
?

?

1

2

3

1 2 3

Abstract.

1 Introduction

re�nement parallel

decomposition

An Action System Approach to the Steam

Boiler Problem

Formal Methods

for Industrial Applications: Specifying and Programming the Steam Boiler Control

Dept. of Electronics and Computer Science, University of Southampton,
Southampton, United Kingdom, M.J.Butler@ecs.soton.ac.uk.

Dept. of Computer Science, �Abo Akademi University, Turku, Finland,
Emil.Sekerinski@abo.�.

Dept. of Computer Science and Applied Mathematics, University of Kuopio,
Kuopio, Finland, Kaisa.Sere@uku.�.

This paper presents an approach to the speci�cation of con-
trol programs based on action systems and re�nement. The system to
be speci�ed and its physical environment are �rst modelled as one initial
action system. This allows us to abstract away from the communication
mechanism between the two entities. It also allows us to state and use
clearly the assumptions that we make about how the environment be-
haves. In subsequent steps the speci�cations of control program and the
environment are further elaborated by re�nement and are separated. We
use the re�nement calculus to structure and reason about the speci�ca-
tion. The operators in this calculus allow us to achieve a high degree of
modularity in the development.

To appear in J.-R. Abrial, E. B�orger, and H. Langmaack (Eds.)
,

Lecture Notes in Computer Science, Springer-Verlag, 1996

Michael Butler , Emil Sekerinski , Kaisa Sere

The action system formalism, introduced by Back and Kurki-Suonio [4], is a
state based approach to distributed computing. A set of guarded actions share
some state variables and may act on those variables. The two main development
techniques we use on action systems in this case study are and

. Re�nement allows us to replace abstract state variables with more
concrete representations such that the behaviour of the re�ned action system
satis�es the behaviour of the abstract action system. Parallel decomposition
allows us to split an action system into parallel sub-systems by partitioning
state variables and actions.

An important aim of this case study has been to produce an action system
speci�cation of the SteamBoiler problem (see Chapter AS, this book) that is easy
to understand, and thus easier to validate, and then derive a controller from this
speci�cation that is close to the desired implementation. We achieve a simpli�ed
speci�cation in two main ways. Firstly, we model both the controller and its
physical environment; this allows us to simplify the description of the interaction
between the controller and it's environment. Secondly, we use abstraction to

:

!

0

0 0

0

; :

;

:

:

{ abort

{

{

2 Action Systems

Overview.

Actions.

weakest precondition

enabled

guard A g A

g A wp A false

A A

always enabled wp A false false g A true

Abort:

Guarding: P A P A

P A

Nondeterministic assignment: x x P P

x x x P x

x x x true

describe a very general view of the required behaviour of the system and then
elaborate this view using re�nement. A controller speci�cation is then derived
using re�nement and decomposition.

We start by briey describing the action system framework and the
re�nement calculus to the required extent. Section 3 provides more detail on our
approach to this particular case study. Section 4 presents the abstract speci�ca-
tion of the controller and its environment. Section 5 re�nes the ways in which the
system may fail and (as a byproduct) re�nes the modes as well. Annex 1 gives
the re�nement rules to the extent needed. Annex 2 describes further re�nement
steps towards a distributed implementation in an imperative language. Annex
BSS.3 containes the implementation in Pascal.

The action systems formalism combined with the re�nement calculus has proved
to be very suited to the design of parallel and distributed systems [7, 6, 5]. Action
systems are similar to the UNITY programs of Chandy andMisra [11] which have
an associated temporal logic. The design and reasoning about action systems is
carried out within the re�nement calculus that is based on the use of predicate
transformers. The re�nement calculus for sequential programs has been studied
by several researchers [2, 13, 14]. The main re�nement technique used in our
speci�cation is data re�nement [8] that is related to e.g. the re�nement mapping
technique of Abadi and Lamport [1].

An action is any statement in an extended version of Dijkstra's guarded
command language [12]. This language includes assignment, sequential composi-
tion, conditional choice and iteration, and is de�ned using
predicate transformers. We remove Dijkstra's law of \Excluded Miracle" which
says that no statement is miraculous (i.e., can establish any postcondition), and
take the view that an action is only in those initial states in which it be-
haves non-miraculously. The of an action is the condition (), de�ned
by

() = ()

The action is said to be enabled when the guard is true. The action is said
to be , if () = (i.e., () =).

We also use the following constructs:

The action behaves arbitrarily, making changes to variables or
not terminating at all. It represents undesired behaviour.

The action , where is a predicate and is an action, is
disabled when is false, otherwise it behaves as .

The action := , where is a predicate
relating and , assigns a value satisfying to state variable . The
arbitrary nondeterministic assignment := ? is a shorthand for := .

2

m

m

m

n

m n

1 2 1

2

1 2 1

2 1

1 2

1 2

1 2

1 2

1

1

1

1

1 1

; ; ;

; ; :

: : : : :

: : :

: : : :

: : : :

: : : : : : : : :

k

! k ! ^ !

k

A j j

A

A A

A

A B

A j j

B j j

\ ; A k B A B

C j j [

{

{

{

{

var do od

global var

var do od

var do od

var do od

Choice: A A A

A

Sequencing: A A A

A A

A A

Always enabled: A A A

A

Simultaneous execution: A A

A A

A A

P x E Q y F P Q x y E F

x E y F x y E F

Action Systems. action system

x I A A z

I

A A

local x global

z

state variables

Parallel Composition.

x I A A z

y J B B v

x y parallel composition

x I y J A A B B z v

reactive components

The action [] tries to choose an enabled action from and
, the choice being nondeterministic when both are enabled.

The action ; �rst behaves as if this is enabled, then as
if this is enabled at the termination of , otherwise the whole sequence
; is not enabled.

The action behaves as when is enabled, otherwise it
behaves as skip, thus is always enabled.

For actions and that are non-aborting, i.e.
terminating when executed in an enabled initial state, is the simul-
taneous execution of and , e.g.,

(:=) (:=) = :=

and when the actions are always enabled we have e.g.,

:= := = :=

An has the form:

= [; [] []] :

The action system is initialised by action . Then, repeatedly, an enabled
action from is nondeterministically selected and executed. The action
system terminates when no action is enabled, and aborts when some action
aborts.

The variables of are the variables and the variables of are
the variables . The local and global variables are assumed to be distinct. Each
variable is associated with an explicit type. The of consist of
the local variables and the global variables. The actions are allowed to refer to
all the state variables of an action system. In the sequel, we use the keywords

and to distinguish global and local variables.

Consider two action systems and

= [; [] []] :

= [; [] []] :

where = . We de�ne the of and to be the
action system

= [; ; [] [] [] [] []] :

Thus, parallel composition will combine the state spaces of the two constituent
action systems, merging the global variables and keeping the local variables
distinct.

The behaviour of a parallel composition of action systems is dependent on
how the individual action systems, the , interact with each
other via the global variables that are referenced in both components. We have
for instance that a reactive component does not terminate by itself: termination
is a global property of the composed action system. More on these topics can be
found in [3].

3

R

R

R

3 Approach

var do od

var do od

;

: ; ; :

; ;
;

; ;

: ; ; : :

: ;

:

: :

; ; ;
; ;

0

0 0

0

0 0

0 0 0

0

0

0

0 0 0 0

0 0

0 0

0
R

0

0

0

0

R
0 0

0

�

8)

�

8 ^) 9 ^

9 ^

A A

A j j

A j j

A A A � A

�
�
^)

A � A A A
A A

Re�nement.

A A

A re�ned A A A

Q wp A Q wp A Q

A x z A x z

A x z A data re�ned

A abstraction relation R x x z A A

Q R wp A Q wp A x R Q

x R Q x z

Data Re�nement of Action Systems.

x I A z

x I A z

R x x z x x

z I I x x

R

Initialisation: I I

Main actions: A A

Exit condition: R gA gA

Single-Language Framework.

