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Abstract

The trace assertion method is a formal state machine based method for specifying module
interfaces. A module interface specification treats the module as a black-box, identifying all
module’s access programs (i.e. programs that can be invoked from outside of the module),
and describing their externally visible effects. In the method, both the module states and
the behaviors observed are fully described by traces built from access program invocations
and their visible effects. A formal model for the trace assertion method is proposed. The
concept of step-traces is introduced and applied. The stepwise refinement of trace assertion
specifications is considered. The role of non-determinism, normal and exceptional behavior,
value functions and multi-object modules are discussed. The relationship with algebraic
specifications 1s analyzed. A tabular notation for writing trace specifications to ensure
readability is adapted.

1 Introduction

Software modules, viewed as “black boxes” [25, 23], hide some design decisions and provide ab-
stract data types. They can be specified using the trace assertion method. A trace is a complete
history of the visible behavior of a module. It includes all events affecting the module, even-
tually with the outputs produced. Formally a trace is a sequence of events. The fundamental
principle is that a trace specification describes only those features of a module (or an object in
general) that are externally observable and the central idea of the approach is that traces can
be divided into clusters and each cluster is represented by a single canonical trace.

The trace assertion method was first formulated by Bartussek and Parnas in [3], as a possible
answer for problems with algebraic specifications [7, 34], which will be discussed later. It also
can avoid the problem of overspecification in model-oriented specifications, e.g. [1]. A typical
example is the use of a sequence for specifying a stack module, where PUSH will append the new
element either at the front or the tail of the sequence, the choice being arbitrary. In the trace
agsertion method, this decision is avoided. Since its introduction the method has undergone
many modifications [12, 22, 27, 33]. In recent years, there has been an increased interest in the
trace assertion method [14, 16, 15, 24, 28, 32]. However, a satisfactory foundation has not yet
been developed.
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The trace assertion method is based on the following postulates:
e Information hiding [25, 23] is a fundamental principle for specification.
o Sequences are simple and powerful tool for specifying abstract objects.

o Fuplicit equations are preferable over implicit equations like those of algebraic specifica-
tions.

e State machines are simple and powerful tool for specifying modules.

For many applications state machines are better than algebras, and their use for specification
is growing [1, 2, 11]. State machines (not necessary finite) are equivalent to algebras. This
relationship differs for different machines and algebras, but the general idea of relationship may
be illustrated as follows:

é(p,a)=q & a(p)=q,
———— —_———

state machine algebra

where § is a transition function of a state machine with a as a function name, and a(p) is a
function named «a applied to p. See [8, 4] and Section 15.

The term “trace” has at least two different meanings. One it that a trace is just a se-
quence of events, actions, operations, or systems calls, i.e. it is a sequence of specially inter-
preted elements. The other meaning is that a trace is an element of a partially commutative
monoid, where the monoid operation is concatenation (see [6]). In the second case the name
“Mazurkiewicz traces” is often used [6, 18] . Traces in the first sense can be treated as a special
case of the second (the independency relation is empty, i.e. no commutativity at all). The
“step-traces” used in this paper lie somewhere between the first and the second meaning.

The contributions of this paper to the trace assertion method are:

e The role of nondeterminism, which caused some problem in the previous models is ex-
plained.

e The concept of exceptional behaviour if formally analysed.
e The role of value functions, in particular for nondeterministic modules, is discussed.

e The use of step-traces to overcome difficulties with asymmetry caused by the use of ordi-
nary traces is proposed.

e A notion of refinement for trace assertion specifications is introduced.

e The use of abstract state constructors for the problem of finding canonical traces is certain
situations is suggested.

A formal model for multi-object modules is proposed and discussed.



Overview. In the next section we introduce and briefly discuss three simple modules. These
modules are used to illustrate the major problems and solutions. In Section 3 the question
“What is an atomic observable event?” is discussed. Section 4 reviews the fundamentals of
the relational model of programs and of program refinement. The automata model for module
specifications is introduced in Section 5, together with a notion of module refinement and a
simulation condition. A module access-program may return some values, but is it absolutely
necessary to specify this fact by a separate output value function? This problem is discussed in
Section 6. Objects described by the sequences and the concept of step-sequences is discussed in
Section 7, while automata with states specified by the step-sequences are analyzed in Section 8.
The formal concept of a trace assertion specification is given in Section 9. The special instances
of the trace assertion specification in Mealy form and the controversial use of invisible actions are
discussed respectively in Sections 10 and 11. Exceptional behavior is discussed in Section 12.
The idea is that the misuses can modeled separately and eventually they may be added to
the pure trace specification as an enhancement. Section 13 defines a format for the trace
specification technique. All the examples from Section 2 are formally specified in this format.
Refinement with these examples is illustrated in Section 14. Section 15 deals with multi-object
modules. The uniquely labeled sets of step-traces are introduced and used as a specification
tool. The relationship between the trace assertions and algebraic specifications is analyzed in
Section 16. The last section contains final comments.

2 Introductory Examples

We shall use the following examples of modules: Stack, Unique Integer, Very Drunk Stack
and Drunk Stack. Each module is designed to implement a single object. The Stack module
provides three access programs,

e PUSH (i): enters an integer ¢ on the stack,
e POP: takes no arguments and removes the top of the stack, and
e TOP: takes no arguments and returns the value which is on the top of the stack.

