QN
F+1, then at least

one other valid clock output (say Vi) must have gone high previously. The maximum

amount of time it would take for the kth node to sense this would be the sum of the

delay at the clock output of Vi (which is δi ≤ δmax), along with the message latency

time and the time to process the message.

The leading edge ofQN
N−F cannot follow the leading edge of a valid Vi, in any valid

clock element, by more than (F +1)tprocessing + δlatency + δmax. Supposing that Vk is

the last valid clock to possess ACk = 0, and the the second last valid clock Vi has the

lowest frequency (and longest delay δmax); Vi will have to change from low to high by

δmax in order to remain valid, and then send its message, bounding the maximum time

that all valid clock messages can take to change from high to low. That is, previously,

to set ACk = 0 you had at least N − F low outputs, and now you must have at least

N − F high outputs in order for it to be set high. Thus, at least F + 1 outputs must

have changed from low to high. The valid node would have to process at least F + 1
messages, and evaluate the quorum function F +1 times. Thus, the quorum function of

the kth node must change after it has received and processed F +1 high messages, the

last of which can be received δmax + δlatency after the second last valid clock output

Vi has changed from low to high.

The leading edge of Vi in a valid clock element cannot follow the leading edge of

QN
N−F of any other valid clock element, by more than the fixed propagation delay of

δmax + δlatency + tprocessing . Consider the first valid processor k to have its quorum

function QN
N−F to evaluate to high. This means that the kth node must have received

at least N − F high messages, of which F + 1 came from valid elements. The ith

95

valid processor must also have received these valid messages, as have all other valid

processors. All valid processors which are low must go high within the period bounded

by δmax, F + 1 of which have already done so. After a maximal possible delay of

δmax + δlatency + tprocessing , the last valid processor receives the message from the

second last processor to go high (i.e. the jthprocessor) ACj = 1 and re-evaluates the

quorum function.

Thus, the leading edge of Vk of one valid clock element must follow the leading

edge Vj of any other valid clock element by at at most the fixed propagation delay

3δmax + 3δlatency + (F + 3)tprocessing . Note that if the Vi of valid processors are

phase locked, so are the Vi(δi) and ACi.

⊓⊔

8 Discussion and Conclusions

In the context of classical clock synchronization, it is known that if all valid clocks

are running at a rate bounded by some linear function of real time (from both above

and below), then clock synchronization is impossible with one third or more clocks

being faulty, without authentication. Dolev et al. [15] have shown that if there is a fi-

nite upper bound on the rate at which messages can be generated by a processor, then

clock synchronization is achievable without authentication (and assuming the absence

of network partitioning). The pulse-based self-stabilizing algorithm of Daliot, Dolev

and Parnas [16] assumes an underlying notion of coarse synchrony at startup, by spec-

ifying an upper bound on the real-time between the invocation of the pulses in correct

nodes. Recently, they have developed fast, self-stabilizing Byzantine clock synchro-

nization protocols [17, 18], which obtain an optimal probabilistic solution, though time

is modeled using integer abstraction. There has been a large quantity of work on self-

stabilizing clock synchronization in the past decade [19],[20],[21],[22],[23], much of

which uses an integer descretization of time and considers diverse network topologies

[24], in contrast to the continuous approach adopted in this paper.

There are several hardware approaches taken to this problem that deal with clock

tick generation [25] and arbitrary initialization under failures [26]. However, this hard-

ware is more complex than the circuit diagrams outlined in [1], and a more detailed

analysis for comparison will be performed in the future. Synchronization incorporat-

ing continuous trajectories under a real time computing model is studied using optimal

analysis[27], in contrast to a robust setting implied by Byzantine fault tolerance.

In the Draper protocol outlined in this paper, as well as the attendant proof of conver-

gence for arbitrary initial conditions, there are no inherent assumptions of even coarse

synchrony upon startup, nor are there any restrictions on initial values. However, the

requisite assumptions of finite gain and of Lipschitz ODEs governing the overall dy-

namical system representation of the composed clock, communication channel and log-

ical decision making hybrid input output automata act to constrain the rate of change

of the output. This acts to limit the acceptability of the ∞ value for any of the quorum

functions at any non-faulty processor. Furthermore, the digital design of the system

posits the existence of a mechanism by which a non-valid initial value of any clock in

the system is assigned a value of zero or one at each non-faulty processor. This function

96

can be probabilistically achieved in the circuit design by the use of a Schmitt Trigger.

Thus, for a realistic set of arbitrary initial conditions (excluding ∞ for quorum func-

tions and Vi), all (2F + 1) non-faulty processors converge to attain synchrony with the

bound γ = 3δmax + 3δlatency + (F + 3)tprocessing .

The fundamental issue of self stabilization of clock synchronization under Byzan-

tine faults and arbitrary starting conditions hinges around the notion of boundedness.

The theoretical distinction between possibility and impossibility depends upon not only

the fault models for the system, but also on boundedness properties related to message

delivery, inherent coarse synchrony imposed by a maximum bound on computational

time of the protocol execution, as well as message ordering. The use of the Lipschitz

condition to bound the behavior of the ODEs governing the composed system of HIOAs

imposes a notion of local stability. The idea of metastability in the synchronization of

asynchronous signals appears to be, though without formal proof at this time, princi-

pally unavoidable. However, for practical purposes, digital circuits can be designed to

minimize metastable behavior, through the introduction of delay.

Of course, it should be pointed out that there are several probabilistic approaches to

attaining clock synchronization and consensus [28],[29] in the presence of Byzantine

faults in a distributed and asynchronous setting (i.e. under finite time with probability

approaching 1). Additionally, there are algorithms for approximate agreement in both

the clock synchronization and distributed consensus settings [30],[5].

Conclusions. In this paper, we have investigated the notion of self-stabilizing clock

synchronization under arbitrary startup conditions, in the context of an implemented

digital clocking system fielded at the C. S. Draper Laboratory in 1973 by Daly, Hop-

kins and McKenna [1]. A proof was developed by deriving a dynamical system which

simulated the composed system of clocks, communication channels and logical decision

making protocols, which were formally specified as Hybrid Input Output Automata. By

ensuring that the ordinary differential equations governing the dynamical system were

Lipschitz, convergence of the system is guaranteed.

However, this condition restricts the startup condition of the quorum functions in the

logical decision making automata; they are all required to have a finite, bounded rate

of change, thereby eliminating the startup value of ∞. However, under realistic startup

conditions, and using proper digital circuit design, this condition can be accommodated.

Furthermore, this notion of boundedness appears to be an inherent assumption in all

of the current self stabilizing clock synchronization protocols currently available. An

interesting direction of future work would encompass proving conclusively that this

structure of assumptions are necessary for any self-stabilizing clock synchronization

algorithm under arbitrary startup in the face of Byzantine faults.

9 Acknowledgments

The author would like to thank Paul Miner at NASA Langley Research Center, for his

invaluable discussions and patient care in shepherding the work, especially for provid-

ing a lively devil’s advocate view throughout the proof derivation process. The author

would also like to thank Mahyar Malekpour and Anthony Narkawicz at NASA Langley

Research Center for their insightful observations and feedback.

97

References Cited

1. W. Daly, J. A.L. Hopkins, and J. McKenna, “A fault-tolerant digital clocking system,” in The

State of the Art: From Device Testing to Reconfigurable Systems, FTCS 3, 1973, pp. 17–22.

2. L. Lamport and P. Melliar-Smith, “Synchronizing clocks in the presence of faults,” Journal

Of The ACM, vol. 32, pp. 52–78, 1985.

3. J. Lundelius and N. Lynch, “A new fault-tolerant algorithm for clock synchronization,” Infor-

mation and Computation, vol. 77, pp. 1–36, 1988.

4. J. Halpern, B. Simons, R. Strong, and D. Dolov, “Fault tolerant clock synchronization,” in

Proc. 3rd Ann. ACM Symp. On Principles of Distributed Computing, 1984, pp. 89–102.

5. S. Mahaney and F. B. Schneider, “Inexact agreement: Accuracy, precision and graceful degra-

dation,” in Proc. 4th Ann. ACM Symp. On Principles of Distributed Computing. ACM, 1985,

pp. 237–249.

6. P. S. Miner, A. Geser, L. Pike, and J. Maddalon, “A unified fault-tolerance protocol,” 2004.

7. T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal of the ACM, vol. 34,

pp. 626–645, 1987.

8. D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl, “Reaching approximate agreement in

the presence of faults,” Journal of the ACM, vol. 33, pp. 449–516, 1986.

9. K. Marzullo, “Loosely-coupled distributed services: A distributed time service,” Ph.D. dis-

sertation, Stanford University, Palo Alto, C, 1983.

10. K. Marzullo and S. Owicki, “Maintaining the time in a distributed system,” in Proceedings of

the Second Symposium on Principles of Distributed Computing. ACM SIGPLAN/SIGOPS,

1983.

11. D. Dolev, J. Halpern, B. Simons, and H. R. Strong, “D. dolev, j. halpern, b. simons, and h. r.

strong,” Information and Computation, vol. 72, pp. 180–198, 1987.

12. N. Lynch, R. Segala, and F. Vaandrager, “Hybrid i/o automata,” Information and Computa-

tion, vol. 185, no. 1, pp. 105 – 157, 2003.

13. M. Branicky, “Studies in hybrid systems: Modeling, analysis, and control,” Ph.D. dissertation,

Massachusetts Institute of Technology, Cambridge, MA, 1995.

14. S. Dolev, A. Israeli, and S. Moran, “Resource bounds for self stabilizing message driven

protocols,” in Proceedings of the tenth annual ACM symposium on Principles of Distributed

Computing, 1991, pp. 281–293.

15. D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed for distributed

consensus,” Foundations of Computer Science, Annual IEEE Symposium on, vol. 0, pp. 393–

402, 1983.

16. A. Daliot, D. Dolev, and H. Parnas, “Linear-time self-stabilizing byzantine clock synchro-

nization,” CoRR, vol. abs/cs/0608096, 2006.

17. E. N. Hoch, D. Dolev, and A. Daliot, “Self-stabilizing byzantine digital clock synchroniza-

tion,” in SSS, 2006, pp. 350–362.

18. M. Ben-Or, D. Dolev, and E. N. Hoch, “Fast self-stabilizing byzantine tolerant digital clock

synchronization,” in PODC, 2008, pp. 385–394.

19. E. N. Hoch, M. Ben-Or, and D. Dolev, “A fault-resistant asynchronous clock function,” in

Proceedings of the 12th international conference on Stabilization, safety, and security of

distributed systems, ser. SSS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 19–34.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1926829.1926836

20. R. E. L. DeVille and S. Mitra, “Stability of distributed algorithms in the face of incessant

faults,” in SSS, 2009, pp. 224–237.

21. J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas, “Secure and self-stabilizing clock

synchronization in sensor networks,” in SSS, 2007, pp. 340–356.

98

22. T. Herman and C. Zhang, “Best paper: Stabilizing clock synchronization for wireless sensor

networks,” in SSS, 2006, pp. 335–349.

23. M. R. Malekpour, “A byzantine-fault tolerant self-stabilizing protocol for distributed clock

synchronization systems,” in SSS, 2006, pp. 411–427.

24. C. Boulinier, F. Petit, and V. Villain, “When graph theory helps self-stabilization,” in PODC,

2004, pp. 150–159.