Action systems are intended to be developed in a stepwise manner
within the re�nement calculus. In the steam boiler example, data re�nement is
used as a main tool. Here we briey describe these techniques. Data re�nement
of action systems is studied in detail in [3].

The re�nement calculus is based on the following de�nition. Let be
actions. The action is by action , denoted , if

(() ())

This usual re�nement relation is reexive and transitive. It is also monotonic
with respect to most of the action constructors used here, e.g. guarding, choice,
sequencing and simultaneous execution, see [8]. (Re�nement between actions
does not necessarily imply re�nement between action systems.)

Let now be an action referring to the variables , denoted : , and
an action referring to the variables . Then statement is by

statement using (), denoted , if

(() ())

Note that is a predicate on the variables .

Let and be the two action systems

= [;] :

= [;] :

Let () be an abstraction relation on the local variables , and global
variables . Assume do not access but only assign to , respectively. The
action system is data re�ned by using , denoted if:

(i) ,
(ii) ,
(iii) .

If , then the behaviour of satis�es the behaviour of in the sense
that all possible state traces of are possible state traces of . This is described
in detail in [9].

In this section, we discuss some features of our approach to the Steam Boiler
problem using the action system formalism.

We use the same formalism (action systems) to
describe speci�cations and designs. Thus, the initial formal description of the
behaviour we require of the system is given as an abstract action system rather
than as a set of properties in some variant of temporal logic. By a series of
data-re�nement steps, this abstract action system is transformed into a concrete
action system more closely resembling the eventual implementation. Re�nement
is the main form of proof we use.

4

Elaboration by Re�nement.

Environment and Controller as One System.

Timing and Discreteness

Rather than embody all the requirements in the ini-
tial speci�cation, we have chosen instead to introduce some of the requirements
in successive re�nement steps. This is achieved by using data abstraction to
generalise the requirements. For example, instead of modelling all the di�erent
equipment failures in the initial speci�cation, we just have one general notion
of failure, which is elaborated into the di�erent forms of failure in subsequent
re�nement steps.

Usually, re�nement is used as a way of verifying the correctness of an im-
plementation w.r.t. a speci�cation. But here we also use re�nement as a way of
structuring the requirements such that they are easier to validate. One conse-
quence of this approach is that the abstraction relations used in re�nement steps
really form part of the formal description of the requirements; our abstract ac-
tion system model is intended to represent the essence of the required behaviour
of the system, and the abstraction relations show how this essence relates to the
extra requirements being introduced in a re�nement (elaboration) step.

Our initial action system is in-
tended to model the behaviour of the overall system, that is, the physical envi-
ronment and the controller together. After some re�nement steps, we use parallel
decomposition to separate the controller and the physical environment into two
interacting action systems, thus arriving at a speci�cation of the controller itself.

Modelling the environment and the controller as a single action system al-
lows us to abstract away from the communication mechanism between them. For
example, all sensors are modelled as state variables which are updated by the
environment actions and may be read directly by the controller actions. Only
in later re�nement steps do we introduce an explicit mechanism for passing the
values of sensors from the environment to the controller. Similarly, device actu-
ators are modelled initially as state variables that are updated by the controller
and read by the environment and these are re�ned later.

Another reason for modelling the environment is that it allows us to state
and use assumptions that we make about how the environment behaves. For
example, when we introduce a mechanism in the controller for estimating the
water level in the steam boiler, we need to model the way in which the water
level may change in the environment.

The requirements state that the environment sends
messages to the controller once every �ve seconds giving updated sensor values,
and that the controller then responds to these by sending out new values for the
actuator states. We model this as a simple alternation between an environment
action and a controller action. We do not use any explicit model of time, rather
we simply assume that the environment action occurs once every �ve seconds,
and that the controller action is fast enough to respond within that �ve seconds.

This discrete model of the environment is not a true reection of the be-
haviour of the physical environment which is a continuous system. However it is
su�cient for us to be able to model our assumptions about the environment.

5

Fig. 1.

global

global

�
�

�
��

�
�
�

�
�

�
��

�
�
�

�
���

-
�

-
� @

@@I�
�	

@
@@R

4 Abstract Speci�cation

Modularity.

Normal Degraded Rescue

Operating

Variables.

q

q

v

v

Actuators

VariablesVariables
Controller

Actions
Environment

Actions
Controller Environment

Sensors

Controller Environment

Structure of the system speci�cation

As well as using re�nement to structure the speci�cation as men-
tioned above, we also use the re�nement calculus composition operators, such
as choice and simultaneous assignment, to structure the descriptions of actions.
An important feature of these operators is that they are compositional with re-
spect to re�nement allowing us to achieve a high degree of modularity in the
development.

The steam boiler system is speci�ed by actions which represent the evolution
of the physical environment and the reactions of the controller. Values that the
control program needs to measure are modelled as variables which are read by
the controller actions and modi�ed by the environment actions. Devices that
control the physical environment are modelled as variables which are modi�ed
by the controller actions and read by the environment actions (see Fig. 1).

Abstraction in the initial speci�cation is achieved by:

1. unifying the di�erent ways of system failure into one notion of failure,
2. reducing the number of modes by unifying the , , and

modes to a single mode,
3. modelling all actuators, sensors, and controller variables as part of a state

space, thus abstracting from their distribution and the message passing pro-
tocol.

The abstract view of the system state consists of the following vari-
ables. The current measure for the water level (in litres) in the boiler is given
by :

: Num

The current measure for the steam output (in litres/sec) is given by :

: Num

6

b

4

1 4p p e; : : : ;

j

j

j j

j j

4
1 4

1 4

1 2

1 2

1 2 1 2 1 1 2 2

; : : : ;

; : : : ;

; ; ; < < <

:

global

global

global

global

const where

var

global

var do od

In the problem statement (Chapter AS, this book), and are in litres/sec.

T p p

p p

T e

e

pumps on o�

valve open closed

N N

M M

N N M M M N N M

reliable

true

reliable

mode Init Operating Emergency

System Structure.

System reliable I Environment Controller

The current measures for the water input through the pumps during an interval
of = 5 seconds are given (in litres/T secs) by :

: Num

The current measure for the water output through the evacuation valve during
an interval of = 5 seconds is given (in litres/T secs) by :

: Num

The water pumps and evacuation valve are controlled by the following vari-
ables:

:

:

During normal operation, the water level should be between and , and it
is unsafe for it to go below or above :

: Num

The variable is an abstraction for whether the information available to
the controller is reliable or not. If it is , then we can rely on the measures,
otherwise we should go to emergency mode:

: Bool

The boiler control has three basic modes, the initialisation mode, the normal
operating mode, and the emergency mode:

:

The steam boiler system is speci�ed by a repeated alternation
between the physical environment and the controller, with the possibility of a
failure making the measures unreliable. This alternation assumes that the actions
of the controller take a negligible amount of time giving the controller the chance
to react to changes of the environment:

= [: Bool ; ;]

The controller consists of sets of actions which control the water pumps, the
evacuation valve and the mode and are executed in parallel. The strict alter-
nation is used here as a modelling feature. It will be removed later when the
environment and the controller are separated into systems of their own.

7

b

b

b

b

b

b

) � �

)

!

^ ^

�
!

!

1 2

1 4

1 2 3 4

1 2 2

1

2

2

2

2

2

1

1

1

;
;

; ; : : : ; ;

; ; ; ; ; ; ; ; ; ; ; ; ; ;

>

>

<

4.1 Physical Environment Speci�cation

4.2 Controller Speci�cation

Safety Condition.

safety mode Operating M q M

wp I safety

safety safety wp Environment Controller safety

System safety

Initialisation.

q p p v e

I pumps o� valve closed mode Init reliable true

Environment q p p p p v e reliable

Init Mode.

