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Abstract. We study the notion of class refinement in a concurrent object-oriented setting.

Our model is based on a combination of action systems and classes. An action system

describes the behavior of a concurrent, distributed, or interactive system in terms of the

atomic actions that can take place during the execution of the system. Classes serve as

templates for creating objects. To express concurrency with objects, we add actions to

classes.

We define class refinement based on trace refinement of action systems. Additionally, we

give a simulation-based proof rule. We show that the easier to apply simulation rule implies

the trace-based definition of class refinement.

Class refinement embraces algorithmic refinement, data refinement, and atomicity refine-

ment. Atomicity refinement allows us to split large atomic actions into several smaller ones.

Thereby, it paves the way for more parallelism. We investigate the special case of atomicity

refinement by early returns in methods.

Keywords: concurrent objects, classes, inheritance, subtyping, action systems, atomicity

refinement, class refinement, simulation, early return

1. Introduction

For the development of larger programs, a recommended practice is to separate a concise but

precise specification of what the program should do from a possibly involved and detailed im-
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plementation. We view the specification as an abstract program P and the implementation as

a concrete program Q . The task of ensuring that the implementation satisfies the specification

is eased by introducing intermediate programs such that each program is a refinement of the

previous one, formally expressed as:

P = P0 ⊑ P1 ⊑ P2 ⊑ . . . ⊑ Pn = Q

In algorithmic refinement steps abstract (or more abstract) statements are replaced by concrete

(or more concrete) statements whereas in data refinement steps abstract (or more abstract) data

structures are replaced by concrete (or more concrete) data structures. For the development

of concurrent programs, in atomicity refinement steps sequential (or less concurrent) parts are

replaced by concurrent (or more concurrent) ones.

These general principles are applied here to classes. For example, a file can be specified

as an object of a class whose state is a sequence and a current position and whose read and

write operations access the sequence at the current position. A typical implementation of this

class would use a cache for storage and would process write operations in the background, hence

changing the state space and introducing concurrency. In any case, the illusion to the user of

the write operation is maintained that the operation is executed atomically. In this example,

concurrency is introduced in the implementation for allowing a better utilization of resources,

which is an aspect we are interested in without formalizing it.

In this paper we propose a formal model for objects with attributes and methods, with self-

and super-calls in methods, classes with inheritance, and action-based concurrency. Objects

have actions which, as long as they are enabled, may execute and change the object’s state

while other parts of the program are in progress. As in class-based programming languages,

classes serve as templates for creating objects and inheritance is understood as a mechanism for

modifying classes.

The notion of class refinement expresses that an object of the refining class behaves as an

object of the refined class. Class refinement between two classes is defined in terms of the

observable traces of programs with instances of those classes. We give a simulation condition

for establishing class refinement by using a relation between the attributes of those classes. As

the main result, we prove that simulation by relation implies class refinement in a setting with

dynamic object structures.

The proposed class refinement extends class refinement as defined for sequential objects

[27, 26] by adding actions to classes. Class refinement has also been studied under the name

behavioral subtyping in less formal settings guaranteeing only partial correctness by America [2]

and by Liskov and Wing [24]. Different models for classes and objects have been proposed [1].

We extend the model of classes as self-referential structures with a delayed taking of the fixed

point of [31, 16].

The action system model for parallel, distributed, and reactive systems was proposed by

Back and Kurki-Suonio [7, 8]. The same basic approach has later been used in other models for

distributed computing, notably UNITY [14] and TLA [21].
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An action system describes the behavior of a concurrent system in terms of the atomic

actions that can take place during the execution of the system. Action systems allow a succinct

description of the overall behavior of a system. Furthermore, action-based approaches do not

force us to fix the flow of control where doing so is unnecessary for an abstract specification (see

e.g. [14]). Action systems can be used to express various forms of communication, e.g. shared

variable, rendez-vous, and bounded channels, as well as different interaction mechanisms, e.g.

semaphores, critical regions, and 4-phase handshake [8, 14].

Back and Sere [9] have added procedures to action systems. They, as well as Sere and Waldén

[30] and Bonsangue et al [13], have also studied input/output refinement of action systems with

methods, which is similar to our classes after self- and super-references have been resolved.

Using trace refinement, we extend those results to reactive behavior and handle non-terminating

systems.

The action system model has been extended with different notions of objects. Järvinen and

Kurki-Suonio [18] used aggregation rather than inheritance and overriding, based their semantics

on TLA, and concentrated on superposition refinement. Back et al [6] concentrated on the design

of a language. Bonsangue et al [13] developed a less formal model with an action-system-per-

object semantics. Seuss [28] also combines objects with action-based concurrency. The catch in

Seuss is that the set of objects (called clones) is static.

Atomicity refinement has first been proposed by Lipton [23]. Back studied input/output be-

havior preserving atomicity refinement in action systems [4, 5]. Sere and Waldén [30] and Bon-

sangue et al [13] have extended this to procedures and methods, still refining only input/output

behavior. Lamport and Schneider [22] and Cohen and Lamport [15] have studied atomicity

refinement in TLA considering liveness properties beyond termination. De Bakker and de Vink

[17] give an overview of atomicity refinement in process algebras and Petri nets. The idea of

an early return, or release, statement has been proposed by Jones [19, 20] in a framework with

explicit constructs for parallelism.

Our calculus for concurrent objects is meant to provide a design notation for programs to

be implemented in concurrent object-oriented languages, such as POOL, Modula-3, and Java.

Programs can be expressed more abstractly than in those languages. The synchronization and

communication mechanisms of these programming languages can be expressed in our formalism

and formally introduced in refinement steps.

Outline. In Section 2 we review the fundamentals of statements and action systems. Sec-

tion 3 introduces classes with attributes, methods, and actions as well as local object creation,

inheritance, and self- and super-references in methods and actions. Section 4 defines class re-

finement in terms of the externally observable behavior, gives a condition for class simulation

using a relation, and proves that class simulation implies class refinement for a system with a

single object of a given class. Section 5 introduces dynamic object structures and extends the

discussion of class refinement and class simulation to that setting. In Section 6 we study early

returns as a special case of atomicity refinement. Finally, Section 7 draws the conclusions.
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2. Statements and Action Systems

The refinement calculus, which provides the foundation for our work, is due to Back, Morgan,

and von Wright [3, 29, 11]. We review the fundamentals of statements defined by predicate

transformers following [11] and of action systems following [10].

2.1. Statements

State predicates of type PΣ are functions from elements of type Σ to Bool . Relations of type

∆ ↔ Ω are functions from ∆ to (state) predicates over Ω. Predicate transformers of type

∆ 7→ Ω are functions from predicates over Ω (the postconditions) to predicates over ∆ (the

preconditions):

PΣ =̂ Σ → Bool

∆ ↔ Ω =̂ ∆ → PΩ

∆ 7→ Ω =̂ PΩ → P∆

On predicates, conjunction ∧, disjunction ∨, implication ⇒, and negation ¬ are defined by the

pointwise extension of the corresponding operations on Bool . The entailment ordering ≤ is

defined by universal implication. The predicates true and false represent the universally true,

respectively false predicates. On relations, we use union ∪, intersection ∩, relational composition

◦, and the relational image R [p] of a predicate p, defined by R [p] y =̂ (∃x • R x y ∧ p x ).

The identity relation is denoted by Id .

Statements are defined by predicate transformers because only their input/output behavior

is of interest. Thus, for statement S and predicate q we have S q = wp(S , q), where wp is in

Dijkstra’s notation the weakest precondition of statement S to establish postcondition q . More

precisely, we identify program statements with monotonic predicate transformers, i.e. predicate

transformers S for which p ≤ q ⇒ S p ≤ S q .

The sequential composition of predicate transformers S and T is defined by their functional

composition:

(S ; T ) q =̂ S (T q)

The identity on predicate transformers is denoted by skip . The guard [p] skips if p holds and

“miraculously” establishes any postcondition if p does not hold. The guard [false] is called

magic . The assertion {p} skips if p holds and establishes no postcondition if p does not hold

(the system crashes). The (never holding) assertion {false} is called abort :

skip q =̂ q [p] q =̂ p ⇒ q

magic q =̂ true {p} q =̂ p ∧ q

abort q =̂ false

The demonic (nondeterministic) choice ⊓ establishes a postcondition only if both alternatives

do. The angelic choice ⊔ establishes a certain postcondition if at least one alternative does. The

relational updates [R] and {R} both update the state according to relation R. If several final
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states are possible, then [R] chooses one demonically and {R} chooses one angelically. If R is of

type ∆ ↔ Ω, then [R] and {R} are of type ∆ 7→ Ω:

(S ⊓ T ) q =̂ (S q) ∧ (T q) [R] q δ =̂ (∀ω • R δ ω ⇒ q ω)

(S ⊔ T ) q =̂ (S q) ∨ (T q) {R} q δ =̂ (∃ω • R δ ω ∧ q ω)

We generalize the binary demonic choice to the choice among a fixed set of statements:

(⊓i ∈ I • S ) q =̂ (∀i ∈ I • S q)

As a variant, we allow the choice to be restricted by a state predicate:

(⊓i | p • S ) =̂ (⊓i • [p] ; S )

All of the above constructs are monotonic or preserve monotonicity. The universally and the pos-

itively conjunctive predicate transformers are two important subsets of the monotonic predicate

transformers. Let qi for some index set I and i ∈ I form a set of predicates. If

S (∀i ∈ I • qi) = (∀i ∈ I • S qi)

holds for any index set I , then S is universally conjunctive. If the condition holds for nonempty

sets I , then S is positively conjunctive. Any universally conjunctive predicate transformer is

equal to [R] for some relation R. Any positively conjunctive predicate transformer is equal to

{p} ; [R] for some predicate p and some relation R. For example, for any predicate transformers

S ,T ,U we have that

(S ⊓ T ) ; U = (S ; U ) ⊓ (T ; U )

but only if U is positively conjunctive we have also that:

U ; (S ⊓T ) = (U ; S ) ⊓ (U ; T )

Other statements can be defined in terms of the above ones, for example the guarded statement

p → S =̂ [p] ; S and the conditional:

if p then S else T end =̂ (p → S ) ⊓ (¬p → T )

The enabledness domain (guard) of a statement S is denoted by grd S and its termination

domain by trm S :

grd S =̂ ¬S false trm S =̂ S true

For example, grd (p → S ) = p ∧ grd S and trm ({p} ; [R]) = p.
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Refinement. The reflexive and transitive refinement ordering ⊑ is defined by universal en-

tailment:

S ⊑ T =̂ ∀q • S q ≤ T q

The loop do S od executes its body as long as it is enabled. This is defined by taking the

least fixed point of the function F = λX • S ; X ⊓ [¬ grd S ]. Sequential composition and

nondeterministic choice are monotonic in both operands, so a least fixed point µ F exists and

is unique:

do S od =̂ µ X • S ; X ⊓ [¬ grd S ]

The loop while p do B is defined as do p → B od , provided that B is always enabled, i.e.

grd B = true .