25. M. Fuegger, U. Schmid, G. Fuchs, and G. Kempf, “Fault-tolerant distributed clock generation

in vlsi systems-on-chip,” Sixth European Dependable Computing Conference (EDCC-6), Oct.

2006.

26. A. Emmanuelle, C. Delporte-Gallet, H. Fauconnier, M. Hurfin, and J. Widder, “Clock

synchronization in the byzantine-recovery failure model,” in Proceedings of the

11th international conference on Principles of distributed systems, ser. OPODIS’07.

Berlin, Heidelberg: Springer-Verlag, 2007, pp. 90–104. [Online]. Available: http:

//portal.acm.org/citation.cfm?id=1782394.1782401

27. H. Moser and U. Schmid, “Reconciling distributed computing models and real-time systems,”

in Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS’06), Rio de Janeiro,

Brazil, Dec 2006, (to appear, see [?] for an extended version).

28. M. Ben-Or, “Another advantage of free choice (extended abstract): Completely asynchronous

agreement protocols,” in Proceedings of the second annual ACM symposium on Principles

of distributed computing, ser. PODC ’83. New York, NY, USA: ACM, 1983, pp. 27–30.

[Online]. Available: http://doi.acm.org/10.1145/800221.806707

29. G. Bracha and S. Toueg, “Asynchronous consensus and broadcast protocols,” Journal of the

ACM, vol. 32, pp. 824–840, 1985.

30. M. H. Azadmanesh and R. M. Kieckhafer, “New hybrid fault models for asynchronous

approximate agreement,” IEEE Trans. Comput., vol. 45, pp. 439–449, April 1996. [Online].

Available: http://portal.acm.org/citation.cfm?id=228410.228421

Appendix: Nomenclature and Definitions

Nomenclature

A = (V,Θ,A,D, T): Hybrid automaton

ExecsA : Execution traces of A

ReachA : Reachable states of A

C: Stabilization time of a hybrid automaton; the time after startup after which all

execution traces are suffixes of correct behaviors.

F = [X,Γ, φ]: Dynamical system (an alternative equivalent control theoretic de-

scription of A)

‖x‖1: The L1 norm of a vector, defined as
∑n

k=1 |xk|.

‖x‖∞: The L∞ norm of a vector, defined as maxk |xk|.

‖f(x)‖2: The L2 norm of a function defined as
∫

|f(x)|2dx.

N : Number of processors or nodes in the system.

F : Number of faulty processors or nodes in the system.

m: Message sent between two processors.

G: A graph G = (V,E) with vertices v ∈ V , which denote processors, and edges

e ∈ E which denote communication channels.

99

e(i, j): An edge connecting processor i to processor j. The edge e, without explicit

processor ordering, denotes the pair of anti-symmetric communication channels con-

necting the processors (i, j).
[s]e: The projection of the global system state s of the graph G onto the subsystem

formed by e (and its corresponding processors (i, j)).
P : The time after which the network topology of the graph G has stabilized after

startup, and all non-faulty channels behave correctly.

δlatency: Maximum time for a message to be delivered between non-faulty proces-

sors on a valid channel.

γ: Maximum deviation between the leading (or falling) edges of any two syn-

chronous processor clocks.

tprocessing: Time by which a processor must finish processing all received mes-

sages.

tmin: Minimum dwell time in a given system state.

tmax: Maximum dwell time in a given system state.

HCi: The value of the ith node’s hardware clock.

ωi: The desired frequency of the ith node’s hardware clock.

QN
i : Quorum function which evaluates to 1 if i or more ofN inputs are 1, otherwise

evaluates to 0. It can be initialized to any value at start-up. It operates on the passed

messages ACi.

Vi: The output of the voting protocol. In the case of the Draper Protocol, it is con-

ditioned on the relevant quorum functions.

∆i: The half period delay induced in the signal Vi before transferring it as the value

of the adjusted clock ACi

ACi: The value of the ith node’s adjusted clock, which is passed between processors

and used to arrive at convergence of all valid nodes by a processor’s voting protocol.

δmax: Largest half period of all valid adjusted clocks.

δmin: Smallest half period of all valid adjusted clocks.

R
n: The real space of dimension n. For instance, an ordinary differential equation

which has n independent variables will have its solution defined on this space.

Definitions

Lipschitz Condition: A function f(x) satisfies the Lipschitz condition of order β at

x = 0 if ‖f(h) − f(0)‖ ≤ B‖h‖β , for some real valued constant B, and integer

exponent β.

Continuous function extension f̃ : Any continuous function f : S → R
m, S a

closed subset of Rn, may be extended to a continuous map f̃ : Rn → R
m.

100

Clock Automaton

types Index : Enumeration [Voter1, Voter2, Voter3, Voter4]

let legalTime(hour, minute) : Nat,Nat → Bool = minute < 60

∧ 0 < hour ∧ hour < 13;

automaton Clock(r: Real)

signature

output show(hour, minute: Nat) where legalTime(hour, minute)

output send(M: legalTime, j: Index, const i),

input set(hour, minute: Nat) where legalTime(hour, minute)

states

now: Real := 0;

nextHour: Nat := 12;

nextMinute: Nat := 0;

timeToShow: DiscreteReal := 0;

timeToSend: DiscreteReal := 0;

initially (0 ≤ r ∧ r < 1);

transitions

input set(hour, minute)

eff nextHour := hour;

nextMinute := minute;

timeToShow := now;

timeToSend := now;

output show(hour, minute)

pre hour = nextHour ∧ minute = nextMinute ∧ now = timeToShow;

eff nextMinute := mod(minute + 1, 60);

if nextMinute = 0 then nextHour := mod(hour + 1, 12); fi

timeToShow := now + 1;

output send(m: legalTime, j: Index, const i)

pre hour = nextHour ∧ minute = nextMinute ∧ now = timeToSend;

eff nextMinute := mod(minute + 1, 60);

if nextMinute = 0 then nextHour := mod(hour + 1, 12); fi

timeToSend := now + 1;

trajectories

trajdef timePassage

stop when now = timeToSend;

evolve (1 - r) ≤ d(now); d(now) < (1 + r);

Table 1. HIOA: Clock with Periodic Cyclical Counter

101

Indexed Channel Automaton

vocabulary V(T: Type)

types Packet : Tuple [message: T, deadline: Real]

end

automaton TimedChannel(ttl: Real, M: Type, i, j: Nat) where ttl ≥ 0

imports V(Type M)

signature

input send(m: M, const i, const j)

output receive(m: M, const i, const j)

states

queue: Seq[Packet] := {};

now: Real := 0;

initially ttl ≥ 0;

transitions

input send(m, i, j)

eff queue := queue ⊢ [m, now + ttl];

output receive(m, i, j)

pre queue 6= {} ∧ head(queue).message = m;

eff queue := tail(queue);

trajectories

trajdef timePassage

stop when queue 6= {}∧ head(queue).deadline = now;

evolve d(now) = 1;

invariant of TimedChannel: Ak: Nat Al: Nat (0 < k ∧ k ≤ l ∧ l < len(queue)

⇒ queue[k].deadline ≤ queue[l].deadline);

Table 2. HIOA: Timed Indexed Channel Automaton

102

Logical Decision Making Automaton (sketch)

vocabulary Continuous operators continuous: Real → Bool types

ClockIndex : Enumeration [c1, c2, c3, c4];

ProcessIndex : Enumeration [p1, p2, p3, p4];

automaton Voter(i:ProcessIndex, j:ClockIndex, tmin, r,e : Real)

imports Continuous

signature

input receive(Clk, i:ClockIndex, const j)

output send(Vi, const i , j:ProcessIndex)

internal sigi sig0
states

Qi : Real :=0;

Clk,: Real := 0;

t, ti, tdelay: Real :=0;

transitions

input receive (Clk, i, j)

eff Use logic to determine which ith clock

send message and if message is valid

If valid send an internal signal, sigi, fi

internal sigi
output sig0
pre Check if the clock message is in accordance

with all of the timing assumptions

in the utilized Quorum Functions QN
i ,

to arrive at a new value for the clock time Vi.

eff Compute new value of Vi based on its previous value,

and the value of all valid messages received

since the last computation was made.

internal sig0
output send(Vi, i, j)

pre the minimum allowable time since the last sent

message to that process has elapsed

eff reset the timing counter for that process

output send(Vi,i, j)

pre delay between last sent message

and max allowable time between messages times out

eff tcounter := 0;

trajectories

trajdef Traj

invariant after a bounded time TQ all QN
i are 1

∧ within the time TQ + ε all values of QN
i become 0

stop when t = tfinal;

evolve

d(now) = r+e

d(tdelay) = 1;

Table 3. HIOA: Sketch of the Hysteresis Voter for 4 Clocks

103

To Crash or Not To Crash: Efficient Modeling of

Fail-Stop Faults

Habib Saissi†, Péter Bokor†, Marco Serafini‡ and Neeraj Suri†

†Technische Universität Darmstadt, Germany
{pbokor,saissi,suri}@cs.tu-darmstadt.de

‡Yahoo! Research, Barcelona, Spain
serafini@yahoo-inc.com

Abstract. A commonly used approach in practical verification is to ver-
ify a simplified model of the system rather than the system itself, which
would entail infeasible verification complexity. This paper introduces a
model for efficient model checking of message-passing systems with crash

faults. The key to the achieved efficiency is the intuition that the event
of process crash can be omitted in the model as crashed processes can be
mimicked by “slow” ones. We formally prove this intuition for a general
class of systems and their specifications.
We evaluate model checking efficiency using two models, one where crash
events are modeled as separate state transitions (explicit model) and an-
other where these events are omitted (implicit model). Our experiments
with widely-used and representative protocol examples show significant
reductions of model checking memory and time when using the implicit
model instead of the explicit one.

1 Introduction

Fault-tolerance is a general concept for building dependable systems. It guar-
antees that the system delivers correct service despite the presence of faults.
Usually, the behavior and number of faults is restricted by a fault-model, which
is a set of assumptions about the system and its environment. For example, the
Paxos protocol [12] delivers consensus (the service) as long as faulty processes
fail by crashing. Of course, this concept is valid only if the system that imple-
ments fault-tolerance is not faulty itself. For example, faulty implementations of
Paxos fail to deliver consensus even if the fault-model is respected [14].

Model checking [10] can be used to automatically verify that fault-tolerance
is implemented correctly. As the efficiency of model checking decreases with
increasing state space sizes, its applicability is limited to small (sub-)systems
or to simplified models of the real system. These represent different use-cases of
model checking, which can contribute to the correctness of the system in different
ways. For example, model checking a faithful model of the system can help fast
prototyping and verifying conceptual designs.

In this paper, we propose a model for efficient model checking of message-
passing systems with crash faults. These systems see more and more applications

104

given that (a) message-passing is an intuitive communication model [3, 1] and
(b) the crash fault-model is a widely-applied abstraction in the current practice
of reliable systems [7]. We expect every verification method to be sound, i.e.,
it does not miss bugs in the system. In order to ensure that model checking
using our proposed model is sound, we compare it with a reference model of
crash events, which we adapt from [3]: A crashed process stops receiving and
processing messages in the future; if a process crashes during sending messages,
only a subset of these messages might be sent. We call this reference model
explicit because a crash event is modeled via an explicit state transition that
drives the system from a state where the process is correct into a state where
this process is crashed.