N N N

Valve

mode Init

reliable true

q N

valve open

mode Init reliable true q N

valve open

N

Valve

mode Init

reliable true

q N

valve closed

N

Pumps

mode Init

reliable true

q N

pumps on

The system should remain in operating mode, only if the
water level is safe. More precisely, after reacting to the environment's messages,
if the controller remains in operating mode, then the water level should be safe:

= =

This is checked by ensuring that () holds, i.e. the initialisation estab-
lishes , and (;), i.e. the body
of preserves .

Initially, we start in initialisation mode and assume that the
pumps are o� and the evacuation valve is closed. We further assume that we
are in a reliable state. We make no assumptions about the current measures
(,).

= := ; := ; := ; :=

In the abstract speci�cation, we allow the environment to make arbitrary as-
signments to the water level, input and output levels, and the reliable ag:

= := ? ? ? ? ? ? ? ?

Initialisation of the boiler involves bringing the water level to between
and , as long as no failure is detected. If the water level is above , then

the following action opens the evacuation valve:

=
=
= :=

(When describing actions we use the syntax above. Here the conjunction of the
three predicates on the left hand side of the arrow constitutes the guard, which
in this case is = = . The lines on the right
hand side form the action body, here := .)

Once the water level is at or below , the evacuation valve is closed:

=
=
= :=

If the water level is below , then the following action switches on the pumps:

=
=
= :=

8

abort

>

<

>

< >

b

b

b

b

b

b

b

!

� �

!

!

!

!

_
_

!

!

2

2

2

1 2

1

1 2

2

1 2

2

3

2

1

1 2

4

1

3

1 2

N

Pumps

mode Init

reliable true

q N

pumps o�

N N

Mode

mode Init

reliable true

valve closed

N q N

mode Operating

Mode
mode Init

reliable false
mode Emergency

Operating Mode.

N N

N

Pumps

mode Operating

reliable true

q N

pumps on

N

q N N

Pumps

mode Operating

reliable true

q N

pumps o�

Mode

mode Operating

reliable false

q M q M

mode Emergency

Emergency Mode.

Fail mode Emergency

The pumps are switched o� if the water level is above :

=
=
= :=

Once the level is between and , the system enters operating mode, provided
the evacuation valve is closed and no failure of the gauges is detected:

=

=
=

=
:=

Observe that the requirement of the valve being closed is not explicitly mentioned
in the informal requirements speci�cation. It is though a reasonable restriction
and hence, included here.

In case of failure of the gauges, the system goes to emergency mode:

=
=
=

:=

Operating mode simply involves switching the pumps on and
o� as appropriate, in order to maintain the proper water level. If the water level
is below , the pumps are switched on. If the water level is above , the pumps
are switched o�. If the water level is in between, we leave it open whether the
pumps are on or o�. Thus, if it is below , the pumps may be switched on:

=
=
= :=

If the water level is above , the pumps may be switched o�. Note that the
guards of the actions are overlapping; if is between and the pumps
can be either switched on or o�. (This nondeterminism is reduced in the next
re�nement step.)

=
=
= :=

If a failure is detected or the water level is unsafe, the system goes into emergency
mode:

=
=

(=
)

:=

We make no assumptions about what happens during emer-
gency mode, so the system may abort:

= =

9

b

b

b

b

b

var

var

var

k k k

j

) ^
) ^

^
) ^
)

5 Re�ning Failures

1 4

1 2

1 2 3

1 4

1 4

1 4

1 4

1 2

1 2

1 1 1

4 4 4

;

: : :

: : :

; ; : : : ; ;

; ; : : : ;

; ; : : : ; ;

;

: : :

Controller Action.

Pumps Valve Mode

Pumps Pumps Pumps

Valve Valve Valve

Mode Mode Mode Mode

Fail

Controller Pumps Valve Mode Fail

Variables.

q gauge p gauge p gauge v gauge

q gauge p gauge p gauge v gauge ok failed

trans q trans p trans p trans v

trans q trans p trans p trans v

qa qa

qa qa

Abstraction Relation. reliable

R

R trans

q gauge ok trans q q

p gauge ok trans p p

p gauge ok trans p p

v gauge ok trans v v

The control of the water pumps, the evacuation valve and
the mode is given by the actions , and , respectively:

= [] []

= []

= [] []

The controller executes all these actions, as well as the action, in parallel,
if they are enabled:

=

In this step, we distinguish possible failures and specify more precisely the re-
quired behaviour for failures. We also make the behaviour of the environment
more deterministic.

The following variables are introduced. The status of the water level
gauge, the four water pump gauges and the steam output gauge are given by

, , , and , respectively:

:

If a gauge fails, then the value transmitted from the gauge to the controller does
not necessarily correspond to the real measure. The transmitted values of the
water level gauge, the four water pump gauges and the steam output gauge are
given by and , respectively:

: Num

In case the water level gauge fails, an estimate of the minimal and maximal
water level is maintained by the controller. These adjusted values are given by

and , respectively:

: Num

The variable is re�ned by the above variables
under the following abstraction relation , which is made up of several parts.

For each gauge, if it is working properly (and its measure is transmitted
correctly), then the transmitted value corresponds to the real measure:

=

(= =)
(= =)

(= =)
(= =)

10

b

b

b

b

b

b

b

b

: : :

: : :

: : :

: : :

1 4

1 4

1 4

1 4

1 2

1 2

1 4

1 1 2 2 1 1 2 2

)
,

^
^ ^ ^

^
_ _ _

^
^ ^ ^

^
_ _ _

)
_) ^
) � �

)
,
_ _ ^

� ^ � ^ � _ �

)

R init
mode Init

reliable true q gauge ok

NormalCond, De-

gradedCond, RescueCond EmergencyCond

NormalCond

q gauge ok

p gauge ok p gauge ok

v gauge ok

DegradedCond

q gauge ok

p gauge failed p gauge failed

v gauge failed

RescueCond

q gauge failed

p gauge ok p gauge ok

v gauge ok

EmergencyCond

q gauge failed

p gauge failed p gauge failed

v gauge failed

R est

mode Operating

NormalCond DegradedCond qa q qa

RescueCond qa q qa

reliable q gauge

p gauge p gauge v gauge

R reliable

mode Operating

reliable true

NormalCond DegradedCond RescueCond

M qa qa M N qa qa N

R valve mode Operating e

Here we identify transmission errors with gauge failures.
At initialisation, at least the water level gauge is working:

=
(=

(= =))

We distinguish four conditions of the gauges, denoted by
and , respectively:

=
=
= =
=

=
=

(= =
=)

=
=
= =
=

=
=

(= =
=)

If the pump gauges are ok and the steam output gauge is ok, then the real water
level is between its lower and upper estimate:

=
=

(= =)
()

For the relation of the abstract variable to the concrete variables ,
, . . . , , we note that not every failure of a gauge of

the re�ned speci�cation corresponds to a failure in the abstract speci�cation. In
initialisation mode, only the water level gauge has to work properly. In operating
mode, the water level gauge has to work properly or otherwise all other gauges
have to work properly and the water level must be safe based on the estimated
values:

=

(=
(=

()
() ()))

In the re�nement, we assume that the evacuation valve is closed in operating
mode:

= = = 0

11

b

b

b

R

R

R

R

R

1 4

1 4 1 2

var

do od

^ ^

^ ^

j

j

�

�

�

^)

�

�

0

0 0 0

0

0

0 0

0 0

0

0

0 0

0

0

;

; ; : : : ; ; ;
; ; : : : ; ; ; ; :

R oper R est R reliable R valve

R trans R init

R oper

R R trans R init R oper

System Structure.