Data refinement S ⊑R S ′ generalizes (plain) algorithmic refinement by relating the initial

and final state spaces of S : Σ 7→ Σ and S ′ : Σ′ 7→ Σ′ with a relation R : Σ ↔ Σ′:

S ⊑R S ′ =̂ S ; [R] ⊑ [R] ; S ′

Data refinement S ⊑R S ′ can be equivalently defined by {R−1} ; S ⊑ S ; {R−1}, where R−1 is

the relational inverse of R. Algorithmic refinement is a special case of data refinement with the

identity relation.

Program Variables. Typically the state space is made up of a number of program variables.

Thus the state space is of the form Γ1 × . . . × Γn . States are tuples (x1, . . . , xn). The variable

names serve for selecting components of the state. For example, if x : Γ and y : ∆ are the only

program variables, then the assignment x := e updates x and leaves y unchanged:

x := e =̂ [R] where R (x , y) (x ′, y ′) ≡ x ′ = e ∧ y ′ = y

The nondeterministic assignment x :∈ q assigns x an arbitrary element of the set q :

x :∈ q =̂ [R] where R (x , y) (x ′, y ′) ≡ x ′ ∈ q ∧ y ′ = y

The declaration of a local variable y : ∆ with initialization predicate yi extends the state space

and sets y to any value for which yi y holds. A block construct allows us to temporarily extend

the state space with local variables, execute the body of the block on the extended state space,

and reduce the state space again:

var y | yi • S =̂ enter y | yi ; S ; exit y

enter y | yi =̂ [R] where R x (x ′, y ′) ≡ x = x ′ ∧ yi y ′

exit y =̂ [R] where R (x , y) x ′ ≡ x = x ′

Leaving out the initialization predicate as in var y • S means initializing the variable arbitrarily,

var y | true • S . Where necessary, we also explicitly indicate the type ∆ of the new variable as

in var y : ∆. Since Γ×(∆×Ω) is isomorphic to (Γ×∆)×Ω, we can always find functions which
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transform an expression of one to the other type. Hence we simply write Γ×∆×Ω. For example,

if Γ = Γ1 × · · · × Γn then S above would have the type Γ1 × · · · × Γn ×∆ 7→ Γ1 × · · · × Γn ×∆.

Assuming that variable names select the correct state space component, we can also commute

state space components.

When writing state predicates, we usually leave out the lambda abstractions over the vari-

ables if they are evident from the context. For example, we write x > c rather than λx , y • x > c

and similarly we would write if x > c then S else T .

Product Statements. For predicates q1 : PΣ1 and q2 : PΣ2 the product q1 × q2 of type

P(Σ1×Σ2) is defined as (q1×q2) (σ1, σ2) =̂ q1 σ1∧q2 σ2. For predicate transformers S1 : ∆1 7→

Ω1 and S2 : ∆2 7→ Ω2, their product S1×S2 is a predicate transformer of type ∆1×∆2 7→ Ω1×Ω2

which corresponds to the simultaneous execution of S1 and S2:

(S1 × S2) q (δ1, δ2) =̂ ∃q1, q2 | q1 × q2 ≤ q • S1 q1 δ1 ∧ S2 q2 δ2

Intuitively, this means that S1×S2 establishes the postcondition q : P(Ω1×Ω2) from initial state

(δ1, δ2), if there is a “rectangular” subset q1 × q2 of q such that independently S1 establishes q1

from δ1 and S2 establishes q2 from δ2 [12].

Two statements S and T over the same state space are independent if they operate on

different components of the state space (disjoint variables). This implies that there must exist

S ′ and T ′ such that S = S ′ × skip and T = skip × T ′. If R is a relation we say that R is

independent of S if [R] and S are independent, or equivalently {R} and S are independent. If

R and Q are independent of S we have following subcommutativity properties:

S ; [R] ⊑ [R] ; S {Q} ; S ⊑ S ; {Q}

For simplicity and readability, we usually omit the natural extensions of predicates by true and

of statements by skip when operating on an extended state space.

Procedures. Declaration of a procedure p with value parameters v : ∆, result parameters

r : Ω, and body S , written

procedure p(val v : ∆, res r : Ω) is S

defines p to stand for S of type Γ×∆×Ω 7→ Γ×∆×Ω, if Γ is the type of the global variables.

A procedure call p(e, x ) extends the state space by the value and result parameters, sets the

value parameters to e, executes the procedure body, sets the result parameter x , and removes

the parameters:

p(e, x ) =̂ var v , r • v := e ; p ; x := r

Now suppose that p is a recursive procedure, which is expressed by assuming that S is of the

form s p for some s. That is, S has a free occurrence of p. The meaning of p is then given by

taking the least fixed point of the function s, i.e. the least solution of λX • X = s X . Statements
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form a complete lattice with the refinement ordering. Furthermore, we assume that s is defined

with p occurring in monotonic positions only. These two conditions guarantee that the least

fixed point µ s of s exists and is unique. Hence we can define p =̂ µ s.

A set of mutually recursive procedures is defined by taking the fixed point of statement

tuples. For tuples (s1, . . . , sn) and (s ′1, . . . , s
′
n ), where si and s ′i are statements of the same type,

the refinement ordering is defined elementwise:

(s1, . . . , sn) ⊑ (s ′1, . . . , s
′
n) =̂ (s1 ⊑ s ′1) ∧ . . . ∧ (sn ⊑ s ′n)

Statement tuples also form a complete lattice with the refinement ordering. Let p stand for

(p1, . . . , pn), assume S1 = s1 p, . . . ,Sn = sn p, and let s stand for λp • (s1 p, . . . , sn p). The set

of procedure declarations

procedure p1 is S1, . . . , procedure pn is Sn

defines p to be the least fixed point of s, i.e. p =̂ µ s. Assuming again that all pi occur only

in monotonic positions in all sj , a least fixed point exists and is unique.

2.2. Action Systems

Statements modeled as predicate transformers can express only atomic computations. In con-

current programs, components of the program interact during the computation. For reactive

systems, the possible sequences of observable states rather than the input/output behavior are

of interest. Such components can be modeled by action systems. Action systems consist of local

variables, an initialization thereof, and a body, which is repeatedly executed as long as it is en-

abled. Action systems can represent terminating, non-terminating, and aborting computations.

Formally an action system is a pair AS = (ai ,A) where ai : PΣ is the initializing predicate

of the local state. Upon initialization, arbitrary values satisfying ai are chosen for the local

variables. The global state space Γ is declared and initialized outside. Action A : Γ×Σ 7→ Γ×Σ

is a positively conjunctive statement, which acts on the local state of type Σ and global state of

type Γ. Because A is positively conjunctive, it can be written as {p} ; [R]. The next relation

of A relates a state (u, v) in both the enabledness and termination domain to all possible next

states (u ′, v ′):

nxt A (u, v) (u ′, v ′) =̂ p (u, v) ∧ R (u, v) (u ′, v ′)

A behavior of AS is a sequence of pairs

s = 〈(u0, v0), (u1, v1), . . .〉

where v0 is the initial value of the local state, such that ai v0, and all consecutive elements of

the sequence are in the next relation:

nxt A (ui , vi ) (ui+1, vi+1)
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The set beh AS is the set of all behaviors. A behavior is terminating if it is finite and for the

last element (un , vn) the action A is not enabled, ¬ grd A(un , vn). A behavior is aborting if it is

finite and for the last element (un , vn) the action aborts, i.e. (un , vn) is not in the termination

domain, ¬ trm A(un , vn). A behavior is non-terminating if it is not of finite length. The set

beh AS can be thought of as the (disjoint) union of terminating, aborting, and non-terminating

behaviors of AS .

We use the following syntax for an action system (ai ,A) with local variables a:

var a | ai • do A od

Action systems are typically composed of a set of actions A1, . . . ,An operating on different parts

of the state space, which we write as:

var a | ai • do A1 [] . . . [] An od

In the interleaving model, parallelism of two actions is modeled by taking them in arbitrary,

demonically chosen order. Hence the meaning of such an action system is given by taking the

nondeterministic choice between all actions:

var a | ai • do A1 ⊓ . . . ⊓ An od

We furthermore consider the case of an indexed set of actions and of set of actions where the

possible choice depends on a state predicate:

([]i ∈ I • A) =̂ (⊓i ∈ I • A)

([]i | p • A) =̂ (⊓i | p • A)

To express various kinds of possibly parallel computations, we use also combinations of these

notations, for example as in:

do ([]i | p • A) [] ([]j | q • B) od

Parallel Composition. The parallel composition of action systems AS = (ai ,A) and BS =

(bi ,B) with the same global state space merges the local state spaces (possibly renaming vari-

ables to make them mutually distinct) and combines the actions by nondeterministic choice:

AS ‖ BS =̂ (ai ∧ bi ,A ⊓ B)

This models an arbitrary interleaving of the action of AS and BS without any assumption of

fairness. As grd (A⊓B) = grd A∨ grd B , the combined system terminates only if both A and B

are not enabled. As trm (A⊓B) = trm A∧ trm B , the combined action system aborts if either

A or B aborts. (We omit the explicit state space reordering and the natural extensions by skip

for A and B to operate on the global state space and their respective local state space in A⊓B .)