The explicit model yields large state spaces because crash events are inter-
leaved, i.e., executed concurrently, with other events. In order to mitigate this
state space explosion, we leverage the intuition that slow processes cannot be
distinguished from crashed ones. We carefully investigate models of computation
and communication to verify this intuition. For example, the intuition does not
hold if a protocol inherently relies on crash events (e.g., using failure detectors
[8]) or if the property under verification explicitly mentions crashes.

We call a model without crash events implicit because it can mimic the effect
of crashes through the above intuition. We formally prove the soundness (and
completeness) of the implicit model by showing that the truth of a general class
of properties is indistinguishable in the explicit and implicit models.

The explicit model is exponentially larger than the implicit model. This expo-
nential blow can be further worsened in practical model checking, where storing
and comparing states (stateful optimization) is hard or even impossible. On the
other hand, reductions (such as symmetry or partial order reductions [10]) can be
used to prune the state space that actually needs to be explored. As a practical
implication of our equivalence result, we model check representative message-
passing protocols and measure the realized benefit of using the implicit model
instead of the explicit one.

In summary, we make the following specific contributions:

– We define a formal model eligible for model checking systems where processes
communicate via messages and might fail by crashing. First, we adopt a
model from [3] (Section 2) and use it as a reference model to show the
soundness of our proposed, simplified model. We call this reference model
explicit because it explicitly models the event of crashing. We define a model,
called implicit model, by simply removing crash events from the explicit
model (Section 3).

– We formally prove that the implicit model preserves arbitrary LTL (Linear
Temporal Logic) properties [10] of the explicit model if these properties
do not depend on (i) the crash status of some process and (ii) the set of
undelivered messages (Section 4). This class of properties is general and
expressive enough to specify standard properties of fault-tolerant message-
passing protocols, e.g., consensus, or variants of linearizability.

105

– We use MP-Basset [5], a SW model checker for message-passing systems, to
model check the explicit and implicit models of representative crash-tolerant
protocols (Section 5). Using the stateful and partial-order reduced optimiza-
tions of MP-Basset, our experiments show that model checking the explicit
model results in state space explosion, even with relaxed forms of the crash-
fault semantics. At the same time, the implicit model enables feasible model
checking of the same protocol instances.

2 A Formal Model of Message-Passing Systems

We start by recalling a formal model of general message-passing systems (Section
2.1) and a suitable property language (Section 2.2). The precise semantics of the
formalism is given via state graphs (Section 2.3).

2.1 Basic Message-Passing Model

Conceptually, we adopt the formal model of message-passing system (MP sys-
tem) from [3]. Strictly speaking, the following model is taken from [4, 5], which
was shown to be equivalent with the model in [3] but better suited for model
checking.

An MP system consists of n processes that communicate via messages. Mes-
sages are sent between processes via channels according to a network topology.
Every two processes i and j that are connected via a channel from i to j maintain
a buffer buf i,j , which is a set of messages for storing undelivered messages sent
from process i to process j. The buffer buf i,j is called the outgoing (incoming)
buffer of process i (j).

Every process i maintains a local state from a set Qi. The state of the system
is a tuple s = (q1, q2, ..., qn, b1, ..., bm), where qi ∈ Qi for all 1 ≤ i ≤ n and
b1, ..., bm are the buffers of the system.

Transitions between the states of an MP system are modeled through events.
The execution of an event denoted by compi (short for computation) involves the
following indivisible (atomic) change to the system: a (maybe empty) subset of
the messages is removed from the union of all incoming buffers of i, the current
local state qi is changed to a (maybe the same) state from Qi, and some (maybe
zero) messages are added to the output buffers of i. Every event is associated
with a guard, which is a predicate that depends only on a subset of the union of
the incoming buffers and the local state of the process. The event can only be
executed if the guard evaluates to true. In this case, we say the event is enabled
in the current state. Otherwise, the event is disabled.

The set of all events is denoted as COMP = ∪n
i=1COMP i, where COMP i is

the set of all events executed by i.

An initial state of the system is the state before the execution of any event.
We assume that channels are empty in initial states.

106

2.2 Property Language: Temporal Logic

Properties that the system is expected to fulfill are interpreted over runs. A run
of a message-passing system is a sequence of states s0, s1, ... such that s0 is an
initial state and, for i > 0, the state si is the state resulting of the execution of
an event compi in si−1 such that compi is enabled in si−1. We call si a reachable
state. By convention, initial states are also reachable.

The most simple properties specify single states. This requires the definition
of a labeling function, which assigns atomic propositions from a set AP to each
state. Formally, the labeling function is defined as L : S −→ 2AP , where S de-
notes the set of all states. For example, atomic propositions combined with the
usual Boolean connectives can be used to define invariants, a simple and expres-
sive set of properties. A property is an invariant if it holds in every reachable
state.

We adopt Linear Temporal Logic (LTL) [10] to specify temporal properties. In
addition to atomic propositions and Boolean connectives, LTL defines temporal
operators. For example, the operator F (“eventually” or “future”) asserts that
a property will hold in a state that is reachable (along a run) from the current
state. As an example LTL formula, consider Fp. This formula expresses liveness,
i.e., some atomic proposition p (“something good”) must hold after the execution
of an indefinite number of events.

2.3 Kripke Structure : Syntax & Semantics

We use the standard semantics of LTL [10]. As it is based on a Kripke structure,
we associate MP systems with Kripke structures. A Kripke structure is a tuple
(S, S0, T, AP, L), where S is a set of states, S0 ⊆ S is a set of initial states,
T ⊆ S × S is a set of transitions, AP is a set of atomic propositions, and L

is a labeling function. Given an MP system M with (initial) state set S (S0),
and atomic propositions AP , and labeling function L, we associate with M the
Kripke structure MKS = (S, S0, T, AP,L), where (s, s′) ∈ T iff there is an event
comp of the MP system such that comp is enabled in s and executing comp in
s results in s′.

As a result, a run of the MP system M is a run (also called path [10]) of the
Kripke structure MKS and the standard semantics of LTL specifications can be
applied. As this semantics assumes infinite runs, we define an additional event,
called dummy event and denoted dum. The dummy event is enabled in every
state and its execution does not alter the state of the system. Note that without
the dummy event it is possible that no event is enabled in a state, resulting in
finite runs.

3 MP Systems with Crash Faults

In this Section, we define MP systems where processes can crash. In the crash
fault-model, a process can stop receiving, processing, and sending messages, and

107

it remains doing so forever. If the process crashes during the execution of an
event, it executes the event as in the fault-free case except that it sends a subset
of the messages that it was supposed to send [3].

Formally, given an MP system M , we define another MP system crash M by
adding crash events. Note that we stay in the realm of MP systems (as defined
in Section 2) without extending neither their syntax nor semantics.

The MP system crash M is identical with M except the following changes.
In addition to a state from Qi, the local state of process i (for every 1 ≤ i ≤ n)
contains a crash flag, which takes its values from {⊥,⊤}. The value ⊥ means
that process i is crashed, otherwise the flag’s value assumes ⊤. Formally, the
local state of a process i is a tuple qci = (qi, ci), where qi ∈ Qi and ci is the crash
flag of i. The set of events in crash M is COMP c = ∪n

i=1COMP c
i , where, for

every process i, COMP c
i = Ei ∪ CEi such that

– Ei = {comp′|comp ∈ COMPi such that comp′ is identical with comp and
comp′ does not change ci},

– CEi = {compc|comp ∈ COMPi such that compc is identical with comp
and, when executed in a state, compc sets ci = ⊥ and MSGc ⊆ MSG where
MSG and MSGc are the sets of messages sent by comp and compc}.

Intuitively, crash M inherits the events in Ei from the fault-free M , while CEi

contains the crash-faulty variants of these events. We call compc in CEi crash-
induced non-atomic send if MSGc ⊂ MSG and MSGc 6= ∅.

In addition, an event in crash M can only be executed by some process i if
the crash flag ci assumes ⊤. Formally, the guard of every event is extended with
an additional condition (conjunct) defined as ci = ⊤.1

4 The Equivalence of Explicit and Implicit Models

Given an MP system M , we call crash M an explicit model of crash faults. In
contrast, M itself is an implicit model as no state transition directly models the
crash of a process.

We first define a general equivalence between state graphs (Section 4.1),
which we use to show as a special case that an explicit and the corresponding
implicit models are equivalent (Section 4.2).

4.1 General Equivalence Basis

First, we define an equivalence relation between runs of Kripke structures. Intu-
itively, two runs are equivalent if they are of the same length and the ith states
in both runs are labeled the same.

Definition 1 Given two Kripke structures M = (S, S0, T, AP, L) and M ′ =
(S′, S′

0, T
′, AP, L′), a run σ = s0, s1, ... in M is said to be label-equivalent with

another run σ′ = s′0, s
′
1, ... in M ′ iff for every i = 0, 1, ..., L(si) = L′(s′i). In this

case, we write σ ≈AP σ′.

1 Note that the guard of the dummy event (see Section 2.3) must not be changed.

108

The previous definition can be naturally generalized to the label-equivalence
of two Kripke structures.

Definition 2 Given two Kripke structures M = (S, S0, T, AP, L) and M ′ =
(S′, S′

0, T
′, AP, L′), they are said to be label-equivalent iff the following two con-

ditions hold:

– For every run σ in M , there exists a run σ′ in M ′ so that σ ≈AP σ′.
– For every run σ′ in M ′, there exists a run σ in M so that σ ≈AP σ′.

The next corollary follows from the above definitions and the semantics of
LTL [10]. It says that the truth of an arbitrary LTL property is indistinguishable
in label-equivalent Kripke structures. The notationM |= φmeans that the (LTL)
formula φ holds for every run of the (Kripke structure) model M .

Corollary 1 [10] Given two label-equivalent Kripke structures M and M ′ and
a LTL formula φ, the following holds:

M |= φ iff M ′ |= φ .

Proof. The ⇒ direction: Assume that M ′ 6|= φ. Therefore, there must be a run
σ′ in M ′ such that σ′ 6|= φ. Since M and M ′ are label-equivalent, there is a run
σ in M such that σ and σ′ are label-equivalent. By definition, σ and σ′ are of
the same length and the corresponding states are labeled the same. This implies
that σ 6|= φ [10], a contradiction.

The reverse direction can be similarly proven.

4.2 The Equivalence Theorem

In this section, we prove the label-equivalence between an MP system M and
its crash-augmented version crash M . More precisely, we show label-equivalence
between their Kripke structure counterparts.

To this end, we first define a special labeling function for MP systems, which
is independent of the crashed status of processes and undelivered messages.

Definition 3 Given an MP system M , a set of atomic propositions AP , the
Kripke structure (S, S0, T, AP, L) associated with M , and the Kripke structure
(S′, S′

0, T
′, AP, L′) associated with crash M , L and L′ are crash/buffer

-independent, if for all s = (q1, ..., qn, b1, ..., bm) ∈ S and s′ = ((q1, c1), ..., (qn, cn),
b′1, ..., b

′
m)) ∈ S′, L(s) = L′(s′).

The following theorem states our main result, which together with Corollary
1 imply that an LTL formula holds for M iff it holds for crash M .

Theorem 1 Given an MP system M , a set of atomic propositions AP , the
Kripke structure MKS = (S, S0, T, AP, L) associated with M , and the Kripke
structure M c

KS = (S′, S′
0, T

′, AP, L′) associated with crash M , if L and L′ are
crash/buffer-independent, then MKS and M c

KS are label-equivalent.