System

q gauge p gauge p gauge v gauge

trans q trans p trans p trans v qa qa

I Environment Estimate Controller

System System

I I

Environment Controller Environment Estimate Controller

R g Environment Controller

g Environment Estimate Controller

Estimate

Environment Environment Estimate

Controller Controller

Environment Estimate Controller

g Environment true

g Estimate true

g Controller true

The abstraction relation for the operating mode is

=

The complete abstraction relation is the conjunction of , and
:

=

The steam boiler system is re�ned by a repeated sequen-
tial composition of the environment (changing the \real" measures), an action
keeping track of the estimated water level, and the controller:

=
[

; ; ;]

For verifying the re�nement , we have to establish following
conditions:

(1)

; ; ; (2)

(;)

(; ;)
(3)

For the purpose of implementation, we will consider to be part of the
controller. For the purpose of verifying the re�nement, we will consider it to
be part of the environment; this is allowed by the associativity of sequential
composition. Hence (2) is established by (see Annex 1 for the rule):

; (4)

(5)

Furthermore, we will design , and such that
they are always enabled. Hence (3) is established by (see the Annex 1 for the
rules):

() = (6)

() = (7)

() = (8)

In summary, this leads to the proof obligations (1), (4) - (8).

12

R

b

b

b

b

b

b

0

0 0 0 0

0 0

0 0

0
0

0

0
0

0

1 4

1 2

1 4

1 4

1 4

1

1 1 1 4 4 4

1 2 3 4

1
2

2
2

2 1

5.1 Physical Environment Re�nement

�

)

2 f � g 2 f � g
�

� � ^
� �

� � � � � �

� � � � �

� � � � � ^
� �

; ; : : : ; ; ; : : : ; ;

; ; : : : ; ; ; : : : ; ;

; ; ; : : : ; ;

; ; ; : : : ; ;

: :: : : : : ::

: ;
: ; ; ; ;

; ; ; ;
; ; ; ; ; ;

; ; ; =

; ; ; =

;

Initialisation.

trans q trans p trans p

trans v qa qa

I
pumps o� valve closed mode Init

q gauge p gauge p gauge v gauge ok ok ok ok

reliable true

q gauge p gauge p gauge v gauge ok ok ok ok

R R reliable q gauge p gauge p gauge v gauge

true ok ok ok ok

T sec

Env

p p p P T p p p P T

e if valve open then E T else

v v v variation v v

q q q variation q v p p p p e q

q variation q v p e q
q min q v p e q q max q v p e

q C

q min q v p e q v T U T p e

q max q v p e q v T U T p e

v variation v v
v U T v v U T

v W

E

P

pumps

Initially, we assume that the gauges are working properly but
make no assumptions about the transmitted values , , ..., ,

, and the water level estimates , :

=
:= ; := ; := ;

:=

In order to prove (1), using the rule for partwise data re�nement (see Annex 1),
it is su�cient to establish

:=

:=

This amounts to proving

[:=

]

which holds by the laws of predicate calculus.

The re�ned environment is speci�ed by the (physically) possible changes of the
measures during the interval = 5 . This is expressed by the following
assignments, explained below:

=

:= (0) ; ; := (0) ;
:= = 0 ;
:= () ;
:= (+ + +)

where

() =
() ()

0

() = (1 2) +

() = + (1 2) +

() =
+

0

If the evacuation valve is opened, the water output through the valve is litres
per second, otherwise 0; it is assumed that the evacuation valve never fails.

Each of the four water pumps might be switched on or o� or not be working
properly. Hence the throughput of each individual pump is between 0 and per
second, not necessarily depending on the value of .

13

b

b

b

R

R

R

0 0

0 0

0 0

0 0

0

0 0 0 0

0 0 0 0 0 0 0 0 0

�
�

� � � � � � �

)
)

)
)

�

�
2 f � g 2 f � g

�

2

1

1
2

2
2

2

1 4

1 1 1 1 1

4 4 4 4 4

1 2

1

1 1 4

2

2 1 4

1 2 3 4 1 2

1 2 3 4

1 1 1 4 4 4

1 1 1 2

1 1 1 2

= =

: : :
:
:

: : :
:
:

; ; : : : ;

; ; : : : ;

; ; ; ; ; ; ; ; ; ; ; ; ; ;

; ; ; ; ; ;
: :: : : : : ::

; ; ; ; ; ;
; ; ; ; : : : ; ; ; : : : ; ; ;

; ; ; ; : : : ; ; ; : : : ; ; ; :

U T T

U T W

p

e

T

v T U T v T U T

C

Env

q gauge p gauge p gauge v gauge

trans q trans q q gauge ok trans q q

trans p trans p p gauge ok trans p p

trans p trans p p gauge ok trans p p

trans v trans v v gauge ok trans v v

Environment Env Env

Estimate

qa if q gauge ok then trans q else

q min qa trans v trans p trans p

qa if q gauge ok then trans q else

q max qa trans v trans p trans p

q p p p p v e reliable Env Env Estimate

p p p p

p p p P T p p p P T

e q v reliable

e q v p gauge v gauge trans p trans v qa qa

e q v p gauge v gauge trans p trans v qa qa Q

The steam output will decrease by at most within seconds and
increase by at most . In any case, the steam output is between 0 and .

The water level increases by the amount of water owing through the
pumps and decreases by the amount of water owing through the evacuation
valve. Furthermore, within seconds, the water level may decrease by at most

(1 2) and increase by at most + (1 2) . The
water level is always between 0 and the maximal capacity of the steam boiler.

All of the gauges may fail independently at any time. In case they are ok,
the transmitted values correspond to the real measures.

=

:= ? ; := ? ; ; := ? ; := ? ;
:= (= =) ;
:= (= =) ;

;
:= (= =) ;
:= (= =)

The re�ned environment action is given by:

= ;

The controller needs to adjust the water level estimates. The minimal and maxi-
mal estimates of the water level correspond to the real measure in case the water
level gauge is ok. Otherwise the estimate is based on the transmitted values of
the pump input and the steam output. In case one of the pump gauges or the
steam output gauge fails, no estimates can be made, i. e. the estimates will be
assigned arbitrary values.

=

:= =
(+ + 0) ;

:= =
(+ + 0)

The proof obligation (4) amounts to:

:= ? ? ? ? ? ? ? ? ; ;

Using the rules for the partwise data re�nement and for merging assignments,
this is implied by:

:= ? ? ? ?
:= (0) ; ; := (0)

(9)

:= ? ? ? ?
:= (10)

where

14

b

b

b

b

b

5.2 Controller Re�nement

) � ^) ^
^ ^

) ^
^

) ^
) ^ ^

)
^

^) 9

^ ^

!

�
!

!

1 2 3 4

1 1 1

1 1

1 1 1 4

2 2 1 4

1 4

1 1

1 2 2

1

2

2

2

1

1

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0

0 0 0 0

0 0 0 0

0 0

0

0 0 0

0

0

0

; ; ; ; ;

: : :

; ; : : : ;
; ; : : : ;

; : : : ;

:

; ; ; ; ; : : : ; ; ; : : : ; ;
; ; ; : : : ;

>

<

Q

valve open e E T valve closed e

q variation q v p p p p e q v variation v v

p gauge ok trans p p

v gauge ok trans v v

q gauge ok qa trans q qa trans q

q gauge failed

qa q min qa trans v trans p trans p

qa q max qa trans v trans p trans p

p p R

Q R reliable R

R
R reliable e q v p gauge v gauge trans p trans v

qa qa reliable e qa

R R trans R init R oper

Init Mode.

trans q q

Valve

mode Init

q gauge ok

trans q N

valve open

Valve

mode Init

q gauge ok

trans q N

valve closed

Pumps

mode Init

q gauge ok

trans q N

pumps on

=

(= =) (= = 0)
(+ + +) ()

(= =)

(= =)
(= = =)
(=

= (+ + 0)
= (+ + 0))

Data re�nement (9) reduces to a simple re�nement of a nondeterministic assign-
ment, as variables are not re�ned by . Data re�nement (10) holds
according to the data re�nement rule for nondeterministic assignments if:

()

where

=
[

:=]

As = , the proof can be carried out considering
the three phases separately. The full proof is omitted for brevity.

