Striffs: Architectural Component Diagrams
for Code Reviews

Muntazir Fadhel
mfadhel@hadii.ca
HADII Technology
Toronto, Canada

Abstract

Despite recent advancements in automated code quality
and defect finding tools, developers spend a significant
amount of time completing code reviews. Code under-
standability is a key contributor to this phenomenon,
since engineers need to understand both microscopic
and macroscopic level details of the code under review.
Existing tools for code reviews including diffing, inline
commenting and syntax highlighting provide limited
support for the macroscopic understanding needs of
reviewers. When reviewing code for architectural and
design quality, such tools do not enable reviewers to
understand the code from a top-down lens which the
original architects of the code would have likely used to
design the system. To overcome these limitations and
to complement existing approaches, we introduce struc-
ture diff (striff) diagrams. Striffs provide reviewers with
an architectural understanding of the incoming code in
relation to the existing system, allowing reviewers to
gain a more complete view of the scope and impact of
the proposed code changes in a code review.

Keywords: code review, software design, object ori-
ented programming, code comprehension, graphs

1 Introduction

Code reviews constitute a widespread practice employed
by software engineers to maintain high software qual-
ity and share project knowledge [25]. The formal code
review was first defined by Fagan in 1976 [14] as a
software inspection practice in which source code is
reviewed for correctness, often conducted by multiple
reviewers. More recently, code reviews have grown in
scope to bring about many benefits including knowl-
edge transfer, increased team awareness, and collabo-
ration resulting in alternative solutions to problems.

Emil Sekerinski
emil@mcmaster.ca
McMaster University
Hamilton, Canada

While code understandability is a primary compo-
nent of code reviews, it is a significant source of dif-
ficulty for reviewers [34, 35, 39]. Despite the advance-
ments of existing static analysis and program differenc-
ing tools, such tools focus on the microscopic under-
standing needs of reviewers and ignore their macro-
scopic code understandability needs to a large degree.
Moreover, when reviewing code for architectural and
design quality, such tools do not enable reviewers to
understand the code from a top-down lens which the
original architects of the system would have used to
design it.

The large cognitive load placed on reviewers during
code reviews has numerous impacts, both on the time
it takes to understand the code, impact, and scope of
the change, but also on the quality of the code review
itself. Numerous studies have showed that conducting
proper code reviews is time consuming [32] and that de-
velopers can spend up to 15% of their time completing
them [13]. Additionally, researchers have also provided
strong empirical evidence that the outcome of the code
review process is erratic and often unsatisfying or mis-
aligned with the expectations of participants [4, 6, 29].
This problematic outcome is a result of the high cog-
nitive demands of code reviews [3], whose outcome is
primarily a result of the time and ability of the involved
reviewers.

To this end, we present striff diagrams, which visually
communicate the architectural effect of an incoming
code change on a software system using UML-like class
diagrams. Striffs provide reviewers with an architec-
tural understanding of the incoming code in relation
to the existing system, thereby satisfying reviewer in-
formation needs related to the scope and impact of the
proposed code changes in a code review.

To appear in 2021 International Conference on Code
Quality (ICCQ), pages 69-78, 2021. IEEE

Emil Sekerinski
To appear in 2021 International Conference on Code
Quality (ICCQ), pages 69–78, 2021. IEEE�

2 System Comprehension in Code
Reviews

A code review is typically completed when a modifica-
tion needs to be made to a project, either through the
implementation of a new feature or a bug fix. Popular
collaborative code hosting platforms like GitHub [1]
encapsulate the workflow of introducing changes to
a software project using Pull Requests. As part of the
peer code review in this workflow, a code reviewer must
protect the quality and integrity of the code repository
from incoming code submissions. The code reviewer
typically has two primary artifacts that can be used to
conduct the code review.

1. Code: Source files corresponding to the original
software project and the set of changes being in-
troduced into the system as a result of the Pull
Request.

2. Continuous Integration (CI) Artifacts: The re-
sults of various builds, test executions, and static
analysis checks as required, typically completed
by a CI server.

It is well-known that program understanding plays
a pivotal role in performing code reviews and most
software-related maintenance activities [2, 9, 33, 38]. In
code reviews, reviewers need to understand both the
microscopic details of the code and the macroscopic
conceptual structure [10]. The microscopic level of ab-
straction includes the mechanics of classes and meth-
ods, which can be examined in the text of the code.
The macroscopic level of abstraction includes concrete
higher-level concepts including modules, systems and
conceptual structures that are not manifest directly in
the code. It is the articulation and comprehension of
code at this level that continues to take up a significant
amount of time in code reviews [6].

Strong evidences from dozens of open-source and
commercial projects reveal that typical design flaws are
introduced by developers and are responsible for poor
maintenance quality and high long-term costs [26, 27,
36, 43]. The limitation is that these design flaws usually
have already caused significant loss to the system when
they can be detected by existing approaches.