Intuitively, a state of the stack is determined by the finite sequence of integers, the last ele-
ment of the sequence represents the top of the stack, and the first represents the bottom. Note
that every sequence of properly used access programs leads to exactly one state. For instance
PUSH (4).PUSH (1).POP.PUSH (7). TOP and PUSH (4).PUSH (7) both lead to the state (4, 7).
They could be seen as equivalent and we can choose for instance the trace PUSH (4).PUSH (7)
as a canonical trace representing the state (4,7).

The Unique Integer module provides only one access program,

o GFT: does not take any argument and returns an integer value from the set of integers
a machine can represent.

The only restriction on the return value is that it cannot be any value that was returned by
previous GFET invocations. Intuitively the state of Unique Integer is determined by the set of
all integers that were returned by all previous GFET invocations. In this case the sequence, say



GET.GET.GET, corresponds to any set {iy, iy, i3}, where iy, iy and i3 are distinct integers.
However, the invocation of GFET is only a part of a single observable event, an invocation of
GET returns an integer 7, so the full observable event is a pair (GET, i), or, more conveniently,
GFET:i. A pair GET:iis a call-response event, with the call GET and the response i. Any
trace built from GFET:i pairs describes one state. For instance both GET:5.GET:1.GET:8,
and GET:1.GET:5.GET:8, describe the state {1,5,8}. They could be seen as equivalent and
we can choose for instance GET:1.GET:5.GFET:8 as the canonical trace. However, since the
order of GFT’s is not important, quite opposite, it may cause some problems when imposed,
we will use a canonical step-trace (GET:1.GET:5.GET:R), as a state descriptor. The operator
(-) makes the order irrelevant, i.e. (GET:1.GETH.GETS8)= (GETS8.GET:1.GET5), etc. (see
Section 7).

Both Stack and Unique Integer can be modeled by state machines (automata) for which
every trace describes exactly one state. The difference is that for the Unique Integer traces are
built from pairs (call, response) while for Stack calls alone are sufficient. The case when traces
built from calls alone are sufficient are called output independent.

Module Drunk Stack is the same as Stack except that access program POP behaves differently,

e POP: if the length of the stack is one removes the top element, if the length is greater
than one removes either the top element or the two top elements of the stack.

Now the trace PUSH(7).PUSH (4).PUSH (1).PUSH (3).POP may lead to two states: (7,4, 1)
and (7,4). Adding outputs to the events does not change the situation since both PUSH
and POP produce no output. However, each state is unambiguously described by an ap-
propriate trace built from PUSH calls. For instance PUSH (7).PUSH (4).PUSH (1) describes
the state (7,4,1), and only this state, so canonical traces can be built. However, the traces
PUSH (7).PUSH (4).PUSH(1)and PUSH (7).PUSH (4).PUSH (1).PUSH (3).POP may no longer
be considered as equivalent, they lead to different sets of states. They could be interpreted as
stmilar since the sets of states they represent are not disjoint, and they both belong to the same
cluster of traces. The cluster of traces they belong to is the set of all traces that may lead to the
state (7,4, 1). This cluster is unambiguously represented by the trace PUSH (7).PUSH (4).PUSH (1).
The program PUSH is “sober” so it can be used to specify canonical traces.

The use of output independent traces is sufficient for Drunk Stack. It can also be modeled
by a non-deterministic state machine with states unambiguously described by canonical traces.

The Very Drunk Stack has two “drunk” access programs POP and PUSH. Access programs
TOP and POP are the same as for Drunk Stack, while the behavior of PUSH is the following,

e PUSH (i): enters an integer 7 either once or twice on the stack.

In this case the trace PUSH (7).PUSH (4) leads to (7,4), (7,7,4), (7,4,4), or (7,7,4,4). More-
over, each trace which does not lead to the empty stack, may lead to at least two different
states. Thus canonical traces, interpreted as traces that can unambiguously describe states,
cannot be defined. We need to proceed differently. One way is to observe that the state (7,4)
is the only state that can be reached by both the trace PUSH(7).PUSH (4) and the trace
PUSH (7).PUSH (4).POP.POP. Thus the set of traces

{PUSH(7).PUSH (4) , PUSH(7).PUSH (4).POP.POP}



could be used as a trace descriptor of the state (7,4). One may observe that every state can
unambiguously described in this sense by a finite set of traces. Modeling states of modules
by sets of canonical traces was proposed in [24]. However, we reject such an approach. The
sets of traces that describe states can be large and complex even for relatively simple, non-
deterministic modules. We believe such an approach will result in a complex and unreadable
specification. We propose the use of abstract constructor programs instead. In the case of Very
Drunk Stack, all states can easily be specified by an abstract constructor (invisible) program
push1(7) which pushes i exactly once on the stack. The specification obtained is simple and
natural (see Section 13, Figures 8 and 9).

3 Alphabet

Since a trace specification describes only those features of a module that are externally observ-
able, the question arises what an atomic observation is. What constitutes an alphabet from
which the traces are built? We consider two kinds of observations:

e call events like PUSH (5), and
e call-response events like GET"5.

Let f be the name of an access program and let input(f) and output(f) be the sets of possible
argument and result values. The signature sig(f) is the triple:

sig(f) = (I, input (f), output (f)).

We assume that neither input(f) nor output(f) are empty by having input(f) = {nil} and
output(f) = {nil} as default. For example:

sig(PUSH) = (PUSH , integer,{nil}),

sig(TOP) = (TOP,{nil},integer),

sig(POP) = (POP,{nil}, {nil}).
For a finite set E of access program names, the signature sig(F) is the set of all signatures of
fekr:

sig(F) = {sig(f) | f € F}.