Proof obligations (6) and (7) immediately follow from the rules for calculating
guards (see Annex 1).

In initialisation mode, only proper functioning of the water level
gauge is required. If the water level gauge is ok, the transmitted water level

corresponds to the real measure , and the appropriate decisions to
open or close the evacuation valve can be made:

=
=
= :=

=
=
= :=

Similarly, if the water level gauge is ok, appropriate decisions to open or close
the water pumps can be made:

=
=
= :=

15

>

<

>

< >

0

0

0

0

0

0

0

b

b

b

b

b

b

b

!

� �

!

!

_ !

_ !

_
_

!

� ^ �
!

2

2

1 2

1

1 2

2

3

1

4

2

1 2

3

1 2

1

2 1 2

5

1 1 2 2

1 2

Pumps

mode Init

q gauge ok

trans q N

pumps o�

N N

Mode

mode Init

q gauge ok

valve closed

N trans q N

mode Operating

Mode
mode Init

q gauge failed
mode Emergency

Operating Mode.

Pumps

mode Operating

NormalCond DegradedCond

trans q N

pumps on

Pumps

mode Operating

NormalCond DegradedCond

trans q N

pumps o�

N N

Mode

mode Operating

NormalCond DegradedCond

trans q M trans q M

mode Emergency

qa

qa M N

Pumps

mode Operating

RescueCond

M qa qa N

pumps on

N M

=
=
= :=

Once the water level is between and , the system enters operating mode,
otherwise it remains in initialisation mode, provided no failure of the water level
gauge is detected:

=

=
=

=
:=

In case the water level gauge fails, the system goes to emergency mode:

=
=
=

:=

The actions of the operating mode are re�ned in two ways,
depending on the status of the water level gauge: If the water level gauge is
working properly, safe decisions can be made for switching the pumps on and
o�. This holds in normal and degraded operating mode:

=
=

:=

=
=

:=

If the water level is between and , we decide to leave the pumps as they
are, either on or o�, in order to minimise the number of on/o� switches.

If the water level is unsafe, the system goes into emergency mode:

=
=

()
()

:=

If the water level gauge has failed, decisions about whether to switch pumps on
and o� have to be based on the minimal estimate and maximal estimate

. If the water level is between and , the pumps are switched on (this
corresponds to cases 1 and 2 as described in the problem statement { Chapter
AS, this book):

=
=

:=

If the water level is between and , the pumps are switched o� (cases 5,6):

16

b

b

b

b

b

b

R

R

R

R

R

R

R

> >
< >

: : :

: : :

: : :

: : :

� ^ �
!

^
_ _
^ _

!

k k k

�

�

�

�

�

�

�

^ _ _)

_ _

0

0

0 0 0

0 0 0

0 0 0

0 0 0 0

0

0

0

0

0

0 0

0 0

0 0

6

1 1 2 2

1 2

1

2

4 1 1 2 2

1 1 2 2

1 4

1 2

1 4

1 1

2 2

3 3 5

4 4 6

1 6

1 4

Pumps

mode Operating

RescueCond

N qa qa M

pumps o�

N N

N

N

Mode

mode Operating

RescueCond

M qa qa M

qa N N qa

EmergencyCond

mode Emergency

Controller Actions.

Pumps Valve Mode

Pumps Pumps Pumps

Valve Valve Valve

Mode Mode Mode

Controller Pumps Valve Mode Fail

Pumps Pumps

Valve Valve

Mode Mode

Pumps Pumps

Pumps Pumps

Pumps Pumps Pumps

Pumps Pumps Pumps

R g Pumps g Pumps

g Pumps g Pumps

=
=

:=

If the water level is between and , we decide to leave the pumps as they
are, either on or o� (case 4). If the lower estimate is below and the upper
estimate is above , this is considered a failure, and the pumps remain as they
were (case 3).

If the water level is considered unsafe based on the estimates or if the estimate
is so vague that is does not allow sensible operation (case 3), or if additionally
one of the other gauges fails, the system goes into emergency mode.

=

=
(

(
())

)

:=

The control of the water pumps, the evacuation valve and
the mode is given by the actions , , and , respectively:

= [] []

= []

= [] []

The re�ned controller consists of di�erent parts, which correspond to those of
the previous speci�cation:

= ()

The veri�cation of the re�nement (5) can be carried out for the pumps, valve,
mode actions separately, leading to:

(11)

(12)

(13)

For the pump actions we note that the four abstract actions are replaced by six
concrete actions. The only requirement is that each concrete action re�nes some
abstract action; hence (11) is implied by (see Annex 1):

[]

[]

(() ())

() ()

17

0

0

0 0

0 0

0

6 Evaluation

^)

^)

^) _

^) _

k

1 1

2 2

3 3 5

4 4 6

1 2

R g Pumps g Pumps

R g Pumps g Pumps

R g Pumps g Pumps g Pumps

R g Pumps g Pumps g Pumps

Valve Mode

Controller

A A

Because all actions above assign only to variables which are not re�ned, there
is only a proof obligation for the guards, i.e. the four re�nements above are
equivalent to:

() ()

() ()

() () ()

() () ()

The re�nement of and leads to similar proof obligations. They can
be discharged with the rules of predicate calculus.

Finally, proof obligation (6) follows immediately from the enabledness of the
constituents of . This completes the proof of this re�nement step.

Further re�nement steps, which lead towards a distributed implementation,
are described in Annex 2.

In this section, we answer the evaluation questions posed by the editors.

1. The whole system, the control program and the steam boiler plant, is spec-
i�ed. The steam boiler speci�cation includes that of the water level, the
steam sensor, the pump actuator, the pumps, the drain, as well as the trans-
mission system, but only to the extent required for the development of the
control program. The full speci�cation is constructed from an initial abstract
speci�cation, with a simple view of failures and no consideration of the dis-
tribution, in two re�nement steps. The �rst adds failure treatment and the
second adds communication between controller and steam boiler. All steps
are speci�ed formally, but are not checked mechanically.

2. A Pascal implementation has been derived from the �nal re�nement step. It
is very similar to the �nal action system speci�cations but implements the
simultaneous composition of actions by an appropriate sequential
composition and guarded choice by an if statement. The implementation is
around 170 lines long and written in SunOS Pascal.
The implementation has been linked to the FZI simulator. The I/O conven-
tions and the system constants have been adapted to the FZI simulator.
Experimentation has been done with the control program and did not reveal
any errors, after solving the technical problems with linking. However, as
the simulation transmits incorrect values in case of gauge failure (in fact it
transmits the old values), this is not detected by the control program (see
the conclusions section).

3. Abrial's solution (see Chapter A, this book) using B AMN is closely related
in that the re�nement calculus notation and B AMN have a similar semantic
basis. Also, Abrial uses re�nement as a way of structuring requirements as
in our approach. However, Abrial doesn't model the environment only the
controller.

18

1 2

1 2

7 Conclusions

and

M M

M M more

probability

The Z speci�cations of the controller produced by other groups (see Chapter
BW, this book, and [10]) resemble our most detailed re�nement of the con-
troller. While they concentrated on accurately representing all the details
of the controller, we placed more emphasis on using abstraction to make
validation easier.