Given that reducing the cognitive load of review-
ers improves their code review performance [32], our
study is motivated by the following question: "What ad-
ditional code reviewing artifacts would help reduce the
cognitive load placed on reviewers in code reviews?"
All code review tools that are widely used today only ad-
dress the microscopic understanding needs of reviewers

Muntazir Fadhel and Emil Sekerinski

— providing features such as diffing capabilities, inline
commenting, or syntax highlighting. Reviewers lack
important details at a macroscopic level in reviewing
the change if they depend only on such tools [21].
Previous research has investigated differencing al-
gorithms over source code [12, 16, 17] which seek the
shortest edit distance between two source files repre-
sented as Abstract Syntax Trees (AST). Such algorithms
extend string differencing algorithms [28] to compute
an edit sequence composed of three basic edit opera-
tions, delete, insert and relabel. These operations are
used to transform one tree into another with minimum
cost, where the cost is given by the sum of the cost
of each involved edit operation. The cost of the edit
sequence with minimum cost is called the edit distance,
which has been shown to be extremely beneficial in
comprehending the nature of a code change [15].

+2 |-3 src/attributes/classes.js

define([

Bt

-1, function(jQuery, rnotwhite, strundefined, dataPriv) {

+], function(jQuery, rnotwhite, dataPriv)
var rclass = F[VEAPANAFL/g;
i

} else if (type === Strundefined || type === “"boclean”)

' } else if (walue === undefined || type === "

if (this.className) {

dataPriv.set(this, "__classame_", this.className);

Figure 1. A sample unified diff on GitHub.

At an architectural level, LSdiff [21] and DESIGNDIFF
[40] leverage differencing algorithms at a macroscopic
level to reduce the cognitive burden of analyzing ar-
chitectural properties of code in code reviews. LSdiff
proposes a program differencing technique that auto-
matically identifies systematic structural differences
as logic rules. DESIGNDIFF models the high level de-
sign differences resulting from every code revision in a
software project. However, both tools express the dif-
ferences they uncover in a textual format, which limits
the ability of developers to discuss and collaborate on
improvements that can be made to the system in a vi-
sual way. Relo [37] uses visual diagrams to illustrate
code architecture and enables users to navigate code
architecture in a dynamic fashion. However, it does not

Striffs: Architectural Component Diagrams for Code Reviews

support comparing two versions of code and was not
specifically designed for code reviews.

3 Striff Diagrams

To overcome difficulties faced by reviewers in under-
standing code at a macroscopic level, we introduce striff
diagrams. Striffs leverage the basic premise surround-
ings the utility of line-wise code diffs at an architectural
level, and encourage a more natural understanding of
code changes through a "top-down" approach which
more closely resembles the lens from which the sys-
tem was designed and intended to be understood. The
cognitive implications of striff diagrams are manifold:
diagrams support communicating, capturing attention
and grounding conversations [11]. They also reduce the
cognitive burden of evaluating a design or considering
new ideas [18]. Moreover, numerous empirical studies
[10, 22] have also demonstrated benefits of using vi-
sual models in the context of software maintenance. A
sample striff is illustrated in Figure 2.

Striffs extend the UML class diagram specification
to help reviewers understand the context and impact
of code submissions in code reviews. Standardized by
the Object Management Group (OMG) in 1997, the Uni-
fied Modeling Language (UML) emerged as a de-facto
industry standard for analysis and design modeling of
software systems [31]. In most projects, UML models
are the first artifacts to systematically represent a soft-
ware architecture [23]. Moreover, studies have shown
that developers prefer to communicate software design
using graph and UML-like diagrams [10, 22].
Coloring Scheme: In popular code collaboration plat-
forms like GitHub, unified diffs as illustrated in Figure 1
outline the differences between two files, often between
an original file and proposed version of the file. In this
format, any lines that have undergone modification are
depicted beside unchanged lines both before and after.
New lines of source code and deleted lines of source
code as a result of the proposed file are annotated in
green and red colors, respectively. Context to the patch
is provided by the inclusion of unchanged lines and
serves as a reference to locate the patch’s position in a
modified file.

A striff depicts entities entering and leaving the sys-
tem at an architectural level using the same coloring
scheme. UML relationships, methods, fields, and ob-
jects that enter and leave the system as a result of the
proposed code changes are annotated in green and red

colors, respectively. Like regular line-wise diffs, un-
changed entities are not annotated with any color and
provide context to the visualization.

3.1 Managing Understandability in Striffs

Although different ways of organizing diagrams don’t
change the actual design, they influence how easy the
model is to understand and interpret [24]. In the context
of architectural component views, understandability is
a critical aspect, as one of the main purposes of soft-
ware architecture is to "... enable designers to abstract
away fine-grained details that obscure understanding
and focus on the “big picture: system structure, the
interactions between components, ..” [19]. Architec-
tural diagrams must successfully convey all the relevant
concerns of the system at a high level to facilitate the
understanding of relationships between the low level
code and the higher level design of the system [5, 8].
To manage understandability in striffs, we impose the
following constraints on diagrams:

1. Given a soft input size constraint ¢, there can be
at most £ + £/2 components in the striff. Figure 2
is the result of running the proposed reverse en-
gineering algorithm detailed in Section 4 with
t =6.