109

Proof. Let σ = s0, s1, ... and σ′ = s′0, s
′
1, ... are runs of MKS and M c

KS , respec-
tively. The proof is by induction on the length of the prefixes of σ and σ′. Given
a prefix of σ (and σ′), we construct a prefix of a run in M c

KS (in MKS) such
that label-equivalence holds for these prefixes. Then, label-equivalence between
σ (and σ′) and the constructed run follows by induction.

The ⇒ direction. Intuitively, we construct a run σ′ in crash M such that the
events executed in M and crash M are the same. In other words, crash M

simulates the non-faulty M .
Consider the prefix s0, s1 of σ as the base case. We know that s0 = (q1, ..., qm,

b1, ..., bm) ∈ S0. In our construction, let s′0 = ((q′1, c1), ..., (q
′
n, cn), b

′
1, ..., b

′
m)

be from S′
0 such that s0 and s′0 are matching, i.e., q1 = q′1, ..., qn = q′n and

b1 = b′1, ..., bm = b′m. Now, let comp be an event in M such that executing
it in s0 results in s1. If comp is a dummy event, then we construct s′1 such
that s′1 = s′0. Otherwise, if comp is executed by process i, then let comp′ be
a matching event with comp, i.e., comp′ is the event corresponding to comp as
defined by Ei. Given that s1 = (qq1, ..., qqn, bb1, ..., bbm), let in our construction
s′1 = ((qq1, cc1), ..., (qqn, ccn), bb1, ..., bbm) be the state resulting from the execu-
tion of comp′ in s′0. Note that comp′ is enabled in s′0 because s′0 ∈ S0 and so
ci = ⊤. Furthermore, since comp and comp′ are matching, there is an execution
of comp′ satisfying that s1 and s′1 are matching over the local states of processes
and the content of buffers. Since L and L′ are crash/buffer-independent, we have
that L(s0) = L′(s′0) and L(s1) = L′(s′1).

In the induction step, assume that there is a run in crash M with pre-
fix s′0, s

′
1, ..., s

′
k that is label-equivalent with s0, s1, ..., sk. Let sk be the tuple

(q1, ..., qm, b1, ..., bm). By construction, we have that s′k = ((q1, c1), ..., (qn, cn),
b1, ..., bm). The construction of s′k+1 is analogous to that of s′1. Note that comp′

is enabled because ci = ⊤ for all 1 ≤ i ≤ n. This is because our construction
selects comp′ from Ei, thus, the value of ci remains unchanged.

The ⇐ direction. Intuitively, we construct a run σ in M such that crashing and
non-crashing events are replaced by there matching counterparts in M , i.e, non-
faulty events that receive/send the same messages and perform the same local
state transition.

Let s′0, s
′
1 be a prefix of σ′ where s′0 = ((q1, c1), ..., (qn, cn), b1, ..., bm). Then,

let s0 = (q1, ..., qn, b1, ..., bm) from S0. We know that such s0 exists by construc-
tion of crash M . Since L and L′ are crash/buffer-independent, we have that
L′(s′0) = L(s0).

Now, let e be the event in crash M that results in s′1 when executed s′0.
Similarly to the first part of the proof (⇒ direction), in case e = dum and
e = comp′ ∈ Ei, the corresponding event in M is dum and the matching
comp that is used to construct s1 when executed in s0. If e = compc ∈ CEi,
then consider the matching event comp as defined by CEi. Let s

′
1 be the tuple

((qq1, cc1), ..., (qqn, ccn), bb1, ..., bbm). We construct s1 = (qq1, ..., qqn, bb
′
1, ..., bb

′
m)

as the state resulting from the execution of comp in s0. Note that the content of
the buffers may be different, more precisely bbj ⊆ bb′j for all 1 ≤ j ≤ m, if compc

110

is a crash-induced non-atomic send. As L and L′ are crash/buffer-independent,
L′(s′1) = L(s1) holds.

By the induction hypothesis, there is a run in M with prefix s0, ..., sk that is
label-equivalent with s′0, ..., s

′
k. By construction, given s′k = ((q1, c1), ..., (qn, cn),

b1, ..., bm), we have that sk = (q1, ..., qn, b
′
1, ..., b

′
m) and bj ⊆ b′j for all 1 ≤ j ≤ m.

The construction of sk+1 is similar to that of s1. Note that the matching comp
can always be executed in sk because the buffers in sk contains at least those
messages in s′k.

4.3 Implications of Different Buffer Models

Our model of MP systems from Section 2 assumes that every buffer is an infinite
set of messages. As some applications might require modeling finite buffers, we
now discuss how modeling finite buffers affects our equivalence result.

We consider two models of finite buffers. In the first model, a (non-dummy)
event can only be enabled if all buffers that this event sends messages to have
the capacity of delivering (storing) these messages. The proof of Theorem 1 can
be easily modified using this model of finite buffers.

In the second model, a message m in a full buffer buff can be overwritten
by a message m′ that is sent via this buffer. This means that m will be lost
and replaced by m′ in buff. It turns out that the construction used in the proof
of Theorem 1 does not work with this model of finite buffers. The problem is
that these non-atomic send events can result in overwriting a subset of those
messages that are overwritten in the non-faulty model. This might result in a
process entering a local state that is unreachable for this process in the non-
faulty model, thus, invalidating the equivalence result. Note that in our model
with infinite buffers all messages that are available in crash M are also available
in M , a property that does not hold using the second model of finite buffers.

5 Experiments: Model Checking Efficiency with Explicit

and Implicit Models

Evaluation objective. Given an MP system with n processes, the explicit model is
at least 2n times larger than the implicit model. This is because for every every
state in the implicit model there are 2n corresponding states in the explicit
model where every process can be crashed or alive. The exponential blow is
further worsened by non-atomic sends. For simplicity, we consider a relaxed
crash-model semantics where non-atomic sends are assumed not to happen.

Ideally, the size of a model is proportional with model checking memory and
time. However, practical model checking can distort this trend. Firstly, a model
checker might visit the successors of a state many times if this state is reachable
through multiple runs. The reason for this is that storing and comparing states in
stateful model checking [10] might be inefficient or even impossible given pow-
erful specification languages [11]. Secondly, different reduction techniques [10]

111

enable sound verification by exploring only a fraction of the model. Depending
on the system, one model can be better “reducable” than another.

Focusing on stateful and partial-order reduced [10] optimizations of model
checking, our objective is to show that model checking the explicit model is
exponentially more expensive (in terms of memory and time) than the implicit
model. This would demonstrate the practicability of our equivalence result.

Example protocols. We consider two representative crash-tolerant protocols, i.e.,
they satisfy their specifications under the assumption that processes can only
fail by crashing:

1. The Paxos protocol solves consensus, a fundamental primitive that can
be used to implement state-machine replication [12]. Intuitively, consensus
means that at most one value is “chosen”, i.e., all processes agree on this
value.

2. Our second example is regular storage protocol in the style of [2]. The ob-
jective of distributed storage is to reliably store data despite failures of the
base (storing) objects. A regular storage guarantees that a read operation
returns a value not older than the one written by the latest preceding write
operation.

For debugging purposes, we inject faults into (a) correct processes and (b)
the specification of the protocols and show that the model checker is able to find
the bugs. In particular, we specify two faulty versions of Paxos, namely “Faulty
Paxos” and “Faulty Paxos 2”. For storage we require that a read operation that
completes after a write has to return the value written by the write even if
the two operations are concurrent (“Wrong Regularity”). More details and the
source of these models can be found at [16].

Setup: tools, resources, and metrics. We use the MP-Basset model checker [5, 16]
to conduct our experiments. MP-Basset is a model checker for message-passing
systems implementing the following optimizations: stateful model checking via
Java Pathfinder [15] and highly customizable static partial-order reduction [6]. In
our experiments, partial-order reduction is customized for message-passing (read
more details in Section 6). The experiments are run in the DETER testbed [17]
on 2GHz Xeon machines with 4GB memory.

We measure model checking memory (the number of visited states) and time
for each experiment. In the explicit model, we gradually add 1, 2, ... crash-prone
processes and run a new experiment. In case of faulty protocols and specifica-
tions, the model checker stops at finding the first counterexample. Therefore,
these searches are not exhaustive.

The model checker returns OK if the specification holds for the protocol. Oth-
erwise, a counterexample (CE), i.e., a run violating the specification, is given.
We add up to three (two) crashes for the OK (CE) cases. The reason of run-
ning more experiments without bugs is to measure how adding new crash-faulty
processes affects the size of the explicit model.

112

Explicit model Implicit modelProtocol
Spec. Result

(# processes)
crashes States Time States Time

1 1,541,622 9h50m
548,961 3h18m

Paxos (6) Safety OK 2 4,216,431 27h44m
3 11,843,034 83h

Faulty Paxos (6) Safety CE
1 14,785 4m49s

3,415 1m40s
2 33,598 10m53s

Faulty Paxos 2 (7) Safety CE
1 1,442,262 12h20m

173,414 1h28m
2 3,047,842 25h40m
1 56,508 16m36s

Register (5) Regularity OK 2 128,697 40m50 18,451 4m32s
3 301,562 1h40m

Register (5)
Wrong

CE
1 9,781 2m45

3,497 55s
regularity 2 1,213 29s

Register (6)
Wrong

CE
1 18,272 7m

6,987 2m32s
regularity 2 42,506 15m

Table 1: Stateful and partial-order reduced state space exploration results with
implicit and explicit models using the MP-Basset model checker.

Experimental results. Our results are shown in Table 1. We model check only
meaningful instances of both protocols, i.e., at most one fault is tolerated. For
each experiment, we emphasize the best result (least model checking memory
and time) using bold text. We observe the following trends:

– The implicit model is more efficient than the explicit one in all except one
experiments. In this one experiment the model checker finds the bug slightly
faster using the explicit model. As the CE experiments are non-exhaustive,
finding counterexamples quickly depends on how the model checker schedules
events. In MP-Basset, the additional (crash) events in the explicit model
affect this scheduling, as shown by our experiments. Heuristics can be used
to “guide” the model checker towards the bug [13].

– Model checking memory and time of the explicit model is exponential in
the number of crash-faulty processes compared to the implicit model. This
trend is also depicted in Figure 1, where we show the number of states in the
explicit model as a function of n, where n is the number of crashes. Note that
the number of states grows even faster than 2n. Again, this ideal formula is
biased by the imperfect stateful optimization and partial-order reduction.

6 Related Work

Our reduction from the explicit to the implicit model allows sound and also
complete verification of the specified class of properties (LTL with crash/buffer-
independent labeling function). Although other reduction techniques such as
symmetry or partial-order reductions [10] apply for a more general class of sys-
tems, they require manual intervention of the user. These techniques are orthog-
onal to the explicit/implicit model of crashes and can be applied for further
reductions of both models.

113

104

105

106

107

108

0 1 2 3

#
S
ta
te
s

Crashing processes

Implicit

Implicit

Expl
icit

Expl
icit

Register(5) OK
Paxos(6) OK

Fig. 1: The size of the explicit model as a function of the number of crashes.

In our experiments, we use partial-order reduction of both the explicit and im-
plicit models. We apply this reduction for message-passing systems as proposed
in [6]. For the explicit model, we extend the partial-order reduction with crash
events and use the flexible and intuitive framework of [6] to prove the soundness
of the reduction. Intuitively, we define events that are “non-interfering” with
crash events, which is key to partial-order reduction. For example, a crash event
ec is non-interfering with every other event e in the sense that if e is disabled in
a state, then it will remain so after the execution of ec.