4. About 4 person months were spent in producing the solution.

In order to produce a solution to such a problem, familiarity with the spec-
i�cation notation and a practical understanding of data-re�nement are re-
quired. It is also necessary to understand proof techniques used. This would
take about 2 weeks training.

5. For a good understanding of the solution, familiarity with a Pascal like pro-
gramming language, the additional speci�cation notation and a practical
understanding of data-re�nement are required. It is not necessary to under-
stand proof techniques or the semantics of actions and action systems.

An average programmer should be able understand the solution.

In order to be able to understand the individual steps of the solution, 1 hour
will be necessary for a programmer to learn what is needed.

The development presented describes both the controller the physical envi-
ronment. Specifying the environment was used for deriving the updates of the
water level estimates of the controller in case of water level gauge failure.

The environment is speci�ed by an action which describes the possible evolu-
tion during a period of 5 seconds. It does not completely determine the behaviour
of a concrete environment, but only its view by the controller every 5 seconds.
In particular, there might be peaks of the water level below and above in
between. Hence the safety requirement should be interpreted such that it holds
only every 5 seconds. (This is all what is required by the informal speci�cation:
the system is in danger if the water level is below or above for than
5 seconds.)

The re�ned controller guarantees safe functioning despite gauge failure as
long as the information about gauge failure is reliable. If this is unreliable, e.g.,
the water level gauge pretends to function properly but does not, no safe decisions
are possible at all (except going to emergency mode). The informal speci�cation
suggests that to cope with this, the controller should check whether the measure
are \compatible with the dynamics of the system". However, this is problematic.
Besides introducing nondeterminism (which gauge is to blame?) neither does it
guarantee reliable operation (we could blame the wrong gauge or not detect a
gauge failure for a long time). This strategy can only be used for making the
operation more reliable with a certain . Although this would be in ac-
cordance with engineering practices, probabilistic speci�cation of gauge failures
and reasoning about the probabilistic reliability of a controller is outside our
approach. It is suggested for further research.

19

References

Acknowledgements

The work reported here is carried out within the projects Irene and Formet.
These projects are supported by the Academy of Finland and the Technology
Development Centre of Finland (Tekes).

20

Proc. of the

3rd Annual IEEE Symp. on Logic In Computer Science

On the Correctness of Re�nement Steps in Program Development

Stepwise Re�nement of

Distributed Systems: Models, Formalisms, Correctness. Proceedings. 1989

Lecture Notes in Computer Science

Proc. of the 2nd ACM SIGACT{SIGOPS Symp. on Principles of

Distributed Computing

Science of Computer Programming

Structured Pro-

gramming

For-

mal Methods Europe'94 Lecture Notes in Computer Science

Stepwise Re�nement of Distributed Systems: Models, Formalisms, Correct-

ness. Proceedings. 1989 Lecture Notes in Computer Science

CONCUR '94: Concurrency Theory. Proceedings. 1994

Lecture Notes in Computer Science

Methods for

Semantics and Speci�cation

Parallel Program Design: A Foundation

A Discipline of Programming

ACM Transactions on Programming

Languages and Systems

Science of Computer Programming

1. M. Abadi and L. Lamport. The existence of re�nement mappings. In
, Edinburgh, pp. 165{175,

1988.

2. R. J. R. Back. .
PhD thesis, Department of Computer Science, University of Helsinki, Helsinki,
Finland, 1978. Report A{1978{4.

3. R. J. R. Back. Re�nement calculus, part II: Parallel and reactive programs. In J.
W. de Bakker, W.{P. de Roever, and G. Rozenberg, editors,

, volume
430 of . Springer{Verlag, 1990.

4. R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with central-
ized control. In

, pages 131{142, 1983.

5. R. J. R. Back, A. J. Martin, and K. Sere. Specifying the Caltech asynchronous
microprocessor. , North-Holland. Accepted for
publication.

6. R.J.R. Back and K. Sere. Stepwise re�nement of action systems.
, 12:17-30, 1991.

7. R. J. R. Back and K. Sere. From modular systems to action systems. Proc. of
, Spain, October 1994. .

Springer{Verlag, 1994.

8. R. J. R. Back and J. von Wright. Re�nement calculus, part I: Sequential nonde-
terministic programs. In J. W. de Bakker, W.{P. de Roever, and G. Rozenberg,
editors,

, volume 430 of , pages
42{66. Springer{Verlag, 1990.

9. R. J. R. Back and J. von Wright. Trace Re�nement of Action Systems In B. Jon-
sson, J. Parrow, editors, ,
volume 836 of , pages 367{384. Springer{Verlag,
1994.

10. P. Bernard A Z speci�cation of the boiler. Presented at seminar on
, Schloss Dagstuhl, June 1995.

11. K. Chandy and J. Misra. . Addison{
Wesley, 1988.

12. E. W. Dijkstra. . Prentice{Hall International, 1976.

13. C. C. Morgan. The speci�cation statement.
, 10(3):403{419, July 1988.

14. J. M. Morris. A theoretical basis for stepwise re�nement and the programming
calculus. , 9:287{306, 1987.

1 2 1 2 1 2

9 ^

�

�)

9

! ^

_

k ^

A.1 Re�nement Rules

0 0

0 0 0 0

0 0 0 00 0 00 00

0

0 0

0 0

; ; ; ;
; ; ;

:

; ; : ; ; :

; ; ; ; : :

:

: :

: :

u v w x E F

P Q R A B v E P

P v E

Transforming Actions.

v E v v v E

u v u v P v w v w Q

u v w u v w v P v v Q v v

v v v Q

v v P v v Q Q P

Calculating Guards.

g v E true

g v v P v P

g P A P g A

g A true

g A B g A g B

g A B g A g B true

g A A g A g A A A

The rules in this appendix are given in the form as needed for the proofs, rather
than in their most general form. Let be lists of variables, lists of
expressions, predicates, and actions. Substitution of by in
is written as [:=].

The following two rules allow a sequence of assignments
to be reduced to a single nondeterministic assignment. A deterministic assign-
ment can always be written as a nondeterministic one. When composing two
nondeterministic assignments in sequence, the intermediate state can be hidden
by an existential quanti�cation.

:= = := (=)

:= ; := =

:= ([:=] [:=])

A nondeterministic assignment is re�ned by a more deterministic one:

:= ? :=

:= := if

A deterministic assignment is always enabled. A nondeter-
ministic assignment is only enabled if some possible �nal values for the variables
exist:

(:=) =

(:=) = ()

Guarding an actions additionally restricts its enabledness. Applying the always
enable operator makes it always enabled:

() = ()

() =

The choice is enabled if either operand is. The enabledness of sequential compo-
sition depends in general on both operands. If the second one is always enabled,
then the �rst determines its enabledness. The simultaneous execution of two
actions, which is only de�ned for actions assigning disjoint variables, is enabled
only if both actions are.