Given F, the call-response alphabet Ag is the set of all possible triples, written f(z):¢g of access
program names, arguments, and return values:

Ap=A{f(z)g|f € F,z €input(f),y € output(f)}.

We adopt the convention of omitting nil in signatures. For example, for the stack modules we

have £ = {PUSH, TOP, POP} and:
Ap ={PUSH (i) | i € integer} U {TOP:i | i € integer} J{POP}.

For a given set F of access program names, we also define the call alphabet g and the response
alphabet OF:

Yp=A{f(x) | f € E,x € input(f)},

Op={d|3f € E.d € output(f)}.



Note that the sequences of call-response event occurrences are what is really observed. However,
one may abstract away from the output values, if states can be unambiguously described by
sequences of call event occurrences only.

4 Relational Model of Programs

We review the fundamentals of the relational model of programs (e.g. [30]). Data refinement is
introduced according to [10], except that, rather than taking relations extended by a bottom
element, “demonic relational composition” and “demonic refinement” is used.

We write S < T for the set of all relations between S and T, formally defined as S +
T = 25%T For relations Q € S <+ T and R € T <+ U, the relational composition Q o R, the
relational image Q)[s] of a set s C 9, and the relational image @Q(z) of an element z € S are

QoR=A{(x,2)[y.2 QyAy Rz},
Qls] ={y|3r.z Qynzes},
Qz) ={ylz Qy}.
Here, z Q y stands for (z,y) € Q. If @ is interpreted as a (possibly nondeterministic) program
over initial state space S and final state space T, then the domain of @), i.e. the set of all initial
states which are related to at least one final state, is the precondition for which execution of ()
will terminate with a defined outcome. Outside its domain, program ) may not terminate.
Using the notation Q(z) for the image of z under R suggests that we may equivalently
view () as a set valued function. In particular, where convenient, we define a relation ¢ by an
equation of the from Q(z) = e for all «.
The sequential (demonic) composition ¢ ; R is @ o R restricted to those initial states for
which @) leads to intermediate states in which R is defined. If ) y and y is not in the domain
of R, then z is not in the domain of ¢} ; R:

Q; R={(z,2)[2(QoR)zA(Vy.2 Qy= R(y)#0)}.

Assume @, Q" € S + S. Relation Q' is an (algorithmic) refinement of @ if Q' is “more
deterministic” than @ and the domain of @’ is not smaller than the domain of Q:

QLQ & (Ve . Q) #0= Q'(x) C Q) AQ'(x) #£0).

Now assume that @ is as above and Q' € S’ <+ 5’. Let R be a relation between the state spaces
of Q and Q',ie. R€ S« S'. Then @' is a data refinement of () via R means:

QErQ & (Vo. Q) # 0= (RoQ)(z) C(QoR)(x)A(ReQ)(z)#D).

Algorithmic refinement is a special case of data refinement, Q Cj;; Q' < Q C Q' where Id is
the identity relation. Refinement is reflexive and transitive in the sense that ¢ C ¢ and for

Q" € 8" ¢ 8" and R' € §' 5 S":
QCr Q' NQ Cr Q"= QLCrop Q"

Sequential composition is monotonic with respect to refinement:

defined as follows:

PCrRP'ANQCRQ = P;QLCgr P ; Q.



5 Automata

The standard automata model is used for module specifications by associating signatures with
the alphabet, similarly to [20]. Data refinement is used for forward simulation of automata.
Simulations of automata are further discussed in in [10, 21].

Let A be an alphabet, A* be the set of all sequences built from the elements of A including
the empty sequence denoted by . For every two sequences z,y € A*, their concatenation is
denoted by z.y. A (nondeterministic) automaton A is a quadruple,

A= (A7S7 o, 80)7

where A is the alphabet, S is the (finite or infinite) set of states, g is the transition relation,
o€ A — 5 9 and sy € 5 is the initial state.
The extended transition relation p* € A* — 5 < 5, is defined for every 2 € A* and a € A

as:

o"(e) =1d,

0" (z.a) = ¢*(x) ; o(a).
We use automata for specifying modules: The set A consists of sequences of call-responses,
the set S is the state private to the module in the sense that it is only accessed through calls
to the module, the state sy is the initial state of the module, and the function o specifies the
change of the module’s state for each possible call. Formally, for a given signature F, a module
specification A is an automaton:

A= (AE757 o, 80)-

The set L(A) = {z € A* | o*(z)(s0) # 0} contains all valid sequences of call-responses of the
module, i.e. describes the normal behavior of the module.

Module A is transition deterministic if |o(b)(s)| < 1 for all b € Ag and s € 5. Module A4 is
output deterministic if for all a € X there exists at most one d € Og such that p(a:d) # 0,
where ) is the empty relation. Module A is deterministic if it is both transition deterministic
and output deterministic.

Abstraction in the module specification is achieved in two ways. First, the automaton may
be non-deterministic, thus hiding implementation decisions. Secondly, the automaton can use a
more abstract state space than would be required for an (efficient) implementation. Abstraction
is formalized by introducing a refinement relation between modules. Module refinement is
defined in terms of the observable behavior, which ultimately are the possible values returned
after a sequence of calls. We first decompose p into a transition relation §4 € ¥ — (5 < 5),
or ¢ for short, and a value relation v4 € ¥ — (S ¢+ O), or v for short:

5(a) = U{o(ad) | d € O,
v(a) = {d | o(ad) # 0}.