2. For components for which the set of child meth-
ods and fields exceed an input constraint m on
the number of child components, only those child
methods and fields which have been modified will
be displayed, and the component name will be suf-
fixed with "(...)" to indicate some details are inten-
tionally left out. This parameter prevents striffs
from overwhelming the reader with long lists of
component children that are not essential. Figure
2 is the result of running the proposed reverse
engineering algorithm detailed in Section 4 with
m = 15.

3. Given that gaining a high-level context to unfa-
miliar code is a major difficulty in code reviews,
object components in striffs can include documen-
tation on their high level design where appropri-
ate. This allows reviewers to understand the pur-
pose and design of components in a code review
more quickly.

When discussing striff diagrams, determining which
context is important to the viewer while minimizing the
size of the diagram constitute two opposing concerns.
Without any context, reviewers will not understand
what role the modified components play in the larger

org.junit.platform. launcher

© TestPian

{8Bcode TestPlan) describes the tree of tests and containers as discovered by a
{8link Launcher). Tests and containers are represented by {glink TestIdentifier}
instances. The complete set of identifiers comprises a tree-like structure.
However, each identifier only stores the unique ID of its parent. This class
provides a nunber of helpful methods to retrieve the {@linkplain
getparent[TestIdentifier] parent}, {glinkplain #getChildren[TestIdentifier]
children), and {glinkplain #getDescendants[TestIdentifier] descendants) of an
identifier. While the contained instances of {glink TestIdentifier) are

imutable, instances of this class contain mutable state. For example, when a
dynanic test is registered at runtine, it is added to the original test plan and
reported to {Blink TestExecutionl...

Muntazir Fadhel and Emil Sekerinski

org.junit.jupiter.engine

@ TestrenplateInvocationTests

O roots : Set<TestIdentifier>

O containsTests : boolean

O allidentifiers : Map<Uniqueld, TestIdentifiers
Ochildren : Kap<Unigueld, Set<TestIdentifiers>
O allldentifiers : WapcString, Testldentifier

O children : Mapestring, Set<TestIdentifiers>

A parentRelationshipIsEstablished()
A parentchildRelationshipIsEstablished()

© getParent(TestIdentifier)

© containsTests() : boolean

© add(TestIdentifier)

© getRoots() : Set<TestIdentifier>
© fron(Collection<TestDescriptor>) : TestPlan
Optional<TestIdentifier>
© getChildren(String) : Set<TestIdentifier>

© countTestIdentifiers(Predicate<? super TestIdentifier>) : long
© getbescendants(TestIdentifier) : Set<TestIdentifier>

© getchildren(TestIdentifier) : Set<Testldentifier>
© getTestIdentifier(String) : TestIdentifier

(©) seriatizedrorn

Represents the serialized output of {fcode TestIdentifier). The fields on this class match
the files that {Gcode TestIdentifier) had prior to 5.8.

@ TestidentifierTests

Otype © Type
O uniqueld : String
O legacyReportingNane : String
O tags : Set<TestTag>
O parentId : String

O displayNane : String
O source : TestSource
O serialVersionuId : long

A inheritsTypeFronDescriptor()
A serialization()
A inheritsIdAndNanesFromDescriptor ()

© serialize(0bjectOutputStrean)

© deserialize(ObjectInputstrean) : SerializedForn

Imutable data transfer object that represents a test or container which is usually
part of a {glink TestPlan}. @see TestPlan @since 1.0

© AbstractaupiterTestengineTests

O uniqueld : Uniqueld

O parentId : String

O parentId : Uniqueld

O tniqueld : String

O serializedForm : SerializedForm

O serialPersistentFields : ObjectStreanField[]

Abstract base class for tests involving the {glink JupiterTestengine). @since

Oengine : JupiterTestEngine

© discoverTests(DiscoverySelector) : TestDescriptor
© executeTestsForClass(Class<?>) : EngineExecutionResults

m write0bject (ObjectoutputStrean)
m readResolve() : Object

© getUniqueIdobject() : Uniqueld
m readobject (ObjectInputStrean)

© getParentIdobject() : Optional<Uniqueld>

W copyOf(Set<TestTag>) : Set<TestTag>

© executeTests(DiscoverySelector) : EngineExecutionResults

© discoverTests(LauncherDiscoveryRequest) : TestDescriptor

© executeTests(LauncherDiscoveryRequest) : EngineExecutionResults
© discoverUniqueTd(Class<?>, String) : Uniqueld

Figure 2. A sample striff diagram®.

system. Given too much context, the diagram becomes
too large and the reviewer is overwhelmed. Platform
likes GitHub approach this problem in line-wise diffs
by simply adding three lines of context code before and
after any modified line as illustrated in Figure 1. This
paper solves the issue of balancing context and diagram
size by modelling the diagram as a weighted graph and
applying a community detection algorithm recursively
on the graph to eventually produce a suitable set of
subgraphs representing more readable diagrams.

1Generated for GitHub pull request at https://github.com/Zir0-
93/junit5/pull/1/files.