Another related reduction approach is [9], which reduces from a fine-grained
model to a stuttering-equivalent coarse-grained model to allow efficient model
checking. Although the underlying model is message-passing with crash faults, it
assumes (synchronous) round-based communication and crashed-faults are ex-
pressed through so called Heard-Of sets. Our equivalence result does not directly
apply under these assumptions but, instead, under the general model of [3].

7 Conclusion

We have defined a formal model that allows efficient model checking of message-
passing systems with crash faults. The proposed model is a reduction from a
detailed (and obviously sound) model and it accounts for sound verification

114

for a certain class of properties. Natural extensions of our approach include
reductions for other fault-models (such as non-silent malicious faults) or proving
the equivalence with respect to more general temporal logics (such as branching-
time logics).

We see the strength of our contribution on the practical side. Our equivalence
result formally verifies the natural intuition that crash events need not be mod-
eled explicitly. Therefore, system designers can use this as a formal argument
(rather than as “reasonable simplification”) in the development and certification
process. These are small but important steps towards scalable verification of real
systems.

References

1. G. Agha, I.A. Mason, S. Smith, C. Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 7(1): 1–72, 1997.

2. H. Attiya, A. Bar-Noy, D. Dolev. Sharing Memory Robustly in Message-Passing
Systems. J. ACM, 42(1):124–142, 1995.

3. H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and Ad-

vanced Topics. Wiley Series on Parallel and Distributed Computing, 2004.
4. P. Bokor, M. Serafini, N. Suri, On Efficient Models for Model Checking Message-

Passing Distributed Protocols, IFIP Int. Conf. on Formal Techniques for Dis-
tributed Systems (FMOODS & FORTE), pages 216-223, 2010.

5. P. Bokor, J. Kinder, M. Serafini, N. Suri. Efficient Model Checking of Fault-
Tolerant Distributed Protocols. DSN-DCCS, 2011, To appear.

6. P. Bokor, J. Kinder, M. Serafini, N. Suri. Supporting Domain-Specific State Space
Reductions through Local Partial-Order Reduction. Technische Universität Darm-
stadt, Technical Report, 2011.

7. K. Birman. Reliable Distributed Systems: Technologies, Web Services, and Appli-

cations, Springer, 2005.
8. T.D. Chandra, S. Toueg Unreliable Failure Detectors for Reliable Distributed

Systems. J. ACM, 43(2):225–267, 1996.
9. M. Chaouch-Saad, V. Charron-Bost, S. Merz. A Reduction Theorem for the Veri-

fication of Round-Based Distributed Algorithms. Proc. Reachability Problems, pp.
93–106, 2009.

10. E. Clarke, O. Grumberg, D. Peled. Model Checking, MIT Press, 2000.
11. P. Godefroid. Model checking for programming languages using VeriSoft. POPL,

pp. 174–186, 1997.
12. L. Lamport. The Part-time Parliament. ACM Trans. Comp. Sys., 16(2):133–169,

1998.
13. M. Talupur, H. Han. Biased Model Checking Using Flows. TACAS, pp. 239–253,

2011.
14. J. Yang et al. MODIST: Transparent Model Checking of Unmodified Distributed

Systems. NSDI, pp. 213–228, 2009.
15. http://babelfish.arc.nasa.gov/trac/jpf
16. http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/
17. http://www.isi.deterlab.net/

115

A New Notion of Partial Correctness for

Exception Handling

Emil Sekerinski and Tian Zhang

McMaster University, Hamilton, ON, Canada
emil@mcmaster.ca,zhangt26@mcmaster.ca

Abstract. We study the correctness of programs that use exception
handling to deal with failures. A new notion of partial correctness is in-
troduced for the design of programs that can continue safely after an
unanticipated failure. Partial correctness is contrasted with total cor-
rectness though their verification rules. These rules are derived from a
definition of statements with exceptions as higher order predicate trans-
formers. The use of total and partial correctness is illustrated with three
design patterns, rollback, degraded service, and recovery block.

1 Introduction

A program may fail to perform its intended task for several reasons: the specifica-
tion may be in error, there may be errors in the design, or there may be failures
of the underlying software or hardware. Some failures are always detected at
run-time by the underlying (virtual) machine, some failures can be detected by
programmer-added checks, while some failures would be too difficult to detect
by any means.

Even with our best efforts to design error-free programs, in the design of
any reasonably complex system, there always remains the possibility of a fail-
ure [13]. The question then arises how programs should respond to detected
failures. Typically failures cannot be treated at the point in a program where
they are detected, but control has to pass to some “outer” point. While the use
of additional return values for indicating failure of a procedure call is common
in operating sytems [8], the use of a dedicated mechanism for exception handling
does not require additional variables and control structures to be interspersed in
the original program for passing control to an outer point. Exception handling
has the advantage that the original design remains visible. Besides, exception
handling also has other uses, namely for an unobtrusive treatment of rare or
undesired cases—cases that would affect the program structure in the same way
as possible failures, and for coping with imperfections during the design process,
like partial implementations of features.

Statements that can raise exceptions have a single entry, a normal exit, and
additional exceptional exits. Hence such statements can be specified by a sin-
gle precondition and one postcondition for each exit, originally suggested by
Cristian [3] and more recently advocated in textbooks [11] and supported by

116

verification tools for the specification of class methods [2,9]. In this approach all
possible failures have to be anticipated by the designer and any implementation
of a method must not fail in any other way—a rather optimistic view. Hence a
more typical use of exceptional exists is for undesired and rare cases, for example
when looking up an entry or opening a file that may not be present. However,
to deal with failures that can appear “everywhere”, like running out of memory,
these tools do not require that all exceptional exists are specified and do not
verify the absence of so-called unchecked exceptions [6]. A different approach is
advocated by Meyer [12]: each method has one entry, a normal exit, and an ex-
ceptional exit, but is specified by a single precondition and single postcondition
only. The normal exit is taken if the desired postcondition is established and the
exceptional exit is taken if the desired postcondition cannot be established. Thus
the situations under which an exceptional exit is taken is implicit in the method
specification and a “valid” outcome is always possible, even in the presence of
unanticipated failures. Here we refine this view by restricting the exceptional
postcondition in case the specified postcondition cannot be established.

We propose a notion of partial correctness that is meant to allow for unantic-
ipated failure: statements may fail to establish the desired postcondition, but if
they fail, they either must establish an alternative postcondition or not change
the state (e.g. by restoring the original state). By extension, a partial imple-
mentation of a specification is one that is only partially correct. 1 For example,
database transactions can be explained in terms of partial correctness: either a
transaction succeeds, establishing the desired postcondition, or it fails and the
original state is restored. Another example for partial correctness is the recovery
block for software fault tolerance [4,14]: a list of alternative implementations is
attempted in given order. If one alternative fails, the original state is restored
and the next attempted, until either one succeeds or all fail. The design of class
methods in robust object-oriented programs also follows the principles of partial
correctness: if a method fails, it must at least establish the object invariant as
the alternative postcondition, such that program execution can continue and
methods of the object may still be called.

Partial correctness is contrasted to total correctness though their verification
rules. The rules are justified with respect to a semantics of statements as higher
order predicate transformers. The use of total and partial correctness is illus-
trated with three design patterns of increasing complexity, rollback, degraded
service, and recovery block. Their treatment with total correctness in our earlier
work [15] inspired the notion of partial correctness.

In the original approach by Cristian [3] statements have one entry and multi-
ple exits (one of those being the normal one) and are defined by a set of predicate
transformers, one for each exit. As pointed out by King and Morgan [7], this dis-
allows nondeterminism, which precludes the use of the language for specification

1 Partial correctness is also used in the literature when statements are not required
to terminate. Here, this would be more appropriately referred to as conditional cor-
rectness, as our use of partial correctness does require termination.

2

117

Sina
Stamp

and design; their solution is to use a single predicate transformer with one post-
condition for each exit instead, which we follow here.

A mechanical formalization of try-catch-finally statements is given by Ja-
cobs [5]. That formalization includes all the other “abrupt termination” modes
of Java, which we do not need here, and uses state transformers, which precludes
nondeterminism, and thus is less suited for our needs. Leino and Snepscheut [10]
study basic algebraic properties of a language with exception handling and de-
rive weakest exceptional preconditions of statements from a trace semantics.
Here we start directly with a predicate transformer definition from which the
proof rules for both total and partial correctness are derived. Algebraic prop-
erties of exceptions are studied by King and Morgan [7], but for a language in
which a try-statement does not include a catch-statement. Our formalization in
terms of higher order predicate transformers is inspired by that of Back and von
Wright [1]. All theorems in this paper have been checked mechanically using the
Isabelle/HOL prover; we therefore leave out the proofs or only sketch them.

The next section starts by defining a small but expressive set of core state-
ments as higher order predicate transformers. Section 3 continues by defining
common statements like assignment and conditional in terms of those; program
expressions as they appear in assignments and conditionals are allowed to be
partially defined. Section 4 defines the weakest precondition function and de-
rives rules for common statements; separation is introduced as a desirable prop-
erty, which restricts the class of statements that is considered from here on.
Section 5 defines the termination, normal termination, exceptional termination,
and enabledness domains of statements. Sections 6 and 7 define total and partial
correctness and derive the corresponding verification rules. Sections 8, 9, and 10
present the rollback, degraded service, and recovery block patterns.

2 Statements with Two Exits

Dijkstra defines wp(S , q) to be the weakest precondition such that statement
S terminates and establishes postcondition q . As here only the input/output
behaviour of statements is of interest, we identify a statement with its predicate
transformer [1]. Statements have a single entry, a normal exit, and an excep-
tional exit. Hence we define S (q , r) to be the weakest precondition such that
statement S terminates, on normal termination postcondition q holds finally,
and on exceptional termination postcondition r holds finally. A statement either
succeeds, meaning it terminates normally, fails, meaning it terminates exception-
ally, aborts, meaning it is out of control and may not terminate at all, or blocks,
meaning that it refuses to execute.

A state predicate of type PΣ is a function from elements of type Σ, the
state space, to Bool , i.e. PΣ =̂ Σ → Bool . A relation is a function from ∆, the
initial state space, to a state predicate over Σ, the final state space, i.e. is of
the form ∆ → PΣ; we allow the initial and final state spaces to be different. A
predicate transformer is a function from a normal postcondition of type PΨ and
an exceptional postcondition of type PΩ, to a precondition of type P∆, i.e. of

3

118

Sina
Stamp

the form PΨ ×PΩ → P∆, for types Ψ,Ω,∆. We leave the types out if they can
be inferred from the context.

On state predicates, conjunction ∧, disjunction ∨, implication ⇒, conse-
quence ⇐, and negation ¬ are defined by the pointwise extension of the cor-
responding operations on Bool , e.g. (p ∧ q)σ =̂ p σ ∧ q σ for state predicates
p, q . The entailment ordering ≤ is defined by universal implication, meaning
p ≤ q =̂ ∀σ . p σ ⇒ q σ. The predicates true and false represent the universally
true respectively false predicates. Predicate transformer S is monotonic if q ≤ q ′

and r ≤ r ′ implies S (q , r) ≤ S (q ′, r ′). Hence weakening the normal or excep-
tional postcondition can lead only to a weaker precondition. A statement is a
monotonic predicate transformer.