The extended transition relation 6* € ¥* — (5 <+ ), is defined by §*(¢) = Id and 6*(z.a) =
§*(z) ; 8(a). The response relation ry € Xt <+ O, or r for short, defines the set of all possible
responses (outputs) after a non-empty sequence of calls:

r(z.a) = (o"(z) ; v(a))(s0)-



For a given signature F,let A = (Ag, S, 0, %) and A" = (Ag, 5, ¢/, s§) be module specifications
with the same alphabet but possibly different state space, transition function and initial state.
Then A’ is a behavioral refinement of A, written A < A’, if after any sequence of calls for which
A returns some defined output, A’ returns also at least one output value and all the possible
outputs returned by A’ would also possible for A:

ASA’C}TAETA/.

Note that behavioral refinement is expressed without direct reference to the states of A and
A’ If follows immediately that behavioral refinement is reflexive and transitive. For example,
given appropriate definitions of the modules, we have:

Very Drunk Stack < Drunk Stack and Drunk Stack < Stack.

Let F be a signature, let o € Agp — S < S and o' € Ap — 5 <+ 5 be transition relations
with the same alphabet but different state space, and let R be a relation between S and S’. We
note that Agp C ¥p x Og. Transition relation g is data-refined by o', written o Cr o/, means
that for a given initial state and access program call, the outputs which are possible with o’
are also possible with p (the nondeterminism in selecting a response may be reduced) and the
final states which are possible for o’ are also possible with ¢ (the nondeterminism in selecting
a final state may be reduced), where the initial and final states are related via R. Moreover,
whenever for a given initial state and access program call at least one response and final state
are defined in p, there must be also at least one response and final state defined by o’ (the
domain must not be reduced), where the initial and final stated are related via R. For this, let
0 €Y X5+ Op x5 be arelation which is isomorphic to ¢ but makes ¥ g part of the initial
state space and Of part of the final state space. Data refinement is defined in terms of ¢ and
o'

0Cro & 0Cxr 0,
s (o(ad)) t & (a,s) o (d, ).

Module specification A’ simulates A via simulation relation R if the initial values are in relation
R and the transition relations are data refined via R:

ACrA & s RshNoCr 0.

If for some relation R module A’ simulates module A4, then A’ is a behavioral refinement A.
Hence this gives a practical way of establishing module refinement:

Theorem 5.1 For a given signature E, let A = (Ag,S,0,%) and A" = (Ag, S, 0, s)) be
module specifications. If R € S <> S’ then:

ACp A= A< A

For the purpose of the proof we generalize the data refinement relation to allow different relations
for the initial and final state space. Assume Q € Sp <+ S1, Q' € 5§+ S|, T € S «+ S, and
U € S1 « S]. Data refinement of @ by @' via T, U is defined by:

QCruv Qe (Vo. Q@) #0= (ToQ)(z) C(QoU)x)A(ToQ)(x)#0).



Ordinary data refinement is a special case since Q Cr Q' < Q Cr 7 Q. Sequential com-
position is monotonic with respect to generalized data refinement in the sense that, assuming
additionally R € S) «+» Sy, R' € 5] + 5}, and V € 53 + S

QCrv Q@ ANRCyyv R=Q:;RCrv Q ;R

Proof of Theorem 5.1 First, we observe that by the monotonicity of sequential composition,

using induction over z:
Vo € 3% .0%(2) Cr 84 ().

Secondly, from the definition of v4 and o Cg o' we get:
Ve € ¥ . va(a) Cpq vi(a).
iJFrom these two, using the monotonicity property above, we conclude:
Ve eX  aeX.8(x);vala) Cra 64 (2) 5 var(a).
For removing a data refinement on the initial state we have that for any @, R, s, s":
SRS'NQCru Q= (Qs) £0= Qs C Qs) A Q'(s) # D).
Since s9 R s{, we apply this lemma to the line above and, using the definition of r4, get:
VeeX aeX. rq(r.a) #0= ra(z.a) Cra(z.a) Ara(z.a) #0,

which is equivalent to r4 C rys, and therefore implies A < A’. [ |

6 Mealy Machines

In contrast to automata, Mealy machines specify the next state and the output by separate
functions. For a given signature F, a Mealy machine M is a tuple,

M = (Ag, S, 9, v, s)

where A g are call-responses of signature F, S is the (finite or infinite) set of states, § € ¥y —
S ¢ 5 is the state transition relation, v € Xy — 5 — Opf, sp € 5 is the initial state, and all
valid call-responses of § and v are according to Ag:

Va € Xp,s€85.6(a)(s) # 0= aw(a)(s) € Ag
For every Mealy machine M we can construct an automaton Ay,
AM — (AE757 2, 80)

over the same alphabet Ag, same set S of states, same initial state s and the transition relation

0 € Ap — 5« 5 defined by:

iy [ (@) s) i v(a)(s) = d
olad)(s) = {@ if v(a)(s) £ d



a?

5252;(32)::{233}} = & 8(sy, b:2) = {53}

Figure 1: The Mealy machine with ¥ = {a, b}, O = {1, 2,3}, or the deterministic automaton
with A = {a:1, a:2, b:1, b:2, b:3}. The state s; is initial.

The automaton Ay is equivalent to the Mealy machine M in the sense that the set of valid
call-response sequences of M and A are identical. Figure 1 illustrates the relationship between
M and Ajp;. However, not every automaton, even not every deterministic automaton, can be
interpreted as a Mealy machine. In Figure 1, if one adds an arrow from s; to s3 labeled by a:2,
the new automaton cannot be interpreted as a Mealy machine .