4 Algorithm

Striff-lib? is an open source Java library that imple-
ments the proposed algorithm detailed in this section
to reverse engineer striff diagrams from source code.
Striff-1ib can be integrated as a browser plugin or as
part of a CI pipeline to generate striff diagrams with
the goal of facilitating engineers in performing code re-
views. A high level outline of the algorithm is depicted
in Figure 4. Given two sets of source files corresponding
to the original and proposed software systems in the
context of a code review, striff-lib generates a set of
graphs representing the structural differences between
the two systems. These structural differences are then

ZSource code available at https://github.com/hadii-tech/striff-lib.

Striffs: Architectural Component Diagrams for Code Reviews

visualized using PlantUML?, a Java library for drawing
UML diagrams.

Step 1. Generate Source Code Models. The first step
leverages the clarpse Java library* to parse source code
of the original and proposed versions of the software
with the goal of constructing a high level, object ori-
ented based abstraction of entities that realize the tech-
nical design and implementation of the system. The
result of this parsing step is referred to as a source code
model, which is a collection of high level object and
interface components. We refer to such components as
"major" components for the rest of this paper. Every ma-
jor component in clarpse maintains a collection of child
components which correspond to field and method com-
ponents, referred to as "minor" components. In total,
clarpse uses four main types of components in repre-
senting source code models: objects, interfaces, meth-
ods, and fields. The benefit of this approach is realized
in the potential for clarpse to parse any language that
supports object oriented design into a common, poly-
glot format represented by source code models over
which software engineering tools can be developed in
a consistent manner. For this reason, striff-lib was de-
veloped using clarpse, and is currently able to generate
striffs over code written in a variety of programming
languages including Java and Go.

A source code model in clarpse is a collection of major
components which can be represented as a set of trees
T = {t1, ty, ..., tp}. Each tree is represented by ¢ = (C, A),
where ¢ € C; is a vertex and represents a component
generated by clarpse while a € A; is an edge. We denote
C; as the vertex set and A; as the edge set of a tree ¢ in
T. Every vertex c identifies a component as a function
of its structural representation based on the source
code. As a result, each vertex is unique amongst the set
of components of each tree in T as expressed by the
following:

ViVi'(t' e T |t'#t = C;NCy =0) (1)

Additionally, we assume that the root node r of every
tree in T always corresponds to a major component, and
must exist in every edge in that tree such that Va(a;; €
A; = ¢; =r ®c; =r). Because major components
in clarpse only contain a single level of direct children
corresponding to minor components, the maximum
height of any given tree is given by the function A :
T — {0,1}. Consequently, each tree in T represents

Shttps://plantuml.com
4Source code available at https://github.com/hadii-tech/clarpse.

a major component along with it’s child components.
The output of this step are two source code models
represented as sets of trees T, and T, corresponding to
the set of trees representing the original and proposed
versions of the software system respectively. Note that
in the context of a code review, we expect that many of
the components in the trees of T, and T, to be equivalent
since they are a function of the structural position of
that component based on the source code.

Step 2. Generate Graph Representations. Compo-
nents in clarpse store a list of a type dependencies
on other components which can be analyzed to gen-
erate a list of UML compliant class relationships for
the entire source code model. Given a set of trees T
from the previous step, we create an undirected graph
G = (V,E, i, &) where v € Visanodeande € E is
an unordered pair representing an edge. The function
4 maps each vertex to a tree p : V. — T. Similarly, &
is a function ¢ : E — U, where U denotes the set of
edge types corresponding to the set of UML class re-
lationships as specified in Table 1. Let isRelated be a
function that indicates whether or not a given pair of
major components represented by two trees are related
by a UML class diagram relationship. The set of edges
E in V are then constrained to represent such relation-
ships between pairs of trees in T by the expression
Ve(eij € E = isRelated(y(v;), (v;))). The output
of this step are graphs G, and G, that represent the
graph formed from analyzing source code models T,
and T, respectively.

Step 3. Diff Graph Representations. We first gen-
erate a set of trees T, which represents the result of
merging T, and T, together as detailed in Algorithm 1.
Let g be a vertex and T a set of trees. We maintain a
function §(g, T) which returns a set X consisting of all
the trees in T for which gq is the root vertex. Therefore,
X is a subset of T as given by X C T, and each tree in X
satisfies the expression Vx(x € X = r, = q), where
ry is the root node of the tree x. Because each vertex is
unique in any given set of trees T as expressed by (1),

Muntazir Fadhel and Emil Sekerinski

] Type

\ Realization \ Generalization \ Composition \ Aggregation \ Association ‘

| Weight | 6 \ 6

4 [s | 1]

Table 1. A list of UML class relationships and their associated weights implemented in the proposed algorithm.

the output set of this functions is maximally equal to
one: [6(q, T)| < 1.