Parallel composition is commutative and associative, up to the order of state components.
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Given an action system AS , we can make part of its global state space local by var b |

bi • AS , as we do typically for hiding common variables of two action systems composed in

parallel. If a and b are disjoint then:

var b | bi • var a | ai • do A od =̂ var a, b | ai ∧ bi • do A od

Trace Refinement. Behaviors contain a local state component, which is not observable from

outside. Furthermore, behaviors may contain stuttering steps which are not observable from

outside either. A state (ui+1, vi+1) is a stuttering state if ui = ui+1. Traces on the other hand

capture only the observable part of behaviors. For a behavior s, its trace tr s is obtained by

1. removing all finite sequences of stuttering states from s, and

2. removing the local state component from all states in s.

Behavior s approximates behavior t , written s � t , if

• s is aborting and tr s is a prefix of tr t , or

• tr s = tr t .

Trace refinement between action systems AS and BS with the same global state space holds if

all behaviors of BS have an approximating behavior of AS :

AS � BS =̂ ∀t ∈ beh BS • ∃s ∈ beh AS • s � t

Since only finite stuttering is removed, an infinite behavior gives rise to an infinite trace and a

finite behavior gives rise to a finite trace. Both “concrete stuttering” in BS as well as “abstract

stuttering” in AS are allowed.

Simulation. Trace refinement can be shown to hold by simulation. Here we consider forward

simulation between AS = (ai ,A) and BS = (bi ,B) with the same global state space using a

relation R. An action A♮ is a stuttering action if it always terminates and it leaves the global

state unchanged:

trm A♮ = true and nxt A♮ (u, v) (u ′, v ′) ⇒ u = u ′

Let Sn be the n-fold sequential composition of statement S , defined by S 0 = skip and Sn+1 =

S ; Sn . Let S ∗ stand for the nondeterministic choice between all n-fold sequential compositions

of S , defined by S ∗ = (⊓ n ∈ Nat • Sn). Define AI = enter a | ai and BI = enter b | bi .

Action system AS is simulated by BS using R, written AS 4R BS , if there are decompositions

A = A♯ ⊓ A♮ and B = B♯ ⊓ B♮ such that A♮ and B♮ are stuttering actions and:

(a) Initialization: AI ; A∗
♮ ; [R] ⊑ BI ; B∗

♮

(b) Actions: A♯ ; A∗
♮ ; [R] ⊑ [R] ; B♯ ; B∗

♮

(c) Exit Condition: R[ trm A ∧ grd A] ≤ grd B

(d) Internal Convergence: R[ trm A ∧ trm (do A♮ od)] ≤ trm (do B♮ od)
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Condition (a) expresses that after the initializations AI and BI , the states of AS and BS

have to be in the refinement relation, provided that any number of stuttering actions A∗
♮ and

B∗
♮ may follow the initializations, respectively. Condition (b) can be equivalently written as

A♯ ; A∗
♮ ⊑R B♯ ; B∗

♮ . It expresses that A♯ is data refined by B♯, provided that any number

of stuttering actions A∗
♮ and B∗

♮ may follow the actions A♯ and B♯, respectively. Condition

(c) expresses that BS must terminate whenever AS does. Condition (d) expresses that the

stuttering action B∗
♮ must terminate if the stuttering action B∗

♮ does. The proof of condition

(d) involves showing loop termination, which is typically done with a variant.

Theorem 2.1. Let AS and BS be action systems and R a relation. Then:

AS 4R BS ⇒ AS � BS

In general, action system refinement is not compositional in the sense that refining one action

system would lead to a refinement in an environment with other action systems running in

parallel. However, we get compositionality under the additional constraint of non-interference.

Let ES = (ei ,E ) be an action system and let R be refinement relation for AS . Action system

ES does not interfere with R if

trm E ∧ r ≤ E r

where r(u, e) = R (u, a) (u, b). In other words, r is an invariant of E .

Theorem 2.2. Let AS, BS, and ES be action systems, let R be a relation. If ES does not

interfere with R then:

AS 4R BS ⇒ AS ‖ ES � BS ‖ ES

Figure 1 summarizes the various ordering relations on predicates, statements, traces, action

systems, and classes.

3. Objects and Classes

Conventionally, a class is a template that defines a set of attributes and methods. Methods

of a class may contain self-references to the method itself and to other methods of the class.

Instantiating a class creates a new object with initialized attributes and method bodies as defined

by the class. A subclass inherits attributes and methods from its superclass. Furthermore a

subclass may add new attributes and overwrite inherited methods. Methods in a subclass may

contain super-references to methods in the superclass. Formally, classes are modeled as self-

referential recursive structures, where self-references are not resolved at the time the class is

declared, but resolving is delayed until objects are created [31].

These principles are extended here: classes define additionally a set of actions, which are in-

herited in subclasses and may be overwritten. Subclasses may also introduce additional actions.

Self-references are possible between both methods and actions. Self-references are resolved at the

time when an object is created. Also, both methods and actions may contain super-references

to methods and actions in the superclass.
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p ≤ q entailment of predicates Section 2.1

S ⊑ T algorithmic refinement of statements Section 2.1

S ⊑R T data refinement of statements Section 2.1

s � t approximation of traces Section 2.2

AS � BS trace refinement of action systems Section 2.2

C �◦ D class refinement with single object Section 4.1

C �↑ D class refinement with dynamic object structures Section 5.1

AS 4R BS simulation of action systems Section 2.2

C 4◦
R D simulation of classes with single object Section 4.2

C 4
↑
R D simulation of classes with dynamic object structures Section 5.1

Figure 1. Summary of ordering relations

3.1. Classes

Let Σ be the type of the attributes of some class C and let α be a type variable to be instantiated

by the type of the global variables and possibly by the type of further attributes of subclasses.

Typically, classes have several attributes and programs contain several global variables. Thus,

elements of Σ and α are tuples. Attribute and variable names are used for accessing the corre-

sponding components. The set of methods and actions of a class is represented by a tuple with

the method and action name accessing the corresponding component. For the types of methods

mi and actions aj of C we define

CMi = α × Σ × ∆i × Ωi 7→ α × Σ × ∆i × Ωi CA = α × Σ 7→ α × Σ

where ∆i and Ωi are the types of the value, respectively result parameter of method mi . Within

a class, methods mi and actions aj of that class can be referred to by self.mi and self.aj ,

respectively. This is formalized by having self.mi and self.aj as parameters of all methods and

actions, allowing all methods and actions to be referred to by all methods and actions. The

usefulness of this generalization becomes clearer when considering inheritance. Let self stand

for the tuple of method and action names prefixed by self :

self = (self.m1, . . . , self.mm , self.a1, . . . , self.aa)

Let cmi be the body of method mi . Since cmi may contain calls to other methods and actions

of the same object, mi is a function of self :

mi = λself • cmi
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- C -self

(a)

- C
self?

(b)

Figure 2 Illustration of (a) class C and of (b) taking the fixed point of C . The incoming arrow

represents calls to C , the outgoing arrow stands for self-calls of C .

Thus, the parameter self may be used inside cmi . Actions are treated analogously. The collection

of all methods and actions of a class can then be expressed as a tuple cs parameterized with

self ,

cs = λself • (cm1, . . . , cmm , ca1, . . . , caa)

where cmi : CMi , caj : CA, self.mi : CMi , and self.aj : CA. Note that self is here used to

refer to methods and actions, but not to reference attributes (fields) of an object. Attributes

are referenced with their unqualified names inside methods and actions.

A class also specifies possible initial values ci : PΣ of its attributes c. Hence a class C takes

the form of a tuple:

C = (ci , cs)

Figure 2(a) illustrates the definition of a class. For defining class C with attributes, methods,

and actions as above we use the syntax:

class C

attr c | ci ,

meth m1(val v1, res r1) is cm1,

. . . ,

meth mm(val vm , res rm) is cmm ,

action a1 is ca1,

. . . ,

action aa is caa

end

Objects have all self-calls resolved with methods of the object itself. Self-calls may be mutually

recursive, like mutually recursive procedures. Modeling this formally amounts to taking the

least fixed point of the function cs (Figure 2(b)). Methods and actions of objects of class C ,

denoted by C .mi and C .ai , respectively, are defined by taking the fixed point of the tuple of all

methods and actions and then selecting the corresponding method or action:

C .mi =̂ (µ cs).mi C .ai =̂ (µ cs).ai

Declaring a variable x to be of class C means declaring it to be of type Σ and initializing it with

ci :

var x : C • S =̂ var x | ci • S
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Such a variable corresponds to a local, stack allocated object in programming languages. Since

actions cannot access variables which are local to some statements, concurrency cannot be

expressed this way. For this purpose dynamic object structures are introduced later.

A method call x .mi of object x of class C corresponds to a procedure call with x as a

value-result parameter.

x .mi =̂ var c • c := x ; C .mi ; x := c

The name of the implicit formal parameter is that of the attributes, namely c. Therefore, c is

used to access local data in the body of C .mi . This corresponds to this in some programming

languages.

Additional value and result parameters are treated as for procedure calls. For convenience,

we also use the same notation for selecting an action of an object:

x .ai =̂ var c • c := x ; C .ai ; x := c

Example. We illustrate the above definitions with a stylized example. Let class E be defined

as follows:
class E

attr c | c = 0,

meth change is c :∈ NAT ,

meth inc is c := c + 1,

action a is true → self .change

end

If E = (ei , es), then ei = λc • (c = 0) and es is given by:

es = λ(self .change, self .inc, self .a) • (c :∈ NAT , c := c + 1, true → self .change)

Taking the fixed point of es results in the substitution of the call to change by the definition of

change in E :

µ es = (c :∈ NAT , c := c + 1, true → c :∈ NAT )

The use of fixed points becomes clear when we consider overriding in inheritance.

3.2. Inheritance

Inheritance is expressed by the application of a modifier to a base class: If D inherits from C ,

then D is equivalent to L mod C , where modifier L corresponds to the extending part of the

definition of D . This model of single inheritance is equivalent to dynamic method lookups along

the inheritance graph as implemented in most object-oriented languages [16]. We call C the

superclass of D and D a subclass of C .

Let C be as above. A modifier L specifies additional attributes, say l of type Λ. We consider

only modifiers that redefine all methods of the base class. If a method should remain unchanged,
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this is expressed by making a supercall to the same method of the base class. A modifier also

redefines all actions of the base class and possibly adds new actions.