We may use both Mealy machines and standard automata as the backbone of our model. The
descriptive power of Mealy machines is at best the same as transition deterministic automata,
only notation is different, more complex in our opinion. It might occasionally be convenient
to use Mealy machines instead of standard automata. As an example, we define simulation
of Mealy machines which implies simulation of the corresponding automata. Assuming M =

(Ag,S,6,v,5) and M' = (Ag, 5,0, v, s§) we define:

MLCp M’C}SoRSé/\(SER(S//\UER v’
vEpv ©VselS €S aeXy.sRs" = v(a)(s)=v'(a)(s)

Theorem 6.1 M Cr M' = Ay Cpr Apyp.

Proof Suppose M = (Ag, 5,68,v,%) and M = (Ag, 5,8, v, s)) We have to show that s R s
and o Cp o where p(a:d)(s) = d(a)(s) if v(a)(s) = d and @ otherwise, and similarly o'(a:
d)(s) = 0'(a)(s) if v'(a)(s) = d and () otherwise. The first part follows immediately from
M Cpgr M’ the second part can be shown to hold by first unfolding the definitions. [ |

The difference is that here the refinements of ¢ and v are dealt with separately, which may
be of practical advantage

'Since v € ¥y — S — Op, then v($, a) can be equal to 1 or 2 but not both. Extending v to X5 — (S < O)
does not help, since it does not indicate that a:1 leads from s; to sz and a:2 from s to s3.
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Figure 2: (a) Total order defined by the sequence a.b.a.c.b.d and (b) Weak order defined by
the sequence a.(a.c.b).(b.c).a.b.

In general the standard automata provide a better and simpler model. In particular adding
non-determinism to value functions in Mealy formalism is problematic and, although possible,
is seldom done, because the formalism becomes complex. In [27, 33, 15, 24] Mealy machines
were used and we believed that resulted in unnecessary complexity and formal problems [33].

After deciding to use automata as a backbone of the specification technique, the next ques-
tion is how to describe the set of states in an as abstract as possible way, i.e. in a way which
does not commit to implementation decisions prematurely.

7 Defining Objects by Sequences

The ingenuity of the trace assertion method ([3]) is to use traces (i.e. some kind of sequences)
not only as a medium to describe behavior, but to specify states as well. Sequences are easy to
specify and understand and, since we observe only traces of call-responses, they provide anyway
the entire visible information.

Let A be an alphabet (possibly infinite), and let 2 € A*. Not assuming an interpretation
of elements of A, what kind of structure can x be, what kind of information can x contain?

Consider z = a.b.a.c.b.d. The sequence x can be interpreted as a total order to, of the
occurrences of elements of A, as illustrated in Figure 2(a). By an occurrence of a we mean a
pair (a, i), where i is a natural number indicating the occurrence.

Consider now the sequence y = a.b.c.d and suppose that we have the additional information
that the order between the occurrences of a, b, ¢, d does not matter. To express this, we intro-
duce a partial operator (-) which takes a plain sequence and removes the order of its elements.
Sequences where each element of the alphabet occurs at most once are called plain. The set
of all plain sequences over A is denoted by Plain(A). We can interpret (-) as transforming a
plain sequence into the corresponding set, for example (y)” can be interpreted as {a, b, ¢, d}.

By mixing “(-)” with standard concatenation “.”, we obtain sequences like a.(a.c.b).(b.c).a.b.
Such sequences are used especially in concurrency theory. They are called step-sequences or
subset languages ([18, 29]). They represent weak (or stratified) partial orders ([9, 18]). Figure
2(b) illustrates this relationship.

Formally step-sequences are constructed as sequences over the alphabet Fin(QA), where for

every family of sets X', Fin(X) ={X | X € YAX is finite}. In this sense our a.(a.c.b).(b.c).a.b

11



corresponds to the sequence of sets: {a}.{a,c, b}.{b,c}.{a}.{b}.

JFrom Szpirlajn theorem [9] it follows that every partial order corresponds uniquely to
the set of all its total extensions. In particular every set X = {ay,...,a,} is a partial or-
der with empty ordering relation, and it can be seen as a description of the set of all total
order that can be built from the elements of X. Since finite total orders can be specified
as sequences, the set {ay,...,a,} can be seen as a description of all plain sequences built
from a,...,a,. For instance {a,b,c} can be seen as a description of the set of sequences
{a.b.c;a.c.b,b.a.c,b.c.a,c.a.b,c.b.a}.

In general a step-sequence can are be interpreted as a set of all sequences corresponding to
all total extensions of the weak orders specified by the step-sequence. For instance the step-
sequence a.(b.a).c.(a.c) defines the set of sequences: {a.b.a.c.a.c,a.a.b.c.a.c,a.b.a.c.c.a,a.a.b.c.c.a}.
The set of sequences corresponding to the step-sequence from Figure 2(b) consists of 12 ele-
ments, including for instance a.a.c.b.b.c.a.b and a.b.c.a.c.b.a.b

Formally, the set of step-sequences over A, denoted (A*), is the smallest set of sequences

over AU {(,)} such that:
e every ¢ € A* is a step-sequence,
o if © € Plain(A), then (z) is a step-sequence,

e if # and y are step-sequences, then z.y is a step-sequence.

(1A}

In addition to the above concatenation on step-sequences, we define weak concatenation,

denoted by “—7. Weak concatenation with an empty step-sequence is defined by:
t—e=2z and e—y=y.