Algorithm 1: Merging T, into T,

Result: T,
Input: T,, T,
forov €V, do
for t, € yi,(v) do
Z = 6(rs,, Tp)
if Z = (then
| T, =T, U{te}
else
| C,:=C,UCy,
end
end
end
T =T,

We now define a graph G,,, = (Vj,, Emy, fim, £), where
Vin =V, UV, Epy = E; UE,, and pp, is a function which
maps each vertex to tree y : V;;, — T, and is defined
as:

0 ifoeg Vo /\ v ¢ Vp
pm(v) = 1t, f v eV, Ao ¢ Vo (2)
tp otherwise

Graph G, now represents the result of merging G,
into G,. As a result, the set of inserted and removed
edges between G, and G, corresponds E; = E, — E, and
E, = E,—E, respectively. Additionally, we define C; and
C, which correspond to all the inserted and removed
vertices by the following equations:

Ci={clce U, ptpet, N €& UC,ontocT, } 3)

Cr =A{clc ¢ Uc,tper, A € € U, tpeT,} (4)

Step 4. Filter Graph. At this point in the algorithm,
G, represents the merged architectural view of the
original and proposed source code models, while C;, C,,
E;, and E, represent components and relationships that
enter and exit the system. These entities are sufficient
for drawing a striff diagram; however, there is currently
no limit on |V,,;| which allows for extremely large dia-
grams. Graph visualization and automatic layout are
important issues that have tremendous impact on the

+
¥
1
1
1
I
1
I
v
i /. : T
S ol e (5 @00

Figure 3. A visualization of merging T, into T, as de-
tailed in Algorithm 1.

readability of diagrams [10, 41, 42]. To solve this prob-
lem, we generate a sets of graphs D given a soft limit ¢
according to the following definition:

vd(|d| < (£+ g) AV C Vi AE4CEn) (5)

We also ensure that every graph in D has at least one

key entity within it by satisfying one or both of (6) or
(7) below.

Foaq (|6, (00) N (Ci U CH)| 2 1) (6)

Jeq(eq € (E; VE;)) (7)

We leverage a community detection algorithm to
split G, into a set of subgraphs D. One of the classic
approaches leveraged by such algorithms is to develop
a partition of the vertex set that maximizes an optimiza-
tion function, of which the modularity function [30] is
a well-known example. In this function, the strength
of an edge between two vertices is calculated based on
the probability of finding such an edge in a random
model maintaining the same degree distribution as the
original graph.

Based on this understanding of modularity, the strength
of a given community does not increase significantly
when an edge between two vertices with high degrees
is discovered in comparison to an edge discovered be-
tween vertices of low degrees. This is because the latter

Striffs: Architectural Component Diagrams for Code Reviews

1- Parse Code 2 - Generate

L— Hibih-

6% o)

3 - Diff Graphs 4 - Filter Graphs

Figure 4. The proposed algorithm for generating striff diagrams.

type of edge is much more surprising to find, and there-
fore contributes to the modularity and strength of its
community more significantly than the former. For-
mally, modularity is a scalar value which is defined
as:

kik;

2m

Q(C) = 5= > L4y -

1 1Bene) ®
m 4

where A;; represents the edge weight between ver-
tices i and j. The sum of the weights of the edges at-
tached to nodes i and j are represented by k; and kj,
while the sum of all the edge weights in the graph is
denoted by m. Finally, ¢; and c; are the communities of
the nodes and ¢ is Kronecker delta function.

The Louvain algorithm [7] is an approach based on
modularity optimization that is employed in this paper
due to its applicability to numerous types of graphs
and wide spread availability in the form of open source
implementations. Initially, the Louvain algorithm con-
siders each vertex as a community, and consists of two
main steps:

o Step A: Vertices are moved between communities
so that the modularity of G is increased by each
move. Step A is started by creating |V,,,| communi-
ties where each vertex is in its own community. As
long as the modularity can be increased, vertices
are sequentially reassigned to new communities.
The choice of communities for a vertex is based on
the community that yields the largest modularity
increase.

o Step B: A new graph is created from the newly
partitioned graph. Identified communities form
the set of new vertices, and edges between ver-
tices in different communities are aggregated into
a new set of edges. Step A is then applied to this
newly created graph. The two steps above are
repeated until no further improvement in modu-
larity is obtained.

Given that the Louvain algorithm produces subgraphs
that maximize edge density with respect to other graphs,
the weighting function w(e) — y(e) + {(e) employed
in our study assigns edge weights according to two
important properties:

e y is a function that maps edge e to the associ-
ated weight of that edge type based on Table 1.
Therefore, edge weights are assigned based on
the level of relatedness implied by the UML rela-
tionship represented by that edge. For example,
an edge representing a UML realization relation-
ship between components is given a much higher
weighting than an edge representing a basic as-
sociation relationship between two components.
The reason behind this weighting scheme is a
product of a key goal of striff diagrams in convey-
ing a high level architectural overview of code. As
a result of generating subgraphs that maximise
edge-density with respect to other graphs, the
Louvain algorithm will produce graphs represent-
ing striff diagrams that focus on the important
object oriented properties of the code.

e [is a function that outputs a value based on
whether or not e represents an edge in which
either or both of its vertices map to a component
in C; or C, as given by:

2 if pm(vi) € Ci A\ pm(0;) € Gy
J(eij) =11 if ppm(0;) € Ci ® pm(v;) € Gy ©)
0 otherwise

Therefore, this weighting scheme encourages the
Louvain algorithm to produce subgraphs that max-
imize the number of vertices representing modi-

fied components as well.
Through the use of the Gephi Java library®, the Lou-
vain algorithm is recursively executed to produce a set

>Source code available at https://github.com/gephi/gephi.

of subgraphs that satisfy expressions (5), (6) and (7).
That is, in each iteration, any graphs that do not satisfy
one of (6) or (7) after running the Louvain algorithm
are discarded. For the remaining graphs in the result
set that do not satisfy the size constraints expressed by
(5), the algorithm is run once again on those graphs in
a similar fashion until suitable graphs are obtained.