We define some basic predicate transformers: abort is completely unpre-
dictable and may terminate normally or exceptionally in any state or may not
terminate at all; stop miraculously guarantees any postcondition by blocking
execution; skip does nothing and succeeds whereas raise does nothing and fails.
The sequential composition S ; T continues with T only if S succeeds whereas
the exceptional composition S ;;T continues with T only if S fails. The demonic
choice S ⊓ T establishes a postcondition only if both S and T do. The angelic
choice S ⊔ T establishes a postcondition if either S or T does:

abort(q , r) =̂ false (S ; T)(q , r) =̂ S (T (q , r), r)

stop(q , r) =̂ true (S ;; T)(q , r) =̂ S (q ,T (q , r))

skip(q , r) =̂ q (S ⊓ T)(q , r) =̂ S (q , r) ∧ T (q , r)

raise(q , r) =̂ r (S ⊔ T)(q , r) =̂ S (q , r) ∨ T (q , r)

Predicate transformers abort, stop, skip, and abort are monotonic and hence
statements. Operators ;, ;;, ⊓, ⊔ preserve monotonicity. Sequential composition
is associative and has skip as unit, giving rise to a monoid structure. Dually,
exceptional composition is associative and has raise as unit, giving rise to another
monoid structure.

We introduce statements for inspecting and modifying the state. For state
predicates u and v , the assumption [u, v] succeeds if u holds, fails if v holds,
choosing demonically among these possibilities if both u and v hold, and stops
if neither u nor v holds. The assertion {u, v} succeeds if u holds, fails if v holds,
choosing angelically among these possibilities if both u and v hold, and aborts
if neither u nor v holds. Both assumption and assertion do not change the state.

[u, v](q , r) =̂ (u ⇒ q) ∧ (v ⇒ r) {u, v}(q , r) =̂ (u ∧ q) ∨ (v ∧ r)

Both assumption and assertion are monotonic and hence statements. We have
that [true, false] = skip = {true, false} and that [false, true] = raise = {false, true}.
We also have that [false, false] = stop and that {false, false} = abort. Finally we
have that [true, true] = skip⊓ raise and that {true, true} = skip⊔ raise.

The demonic update [Q ,R] and the angelic update {Q ,R} both update the
state according to relation Q and succeed or update the state according to
relation R and fail, the difference being that the choice offered by the relations

4

119

Sina
Stamp

and the choice between succeeding and failing is demonic with [Q ,R] and is
angelic with {Q ,R}. If Q is of type ∆ → PΨ and R is of type ∆ → PΩ, then
[Q ,R] and {Q ,R} are of type PΨ × PΩ → P∆:

[Q ,R](q , r)δ =̂ (∀ψ .Q δ ψ ⇒ q ψ) ∧ (∀ω .R δ ω ⇒ r ω)

{Q ,R}(q , r)δ =̂ (∃ψ .Q δ ψ ∧ q ψ) ∨ (∃ω .R δ ω ∧ r ω)

Both demonic update and angelic update are monotonic in both arguments and
hence statements. Writing ⊥ for the empty relation and id for the identity re-
lation we have that [id,⊥] = skip = {id,⊥} and that [⊥, id] = raise = {⊥, id}.
We also have that [⊥,⊥] = stop and that {⊥,⊥} = abort. Finally we have that
[id, id] = skip⊓ raise and that {id, id} = skip⊔ raise. Writing ⊤ for the universal
relation, both updates [⊤,⊤] and {⊤,⊤} terminate, with [⊤,⊤] making a de-
monic choice between succeeding and failing and a demonic choice among the
final states, and {⊤,⊤} making these choices angelic.

3 Derived Statements

To establish the connection to predicate transformers with a single postcondition
we define:

[u](q , r) =̂ u ⇒ q [Q](q , r)δ =̂ (∀ψ .Q δ ψ ⇒ q ψ)

{u}(q , r) =̂ u ∧ q {Q}(q , r)δ =̂ (∃ψ .Q δ ψ ∧ q ψ)

These definitions are identical as for predicate transformers with a single post-
condition, except for the additional parameter r [1]. We have that [u] = [u, false]
and {u} = {u, false} as well as [Q] = [Q ,⊥] and {Q} = {Q ,⊥}.

The common try S catchT statement with body S and handler T is just a dif-
ferent notation for exceptional composition. The statement try S catchT finallyU
with finalization U can be defined in terms of sequential and exceptional com-
position. The finalization U is executed either after S succeeds, after S fails and
T succeeds, or after S fails and T fails, in which case the whole statement fails
whether U succeeds or fails; see Fig. 1:

try S catchT =̂ S ;; T

try S catchT finallyU =̂ (S ;; (T ;; (U ; raise))) ;U

The assignment statement x := E is defined in terms of an update statement that
affects only component x of the state space. For this we assume that the state is a
tuple and variables select elements of the tuple. Here E may be partially defined,
as for example in x := x div y . A division by zero should lead to failure without
a state change, otherwise to success with x updated. A program expression E is
a term for which definedness def E and value valE are given; the result of def E
and valE are expressions of the underlying logic. For example, assuming that c

5

120

Sina
Stamp

skip raise

S

T

S

T

U

U

try S catch T

try S catch T finally U

Fig. 1. Control flow of skip, raise, try S catchT and try S catchT finallyU ; outgoing solid
lines represent the normal exit and outgoing dashed lines represent the exceptional exit

is a constant, x a variable, and ∼ is +,−,=, < or another strict operator, we
have:

def ’c’ = true val ’c’ = c

def ’x ’ = true val ’x ’ = x

def ’E ∼ F ’ = def ’E ’ ∧ def ’F ’ val ’E ∼ F ’ = val ’E ’ ∼ val ’F ’

def ’E divF ’ = def ’E ’ ∧ def ’F ’ ∧ val ’F ’ 6= 0 val ’E divF ’ = val ’E ’ div val ’F ’

def ’E modF ’ = def ’E ’ ∧ def ’F ’ ∧ val ’F ’ 6= 0 val ’E modF ’ = val ’E ’ mod val ’F ’

For example, assuming that a, b are variables, we have for program expression
a mod b:

def ’a mod b’ = true val ’a mod b’

= def ’a’ ∧ def ’b’ ∧ val ’b’ 6= 0 = val ’a’ mod val ’b’

= b 6= 0 = a mod b

The relational update x := e modifies component x of the state space to be e and
leaves all other components of the state space unchanged; the initial and final
state space are the same. The nondeterministic relational update x :∈ e modifies
component x of the state space to be any element of the set e. Provided that
the state space consists of variables x , y we define:

x := e =̂ λ(x , y) . λ(x ′, y ′) . x ′ = e ∧ y ′ = y

x :∈ e =̂ λ(x , y) . λ(x ′, y ′) . x ′ ∈ e ∧ y ′ = y

For assumptions and assertions we introduce a syntactic abbreviation for leaving
out the state space if that is evident from the context, thus following program-
ming notation. Provided that the state space consists of variables x , y we define:

[b, c] =̂ [λ(x , y) . b, λ(x , y) . c]

{b, c} =̂ {λ(x , y) . b, λ(x , y) . c}

6

121

Sina
Stamp

The (deterministic) assignment x := E fails if program expression E is not de-
fined, otherwise it succeeds and assigns the value of E to x . The nondeterministic
assignment x :∈ E fails if E is not defined, otherwise it succeeds and assigns any
element of the set E to x , the choice being demonic:

x := E =̂ {def E ,¬ def E} ; [x := valE]

x :∈ E =̂ {def E ,¬ def E} ; [x :∈ valE]

The assertion statement or check statement checkB terminates normally if pro-
gram expression B is defined and true and terminates exceptionally if B is un-
defined or false.

checkB =̂ {def B ∧ valB ,¬ def B ∨ ¬ valB}

The conditional if B thenS elseT fails if B is not defined, otherwise continues
with either S or T , depending on the value of B :

if B thenS elseT =̂ {def B ,¬ def B} ; (([valB] ; S) ⊓ ([¬ valB] ; T))

As usually, if B thenS =̂ if B thenS else skip; we leave out the treatment of loops.
To illustrate the definitions, consider the statement a := a mod b:

a := a mod b

= {def ’a mod b’,¬ def ’a mod b’} ; [a := val ’a mod b’]

= {b 6= 0, b = 0} ; [a := a mod b]

= {λ(a, b) . b 6= 0, λ(a, b) . b = 0} ; [λ(a, b) . λ(a ′, b′) . a ′ = a mod b ∧ b′ = b]

4 Weakest Preconditions and Separation

We introduce the weakest precondition function wp(S , c, d), which allows the
postconditions c and d to be written as (plain) predicates rather than state
predicates. Provided that S is of type PΣ ×PΣ → PΣ and assuming that x is
the list program variables such that x : Σ, we define:

wp(S , c, d) =̂ S (λx . c, λx . d)(x)

Using wp allows us to reason about statements without needing to make the
state space explicit, as in:

b > 0 ∧ x = a gcd b ⇒ wp(a := a mod b, x = a gcd b, false)

We write t [x\u] for the substitution of variable x by u in t . The next theorem
states the basic properties of wp.

7

122

Sina
Stamp

Theorem 1. Let S ,T be predicate transformers, c, d be predicates, x be a vari-
able, and E ,B be program expressions:

wp(abort, c, d) ≡ false

wp(stop, c, d) ≡ true

wp(skip, c, d) ≡ c

wp(raise, c, d) ≡ d

wp(checkB , c, d) ≡ (def B ∧ valB ⇒ c) ∧

(def B ∧ ¬ valB ⇒ d) ∧

(¬ def B ⇒ d)

wp(x := E , c, d) ≡ (def E ⇒ c[x\ valE]) ∧

(¬ def E ⇒ d)

wp(x :∈ E , c, d) ≡ (def E ⇒ ∀x ′ ∈ valE . c[x\x ′]) ∧

(¬ def E ⇒ d)

wp(S ; T , c, d) ≡ wp(S ,wp(T , c, d), d)

wp(try S catchT , c, d) ≡ wp(S , c,wp(T , c, d))

wp(S ⊓ T , c, d) ≡ wp(S , c, d) ∧

wp(T , c, d)

wp(if B thenS elseT , c, d) ≡ (def B ∧ valB ⇒ wp(S , c, d)) ∧

(def B ∧ ¬ valB ⇒ wp(T , c, d)) ∧

(¬ def B ⇒ d)

As an example, consider determining the weakest precondition of a := a mod b
for normal postcondition x = a gcd b and exceptional postcondition d :

wp(a := a mod b, x = a gcd b, d)

≡ (def ’a mod b’ ⇒ (x = a gcd b)[a\ val ’a mod b’]) ∧ (¬ def ’a mod b’ ⇒ d)

≡ (b 6= 0 ⇒ (x = a gcd b)[a\a mod b]) ∧ (b = 0 ⇒ d)

≡ (b 6= 0 ⇒ x = (a mod b) gcd b) ∧ (b = 0 ⇒ d)

≡ (b 6= 0 ⇒ x = a gcd b) ∧ (b = 0 ⇒ d)

From this precondition we can deduce that if b = 0, the exceptional exit with
postcondition d will be taken. To determine when then statement does not fail,
we set d to false; the precondition then simplifies to b 6= 0 ∧ x = a gcd b. In this
rather simple example we have reasoned about normal and exceptional simulta-
neously. In larger programs it would be useful if such reasoning could be split
into determining the weakest precondition for the normal and the exceptional
postcondition separately.