([]) = () ()

(;) = () if () =

() = () () if and assign disjoint variables

21

{

{

{

A.2 Message Passing

0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

R

R

R

R

R

R

R R

R R

R R R

R R R

R R R

; ;

: ; ;

: : ; ;

: : : ; ;

; ; : ; ; :

: ; ;

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2 1

1

�)

� ^)

� ^) 9

� ^) 9 ^

�

�

^) 9 ^

! � ! � ^)

� � ^)

� � �

� � �

k � k � �

Verifying Data Re�nement of Actions.

v w

x

v E w F R R v w E F

v E w w Q Q R R v w E w

v w w Q Q R v R v w v w

v v P w w Q Q R v P R v w v w

x E x E

v x v x P w x w x Q

Q R v P R v w v w

P A Q B A B Q R P

A B A B R g A g B

A A B B A B A B

A A B B A B A B

A A B B A B A B A

v B w

The following rules allow the veri�cation
of data re�nements of actions, if the abstract action, the concrete action and
the abstraction relation are given. Let be the abstract, the concrete, and
the global variables. Assignments to abstract variables only can be re�ned by

following rules, which are given in increasing generality:

:= := if [:=]

:= := if [:=]

:= ? := if ([:=])

:= := if ([:=])

The simplest way of data-re�ning an assignment to global variables is by itself.
In general, a combined assignment to global and local variables may take the
abstraction relation into account:

:= :=

:= := if

([:=])

When re�ning an guarded action, the guard can be strengthened under the
abstraction relation. When re�ning an always enabled action, its guard must
remain unchanged under the abstraction relation:

if and

if and () ()

Choice and sequential composition can be re�ned partwise. For the simultane-
ous execution of two actions, at least one must not assign the abstract (resp.
concrete) variables:

[] [] if and

; ; if and

if and and does

not update and does not assign

The environment and the controller communicate by sending and receiving vari-
ous messages. The controller follows a cycle that consists of the following actions:

Reception of messages coming from the physical units.

Analysis of information which has been received.

Transmission of messages to the physical units.

22

var

b

b

b

b

b

b

0

0

0 0

0 0

0 0

1 4

1 4

1 4

2

2 1 4

: : :
: : :

: : :

; ;

: : :

:

:

i

i

i i i

i i i

i i i

R

i i i i i i i

^ ^ ^ ^

6) ^
) ^

6 ^)

6) ^
) ^

6 ^)

6) ^
) ^

6 ^)

�

� k k k k

)

)

Environment

Estimate Controller

Message Bu�er

sen

q gauge p gauge p gauge

v gauge trans q trans p trans p

trans v R

R R q R p R p R v

R q R p R v

R q

sen qg NIL sen qg q gauge

q gauge ok sen tq q

sen qg NIL q gauge failed sen tq NIL

R p

sen p g NIL sen p g p gauge

p gauge ok sen tp p

sen p g NIL p gauge failed sen tp NIL

R v

sen vg NIL sen vg v gauge

v gauge ok sen tv v

sen vg NIL v gauge failed sen tv NIL

I I sen NIL

Sending from the Environment.

Env

Env EWL EP EP ESO

EWL q gauge trans q trans q q gauge ok trans q q

EP p gauge trans p trans p p gauge ok trans p p

All messages coming from or going to the physical units are supposed to be
received/emitted simultaneously by the controller at each cycle.

Let us �rst look at the messages coming to the controller from the physical
environment. Here we rearrange things slightly, and assume that the environ-
ment consists of the actions in and the controller consists of the
actions ; . Hence, the estimations will be carried out within
the controller.

The physical environment sends messages (sensor values) to the
controller by placing them into the bu�er

: Array

where there is one place for each of the variables , , , ,
as well as for the transmitted values , , , ,
used above. The abstraction relation for this re�nement step is

=

where are de�ned as follows:

=
[] = ([] =)

(= [] =)
([] = =) [] =

=
[] = ([] =)

(= [] =)
([] = =) [] =

=
[] = ([] =)

(= [] =)
([] = =) [] =

At initialisation, the bu�er is empty:

; :=

We next add a send action into the environment.
We want to model the fact that the transmission is simultaneous. Hence, we �rst
re�ne the environment speci�cation to reect the parallel activity by the
di�erent devices:

where

= := ? ; := (= =)

= := ? ; := (= =)

23

0 0

0 0

2

1 1 4 4

1 4

b

b

b

b

b

b

b

b

b

)

�

�

�

�

k k k k

�

k k k k

6 !

6 !

6 !

R

i R i i

R

i i i i i

R

R

i i

i i i i

i i

:

::

; ::

; ;

; ;

; ;

: : :

: : :

; ;
; ;

; ;
; ;

; ;
; ;

= := ? ; := (= =)

for 1 = 1 4.
Next we re�ne each device speci�cation to contain also a sending component.

We get that

;

; = 1 4

;

where

= [] [] :=

= [] [] :=

= [] [] :=

We now have that

where

= (;) (;) (;) (;)

The controller is re�ned as follows:

; ; ;

where

=

and

= [] =
:= [] [] ;

[] [] :=

= [] =
:= [] [] ;

[] [] :=

= [] =
:= [] [] ;

[] [] :=

24

ESO v gauge trans v trans v v gauge ok trans v v

EWL EWL SWL

EP EP SP i

ESO ESO SSO

SWL sen qg sen tq q gauge trans q

SP sen p g sen tp p gauge trans p

SSO sen vg sen tv v gauge trans v

Env SSen

SSen EWL SWL EP SP EP SP ESO SSO

Receiving in Controller.

Estimate Controller RSen Estimate Controller

RSen RWL RP RP RSO

RWL sen qg NIL
q gauge trans q sen qg sen tq

sen qg sen tq NIL NIL

RP sen p g NIL
p gauge trans p sen p g sen tp

sen p g sen tp NIL NIL

RSO sen vg NIL
v gauge trans v sen vg sen tv

sen vg sen tv NIL NIL

b

b

b

b

b

b

i i

i i i i i

1 4

1 4

1 4

1 4

var

global

k k k

j

k k k

6 !

6 !

: : :

::

; : : : ;

; : : : ; ; : : : ;

: : :

::

Sending and Receiving Actuator Values.

pumps on pumps o�

valve

act

act

act NIL

SAct CV CP CP

CV act v valve

CP act p pumps

i

pumps

pump pump on o�

pump pump pumps pumps

RAct AV AP AP

AV act v NIL valve act v act v NIL

AP act p NIL pump act p act p NIL

i

The sending of commands to the phys-
ical units from the controller program can be done in a similar manner. We have
that every command := and := controls simultaneously all
the pumps. Also the valve, , must be controlled using messages. We now
re�ne these as above so that the commands are sent along a bu�er, here called

: Array

and initialised as follows:

:=

The actuator values are sent to the physical environment simultaneously

=

and

= [] :=

= [] :=

for = 1 4.

The abstract global variable speci�es all the pumps. Let us now take
a more concrete approach and specify the actuator values separately for each of
the four pumps:

:

and initialised as follows

:=

Furthermore, their values are received by the physical devices in parallel:

=

and

= [] = := [] ; [] :=

= [] = := [] ; [] :=

for = 1 4.

25

b

b

b

b

b

b

j k j

j j

j j

1

1 4

1 4

1 4

1

4 1 4

1 4

00 00 00 00

00

00

00 0

A.3 Implementation

var

var do od

var do od

{

{

;

: : : :

; : : : ; ; : : : ;
; ; : : : ; ; ; ; : : : ;

: : : :

; ; : : : ; ; ; ; : : : ;

: : : : : :

: : :

System Structure

System sen act I Environment Controller

I sen NIL act NIL

Environment IE Env SSen RAct

IE
pump pump o� o� valve closed

q gauge p gauge p gauge v gauge ok ok ok ok

Controller IC RSen Estimate Controller SAct

IC
pumps o� valve closed mode Init

q gauge p gauge p gauge v gauge ok ok ok ok

g gauge p gauge

p gauge v gauge trans q trans p trans p

trans v

buf

pumps

pump pump

Messages.

Our speci�cation can now be considered to be a parallel com-
position of the environment actions and the controller actions where we still
require that the controller actions are fast enough to process the messages be-
fore the environment considers new measurements, i.e., the period of 5 seconds:

= [: Array ; ;]

where

= := ; :=

= [; ; ;]

=
:= ; := ;

:=

= [; ; ; ;]

=
:= ; := ; := ;

:=

The reactive components are assumed to have the variables , ,
, , as well as the variables , , , ,

local in both of them. These could now,naturally, be eliminated by re-
placing references to these by an appropriate lookup into . Similar approach
leads to the elimination of the abstract variable that can be replaced by
its more concrete counterparts , , . (We have above omitted the
variable declarations of the reactive components.)