5 Discussion

Line-wise diffs of source code can be found in almost
every code collaboration platform, and is a tool most de-
velopers’ employ in reviews. Given the success of such
diffs in analyzing microscopic details of source code,
striffs are built upon the same fundamental idea, but
focus on the macroscopic level details of code. Figure 2
illustrates a striff generated as part of our case study by
the proposed algorithm for a GitHub pull request in the
Junit5° repository. The author’s intention was to reduce
the memory footprint of test executions in the project.
To accomplish this, a new SerializedForm class was
introduced to serialize test execution data, and the ex-
isting TestIdentifier and TestPlan classes were refac-
tored as required to support storing and fetching execu-
tions. Additionally, unrelated to the goal of reducing the
memory footprint, the author also made modifications
to the interface of the TestTemplateInvocationTests,
all of which is clearly captured by the striff in Figure 2.

We hope to empirically evaluate the ability of striffs
to satisfy the high level information needs of reviewers
in code reviews in the future. Additionally, many of
the parameters discussed in the proposed algorithm
can be tuned according to the reviewers needs. The im-
pact on varying these parameters on generated striffs
needs to be researched further. For now, we believe the
constraints outlined in Section 3.1 on striff diagrams
constitute a sufficient starting point for further research
in improving the understandability and usefulness of
striffs. First, striffs contain high level component docu-
mentation when available, which is why the TestPlan
components’ documentation can be read in Figure 2.
The UML class diagram specification does not allow
for such information to be included in diagrams, which
places a higher cognitive burden on reviewers having to
figure out important design details of components. Next,
the Testldentifier and TestTemplateInvocationTests
class have over 15 child methods and fields which have
been purposefully excluded from the diagram. This

Shttps://github.com/junit-team/junit5

Muntazir Fadhel and Emil Sekerinski

makes the diagram more readable and prevents review-
ers from being overwhelmed with too many details.

The use of community detection algorithms in gener-
ating readable diagrams was also proposed in this study.
Reverse engineering algorithms that produce visualiza-
tions of code have typically suffered from containing
too much information, both of a primary and contex-
tual nature [10]. By weighting graph edges represent-
ing UML relationships according to their importance
in an object oriented context, the proposed algorithm
generates diagram layouts that optimize the display
of context and key architectural properties of the soft-
ware system. Additionally, by running the algorithm
recursively on the output set of graphs, graphs that are
sized desirably within a set threshold are eventually
produced. Moreover, this approach can be applied to
generate graphs that are meaningful in domains out-
side of object oriented systems. For example, it would
be possible to leverage the UMLsec [20] specification
to assign edge weights based on the level of security
between the two source code components connected
by a given edge. Consequently, the proposed algorithm
might generate diagrams that represent areas of the
source code that are less secure from a security per-
spective.

References

[1] [n.d.]. Where the world builds software. https://github.com/
[2] K. K. Aggarwal, Y. Singh, and J. K. Chhabra. 2002. An inte-
grated measure of software maintainability. In Annual Relia-
bility and Maintainability Symposium. 2002 Proceedings (Cat.
No.02CH37318). 235-241. https://doi.org/10.1109/RAMS.2002.
981648
[3] T. Baum, K. Schneider, and A. Bacchelli. 2017. On the Optimal
Order of Reading Source Code Changes for Review. In 2017
IEEE International Conference on Software Maintenance and
Evolution (ICSME). 329-340. https://doi.org/10.1109/ICSME.
2017.28
[4] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar
Juergens. 2014. Modern Code Reviews in Open-Source
Projects: Which Problems Do They Fix?. In Proceedings of
the 11th Working Conference on Mining Software Reposito-
ries (Hyderabad, India) (MSR 2014). Association for Com-
puting Machinery, New York, NY, USA, 202-211. https:
//doi.org/10.1145/2597073.2597082
Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster.
1994. Program Understanding and the Concept Assignment
Problem. Commun. ACM 37, 5 (May 1994), 72-82. https:
//doi.org/10.1145/175290.175300
Christian Bird and Alberto Bacchelli. 2013. Expectations,
Outcomes, and Challenges of Modern Code Review. In Proceed-
ings of the International Conference on Software Engineering
(proceedings of the international conference on software

—
ol
—_

—
=)
—

https://github.com/
https://doi.org/10.1109/RAMS.2002.981648
https://doi.org/10.1109/RAMS.2002.981648
https://doi.org/10.1109/ICSME.2017.28
https://doi.org/10.1109/ICSME.2017.28
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/175290.175300
https://doi.org/10.1145/175290.175300

Striffs: Architectural Component Diagrams for Code Reviews

engineering ed.). IEEE. https://www.microsoft.com/en-
us/research/publication/expectations-outcomes-and-
challenges-of-modern-code-review/

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. 2008. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008, 10 (Oct 2008), P10008. https://doi.org/10.
1088/1742-5468/2008/10/p10008

[8] Ruven Brooks. 1983. Towards a theory of the comprehension
of computer programs. International Journal of Man-Machine
Studies 18, 6 (1983), 543 — 554. https://doi.org/10.1016/S0020-
7373(83)80031-5

[9] Celia Chen, Reem Alfayez, Kamonphop Srisopha, Lin Shi, and
Barry Boehm. 2016. Evaluating Human-Assessed Software
Maintainability Metrics. In Software Engineering and Method-
ology for Emerging Domains, Lu Zhang and Chang Xu (Eds.).
Springer Singapore, Singapore, 120-132.