For non-empty step-sequences z and y, the idea of z— y is to merge the last “step” of = with
the first “step” of y. If the result of the concatenation of the last and first “step”, respectively, is
plain, then we have for instance (a.b)— ¢ = (a.c)—b = a.(b.c), (a.b) — (c.d.e) = (a.b.c.d.e),

and (a.(a.b))— ((c.d).a) = a.{a.b.c.d).a.

For non-plain step-sequences, “—” can be illustrated as follows: if 2 = (a.b).c.(a.c) and
y = (a.b).a.c then z—y = (a.b).c.{a.b.c).a.c, i.e. the last step of z, (a.c), is merged with the
first step (a.b) of y. We would also like to write expressions like ({a.b).c.(a.c))— ((a.b).a.c) =
(a.b).c.((a.c)—(a.b)).a.c.

Formally, weak concatenation can be defined as follows. Since every non-empty step se-
quences z, y can be expressed as ¢ = z1.a, y = f.y1, where a = () ora=a, = (s) or § = b,
t and s are plain, t ¢, s ¢, a,b € A, we can define z—y in this case by:

r—y=ux.(a— )y

The interpretation of step-sequences is given by a mapping sem : (A*) — 227, Let set(z)
denote the set of all elements of A, from which the string « € A* is built. For example
set(a.b.c.a.c) = {a, b, c}. The mapping sem may be defined as follows:

1. Vo € A* . sem(z) = {z},
2. Vz € Plain(A) . sem((z)) = {y € Plain(A) | set(z) = set(y)},
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3. Va,y € (A*) . sem(z.y) = sem(z).sem(y),

where “.” in “sem(z).sem(y)” denotes the standard concatenation of sets of sequences (see

[13]). For instance sem((a.b.c)) = {a.b.c,a.c.b,b.a.c,b.c.a,c.a.b,c.b.a}, sem(a.(b.a).c.(a.c))

The two views of step sequences, sequences of sets and sets of sequences, are compatible in
the sense that two step sequences z, y € (A*) are equal, = y if and only if they are equal in
their interpretations as sets of sequences, sem(z) = sem(y).

For all z,y € (A*) we will say that z is a prefiz of y if there is z € (A*) such that y = 2.z
or y =z — z. For every t € (A*) and every a € A we shall write a € ¢ if a is contained in ¢.
For instance a € b.(a.b), and a ¢ b.b.c. We use step-sequences to specify states of automata.

8 Trace Only Automata

Let A = (A,S,p,s0) be an automaton. We shall say that A has the canonical trace property
(ct-property) if for every state s € S there is a trace z; € A* such that o*(z,)(s0) = {s}. Not
every automaton has ct-property and every transition-deterministic automaton has ct-property.
The automaton from the left hand side of Figure 3 does not have ct-property (the automaton
can then “generate” only two traces € and a and it has three states). Frequently there is more
than one z; satisfying 0*(z;)(so) = {s}. For example for the automaton from Figure 1 and the
state s3 we have (s, is initial here) 0*(b:2.(a:2)")(s;) = {s3}, for every i > 0.

If A has ct-property we may define a set of canonical traces [27]. A set of traces CanTr € A*
is canonical if for every s € 5 there is exactly one z; € CanlTr, its unique representation,
such that o*(z;s)(s0) = {s}. Automaton A is isomorphic to A% = (A, CanTr, 0, z,), where
0 (a)(ws) = {@syy -y 25,} <= o(a)(s) ={s1,..., %}

Automata like A are called trace only automata since their states are defined in terms
of traces. Mealy machine counterparts of trace only automata are used extensively for the
trace assertion method, e.g. [14, 16, 15, 24, 27, 33]. The problem is that using traces may
frequently result in a kind of asymmetry which makes the specification less readable than
expected. Consider the automaton on the right hand side of Figure 3. It occurs typically as
part of a greater automaton. The state s4 is unambiguously defined by two traces a.a.b and
a.b.a. Each of them can be chosen as a canonical one. If a.a.b is chosen, then the canonical
trace ¢ = a.a is a prefix of a.a.b, hence we have p(b)(z) = {z.b}. The canonical trace
y = a.b is not a prefix of a.a.b, so o (a)(y) # {y.a}. The asymmetry is induced by the choice
of a canonical trace, the automaton itself is symmetrical, from the state s; we reach s; in two
steps, using both @ and b in any order, a.b or b.a. Such asymmetry makes some specifications
unnecessarily complex. The Unique Integer module is a classical example, but the problem
occurs frequently in real modules as well. The asymmetry disappears when step-traces are used
to identify states. When the state sy is identified by a.(a.b), then both a.b and a.a are prefixes
of a.(a.b) (a.(a.b) = (a.b)—a = (a.a)—D).

For an automaton A with ct-property, we define the set C C (A*) of canonical step-traces.
Let o be an extension of p defined on the Cartesian product of the states and plain traces:

5(1) = {g*(a@) z € sem(t) A (Vy, z € sem(t) . 0" (y) = 0*(2))
0] otherwise
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(a) (b)

Figure 3: (a) Example of an automaton which does not have ct-property and (b) Example of
asymmetry when canonical traces are used.

Now, let C be any subset of (A*) satisfying:
1. Vt € C.3s; € 5.Vz € sem(t) o*(2)(s0) = {s¢},
2. 2Vs € S. 3%, € C. 0%(t,)(s0) = {s}.

The symbol 4! denotes “there exists exactly one”. Note that the ct-property implies the exis-
tence of (at least one) C.