The strictly sequential model of the environment-controller cycle has been
removed. The synchronisation between these two components in the parallel
composition is taken care of by the guards of the receiving actions in both the
environment and the controller program.

We have taken a rather abstract view of the actual messages here. The
abstract messages could of course be replaced by the concrete ones as described
in the informal requirements speci�cation.

The implementation makes use of input/output of enumeration types as avail-
able in SunOS Pascal. The di�erences between the implementation and the FZI
simulation are:

The absence of a gauge reading is treated as a failure of the gauge, not as
a transmission error; hence operation continues as long as enough readings
are transmitted to allow safe operation.
The simulation transmits wrong values in case gauge failure. However, this
is not detected, as discussed previously.

26

27

(*$b0*)

program controller (input, output);

const (* steam boiler system constants *)

C = 1000; (* maximal capacity [litre] *)

M1 = 100; (* minimal limit [litre] *)

M2 = 850; (* maximal limit [litre] *)

N1 = 400; (* minimal normal [litre] *)

N2 = 600; (* maximal normal [litre] *)

W = 15; (* maximal steam outcome [litre/sec] *)

U1 = 1; (* maximal increase of outcome [litre/sec/sec] *)

P = 10; (* pump capacity [litre/sec] *)

E = 10; (* valve throughput [litre/sec]*)

T = 5; (* sampling interval [sec] *)

type

PUMP = (off, on);

VALVE = (closed, open);

GAUGE = (failed, ok);

MODE = (Init, Operating, Emergency);

MESSAGE = (STEAM_BOILER_WAITING, PHYSICAL_UNITS_READY, PUMP_STATE,

PUMP_CONTROL_STATE, LEVEL, STEAM, LEVEL_REPAIRED, PUMP_REPAIRED,

PUMP_CONTROL_REPAIRED, STEAM_REPAIRED, STOP, END_OF_TRANSMISSION);

var (* actuators *)

pumps: PUMP;

valve: VALVE;

var (* sensors *)

q: real; (* transmitted water level [litre] *)

p1,p2,p3,p4: real; (* transmitted pump throughput [litre/5sec] *)

v: real; (* transmitted steam output [litre/sec] *)

e: real; (* valve throughput [litre/5sec] *)

q_gauge: GAUGE; (* water level gauge status *)

p1_gauge, p2_gauge, p3_gauge, p4_gauge: GAUGE; (* pump gauge status *)

v_gauge: GAUGE; (* steam output gauge status *)

var (* controller variables *)

mode: MODE;

qa1, qa2: real; (* estimates of minimal and maximal water level *)

var (* auxiliary controller variables *)

NormalCond, DegradedCond, RescueCond, EmergencyCond: Boolean;

prevValve: VALVE; (* previous value of valve *)

label 999;

procedure RSen;

var msg: MESSAGE;

n: integer; p: integer;

28

ch: char; (* for reading separators '(' and ',' *)

begin

q_gauge := failed ; p1_gauge := failed ; p2_gauge := failed ;

p3_gauge := failed ; p4_gauge := failed ; v_gauge := failed ;

read (msg) ;

while msg <> END_OF_TRANSMISSION do

begin

if msg = PUMP_CONTROL_STATE then

begin read(ch) ; read(n) ; read (ch) ; read (p) ;

case n of

1: begin p1 := p * P * T ; p1_gauge := ok end ;

2: begin p2 := p * P * T ; p2_gauge := ok end ;

3: begin p3 := p * P * T ; p3_gauge := ok end ;

4: begin p4 := p * P * T ; p4_gauge := ok end

end

end

else if msg = LEVEL then

begin read (ch) ; read (q) ; q_gauge := ok end

else if msg = STEAM then

begin read (ch) ; read (v) ; v_gauge := ok end ;

(* else ignore message *)

readln ; read (msg)

end ;

readln

end;

procedure SAct;

begin

if pumps = on then

begin writeln ('OPEN_PUMP 1') ; writeln ('OPEN_PUMP 2') ;

writeln ('OPEN_PUMP 3') ; writeln ('OPEN_PUMP 4') end

else

begin writeln ('CLOSE_PUMP 1') ; writeln ('CLOSE_PUMP 2') ;

writeln ('CLOSE_PUMP 3') ; writeln ('CLOSE_PUMP 4') end ;

if valve <> prevValve then

begin write ('VALVE'); prevValve := valve end

end;

procedure Estimate;

begin

if q_gauge = ok then begin qa1 := q ; qa2 := q end

else

begin

qa1 := qa1 - v * T - (U1 * T * T) / 2 + p1 + p2 + p3 + p4 ;

qa2 := qa2 - v * T + (U1 * T * T) / 2 + p1 + p2 + p3 + p4

end

end;

procedure Pumps; (* implements "Pumps' overline" *)

begin

29

if (mode = Init) and (q_gauge = ok) and (q < N1) then

pumps := on

else if (mode = Init) and (q_gauge = ok) and (q > N2) then

pumps := off

else if (mode = Operating) and (NormalCond or DegradedCond) and

(q < N1) then

pumps := on

else if (mode = Operating) and (NormalCond or DegradedCond) and

(q > N2) then

pumps := off

else if (mode = Operating) and RescueCond and (M1 <= qa1) and

(M2 <= qa2) then

pumps := on

else if (mode = Operating) and RescueCond and (N1 <= qa1) and

(qa2 <= M2) then

pumps := off

end;

procedure Valve; (* implements "Valve' overline" *)

begin

if (mode = Init) and (q_gauge = ok) and (q > N2) then

valve := open

else if (mode = Init) and (q_gauge = ok) and (q <= N2) then

valve := closed

end;

procedure Mode; (* implements "Mode' overline" *)

begin

if (mode = Init) and (q_gauge = ok) and (valve = closed) and

(N1 <= q) and (q <= N2) then

mode := Operating

else if (mode = Init) and (q_gauge = failed) then

mode := Emergency

else if (mode = Operating) and (NormalCond or DegradedCond) and

((q < M1) or (q > M2)) then

mode := Emergency

else if (mode = Operating) and (RescueCond and

((M1 > qa1) or (qa2 > M2) or (qa1 < N1) and (N2 > qa2)) or

EmergencyCond) then

mode := Emergency

end;

procedure Fail;

begin if mode = Emergency then goto 999 end ;

procedure Controller; (* implements "Controller'" sequentially *)

begin

NormalCond := (q_gauge = ok) and (p1_gauge = ok) and

(p2_gauge = ok) and (p3_gauge = ok) and (p4_gauge = ok) and

(v_gauge = ok) ;

30

DegradedCond := (q_gauge = ok) and ((p1_gauge = failed) or

(p2_gauge = failed) or (p3_gauge = failed) or

(p4_gauge = failed) or (v_gauge = failed)) ;

RescueCond := (q_gauge = failed) and (p1_gauge = ok) and

(p2_gauge = ok) and (p3_gauge = ok) and (p4_gauge = ok) and

(v_gauge = ok) ;

EmergencyCond := (q_gauge = failed) and ((p1_gauge = failed) or

(p2_gauge = failed) or (p3_gauge = failed) or

(p4_gauge = failed) or (v_gauge = failed)) ;

Pumps ; Valve ; Mode ; Fail

end;

begin

mode := Init ; prevValve := closed ;

writeln('PROGRAM_READY') ;

while true do (* implements "Controller''" *)

begin RSen ; Estimate ; Controller ; SAct end ;

999:writeln ('system_quit')

end.