[10] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J.
Ko. 2007. Let’s Go to the Whiteboard: How and Why Soft-
ware Developers Use Drawings. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI *07). Association for Computing Machin-
ery, New York, NY, USA, 557-566. https://doi.org/10.1145/
1240624.1240714

[11] Herbert H. Clark and Edward F. Schaefer. 1989. Contributing
to discourse. Cognitive Science 13, 2 (1989), 259 — 294. https:
//doi.org/10.1016/0364-0213(89)90008-6

[12] Georg Dotzler and Michael Philippsen. 2016. Move-Optimized
Source Code Tree Differencing. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering (Singapore, Singapore) (ASE 2016). Association
for Computing Machinery, New York, NY, USA, 660-671.
https://doi.org/10.1145/2970276.2970315

[13] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2019. Con-
fusion in Code Reviews: Reasons, Impacts, and Coping Strate-
gies. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 49-60. https:
//doi.org/10.1109/SANER.2019.8668024

[14] M. E. Fagan. 1976. Design and Code Inspections to Reduce
Errors in Program Development. IBM Syst. 7. 15, 3 (Sept. 1976),
182-211. https://doi.org/10.1147/sj.153.0182

[15] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias
Martinez, and Martin Monperrus. 2014. Fine-Grained and
Accurate Source Code Differencing. In Proceedings of the
29th ACM/IEEE International Conference on Automated Soft-
ware Engineering (Vasteras, Sweden) (ASE ’14). Association
for Computing Machinery, New York, NY, USA, 313-324.
https://doi.org/10.1145/2642937.2642982

[16] B. Fluri, M. Wursch, M. Pinzger, and H. Gall. 2007. Change
Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction. IEEE Transactions on Software Engineering
33, 11 (2007), 725-743. https://doi.org/10.1109/TSE.2007.70731

[17] M. Hashimoto and A. Mori. 2008. Dift/TS: A Tool for Fine-
Grained Structural Change Analysis. In 2008 15th Working
Conference on Reverse Engineering. 279-288. https://doi.org/
10.1109/WCRE.2008.44

[18] Edwin Hutchins. 1996. Cognition in the Wild (Bradford Books).
The MIT Press.

[19] J.R. Josephson and M. C. Tanner. 1994. The Role of Explanatory

Relationships in Strategies for Abduction. IEEE Intelligent

Systems 14, 03 (May 1994), 54-59. https://doi.org/10.1109/64.

311280

Jan Jirjens. 2002. UMLsec: Extending UML for Secure Systems

Development. In UML 2002 — The Unified Modeling Language,

Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 412—

425.

Miryung Kim and David Notkin. 2009. Discovering and Rep-

resenting Systematic Code Changes. In Proceedings of the 31st

International Conference on Software Engineering (ICSE "09).

IEEE Computer Society, USA, 309-319. https://doi.org/10.

1109/ICSE.2009.5070531

[22] Rainer Koschke. 2003. Software Visualization in Software
Maintenance, Reverse Engineering, and Re-Engineering: A
Research Survey. Journal of Software Maintenance 15, 2 (March
2003), 87-109. https://doi.org/10.1002/smr.270

[23] C.F.]J. Lange, M. R. V. Chaudron, and J. Muskens. 2006. In
practice: UML software architecture and design description.
IEEE Software 23, 2 (2006), 40-46. https://doi.org/10.1109/MS.
2006.50

[24] S.Lee, Y. Kwon, and J. Hwa. 2009. Hierarchical Understand-
ability Assessment Model for Large-Scale OO System. In
2009 16th Asia-Pacific Software Engineering Conference (APSEC
2009). IEEE Computer Society, Los Alamitos, CA, USA, 11-18.
https://doi.org/10.1109/APSEC.2009.60

[25] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka.
2018. Code Reviewing in the Trenches: Challenges and Best
Practices. IEEE Software 35, 4 (July 2018), 34-42. https://doi.
org/10.1109/MS.2017.265100500

[26] R. Mo, Y. Cai, R. Kazman, and L. Xiao. 2015. Hotspot Patterns:
The Formal Definition and Automatic Detection of Architec-
ture Smells. In 12th Working IEEE/IFIP Conference on Software
Architecture. 51-60. https://doi.org/10.1109/WICSA.2015.12

[27] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. 2019. Archi-
tecture Anti-patterns: Automatically Detectable Violations of
Design Principles. IEEE Transactions on Software Engineering
(2019), 1-1. https://doi.org/10.1109/TSE.2019.2910856