What if an automaton does not have the ct-property? First we must note that such a
situation occurs rather seldom in practice. The Drunk Stack has the ct-property, Very Drunk
Stack does not, but neither of them is a part of any real system. They were chosen to illustrate
potential problems. But if the best and most readable model of a module is an automaton-like
structure without ct-property, we can use a concept similar to labeled transition system [2]. In
contrast to automata, each arrow in a transition system has a unique name. The elements of A
attached to arrows in automata are called labels in transition systems. By “labeled transition
system” we mean that each arrow has two attachments, a unique name, and a not necessarily
unique label. We do not need each arrow to be unique, we need only the ct-property, so the
following construction is proposed.

An automaton with the alphabet of state constructors is a tuple

A= (A7T7S7 o, 80)7

where A is the alphabet, T is the state constructors alphabet, S is the set of states, p is the
transition relation, p € (AUTYT) = S < 5, and sy € S is the initial state. The transition
relation p must satisfy the following conditions:

L.VaeT,s€ 5. |o(a)(s) <1,
2. Vs1,9 €5 . (FaeA.ss€0(a)(s1) & FJaeT . o(a)(s)={s}).

The set L(A) = {a € A* | p*(2)(s0) # 0} describes the normal behavior of the module. The
elements of T do not occur in L(A4). We do not assume ANT = (). The first condition says that
A restricted to T is a transition-deterministic automaton. Hence the ct-property is guaranteed.
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The second condition guarantees that each arrow is marked by one element of A and one element
of T. Since automata with state constructors alphabet do always have ct-property, their states
can always be specified as canonical step-sequences.

Every automaton may be extended to an equivalent automaton with state constructor
alphabet by simply defining T = {(s,a,s') | ' € o(v)(s)}, and extending ¢ onto Y by
o(s,a,s')(s) = {s'}. This construction results in a labeled transition system, and is of a
very little use in practice, but is always possible.

9 Trace Assertion Specifications

Trace assertion specifications emerge when using canonical traces for the states of module
specifications. More precisely, given a signature F, a trace assertion specification TA is a
module specification

TA = (AE767Q7 t0)7

where C C (A%) is a set of step-traces such that every step-trace ¢ describes unambiguously
one state, and this is the state the sequence z € sem(t) leads to:

VieC,z € sem(t).o"(z)(to) = {t}.

For the Stack and Drunk Stack modules, C can just be the set of all sequences of type
PUSH (i).PUSH (i3). ... .PUSH (i), and for instance:

o( TOPAY(PUSH (5).PUSH (7).PUSH (4)) = {PUSH (5).PUSH(7).PUSH(4)}
o( TOPR)(PUSH (5).PUSH (7).PUSH(4)) =10
o(PUSH (5))(PUSH (5).PUSH (7).PUSH (4)) = { PUSH (5).PUSH (7).PUSH (4).PUSH (5)}

The access program called POP behaves differently in Stack than in Drunk Stack, for example:
o(POP)(PUSH (5).PUSH (7).PUSH (4)) = { PUSH (5).PUSH (7)}
for Stack, while for Drunk Stack:
o(POP)(PUSH (5).PUSH (7).PUSH (4), POP)={PUSH (5).PUSH (7), PUSH (5)}.

For the Unique Integer module, the set C can be defined as the set of all step-sequences (GET"
i.GET: . ... .GET:y), where i; = i < j = k, and for instance:

o(GETT)(GET3.GET6.GET9) = {(GET3.GET6.GET9.GET7)}
={(GET3.GET6.GET7.GET9)}
o(GET3)(GET3.GET6.GET:9) =

The Very Drunk Stack cannot be modeled (in a natural way) by TA as defined above.
Given a trace assertion specification TA, we define the competence function « : C X X —
Bool = {0, 1}, in the following way:

_[oifvd e 0. plad)(t) =
r(t @) = {1 it 3d € O . p(a:d)(1) #

= =
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The notion of competence function follows from [24]. It defines what is a misuse. If k(¢,a) = 0,
then the use of a at the state described by ¢ is a misuse. For both Stack and Drunk Stack we
have: k(e, POP) = k(e, TOP) = 0, and (tpu, PUSH (d)) = 0, if ¢, represents the full stack.
Otherwise s(t,a) = 1. For the Unique Integer, (¢, GET) = 0 only if ¢ represents the state
where all available integers are used.

Let 7 : (A*) — (¥*) be a projection mapping, for any a:d € A and z,y € (A*) defined by:

) =c,  wlad)=a,  rley) =r@)ly), (@)= (t().

For example 7w(ay:dy.az:dz.a3:ds.as:dy) = ay.az.a3.a4, and 7w(a:3.(a:2.b:2).(a:3.a:2)) =

a.(a.by.(a.a).
A trace assertion specification TA is output independent if for every z,y € L(TA),

r=y & 7w(2)=7(y),

otherwise it is output dependent. If TA is output independent then 7 can be interpreted as a
one-to-one function, so 77! is a function on 7 (L(TA)).

Both Stack and Drunk Stack are output independent while Unique Integer is not. Note
that in [27, 33] and others the output independent trace assertion specifications are called de-
terministic while output dependent are called non-deterministic.

In our terminology, both Stack and Unique Integer are transition deterministic, while Drunk
Stack is not. Transition determinism does not imply output independence and output indepen-
dence does not imply transition determinism. Unique Integer is transition deterministic but
output dependent, Drunk Stack is not transition deterministic but output independent.

10 Mealy Form of Trace Assertion Specifications

If TA is output independent, it may be represented as a kind of a Mealy machine, with a
separate specification of the output function. Most trace assertion models in literature are
based on Mealy machines. We think that, in general, the automata concept is better, but for
the output independent T'A’s the Mealy model also leads to equally readable specification. It
also helps to explain the relationship with algebraic specifications (see Chapter 16).