For defining modifier L with attributes, methods, and actions as above we use the following

syntax, where unmentioned methods mi and actions aj are defined as super.mi and super.aj ,

respectively:
modifier L

attr l | li ,

meth m1(val v1, res r1) is lm1,

. . . ,

meth mm (val v1, res rm ) is lmm ,

action a1 is la1,

. . . ,

action ab is lab

end

For the types of methods mi and actions aj of L we define

LMi = β × Λ × Σ × ∆i × Ωi 7→ β × Λ × Σ × ∆i × Ωi

LA = β × Λ × Σ 7→ β × Λ × Σ

where β is the type variable for global variables and further attributes in subclasses of D . Thus,

we instantiate α of CMi and CA by β × Λ. The types of the value and result parameters of

method mi are, exactly as in C , that is ∆i and Ωi . Within L, methods mi and actions aj of

that class can be referred to by self.mh and self.ak , and those of the superclass C by super.mi

and super.aj , respectively. This is formalized by having self.mh , self.ak , super.mi , and super.aj

as parameters of all methods and actions. We let self and super stand for:

self = (self.m1, . . . , self.mm , self.a1, . . . , self.ab)

super = (super.m1, . . . , super.mm , super.a1, . . . , super.aa )

The collection of all methods and actions of modifier L can then be expressed as a tuple ls

parameterized with both self and super ,

ls = λself • λsuper • (lm1, . . . , lmm , la1, . . . , lab)

where lmk : LMk , lah : LA, self.mh : LMh , self.ak : LA, super.mi : CMi , and super.aj : CA. A

modifier also specifies initial values li : Λ of the new attributes l . Hence a modifier L takes the

form of a tuple:

L = (li , ls)

The modification of C by L binds super-calls in L to C and leaves the self-calls in L and C

unresolved for possible further modification (Figure 3(b)):

L mod C =̂ (li ∧ ci , λself • ls self (cs self ))

Here self = (self.m1, . . . , self.mm , self.a1, . . . , self.aa) is identical as self in the definition of cs.

Self-calls in L mod C , including those in methods and action of C , are bound to L when an

object is instantiated (Figure 3(c)).
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Figure 3 Illustration of (a) modifier L, of (b) L mod C , and of (c) taking the fixed point of

L mod C

Example. We illustrate inheritance by extending class E of Section 3.1. Modifier F overrides

method change and adds action b:

modifier F

meth change is super .inc(),

action b is c < 10 → self .inc()

end

If F = (fi , fs), then fi = true and fs is given by:

fs = λ(self .change, self .inc, self .a, self .b) •

λ(super .change, super .inc, super .a) •

(super .inc(), super .inc(), super .a, c < 10 → self .inc())

The second and third component are the implicit supercalls of not explicitly redefined method

inc and action a. The application F mod E gives the following:

F mod E = (gi , gs)

gi = λc • (c = 0)

gs = λ(self .change, self .inc, self .a, self .b) • (c := c + 1, c := c + 1,

true → self .change(), c < 10 → self .inc())

This illustrates that the super-calls are bound to the definitions in E . On the other hand, the

self-calls in both E and F are still unresolved. This makes it possible to add another modifier

to F mod E . The self-calls are again bound when an instance of F mod E is created:

µ gs = (c := c + 1, c := c + 1, true → c := c + 1, c < 10 → c := c + 1)

4. Class Refinement and Class Simulation

In this section we define class refinement in terms of trace refinement. Also, a simulation

condition between classes with a relation is defined and proved to imply class refinement. The

reasoning is done with a single object of a class running in isolation; dynamic object creation is

considered later.
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4.1. Class Refinement

For an object x of class C , let A[x ] be the action system with all its actions. Thus A[x ] specifies

how x behaves between external method calls to x :

A[x ] = do x .a1 [] . . . [] x .aa od

Let O[x ] be an action system observing object x only through method calls: we represent O[x ]

as the (guarded) choice of either aborting or calling a method of x , where additionally local

variables may be updated between method calls. Let SA,S1, . . . ,Sm be universally conjunctive

statements that are independent of the global state, i.e. they access only local variables h:

O[x ] = var h | hi • do SA ; abort [] S1 ; x .m1 [] . . . [] Sm ; x .mm od

Let K[C ] be a program operating on an object x of class C such that K is the full context of x ,

in the sense that no other program accesses x . We describe K[C ] by an interleaving of method

calls to x and of actions of x :

K[C ] = var x : C • O[x ] ‖ A[x ]

Class D is a refinement of class C , written C �◦ D , if using an object of class D instead of C

in all possible programs yields a trace refinement of the original program:

C �◦ D =̂ ∀K • K[C ] � K[D ]

Class refinement between two classes is independent of how the classes are constructed using

inheritance. However, it is considered good practice if a class refines all its superclasses, partic-

ularly in languages in which inheritance leads to subtyping (i.e. substitutability).

Our theory of refinement applies to classes with inheritance and self- and super-calls as

introduced above. Because self- and super-calls in methods and actions are resolved before re-

finement is considered, there is no textually explicit resolution with fixed points here. Therefore,

our treatment of refinement is independent of the model for inheritance and self- and super-calls

and is also applicable to models lacking these concepts. In summary, our notion of refinement

is targeted at the model of classes introduced in Section 3, but is independent enough to be

applicable to other models as well.

4.2. Class Simulation

For proving refinement between classes C = (ci , cs) and D = (di , ds) we use a simulation with

a refinement relation R. Define CI = enter c | ci , DI = enter d | di , and:

CX = C .a1 ⊓ . . . ⊓ C .aa and DX = D .a1 ⊓ . . . ⊓ D .ab

Class C is simulated by D using R, written C 4◦
R D , if there is a decomposition CX = CX♯⊓CX♮

and DX = DX♯ ⊓DX♮ such that CX♮ and DX♮ are stuttering actions and:
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(a) Initialization: CI ; CX ∗
♮ ; [R] ⊑ DI ; DX ∗

♮

(b) Methods: C .mi ; CX ∗
♮ ; [R] ⊑ [R] ; D .mi ; DX ∗

♮

for all mi in m1, . . . ,mm

(c) Actions: CX♯ ; CX ∗
♮ ; [R] ⊑ [R] ; DX♯ ; DX ∗

♮

(d) Method Guards: R[ trm C .mi ∧ trm CX ∧ grd C .mi ] ≤ grd D .mi ∨ grd DX

for all mi in m1, . . . ,mm

(e) Exit Condition: R[ trm CX ∧ grd CX ] ≤ grd DX

(f) Internal Convergence: R[ trm CX ∧ trm (do CX♮ od)] ≤ trm (do DX♮ od )

Theorem 4.1. Let C and D be classes and R a relation. Then:

C 4
◦
R D ⇒ C �◦ D

Proof:

By the subordinate lemma below and Theorem 2.1. ⊓⊔

Lemma 4.1. Let C and D be classes and R a relation. Then:

C 4
◦
R D ⇒ ∀K • K[C ] 4R K[D ]

Proof:

We define:
CY = (SA ; abort ) ⊓ (S1 ; C .m1) ⊓ . . . ⊓ (Sm ; C .mm)

DY = (SA ; abort ) ⊓ (S1 ; D .m1) ⊓ . . . ⊓ (Sm ; D .mm)

We have to show that (a) to (f) above imply K[C ] 4R K[D ] for any K as above, which means

that for any hi , SA, and S1, . . . ,Sm :

var h | hi • var c | ci • do CY [] CX od 4R

var h | hi • var d | di • do DY [] DX od

We note that R is independent of h, hence h is not involved in the refinement. According to the

definition of action system simulation (Section 2.2) with AI := CI , A♯ := CY ⊓CX♯, A♮ := CX♮,

BI := DI , B♯ := DY ⊓ DX♯, and B♮ := DX♮ we get four conditions:

(1) Initialization: CI ; CX ∗
♮ ; [R] ⊑ DI ; DX ∗

♮

(2) Actions: (CY ⊓ CX♯) ; CX ∗
♮ ; [R] ⊑ [R] ; (DY ⊓ DX♯) ; DX ∗

♮

(3) Exit Condition: R[ trm (CY ⊓ CX ) ∧ grd (CY ⊓ CX )] ≤ grd (DY ⊓ DX )

(4) Internal Convergence: R[ trm (CY ⊓ CX ) ∧ trm (do CX♮ od)] ≤ trm (do DX♮ od)

Condition (1) follows immediately from (a). For (2) we calculate, for any SA and S1, . . . ,Sm :

(CY ⊓ CX♯) ; CX ∗
♮ ; [R] ⊑ [R] ; (DY ⊓ DX♯) ; DX ∗

♮

≡ { ; distributes over ⊓}

(CY ; CX ∗
♮ ; [R]) ⊓ (CX♯ ; CX ∗

♮ ; [R]) ⊑ ([R] ; DY ; DX ∗
♮ ) ⊓ ([R] ; DX♯ ; DX ∗

♮ )

⇐ {monotonicity}

(CY ; CX ∗
♮ ; [R] ⊑ [R] ; DY ; DX ∗

♮ ) ∧ (CX♯ ; CX ∗
♮ ; [R] ⊑ [R] ; DX♯ ; DX ∗

♮ )
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The second conjunct follows from (c). We continue with the first conjunct:

CY ; CX ∗
♮ ; [R] ⊑ [R] ; DY ; DX ∗

♮

≡ {definition of CY , DY and ; distributes over ⊓}

(SA ; abort ; CX ∗
♮ ; [R]) ⊓ (S1 ; C .m1 ; CX ∗

♮ ; [R]) ⊓ . . .

⊓ (Sm ; C .mm ; CX ∗
♮ ; [R]) ⊑

([R] ; SA ; abort ; DX ∗
♮ ) ⊓ ([R] ; S1 ; D .m1 ; DX ∗

♮ ) ⊓ . . .