A method for showing that a statement S establishes postconditions c ∧
c′, d∧d (the normal and exceptional postcondition) is to show that S establishes
c, d and it establishes c′, d ′. However, in general we have only following sub-
conjunctivity property:

wp(S , c, d) ∧ wp(S , c′, d ′) ⇐ wp(S , c ∧ c′, d ∧ d ′)

8

123

Sina
Stamp

As a direct consequence of sub-conjuctivity we get following sub-separation prop-
erty:

wp(S , c, true) ∧ wp(S , true, d) ⇐ wp(S , c, d)

Unfortunately the direction of the implication does not allow the reasoning to
be separated in general: we would like from wp(S , c, true) (succeeding with c or
failing in any state) and wp(S , true, d) (succeeding in any state or failing with d)
to deduce wp(S , c, d). To rectify this, we define (finite) conjunctivity. Statement
S is (finitely) conjunctive if:

wp(S , c, d) ∧ wp(S , c′, d ′) ≡ wp(S , c ∧ c′, d ∧ d ′)

For conjunctive statement S separation holds:

wp(S , c, true) ∧ wp(S , true, d) ≡ wp(S , c, d)

Statements abort, stop, skip, raise, assumption [c, d], and demonic update [Q ,R]
are conjunctive. Sequential composition, exceptional composition, and demonic
choice preserve conjunctivity. The assertion {c, d} is conjunctive only if c ex-
cludes d , i.e. ¬(c ∧ d). Angelic choice and angelic update are in general not con-
junctive. Since separation is a desirable property, we mainly consider conjunctive
statements; all of the statements considered in Theorem 1 are conjunctive.

5 Domains

For statements with single exit, the termination domain tr S identifies when
statement S does not abort and the enabledness domain enS identifies when the
statement does not block. For statements with two exits, we have to distinguish
further. The termination domain includes the normal termination domain nr S
and the exceptional termination domain exS :

tr S =̂ wp(S , true, true) exS =̂ wp(S , false, true)

nr S =̂ wp(S , true, false) enS =̂ ¬wp(S , false, false)

As a corollary of sub-conjunctivity, we have nr S ∧ exS ⇐ ¬ enS for any state-
ment S . This can be strengthen to nr S ∧ exS ≡ ¬ enS if S is conjunctive. The
next theorem summarizes the basic properties of the domain operations.

Theorem 2. Let S ,T be predicate transformers, c, d be predicates, Q ,R be re-
lations, x a variable, and E ,B program expressions:

tr abort ≡ false tr stop ≡ true tr skip ≡ true tr raise ≡ true

nr abort ≡ false nr stop ≡ true nr skip ≡ true nr raise ≡ false

ex abort ≡ false ex stop ≡ true ex skip ≡ false ex raise ≡ true

en abort ≡ true en stop ≡ false en skip ≡ true en raise ≡ true

9

124

Sina
Stamp

tr[c, d] ≡ true tr{c, d} ≡ c ∨ d

nr[c, d] ≡ ¬d nr{c, d} ≡ c

ex[c, d] ≡ ¬c ex{c, d} ≡ d

en[c, d] ≡ c ∨ d en{c, d} ≡ true

tr(checkB) ≡ true

nr(checkB) ≡ def B ∧ valB

ex(checkB) ≡ ¬ def B ∨ ¬ valB

en(checkB) ≡ true

tr(x := E) ≡ true tr(x :∈ E) ≡ true

nr(x := E) ≡ def E nr(x :∈ E) ≡ def E

ex(x := E) ≡ ¬ def E ex(x :∈ E) ≡ def E ⇒ (valE = {})

en(x := E) ≡ true en(x :∈ E) ≡ def E ⇒ (valE 6= {})

tr(S ; T) ⇒ tr S tr(S ;; T) ⇒ tr S

nr(S ; T) ⇒ nr S nr(S ;; T) ⇐ nr S

ex(S ; T) ⇐ exS ex(S ;; T) ⇒ exS

en(S ; T) ⇒ enS en(S ;; T) ⇒ enS

tr(S ⊓ T) ≡ tr S ∧ trT tr(S ⊔ T) ≡ tr S ∨ trT

nr(S ⊓ T) ≡ nr S ∧ nrT nr(S ⊔ T) ≡ nr S ∨ nrT

ex(S ⊓ T) ≡ exS ∧ exT ex(S ⊔ T) ≡ exS ∨ exT

en(S ⊓ T) ≡ enS ∨ enT en(S ⊔ T) ≡ enS ∧ enT

tr(if B thenS elseT) ≡ (def B ∧ valB ⇒ tr S) ∧ (def B ∧ ¬ valB ⇒ trT)

nr(if B thenS elseT) ≡ def B ∧ (valB ⇒ nr S) ∧ (¬ valB ⇒ nrT)

ex(if B thenS elseT) ≡ (def B ∧ valB ⇒ exS) ∧ (def B ∧ ¬ valB ⇒ exT)

en(if B thenS elseT) ≡ def B ⇒ (valB ∧ enS) ∨ (¬ valB ∧ enT)

Statement stop blocks execution, hence en stop ≡ false, and stop “terminates or-
derly” by refusing execution, hence tr stop ≡ true. We note that demonic choice,
blocking statements, and the enabledness domain are useful to express concur-
rency, without further elaborating on this.

6 Total Correctness

Hoare’s total correctness assertion [[b]]S [[c]] states that under precondition b,
statement S terminates with postcondition c. This is now generalized to two
postconditions, the normal and exceptional postcondition.

[[b]]S [[c, d]] ≡ Under precondition b, statement S terminates and
– on normal termination c holds finally,
– on exceptional termination d holds finally.

10

125

Sina
Stamp

We say that under b, statement S succeeds with c and fails with d . If [[b]]S [[c, false]]
holds, then S never fails, and we write this more concisely as [[b]]S [[c]]. Let b, c, d
be predicates:

[[b]]S [[c, d]] =̂ b ⇒ wp(S , c, d)
[[b]]S [[c]] =̂ b ⇒ wp(S , c, false)

The next theorem summarizes the basic properties of total correctness, see
also [3,5,7,10]:

Theorem 3. Let b, c, d be predicates, B ,E be program expressions, x be a vari-
able, and S ,T be statements:

[[b]] abort [[c, d]] ≡ ¬b

[[b]] stop [[c, d]] ≡ true

[[b]] skip [[c, d]] ≡ b ⇒ c

[[b]] raise [[c, d]] ≡ b ⇒ d

[[b]] checkB [[c, d]] ≡ (def B ∧ valB ∧ b ⇒ c) ∧

(def B ∧ ¬ valB ∧ b ⇒ d) ∧

(¬ def B ∧ b ⇒ d)

[[b]] x := E [[c, d]] ≡ (def E ∧ b ⇒ c[x\ valE]) ∧

(¬ def E ∧ b ⇒ d)

[[b]] x :∈ E [[c, d]] ≡ (def E ∧ b ⇒ ∀x ′ ∈ valE . c[x\x ′]) ∧

(¬ def E ∧ b ⇒ d)

[[b]]S ; T [[c, d]] ≡ ∃h . [[b]]S [[h, d]] ∧

[[h]]T [[c, d]]

[[b]] try S catchT [[c, d]] ≡ ∃h . [[b]]S [[d , h]] ∧

[[h]]T [[d , d]]

[[b]]S ⊓ T [[c, d]] ≡ [[b]]S [[c, d]] ∧

[[b]]T [[c, d]]

[[b]] if B thenS elseT [[c, d]] ≡ [[def B ∧ valB ∧ b]]S [[c, d]] ∧

[[def B ∧ ¬ valB ∧ b]]T [[c, d]] ∧

(¬ def B ∧ b ⇒ d)

We immediately get following consequence rule for any statement S :

(b′ ⇒ b) ∧ [[b]]S [[c, d]] ∧ (c ⇒ c′) ∧ (d ⇒ d ′) ⇒ [[b′]]S [[c′, d ′]]

For conjunctive statement S we have also:

[[b]]S [[c, d]] ∧ [[b′]]S [[c′, d ′]] ⇒ [[b ∧ b′]]S [[c ∧ c′, d ∧ d ′]]

Separation arises as a special case:

[[b]]S [[c, true]] ∧ [[b]]S [[true, d]] ⇒ [[b]]S [[c, d]]

11

126

Sina
Stamp

7 Partial Correctness

The notion of total correctness assumes that any possible failure has to be antici-
pated in the specification; the outcome in case of failure is specified by the excep-
tional postcondition. An implementation may not fail in any other way. Partial
correctness weakens the notion of total correctness by allowing also “true” excep-
tions. For orderly continuation after an unanticipated exception, the restriction
is that in that case, the state must not change. We introduce following notation:

〈|b|〉S 〈|c, d |〉 ≡ Under precondition b, statement S terminates and
– on normal termination c holds finally,
– on exceptional termination b or d holds finally.

Both total and partial correctness guarantee termination when the precondition
holds. If 〈|b|〉S 〈|c, false |〉 holds, then statement S does not modify the state when
terminating exceptionally, and we write this more concisely as 〈|b|〉S 〈|c|〉. Let
p, q , r be state predicates:

〈|b|〉S 〈|c, d |〉 =̂ b ⇒ wp(S , c, b ∨ d)

〈|b|〉S 〈|c|〉 =̂ b ⇒ wp(S , c, b)

Total correctness implies partial correctness, but not vice versa. The very defi-
nition of partial correctness breaks the duality between normal and exceptional
postconditions that total correctness enjoys. This leads to some curious conse-
quences that we will explore.

Theorem 4. Let b, c, d be predicates, B ,E be program expressions, x be a vari-
able, and S ,T be statements:

〈|b|〉 abort 〈|c, d |〉 ≡ ¬b

〈|b|〉 stop 〈|c, d |〉 ≡ true

〈|b|〉 skip 〈|c, d |〉 ≡ b ⇒ c

〈|b|〉 raise 〈|c, d |〉 ≡ true

〈|b|〉 x := E 〈|c, d |〉 ≡ def E ∧ b ⇒ c[x\ valE]

〈|b|〉 x :∈ E 〈|c, d |〉 ≡ def E ∧ b ⇒ ∀x ′ ∈ valE . c[x\x ′]

〈|b|〉S ; T 〈|c, d |〉 ≡ ∃h . 〈|b|〉S 〈|h, d |〉 ∧

[[h]]T [[c, b ∨ d]]

〈|b|〉 try S catchT 〈|c, d |〉 ≡ ∃h . [[b]]S [[c, h]] ∧

[[h]]T [[c, b ∨ d]]

〈|b|〉S ⊓ T 〈|c, d |〉 ≡ 〈|b|〉S 〈|c, d |〉 ∧

〈|b|〉T 〈|c, d |〉

〈|b|〉 checkB 〈|c, d |〉 ≡ def B ∧ valB ∧ b ⇒ c

〈|b|〉 if B thenS elseT 〈|c, d |〉 ≡ [[def B ∧ valB ∧ b]]S [[c, b ∨ d]] ∧

[[def B ∧ ¬ valB ∧ b]]T [[c, b ∨ d]]

12

127

Sina
Stamp

The raise statement miraculously satisfies any partial correctness specification
by failing and leaving the state unchanged. The rules for assignment and non-
deterministic assignment have only conditions in case E is defined; in case E is
undefined, the assignment fails without changing the state, thus satisfies the par-
tial correctness specification automatically. Likewise, the check statement and
the conditional have only conditions in case B is defined, as if B is undefined,
the statement fails without changing the state. We immediately get following
consequence rule for any statement S :

〈|b|〉S 〈|c, d |〉 ∧ (c ⇒ c′) ∧ (d ⇒ d ′) ⇒ 〈|b|〉S 〈|c′, d ′|〉

Like for total correctness, this rule allows the postconditions to be weakened,
but does not allow the precondition to be weakened. For conjunctive statement
S we have also:

[[b]]S [[c, d]] ∧ 〈|b′|〉S 〈|c′, d ′|〉 ⇒ 〈|b ∧ b′|〉S 〈|c ∧ c′, d ∧ d ′|〉

Separation arises as a special case:

[[b]]S [[c, true]] ∧ 〈|b|〉S 〈| true, d |〉 ⇒ 〈|b|〉S 〈|c, d |〉

For S ; T and try S catchT let us consider the special case when d ≡ false:

〈|b|〉S ; T 〈|c|〉 ≡ ∃h . 〈|b|〉S 〈|h|〉 ∧ [[h]]T [[c, b]]

〈|b|〉 try S catchT 〈|c|〉 ≡ ∃h . [[b]]S [[c, h]] ∧ [[h]]T [[c, b]]

The partial correctness assertion for S ;T is satisfied if S fails without changing
the state, but if S succeeds with h, then T must either succeed with the specified
postcondition c, or fail with the original precondition b. For the partial correct-
ness assertion of try S catchT to hold, either S must succeed with the specified
postcondition c, or fail with h, from which T either succeeds with c or fails with
the original precondition b.