[28] Eugene W. Myers. 1986. An O(ND) Difference Algorithm
and Its Variations. Algorithmica 1, 2 (1986), 251-266. https:
//doi.org/10.1007/BF01840446

[29] M. V. Méntyl4 and C. Lassenius. 2009. What Types of Defects
Are Really Discovered in Code Reviews? IEEE Transactions on
Software Engineering 35, 3 (2009), 430-448. https://doi.org/10.
1109/TSE.2008.71

[30] M. E.]J. Newman and M. Girvan. 2004. Finding and evaluating
community structure in networks. Physical Review E 69, 2
(Feb 2004). https://doi.org/10.1103/physreve.69.026113

[31] OMG. 2011. OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1. http://www.omg.org/spec/
UML/2.4.1

[32] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Re-
view. Proceedings of the ACM on Human-Computer Interaction
2(2018), 1 - 27.

[33] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. 2012. How
do professional developers comprehend software?. In 2012

—
[\~]
S

—

—
oo
ey

—

https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1016/0364-0213(89)90008-6
https://doi.org/10.1016/0364-0213(89)90008-6
https://doi.org/10.1145/2970276.2970315
https://doi.org/10.1109/SANER.2019.8668024
https://doi.org/10.1109/SANER.2019.8668024
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/WCRE.2008.44
https://doi.org/10.1109/WCRE.2008.44
https://doi.org/10.1109/64.311280
https://doi.org/10.1109/64.311280
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1002/smr.270
https://doi.org/10.1109/MS.2006.50
https://doi.org/10.1109/MS.2006.50
https://doi.org/10.1109/APSEC.2009.60
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1109/TSE.2019.2910856
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF01840446
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1103/physreve.69.026113
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1

(36]

34th International Conference on Software Engineering (ICSE).
255-265. https://doi.org/10.1109/1CSE.2012.6227188

S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D.
Poshyvanyk, and R. Oliveto. 2019. Automatically Assessing
Code Understandability. IEEE Transactions on Software Engi-
neering (2019), 1-1. https://doi.org/10.1109/TSE.2019.2901468
S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D.
Poshyvanyk, and R. Oliveto. 2017. Automatically assessing
code understandability: How far are we? In 32nd IEEE/ACM
International Conference on Automated Software Engineering
(ASE). 417-427. https://doi.org/10.1109/ASE.2017.8115654

R. Schwanke, L. Xiao, and Y. Cai. 2013. Measuring architecture
quality by structure plus history analysis. In 2013 35th Inter-
national Conference on Software Engineering (ICSE). 891-900.
https://doi.org/10.1109/ICSE.2013.6606638

Vineet Sinha, David Karger, and Rob Miller. 2006. Relo: Help-
ing Users Manage Context during Interactive Exploratory
Visualization of Large Codebases. Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology eXchange, eclipse’05,
187-194. https://doi.org/10.1145/1117696.1117701
Mathupayas Thongmak and Pornsiri Muenchaisri. 2011. Mea-
suring Understandability of Aspect-Oriented Code. In Dig-
ital Information and Communication Technology and Its Ap-
plications, Hocine Cherifi, Jasni Mohamad Zain, and Eyas El-
Qawasmeh (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 43-54.

(39]

(40]

Muntazir Fadhel and Emil Sekerinski

A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Késtner,
and B. Vasilescu. 2018. "Automatically Assessing Code Under-
standability” Reanalyzed: Combined Metrics Matter. In 2018
IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). 314-318.

X. Wang, L. Xiao, K. Huang, B. Chen, Y. Zhao, and Y. Liu.
2020. DesignDiff: Continuously Modeling Software Design
Difference from Code Revisions. In 2020 IEEE International
Conference on Software Architecture (ICSA). 179-190. https:
//doi.org/10.1109/ICSA47634.2020.00025

Colin Ware, David Hui, and Glenn Franck. 1993. Visualizing
Object Oriented Software in Three Dimensions. In Proceedings
of the 1993 Conference of the Centre for Advanced Studies on Col-
laborative Research: Software Engineering - Volume 1 (Toronto,
Ontario, Canada) (CASCON ’93). IBM Press, 612-620.

Colin Ware and Peter Mitchell. 2008. Visualizing Graphs in
Three Dimensions. TAP 5 (01 2008). https://doi.org/10.1145/
1279640.1279642

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. 2016. Identi-
fying and Quantifying Architectural Debt. In IEEE/ACM 38th
International Conference on Software Engineering (ICSE). 488—
498. https://doi.org/10.1145/2884781.2884822

https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1109/ICSE.2013.6606638
https://doi.org/10.1145/1117696.1117701
https://doi.org/10.1109/ICSA47634.2020.00025
https://doi.org/10.1109/ICSA47634.2020.00025
https://doi.org/10.1145/1279640.1279642
https://doi.org/10.1145/1279640.1279642
https://doi.org/10.1145/2884781.2884822

	Abstract
	1 Introduction
	2 System Comprehension in Code Reviews
	3 Striff Diagrams
	3.1 Managing Understandability in Striffs

	4 Algorithm
	5 Discussion
	References