⊓ ([R] ; Sm ; D .mm ; DX ∗
♮ )

⇐ {monotonicity}

(SA ; abort ; CX ∗
♮ ; [R] ⊑ [R] ; SA ; abort ; DX ∗

♮ )∧

(∀i ∈ {1, . . . ,m} • Si ; C .mi ; CX ∗
♮ ; [R] ⊑ [R] ; Si ; D .mi ; DX ∗

♮ )

⇐ {S ; [R] ⊑ [R] ; S for independent R,S and abort ; S = abort for any S}

(∀i ∈ {1, . . . ,m} • Si ; C .mi ; CX ∗
♮ ; [R] ⊑ [R] ; Si ; D .mi ; DX ∗

♮ )

⇐ {as Si and R are independent}

∀i ∈ {1, . . . ,m} • Si ; C .mi ; CX ∗
♮ ; [R] ⊑ Si ; [R] ; D .mi ; DX ∗

♮

⇐ {monotonicity}

∀i ∈ {1, . . . ,m} • C .mi ; CX ∗
♮ ; [R] ⊑ [R] ; D .mi ; DX ∗

♮

The last line follows from (b). For (3) we calculate, for any SA and S1, . . . ,Sm :

R[ trm (CY ⊓ CX ) ∧ grd (CY ⊓CX )] ≤ grd (DY ⊓ DX )

≡ {as trm (S ⊓ T ) = trm S ∧ trm T and grd (S ⊓ T ) = grd S ∨ grd T}

R[ trm CY ∧ trm CX ∧ (grd CY ∨ grd CX )] ≤ grd DY ∨ grd DX

⇐ {monotonicity}

(R[ trm CY ∧ trm CX ∧ grd CY ] ≤ grd DY ∨ grd DX )∧

(R[ trm CX ∧ grd CX ] ≤ grd DX )

The second conjunct follows from (e). We continue with the first conjunct:

R[ trm CY ∧ trm CX ∧ grd CY ] ≤ grd DY ∨ grd DX

⇐ {grd(S ; T ) ≤ grd T if S universally conjunctive and S ,T independent}

R[ trm CY ∧ trm CX ∧ grd CY ] ≤

grd DY ∨ grd (SA ; DX ) ∨ . . . ∨ grd (Sm ; DX )

≡ {grd (S ⊓ T ) = grd S ∨ grd T for any S ,T}

R[ trm CY ∧ trm CX ∧ grd CY ] ≤ grd (DY ⊓ (SA ; DX ) ⊓ . . . ⊓ (Sm ; DX ))

≡ {R[p] ≤ q ≡ p ≤ [R] q and [R](grd S ) = grd ({R} ; S ) (*)}

trm CY ∧ trm CX ∧ grd CY ≤

grd ({R} ; (DY ⊓ (SA ; DX ) ⊓ . . . ⊓ (Sm ; DX )))

≡ { ; distributes over ⊓ and abort ⊓ S = abort for any S}

trm CY ∧ trm CX ∧ grd CY ≤ grd (({R} ; SI ; abort ) ⊓

({R} ; S1 ; (D .m1 ⊓ DX )) ⊓ . . . ⊓ ({R} ; Sm ; (D .mm ⊓ DX )))

⇐ {{R} ; S ⊑ S ; {R} if R,S independent and grd U ≤ grd T if T ⊑ U }
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trm CY ∧ trm CX ∧ grd CY ≤ grd ((SA ; {R} ; abort ) ⊓

(S1 ; {R} ; (D .m1 ⊓ DX )) ⊓ . . . ⊓ (Sm ; {R} ; (D .mm ⊓ DX )))

⇐ { trm (S ⊓ T ) = trm S ∧ trm T and

grd (S ⊓T ) = grd S ∨ grd T for any S ,T}

( trm (SA ; abort ) ∧ trm CX ∧ grd (SI ; abort ) ≤ grd (SI ; {R} ; abort )) ∧

(∀i ∈ {1, . . . ,m} • trm (Si ; C .mi ) ∧ trm CX ∧ grd (Si ; C .mi ) ≤

grd (Si ; {R} ; (D .mi ⊓ DX )))

⇐ {{R} ; abort = abort for any R}

∀i ∈ {1, . . . ,m} • trm (Si ; C .mi ) ∧ trm CX ∧ grd (Si ; C .mi ) ≤

grd (Si ; {R} ; (D .mi ⊓ DX ))

⇐ { trm T ≤ trm (S ; T ) if S universally conjunctive and S ,T independent}

∀i ∈ {1, . . . ,m} • trm (Si ; C .mi ) ∧ trm (Si ; CX ) ∧ grd (Si ; C .mi ) ≤

grd (Si ; {R} ; (D .mi ⊓ DX ))

⇐ { trm (S ⊓ T ) = trm S ∧ trm S for any S ,T and ; distributes over ⊓}

∀i ∈ {1, . . . ,m} • trm (Si ; (C .mi ⊓ CX )) ∧ grd (Si ; C .mi ) ≤

grd (Si ; {R} ; (D .mi ⊓ DX ))

⇐ {( trm T ∧ grd U ≤ grd V ) ⇒

( trm (S ; T ) ∧ grd (S ; U ) ≤ grd (S ; V )}

∀i ∈ {1, . . . ,m} • trm (C .mi ⊓CX ) ∧ grd C .mi ≤ grd ({R} ; (D .mi ⊓DX ))

≡ {(*) above}

∀i ∈ {1, . . . ,m} • R[ trm (C .mi ⊓ CX ) ∧ grd C .mi ] ≤ grd (D .mi ⊓ DX )

≡ { trm (S ⊓ T ) = trm S ∧ trm T and

grd (S ⊓T ) = grd S ∨ grd T for any S ,T}

∀i ∈ {1, . . . ,m} • R[ trm C .mi ∧ trm CX ∧ grd C .mi ] ≤ grd D .mi ∨ grd DX )

The last line follows from (d). Condition (4) follows from (f) by monotonicity. ⊓⊔

A related theorem has first been given for action systems with remote procedures in [9] and in a

revised form in [30], which is similar to the corresponding theorem for OO-action systems in [13].

The theorem given here generalizes those in four ways. First, we consider trace refinement and

not just input/output refinement. Thus, class refinement also preserves reactive behavior and is

meaningful for non-terminating systems. Second, removing abstract stuttering in refinement is

explicitly considered. Third, the concrete stuttering action can be more general than a (data-)

refinement of skip . Fourth, conditions (d) and (e) are weakened by including the termination

conditions into the antecedents of the implications.

The case with no explicit abstract stuttering and the concrete stuttering actions being re-

finements of skip is obtained as a special case. Let C and D be classes and let CI , DI , CX ,

and DX be defined as above. Assume there exists a decomposition DX = DX♯ ⊓DX♮ such that

DX♮ is a stuttering action. The conditions for this case are:

(a’) Initialization: CI ; [R] ⊑ DI

(b’) Methods: C .mi ; [R] ⊑ [R] ; D .mi for all mi in m1, . . . ,mm

(c’) Main Actions: CX ; [R] ⊑ [R] ; DX♯
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(d’) Internal Actions: [R] ⊑ [R] ; DX♮

(e’) Method Guards: R[ trm C .mi ∧ trm CX ∧ grd C .mi ] ≤ grd D .mi ∨ grd DX

for all mi in m1, . . . ,mm

(f’) Exit Condition: R[ trm CX ∧ grd CX ] ≤ grd DX

(g’) Internal Convergence: R[ trm CX ] ≤ trm (do DX♮ od)

Condition (d’) is equivalent to skip ⊑R DX♮, expressing that the concrete stuttering actions are

data refinements of skip .

Theorem 4.2. Let C and D be classes and R a relation as above. If conditions (a’) – (g’) hold

then C 4◦
R D.

Proof:

We show that the above conditions (a’) – (g’) imply the conditions (a) – (f) of class simulation.

We set CX♯ := CX and CX♮ := magic . Thus we have CX 0
♮ = skip , CX i

♮ = magic for all i > 0,

and, therefore, CX ∗
♮ = skip because skip ⊓ magic = skip . With this, (a) follows immediately

from (a’) and (d’).

By reflexivity and transitivity of refinement, we get from condition (d’) that [R] ⊑ [R] ; DX i
♮

for any i ≥ 0. Since [R] is refined by sequences of any length, it is also refined by their choice,

[R] ⊑ [R] ; DX ∗
♮ . Condition (b) then follows by a transitivity from the following calculation:

C .mi ; CX ∗
♮ ; [R]

⊑ {as [R] ⊑ [R] ; DX ∗
♮ }

C .mi ; [R] ; DX ∗
♮

⊑ {condition (b’)}

[R] ; D .mi ; DX ∗
♮

Condition (c) follows analogously using (c’). The remaining conditions (d) to (f) follow directly

from (e’) to (g’). For (f) we observe that do CX♮ od = magic and trm magic = true . ⊓⊔

Corollary 4.1. Let C and D be classes and R a relation as above. If conditions (a’) – (g’)

hold then C �◦ D.

As with action system refinement, class refinement is not compositional in the sense that re-

fining the class of an object will not necessarily lead to a system with other objects running

in parallel being refined. However, we get compositionality under the additional constraint of

non-interference with the environment. The environment is expressed as an action system that

can access the global variables, but cannot access the (single) object of the class in question.

Theorem 4.3. Let C and D be classes, ES be an action systems, and R be a relation. If ES

does not interfere with R then:

C 4
◦
R D ⇒ ∀K • K[C ] ‖ ES � K[D ] ‖ ES

Proof:

By Lemma 4.1 and Theorem 2.2. ⊓⊔
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4.3. Example

We use an artificial aquarium as an example. Clearly, the observable sequences of states, de-

noting the position of the fishes, are the relevant aspect in such a system. A refinement of only

the state transformation from initial to final states would be insufficient: A dedicated artificial

aquarium has no final state. For its use as a screen saver, input/output refinement would only

mean that at the end we are again guaranteed to get the original screen back.