8 Rollback

We continue with illustrating the use of total and partial correctness with three
design patterns, starting with the rollback pattern. When a statement fails, it
may leave the program in an inconsistent state, for example in one in which an
invariant does not hold and from which another failure is likely, or in an unde-
sirable state, for example one in which the only course of action is termination
of the program. We give a pattern for rolling back to the original state such that
the failure is masked, meaning that is it not visible to the outside. Rolling back
relies on a procedure backup, which makes a copy of the state, and a proce-
dure restore, which restores the saved state. We formalize this by requiring that
backup establishes a predicate b, which restore requires to roll back, and which
the attempted statement, called S , has to preserve in case of failure. The backup

13

128

Sina
Stamp

may consist of a copy of all variables in main memory or secondary storage, or a
partial or compressed copy, as long as a state satisfying c can be established. The
attempted statement S does not need to preserve b in case of success, e.g. can
overwrite the backup of the variables. We let statement T do some “cleanup”
after restoring to achieve the desired postcondition.

Theorem 5. Let b, c, d be predicates and let backup, restore, S ,T be state-
ments. If

〈|c|〉 backup 〈|c ∧ b|〉 [[c ∧ b]]S [[d , b]]
[[b]] restore [[c]] 〈|c|〉T 〈|d |〉

then:

〈|c|〉 backup ; try S catch(restore ; T) 〈|d |〉

Procedure backup may either fail with c or succeed with c ∧ b, but restore
must always succeed. The cleanup T must either succeed with d or fail with its
precondition c. Thus it can be implemented by raise, which would be an example
of re-raising an exception.

The theorem follows directly from the rules of total correctness by first
rephrasing the partial correctness assertions as total correctness assertions.

9 Degraded Service

Suppose that two or more statements achieve the same goal, but some statements
are preferred over others—the preferred one may be more efficient, may achieve
a higher precision of numeric results, may transmit faster over the network, may
achieve a higher sound quality. If the most preferred one fails, we may fall back
to one that is less desirable, but more likely to succeed, and if that fails, fall back
to a third one, and so forth. The least preferred one may simply inform the user
of the failure. We call this the pattern of degraded service. In the formulation
below degraded service is combined with rollback such that each attempt starts
in the original state, rather than in the state that was left from the previous
attempt. Hence, all alternatives have to adhere to the same specification, but
try to satisfy that by different means. In case all attempts fail, the failure is
propagated to the user.

Theorem 6. Let b, c, d be predicates and let backup, restore, S1,S2 be state-
ments. If

〈|c|〉 backup 〈|c ∧ b|〉 [[c ∧ b]]S1 [[d , b]]
[[b]] restore [[c ∧ b]] [[c ∧ b]]S2 [[d , b]]

then:

〈|c|〉 backup ; try S1 catch(restore ; try S2 catch(restore ; raise)) 〈|d |〉

The theorem readily generalizes to more than two attempts. Again, the theorem
follows directly from the rules of total correctness by first rephrasing the partial
correctness assertions as total correctness assertions.

14

129

Sina
Stamp

10 Recovery Block

The recovery block specifies N alternatives together with an acceptance test [4].
The alternatives are executed in the specified order. If the acceptance test at
the end of an alternative fails or an exception is raised within an alternative, the
original state is restored and the next alternative attempted. If an acceptance
test passes, the recovery block terminates. If the acceptance test fails for all
alternatives, the recovery block fails, possibly leading to alternatives taken at
an outer level. Here is the originally suggested syntax of [14] and a formulation
with try-catch statements [15]; A is the acceptance test:

ensureA
by S1
else by S2
else by S3
else error

backup ;
try(S1 ; checkA)
catch

restore ;
try(S2 ; checkA)
catch

restore ;
try(S3 ; checkA)
catch(restore ; raise)

The acceptance test does not have to be the complete postcondition—that would
be rather impractical in general. However, suppose that we know that alternative
Si succeeds with di , if it succeeds. If we can devise a predicate Ai such that di∧Ai

implies the desired postcondition d , then Ai is an adequate acceptance test for
Si ; for this each alternative has to have its own acceptance test, a possibility
already mentioned in [14]:

Theorem 7. Let b, c, d , d1, d2, d3 be predicates, let A1,A2,A3 be program ex-
pressions, and let backup, restore,S1,S2,S3 be statements. If

〈|c|〉 backup 〈|c ∧ b|〉
[[b]] restore [[c ∧ b]]

[[c ∧ b]]S1 [[d1 ∧ b, b]]
[[c ∧ b]]S2 [[d2 ∧ b, b]]
[[c ∧ b]]S3 [[d3 ∧ b, b]]

d1 ⇒ def A1

d2 ⇒ def A2

d3 ⇒ def A3

d1 ∧ valA1 ⇒ d
d2 ∧ valA2 ⇒ d
d3 ∧ valA3 ⇒ d

then:

〈|c|〉
backup ;
try(S1 ; checkA1)
catch

restore ;
try(S2 ; checkA2)
catch

restore ;
try(S3 ; checkA3)
catch(restore ; raise)

〈|d |〉

15

130

Sina
Stamp

More generally, partial acceptance tests in form of additional check statements
can be carried out anywhere within an alternative, rather than only at the end;
failure should be detected early such that resources are not wasted.

The theorem is a consequence of degraded service with rollback, generalized
to three attempts, by replacing S1 by S1 ; checkA1, The conclusion follows
immediately provided that [[c∧b]]S1;checkA1 [[d , b]], . . . hold. Given [[c∧b]]S1 [[d1∧
b, b]], d1 ⇒ def A1, and d1 ∧ valA1 ⇒ d , . . . this follows by the rules for total
correctness assertions.

11 Conclusions

The formalization of the three design patterns gives some evidence that the
notions of total and partial correctness (in our sense) are useful in providing
a notation and a method for addressing “unanticipated” exceptions that signal
some failure; the practicality depends of course on the degree to which failures
can be detected, which we do not address here. While proofs are most easily
carried out using total correctness assertions, partial correctness seems to be
more useful for specification.

The focus of this paper is the theoretical foundation. Practical verification
tools augment specification with a frame that restricts which variables can be
modified and place other restrictions for making the verification conditions lo-
cal [2,9]. We have not addressed these issues.

The rules given for partial and total correctness are not complete; notably,
loops are modules have not been treated. They are needed for the formalization
of further patterns and remain the topic of ongoing work [16,12]. While the
statement try S catchT finallyU was defined, no corresponding proof rules were
given. A directly derived total correctness rule is:

[[p]] try S catchT finallyU [[q , r]] ≡ ∃k , l ,m,n . [[p]]S [[k , l]] ∧ [[l]]T [[m,n]] ∧

[[k]]U [[q , r]] ∧ [[m]]U [[q , r]] ∧

[[n]]U [[r , r]]

However, this rules has three—very different—conditions on the finalization U .
While the rule is suitable for verifying programs, these three conditions are of no
help to the programmer in systematically developing a finalization. More work
on the verification of finalization is needed.

Acknowledgement. We are grateful to the reviewers; their comments lead to
numerous improvements.

References

1. R. J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

16

131

Sina
Stamp

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, edi-
tors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
pages 49–69. Springer, 2005.

3. F. Cristian. Correct and robust programs. IEEE Transactions on Software Engi-
neering, 10(2):163–174, 1984.

4. J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell. A program
structure for error detection and recovery. In Operating Systems, Proceedings of
an International Symposium, pages 171–187, London, UK, 1974. Springer-Verlag.

5. B. Jacobs. A formalisation of Java’s exception mechanism. In D. Sands, editor,
ESOP ’01: Proceedings of the 10th European Symposium on Programming Lan-
guages and Systems, pages 284–301, London, UK, 2001. Springer-Verlag.

6. B. Jacobs, P. Müller, and F. Piessens. Sound reasoning about unchecked exceptions.
In SEFM 2007: Fifth IEEE International Conference on Software Engineering and
Formal Methods., pages 113–122, September 2007.

7. S. King and C. Morgan. Exits in the refinement calculus. Formal Aspects of
Computing, 7(1):54–76, 1995.

8. P. Koopman and J. DeVale. The exception handling effectiveness of POSIX oper-
ating systems. IEEE Transactions on Software Engineering, 26(9):837–848, 2000.

9. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes,
31:1–38, May 2006.

10. K. R. M. Leino and J. L. A. van de Snepscheut. Semantics of excep-
tions. In E.-R. Olderog, editor, PROCOMET ’94: Proceedings of the IFIP
TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming Concepts,
Methods and Calculi, IFIP Transactions A-56, pages 447–466. North-Holland Pub-
lishing Co., 1994.

11. B. Liskov and J. Guttag. Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley Longman Publishing Co., Inc., 2000.

12. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., 2nd edition,
1997.

13. D. L. Parnas and H. Würges. Response to undesired events in software systems.
In ICSE ’76: Proceedings of the 2nd International Conference on Software Engi-
neering, pages 437–446. IEEE Computer Society Press, 1976.

14. B. Randell. System structure for software fault tolerance. In Proceedings of the
International Conference on Reliable Software, pages 437–449. ACM, 1975.

15. E. Sekerinski. Exceptions for dependability. In L. Petre, K. Sere, and E. Troubit-
syna, editors, Dependability and Computer Engineering: Concepts for Software-
Intensive Systems—a Handbook on Dependability Research. IGI Global, 2011.

16. Jie Xu, B. Randell, A. Romanovsky, C.M.F. Rubira, R.J. Stroud, and Zhixue Wu.
Fault tolerance in concurrent object-oriented software through coordinated error
recovery. In FTCS ’95: Proceedings of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing, pages 499–508. IEEE Computer Society, 1995.

17

132

Sina
Stamp

	Partial Correctness for Exception Handling