The global variable s : array [0..w − 1, 0..h − 1] of NAT denotes the state (color) of each

quadrant of the screen, with constants w > 6 and h > 6. The color value 0 stands for background

water. The base class Creature of all objects in our aquarium is given by:

class Creature

attr x , y , col | 0 ≤ x < w ∧ 0 ≤ y < h ∧ col 6= 0,

meth move(val dx , val dy) is

0 ≤ x + dx < w ∧ 0 ≤ y + dy < h →

skip ⊓ (s[x , y ] := 0 ; x := x + dx ; y := y + dy ; s[x , y ] := col),

action newpos is

s[x , y ] := 0 ; x :∈ {0..w − 1} ; y :∈ {0..h − 1} ; s[x , y ] := col

end

Creatures described by class Ray are a refinement with a special form of movement. Rather

than jumping wildly around the screen, rays are always at the same vertical position, have a

horizontal speed sx , and move at most 3 pixels at once:

class Ray

attr x , y , col , sx | x = 0 ∧ 0 ≤ y < h ∧ col = 5 ∧ sx = 1,

meth move(val dx , val dy) is

0 ≤ x + dx < w ∧ −3 ≤ dx ≤ 3 ∧ dy = 0 →

s[x , y ] := 0 ; x := x + dx ; s[x , y ] := col ,

action newpos is

0 ≤ x + sx < w → s[x , y ] := 0 ; x := x + sx ; s[x , y ] := col ,

action bouncel is x + sx < 0 → sx :∈ {1..3},

action bouncer is w ≤ x + sx → sx :∈ {−3.. − 1}

end

Class Ray refines class Creature with refinement relation R:

R (s, x , y , col) (s ′, x ′, y ′, col ′, sx ′) ≡ s = s ′ ∧ x = x ′ ∧ 0 ≤ x < w ∧ y = y ′∧

0 ≤ y < h ∧ col = col ′ ∧−3 ≤ sx ′ ≤ 3

We can use Theorem 4.2 to prove Creature 4◦
R Ray because we have no explicit abstract stutter-

ing. We set CX := Creature.newpos, DX♯ := Ray .newpos, DX♮ := Ray .bouncel ⊓ Ray .bouncer ,

and CI and DI to the respective initialization. Internal convergence (condition (g’)) follows by
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transitivity from the calculation below (assuming that an access to s outside the screen aborts):

R[ trm CX ]

= {definitions of trm and CX }

R[0 ≤ x < w ∧ 0 ≤ y < h]

= {definition of R, relational image}

0 ≤ x ′ < w ∧ 0 ≤ y < h ∧−3 ≤ sx ′ ≤ 3

≤ {universal implication}

−1 ≤ x ′ ≤ w ∨ 0 ≤ x ′ + sx ′ < w

= {definitions, calculus}

trm (do DX♮ od)

The other conditions can also be proved by unfolding the definitions and refinement rules. By

Corollary 4.1 we also get Creature �◦ Ray . Hence, replacing a Creature by a Ray in any context

K produces a trace refinement.

5. Dynamic Object Structures

In this section we introduce dynamic object structures, which allow multiple objects to run

concurrently. Furthermore, we extend the discussion of class refinement and class simulation to

this setting.

We model the heap as an array and pointers as indices into this array [25]. We first describe

the basic ideas using only one class and then generalize it to multiple classes with subtypes.

5.1. Single Class

For a class C with attributes of type Σ we declare a program variable heap to contain all

dynamically created objects:

var heap : array NAT of Σ

Pointers to objects of C are then simply natural numbers, that is the declaration p : pointer

to C stands for p : NAT . We use 0 to denote nil , that is the pointer not referencing any object.

We use a separate counter next , initialized to 1, to generate new pointer values. If ci is the

initialization of the attributes of C and p is a pointer, p : pointer to C , then the creation of a

new object is defined by:

p := new C =̂ p := next ; (⊓c | ci • heap[p] := c) ; next := next + 1

To handle the way how attributes of objects on the heap are referenced, we have to introduce

an indirection for each attribute reference via the receiver (the current object). We denote the

receiver by this and introduce the shorthand this.c for referencing the attribute c of the object

heap[this]:

this.c =̂ heap[this].c
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We use this shorthand in both expressions and for assignments in methods. A method call p.m

is then defined as (We use the restricted choice rather than the variable notation for this because

the latter is a constant rather than a program variable.):

p.m =̂ {p 6= nil} ; (⊓this | this = p • C .m)

Parameter passing is handled as for procedures. In our formalization, this is used to reference

the receiver object whereas self and super are used in classes to reference methods and actions.

Formally, a class C with dynamically created objects is given by C = (ci , cs) as previously,

except that heap is now necessarily part of the global state and all references in cs to attributes

go via heap. The selection C .mi and C .ai are defined as previously and we use the same syntax:

class C

attr c | ci ,

meth m1(val v1, res r1) is cm1,

. . . ,

meth mm (val vm , res rm) is cmm ,

action a1 is ca1,

. . . ,

action aa is caa

end

With the declaration of class C as above, we associate an action system A[C ] which consists of

actions operating on all objects of that class:

A[C ] = do ([]this | 1 ≤ this < next • C .a1 [] . . . [] C .aa) od

This action system is composed in parallel with any other action system using objects of class

C .

Example. A class Creature with dynamically created objects could be defined by:

class Creature

attr x , y , col | 0 ≤ x < w ∧ 0 ≤ y < h ∧ col 6= 0,

meth move(val dx , val dy) is

0 ≤ this.x + dx < w ∧ 0 ≤ this.y + dy < h →

skip ⊓ (s[this.x , this.y ] := 0 ; this.x := this.x + dx ;

this.y := this.y + dy ; s[this.x , this.y ] := this.col),

action newpos is

s[this.x , this.y ] := 0 ; this.x :∈ {0..w − 1} ; this.y :∈ {0..h − 1} ;

s[this.x , this.y ] := this.col

end
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This declaration stands for:

var heap : array NAT of NAT × NAT × NAT

var next | next = 1

class Creature

meth move(val dx , val dy) is

0 ≤ heap[this].x + dx < w ∧ 0 ≤ heap[this].y + dy < h →

skip ⊓ (s[heap[this].x , heap[this ].y ] := 0 ;

heap[this].x := heap[this].x + dx ;

heap[this].y := heap[this].y + dy ;

s[heap[this].x , heap[this].y ] := heap[this].col),

action newpos is

s[heap[this].x , heap[this].y ] := 0 ;

heap[this].x :∈ {0..w − 1} ; heap[this].y :∈ {0..h − 1} ;

s[heap[this].x , heap[this].y ] := heap[this].col

end

If cr is a pointer to a Creature object, cr : pointer to Creature, then cr := new Creature is

defined by:

cr := next ;

(⊓x , y , col | 0 ≤ x < w ∧ 0 ≤ y < h ∧ col 6= 0 • heap[cr ] := (x , y , col)) ;

next := next + 1

A method call cr .move(2, 7) stands for:

{cr 6= nil} ; (⊓this | this = cr • Creature.move(2, 7))

The method selection Creature.move(2, 7) stands for:

var dx , dy • dx , dy := 2, 7 ;

0 ≤ heap[this].x + dx < w ∧ 0 ≤ heap[this].y + dy < h →

skip ⊓ (s[heap[this].x , heap[this].y ] := 0 ; heap[this].x := heap[this].x + dx ;

heap[this].y := heap[this].y + dy ;

s[heap[this].x , heap[this ].y ] := heap[this].col)

The action system A[Creature] associated with Creature is:

do

([]this | 1 ≤ this < next •

s[heap[this].x , heap[this ].y ] := 0 ; heap[this].x :∈ {0..w − 1} ;

heap[this].y :∈ {0..h − 1} ; s[heap[this].x , heap[this ].y ] := heap[this].col)

od
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5.2. Class Refinement and Class Simulation

We show that with the above definitions the notion of class refinement carries over analogously

to dynamic object structures. With the declaration of a class C , we associate an action system

O[C ], which observes all objects of class C by calling their methods. We represent O[C ] as

the (guarded) choice of either aborting or calling a method of x , where additionally local vari-

ables may be updated between method calls. Let SA,S1, . . . ,Sm ,SC be universally conjunctive

statements that are independent of the global state, i.e. they access only local variables h:

O[C ] =

var h | hi •

do SA ; abort

[]([]this | 1 ≤ this < next • S1 ; C .m1 [] . . . [] Sm ; C .mm)

[]SC ; p := new C

od

Here we assume that p is part of the local variables h. Let K[C ] be a program operating on

objects of class C such that K is the full context of objects of class C , in the sense that no other

program accesses the attributes of objects of C or creates new objects of C . We describe K[C ]

by an interleaving of method calls to instances of C , creation of new instances of C , and actions

of instances of C :

K[C ] = var heap,next | next = 1 • O[C ] ‖ A[C ]

Class D is a refinement of class C , written C �↑ D , if using objects of class D instead of C in

all possible programs yields a trace refinement of the original program:

C �↑ D =̂ ∀K • K[C ] � K[D ]

The conditions for simulation between two classes with dynamically created objects are like those

for simulation with a single object, except that all objects on the heap are in the refinement

relation. Let R be a refinement relation between classes C = (ci , cs) and D = (di , ds) such that

next = 1 ⇒ R(u, heap,next)(u ′,next ′heap′)

where u are the global variables. That is, if the heap is empty the refinement relation must

hold. Furthermore we define CC = p := new C , DC = p := new D , and

CX = (⊓this | 1 ≤ this < next • C .a1 ⊓ . . . ⊓ C .aa)

DX = (⊓this | 1 ≤ this < next • D .a1 ⊓ . . . ⊓ D .ab)

Class C is simulated by D using R, written C 4
↑
R D , if there is a decomposition CX = CX♯⊓CX♮

and DX = DX♯ ⊓ DX♮ such that CX♮ and DX♮ are stuttering actions and:
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(a) Creation: CC ; CX ∗
♮ ; [R] ⊑ [R] ; DC ; DX ∗

♮

(b) Methods: C .mi ; CX ∗
♮ ; [R] ⊑ [1 ≤ this < next ] ; [R] ; D .mi ; DX ∗

♮

for all mi in m1, . . . ,mm

(c) Actions: CX♯ ; CX ∗
♮ ; [R] ⊑ [R] ; DX♯ ; DX ∗

♮

(d) Method Guards: R[1 ≤ this < next ∧ trm C .mi ∧ trm CX ∧ grd C .mi ] ≤

grd D .mi ∨ grd DX for all mi in m1, . . . ,mm

(e) Exit Condition: R[ trm CX ∧ grd CX ] ≤ grd DX

(f) Internal Convergence: R[ trm CX ∧ trm (do CX♮ od)] ≤ trm (do DX♮ od)

Theorem 5.1. Let C and D be classes and R a relation. Then:

C 4
↑
R D ⇒ C �↑ D

Proof:

By the subordinate lemma below and Theorem 2.1. ⊓⊔

Lemma 5.1. Let C and D be classes and R a relation. Then:

C 4
↑
R D ⇒ ∀K • K[C ] 4R K[D ]

Proof:

We define:

CY = (SA ; abort ) ⊓

(⊓this | 1 ≤ this < next • (S1 ; C .m1) ⊓ . . . ⊓ (Sm ; C .mm )) ⊓

(SC ; CC )

DY = (SA ; abort ) ⊓

(⊓this | 1 ≤ this < next • (S1 ; D .m1) ⊓ . . . ⊓ (Sm ; D .mm)) ⊓

(SC ; DC )

CI = enter heap,next | next = 1

DI = enter heap,next | next = 1

Leaving out the types, we note that heap in CI is an array of C attributes and heap in DI is

an array of D attributes. We have to show that (a) to (f) above imply K[C ] 4R K[D ] for any

K as above, which means that for any hi , SA, S1, . . . ,Sm , and SC :

var h | hi • var heap,next | next = 1 • do CY [] CX od 4R

var h | hi • var heap,next | next = 1 • do DY [] DX od

We note that R is independent of h, hence h is not involved in the refinement. According to the

definition of action system simulation (Section 2.2) with AI := CI , A♯ := CY ⊓CX♯, A♮ := CX♮,

BI := DI , B♯ := DY ⊓ DX♯, B♮ := DX♮, and R := R we get four conditions:

(1) Initialization: CI ; CX ∗
♮ ; [R] ⊑ DI ; DX ∗

♮

(2) Actions: (CY ⊓ CX♯) ; CX ∗
♮ ; [R] ⊑ [R] ; (DY ⊓ DX♯) ; DX ∗

♮

(3) Exit Condition: R[ trm (CY ⊓ CX ) ∧ grd (CY ⊓ CX )] ≤ grd (DY ⊓ DX )

(4) Internal Convergence: R[ trm (CY ⊓ CX ) ∧ trm (do CX♮ od)] ≤ trm (do DX♮ od)
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Condition (1) expands to:

enter heap,next | next = 1 ; CX ∗
♮ ; [R] ⊑ enter heap,next | next = 1 ; DX ∗

♮

First we note that after the initialization of next by 1, neither CX♮ nor DX♮ is enabled, as

(⊓i | false • S ) = magic . Therefore, CX ∗
♮ = skip and DX ∗

♮ = skip . As next is set to 1, the

refinement relation is true by the assumption, and the refinement holds vacuously.

For (2) we calculate, for any SA, S1, . . . ,Sm , and SC :

(CY ⊓ CX♯) ; CX ∗
♮ ; [R] ⊑ [R] ; (DY ⊓ DX♯) ; DX ∗

♮

≡ { ; distributes over ⊓}

(CY ; CX ∗
♮ ; [R]) ⊓ (CX♯ ; CX ∗

♮ ; [R]) ⊑ ([R] ; DY ; DX ∗
♮ ) ⊓ ([R] ; DX♯ ; DX ∗

♮ )

⇐ {monotonicity}

(CY ; CX ∗
♮ ; [R] ⊑ [R] ; DY ; DX ∗

♮ ) ∧ (CX♯ ; CX ∗
♮ ; [R] ⊑ [R] ; DX♯ ; DX ∗

♮ )

The second conjunct follows from (c). We continue with the first conjunct:

CY ; CX ∗
♮ ; [R] ⊑ [R] ; DY ; DX ∗

♮

≡ {definitions of CY and DY and ; distributes over ⊓}

(SA ; abort ; CX ∗
♮ ; [R]) ⊓

(⊓this | 1 ≤ this < next • (S1 ; C .m1 ; CX ∗
♮ ; [R]) ⊓ . . .

⊓(Sm ; C .mm ; CX ∗
♮ ; [R])) ⊓

(SC ; CC ; CX ∗
♮ ; [R]) ⊑

([R] ; SA ; abort ; DX ∗
♮ ) ⊓

(⊓this | 1 ≤ this < next • ([R] ; S1 ; D .m1 ; DX ∗
♮ ) ⊓ . . .

⊓([R] ; Sm ; D .mm ; DX ∗
♮ )) ⊓

([R] ; SC ; DC ; DX ∗
♮ )

⇐ {monotonicity}

(SA ; abort ; CX ∗
♮ ; [R] ⊑ [R] ; SA ; abort ; DX ∗

♮ )∧

((⊓this | 1 ≤ this < next • (S1 ; C .m1 ; CX ∗
♮ ; [R]) ⊓ . . .

⊓(Sm ; C .mm ; CX ∗
♮ ; [R])) ⊑

(⊓this | 1 ≤ this < next • ([R] ; S1 ; D .m1 ; DX ∗
♮ ) ⊓ . . .

⊓([R] ; Sm ; D .mm ; DX ∗
♮ )))∧

(SC ; CC ; CX ∗
♮ ; [R] ⊑ [R] ; SC ; DC ; DX ∗

♮ )

⇐ {S ; [R] ⊑ [R] ; S for independent R,S and abort ; S = abort for any S}

((⊓this | 1 ≤ this < next • (S1 ; C .m1 ; CX ∗
♮ ; [R]) ⊓ . . .

⊓(Sm ; C .mm ; CX ∗
♮ ; [R])) ⊑

(⊓this | 1 ≤ this < next • ([R] ; S1 ; D .m1 ; DX ∗
♮ ) ⊓ . . .

⊓([R] ; Sm ; D .mm ; DX ∗
♮ ))) ∧

(SC ; CC ; CX ∗
♮ ; [R] ⊑ [R] ; SC ; DC ; DX ∗

♮ )

⇐ {definition of ⊓i | p • S and

(∀i • S ⊑ T ) ⇒ (⊓i • S ) ⊑ (⊓i • T ) for any S ,T}



Büchi, Sekerinski /Refining Concurrent Objects 29

(∀this • ∀i ∈ {1, . . . ,m} •

[1 ≤ this < next ] ; Si ; C .mi ; CX ∗
♮ ; [R] ⊑

[1 ≤ this < next ] ; [R] ; Si ; D .mi ; DX ∗
♮ ) ∧

(SC ; CC ; CX ∗
♮ ; [R] ⊑ [R] ; SC ; DC ; DX ∗

♮ )

⇐ {Si and R and SC and R independent, refinement calculus}

(∀this • ∀i ∈ {1, . . . ,m} •

Si ; C .mi ; CX ∗
♮ ; [R] ⊑ [1 ≤ this < next ] ; Si ; [R] ; D .mi ; DX ∗

♮ ) ∧

(SC ; CC ; CX ∗
♮ ; [R] ⊑ SC ; [R] ; DC ; DX ∗

♮ )

The first conjunct follows from (b) and the second from (a). The proof of (3) is similar to the

one of the corresponding condition in Theorem 4.1 and is left out for brevity. Condition (4)

follows from (f) by monotonicity. ⊓⊔

As for the case with a single object, class refinement with dynamic object structures is com-

positional only under the additional constraint of non-interference with the environment. The

environment takes the form of an action system that can access the global variables, but cannot

access the heap with the objects of the class in question.

Theorem 5.2. Let C and D be classes, ES be an action systems, and R be a relation. If ES

does not interfere with R then:

C 4
↑
R D ⇒ ∀K • K[C ] ‖ ES � K[D ] ‖ ES

Proof:

By Lemma 5.1 and Theorem 2.2. ⊓⊔

5.3. Multiple Classes and Subtyping

This formalization easily extends to multiple classes with subtyping. We declare for each class

Ci with attribute type Σi a separate heapi : array NAT of Σi . Thus with a class declaration

class Ci . . . end we associate:

var heapi : array NAT of Σi ,

var nexti | nexti = 1

Pointers are extended to tuples with one index indicating the heap and one index indicating

the element within the heap. A pointer variable declaration p : pointer to Ci stands for

p : NAT ×NAT . The first component of a pointer p is selected by p.class, the second component

by p.ref . The nil value is always represented by (0, 0) to make it unique.

Assuming that Ck , . . . ,Cl are all subtypes of Ci (including Ci), object creation, method calls
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with dynamic dispatch, type tests, and attribute access are defined by:

p := new Ci =̂ p := (i ,nexti ) ; (⊓c | cii • heapi [nexti ] := c) ;

nexti := nexti + 1

p.m =̂ {p 6= nil} ;

(⊓this | this = p • p.class = k → Ck .m ⊓ . . .⊓

p.class = l → Cl .m)

p instanceof Ci =̂ p.class ∈ {k , . . . , l}

x := this.c =̂ this.class = k → x := heapk [this.ref ].c ⊓ . . .⊓

this.class = l → x := heapl [this.ref ].c

With each class declaration Ci , we associate an action system A[Ci ] which represents all actions

of all objects of that class:

A[Ci ] = do

([]this | this.class = i ∧ 1 ≤ this.ref < nexti • Ci .a1 ⊓ . . . ⊓Ci .aa)

od

For a program with classes C1, . . . ,Cn we take the parallel composition of the action systems

for objects of each class. This composition is then to be combined with further action systems

containing normal actions and procedures:

A[C1] ‖ . . . ‖ A[Cn ] ‖ BS

Example. Let class Creature be as defined previously in this section and Ray be defined by:

class Ray

attr x , y , col , sx | x = 0 ∧ 0 ≤ y < h ∧ col = 5 ∧ sx = 1,

meth move(val dx , val dy) is

0 ≤ this.x + dx < w ∧−3 ≤ dx ≤ 3 ∧ dy = 0 →

s[this.x , this.y ] := 0 ; this.x := this.x + dx ; s[this.x , this.y ] := this.col ,

action newpos is

0 ≤ this.x + this.sx < w →

s[this.x , this.y ] := 0 ; this.x := this.x + this.sx ; s[this.x , this.y ] := this.col ,

action bouncel is this.x + this.sx < 0 → this.sx :∈ {1..3},

action bouncer is w ≤ this.x + this.sx → this.sx :∈ {−3.. − 1}

end

We further assume that a similar class Turtle is defined. Let Aquarium be the main program of

an aquarium, expressed as an action system, in which new rays and turtles are constantly added

and where the most recently created creature is influenced through its move method:

Aquarium = var p : pointer to Creature | p = nil •

do p := new Ray [] p := new Turtle [] p 6= nil → p.move(2, 0) od
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Then the whole system becomes the parallel composition of the action systems associated with

all classes and the main program:

A[Creature] ‖ A[Ray ] ‖ A[Turtle] ‖ Aqaurium

Note that A[Creature] is only going to affect objects of class Creature (of which there are none),

A[Ray ] is only going to affect objects of class Ray , and similarly for Turtle.

6. Early Return

Early returns are a syntactically simple way of increasing concurrency by splitting an action

in two parts. In this section, we show how early returns can be defined and how they can be

introduced as a special case of atomicity refinement.

Consider method rnd that computes random numbers and for later reference stores them in

a time ordered sequence:

meth rnd(res y) is y :∈ NAT ; ‘store y in sequence’

Using atomicity refinement, we could split up rnd so that it returns control to the caller after

assigning y and schedules the —if the sequence is kept on secondary storage— time consuming

insertion operation for later. Thereby, the execution time of any action a calling rnd is reduced.

Thus, other actions accessing the same resources as a can be started earlier, thereby increasing

concurrency.

We introduce a release statement, which facilitates the above type of atomicity refinement.

A release returns control to the caller of a method and schedules the remainder to be executed

later on. If the method containing the release statement has result parameters, they must be

assigned before executing release . For example, we could rewrite method rnd as follows:

meth rnd(res y) is y :∈ NAT ; release ; ‘store y in sequence’

Figure 4 defines release as enabling an action r that performs the remainder. The object is

locked, that is none of its other methods or actions can be executed, until the remainder action

is completed. Introducing a release in m leads to an earlier completion of the action calling

m and allows other actions to be executed in parallel with the remainder T , thus increasing

concurrency. For simplicity, we do not allow self-calls in the remainder.

Introducing release leads to class refinement under certain conditions. We give a theorem

for the case of a single object:

Theorem 6.1. Let C and D be classes which are identical except that method m in C and m

in D, referred to as C :: m and D :: m, are defined by:

meth C :: m is S ; T ,

meth D :: m is S ; release ; T

We assume that the classes do not contain any self-calls. If T is always enabled, is always

terminating, and does not access global variables, then C �◦ D holds.
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class D

attr c | ci ,

meth m is S ; release ; T ,

meth n is U ,

action a is V

end

a) Method with release

class D

attr c, lck | ci ∧ lck = 0,

meth m is lck = 0 → S ; lck := 1,

meth n is lck = 0 → U ,

action a is lck = 0 → V ,

action r is lck = 1 → T ; lck := 0

end

b) Equivalent without release

Figure 4. Definition of release as enabling a remainder action

Proof:

Without loss of generality we assume that class D is as in Figure 4 and class C is analogously.

As the methods and actions do not contain any self-calls, taking their fixpoint is not going to

change them, i.e. C .m = S ; T , C .n = U , C .a = V , D .m = (lck = 0 → S ; lck := 1),

D .n = (lck = 0 → U ), D .a = (lck = 0 → V ), and D .r = (lck = 0 → T ; lck := 0). We apply

Theorem 5.1 with R (u, c) (u ′, c′, lck ′) := u ′ = u ∧ (lck ′ = 0 ⇒ c′ = c) and CI := enter c | ci ,

CX♯ := V , CX♮ := magic , DI := enter c, lck | ci ∧ lck = 0, DX♯ := lck = 0 → V , DX♮ := lck =

1 → T ; lck := 0. The theorem follows by simplifications of the conditions (a) – (f). ⊓⊔

The release statement can be generalized to allow the remainder to access the value parameter

and the local variables of the method and also read the result parameter (Figure 5). The values

of the parameters and local variables are stored in additional attributes for use by the remainder.

Finally, we consider the case where an action contains multiple calls to methods of the same

object. If a method of an object that has an outstanding remainder is called then the latter

is executed as part of the call. Otherwise, the guard of the methods called after performing a

release would be false and, therefore, such actions never enabled. Consider action b where o

references an object of type C as in Figure 6:

action b is (var z : U • o.m(e, z ) ; o.n(e, z ))

If we simply locked o, that is, defined the implicit guard of n to be lck = 0, then b would never

be enabled.

We illustrate this with a random number class that stores a sequence of already computed

numbers:
class C

attr l := 0, s : array NAT of NAT ,

meth rnd(res y) is y :∈ NAT ; s[l ], l := y , l + 1,

meth get(val i , res y) is i < l → y := s[i ]

end
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class C

attr c := ci ,

meth m(val v , res r) is

var x • S ; release ; T ,

meth n(val w , res s) is

U ,

action a is

V

end

a) Method with release

class C

attr c, lck ,m v ,m r ,m x | ci ∧ lck = 0,

meth m(val v , res r) is

lck = 0 → var x • S ; lck ,m v ,m r ,m x := 1, v , r , x ,

meth n(val w , res s) is

lck = 0 → U ,

action a is

lck = 0 → V ,

action r is

lck = 1 → var v , r , x := m v ,m r ,m x • T ; lck := 0

end

b) Equivalent without release

Figure 5. Definition of release with remainder accessing parameters and Local Variables

Class C is refined by D , where a release is introduced in method rnd after the assignment of

y . We show directly the expansion according to Figure 6:

class D

attr l := 0, s : array NAT of NAT , lck := 0, rnd y ,

meth rnd(res y) is p ; y :∈ NAT ; lck , rnd y := 1, y ,

meth get(val i , res y) is p ; i < l → y := s[i ],

meth p is if lck = 1 then var y := rnd y • s[l ], l , lck := y , l + 1, 0 end ,

action r is lck = 1 → p

end

We have C 4◦
R D for the following R:

R (l , s) (l ′, s ′, lck ′, rnd y ′) ≡ lck ′ ∈ {0, 1}∧

(lck ′ = 0 ⇒ l = l ′ ∧ (∀i ∈ {0..l − 1} • s[i ] = s ′[i ]))∧

(lck ′ = 1 ⇒ l = l ′ + 1 ∧ (∀i ∈ {0..l − 2} • s[i ] = s ′[i ]) ∧ s[l − 1] = rnd y ′)

The proof is a simple verification of the six conditions of class simulation with CX♯ = magic ,

CX♮ = magic , DX♯ = magic , DX♮ = r , and CI and DI the respective initializations.

7. Conclusions and Discussion

We have given a model for action-based concurrency with objects. Classes with attributes,

methods, and actions serve as templates for objects. Class refinement supporting algorithmic,
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class C

attr c | ci ,

meth m(val v , res r) is

var x • S ; release ; T ,

meth n(val w , res s) is U ,

action a is V

end

a) Method with release

class C

attr c, lck ,m v ,m r ,m x | ci ∧ lck = 0

meth m(val v , res r) is

p ; var x • S ; lck ,m v ,m r ,m x := 1, v , r , x ,

meth n(val w , res s) is p ; U ,

meth p is

if lck = 1 then

var v , r , x := m v ,m r ,m x • T ; lck := 0

end ,

action a is lck = 0 → V ,

action r is lck = 1 → p

end

b) Equivalent without release

Figure 6. Definition of release supporting multiple calls to an object within an action

data, and atomicity refinement is defined based on trace refinement. Class refinement can be

proved by a simulation rule. Early returns are a special form of atomicity refinement. Dynamic

data structures allow objects to run concurrently.

The refinement rules have been developed in a most general form without considering some

useful special cases. For example, for the refinement of classes with dynamically created ob-

jects each attribute reference goes via the heap. If aliasing can be excluded, the rule could be

simplified. Another special case is superposition refinement. When a subclass is created by su-

perposition, the original computation on the inherited attributes is left unchanged. Additional

functionality is provided through new attributes. Deriving rules for such special cases is left as

future work.

Another point about refinement can be illustrated with the example of Section 4.3: Class

Creature can be refined by a class that is identical, except that the method move is never enabled,

i.e. defined as magic . All conditions for class simulation hold with Id as the refinement relation

and no stuttering actions. In particular condition (d) holds as the action newpos is always

enabled. While our notion of refinement in a sense preserves liveness of the whole system, it

allows that certain methods calls become impossible. A stronger notion of refinement preserving

the possibility of method calls is worth further study.

Class refinement for concurrent objects is defined here as an extension of class refinement

defined in [26, 27], following the general model of classes as self-referential structures with a

delayed taking of the fixed point of [31, 16]. As known from [26], inheritance is not monotonic

with respect to the refinement of the base class: if C is refined by D , then L mod C is not
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necessarily refined by L mod D . If D is supposed to be a revision of C and L an independently

developed extension of C , then this leads to the fragile base class problem, a problem plaguing

independent class development and evolution. This problem persists in the concurrent setting.

With the possibility of self- and super-references between actions, it extends to actions.

For expressing symmetric communication and synchronization among several objects, multi-

party actions have been studied in [6]. They can be introduced here without further difficulties.

Many interesting, open questions are connected with early returns. So far we disallowed

self-calls in classes with early returns. Also, the remainder of a method into which we introduce

a release statement cannot modify global variables. Otherwise, multiple changes that were

previously executed in one atomic step could now be performed in multiple steps. The definition

of trace refinement does not permit this. Making intermediate states visible and even making

modifications to other global variable before the remainder’s changes to global variables are

performed are not legal refinements.

Modifications to other objects in the remainder of a method is a useful concept studied

by Jones [20]. This is allowed if there are no other references to those objects and hence those

changes are not observable to the remaining program. To this aim, Jones uses unique references.

Spinning the idea of non-observability even further, the global state could also be updated in

multiple steps if parts of it could be guaranteed not to be observed until the remainder has been

executed. The incorporation of such refinement steps into our formalism is an open issue.

The main advantage of a release statement over a “manual” atomicity refinement are the

readability (no need to syntactically split the method into parts and to syntactically clutter

all guards and the split method with synchronization and variable save statement) and the

automatic resource locking. A version without resource locking would be possible and would

allow additional interleavings, but would lead to practically rather strong proof conditions,

making it less attractive.

The release statement could also be introduced into action systems without objects, for

example within procedures. Objects, however, have the advantage that they encapsulate tightly

coupled state components and, thereby, make it in practice easier to lock resources accessed by

the remainder.
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