Lemma 10.1 If TA is output independent then, for allt € C, a € X, and all d € O,
o(lad)(t) £ 0 = (Vd'#d.é(ad')(t) =0).

Proof. Suppose that there are d,d" € A*, a € C, such that d # d’, and p(a:d)(t) # 0
o(a:d’)(t) # (. Hence for all z € sem( ), x.a.d #+ Qc.a.d’7 while 7(z.a:d) = 7(2).a = 7(t.a:d’),

a
contradiction. []

Lemma 10.1 says that for output independent TA, for every t € C, a € X, there exists at most
one d € O such that p(a:d)(¢) is not empty.
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Given an output independent trace assertion specification, we define the mapping é : ¥ —
7(C) <> w(C), the calls only transition function, as

d(a)(m(t)) = m(e(a:d)(1))
and the mapping v : ¥ — 7(C) = O U {nil}, the output value function as follows:

; ) d if3d e O.p(ad)(t) £
(),0) =1 ititvd € O . o(ad)(t) = 0

v(w

Lemma 10.1 guarantees the well-definedness of § and wv.
Proposition 10.2 If TA is output independent and deterministic then for all t,s € C, a:d € A:
se€o(ad)(t) < w(s)€d(a)(m(t))Av(a)(m(t))=d.

Proof. (=) From the definitions of ¢ and v.

(<) Suppose s ¢ p(a:d)(t). We have to consider two cases.

Case 1. p(a:d)(t) = 0. From the definition of v, we have v(a)(x(t)) = nil # d.

Case 2. o(a:d)(t) # 0. Then §(a)(n(t)) = w(o(a:d)(t)). If w(s) € §(a)(x(t)) then there exists

s' € C such that 7(s) = 7(s’), a contradiction, since T4 is output independent. |

Proposition 10.2 guarantees that for output independent TA’s, the mapping p is completely
defined by ¢ and v.
The Stack is output independent, so instead of

o(TOPA)(PUSH (5).PUSH (7).PUSH (4)) ={PUSH (5).PUSH (7).PUSH (4)},
one can write equivalently, as commonly used in the existing literature:

§(TOP)(PUSH(5).PUSH (7).PUSH (4)) = { PUSH (5).PUSH(7).PUSH (4)},
v(TOP)(PUSH (5).PUSH (7).PUSH (4)) = 4.

Proposition 10.2 allows to represent any output independent trace assertion specification in
an equivalent form, which is called the Mealy form. Formally the Mealy form of TA is defined
by:

TAMely — (Ap 7 (C), 8, v, t).

For every trace assertion specification TA, not necessary output independent, an explicate
value function v, : ¥ — C ¢ O can be defined as v,(a)(t) = {d | o(a:d)(t) # 0}. But v, differs
from v. The function v can only be defined for an output independent TA, occurs together

with ¢ and cannot be derived form 6. The mapping v, is redundant, it is derived from p.
For the Unique Integer module which is output dependent one may just write

o((GET3.GET6.GET9), GETT) ={(GFET3.GET6.GETY.GETT)},
o((GET3.GET6.GET9), GET:i) = 0 if i € {3,6,9},

or one may write equivalently:

o((GET3.GET6.GET9), GETT) ={(GFET3.GET6.GETT.GET9)},
o((GET3.GETS.GET9), GET:) = 0 if i € {3,6,9},
v,((GET3.GET6.GET9), GET) = {i | i ¢ {3,6,9}}.
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The second way is longer and, in our opinion, does not increase readability. It is used in [33]
and others.

All the concepts introduced so far do not allow to model Very Drunk Stack in a natural way. The
reason is that in this case the natural states of the stack, i.e. the sequences of integers, cannot
be unambiguously described by the sequences of call-responses. The solution we suggested in
Section 2 is to introduce a state constructor push1(i) to describe the stack states.

11 Trace Assertion Specifications with State Constructors
Given a signature F, a trace assertion specification with state constructors is an automaton
TTA = (AE7 T7C7 2, t0)7

with the alphabet T of state constructors where, as for trace assertion specifications, C C (1T*)
is the set of canonical step-traces:

VieC,z € sem(t).o"(z)(to) = {t}.

We do not assume Ag N'T = (), although it may often happen. The elements of T\ Ap are
invisible (abstract).

For the Very Drunk Stack module, the set T is the set of all abstract invisible calls push1(i),
where i is any available integer, and C is the set of all sequences pushl1(iy). ... .pushl(i). In
this case we have Ay N'T = (). For instance

o(TOPA)(pushl(5).push1(7).push1(4)) = {pushl(5).pushl(7).push(4)}
o(TOP:R)(pushl(5).pushl(7).push1(4)) =10

o(PUSH (5))(push1(5).push1(7).push1(4)) = {t, t2}
o(POP)(push1(5).push1(7).push1(4)) = {push1(5).push1(7), push1(5)},

where
ty = push1(5).push1(7).push1(4).push1(5),
ty = push1(5).push1(7).push1(4).push1(5).push1(5).

A trace assertion specification with state constructors T TA defines the following normal
behavior

L(YTA) = {z € A" | o"(z)(to) # 0}

Note that Y is not involved in L(TTA). The output independent T TA, the Mealy form of an
output independent YT TA, and the competence function s are defined analogously as for TA.

Introducing invisible state constructors is clearly against the philosophy of trace assertion
method as formulated in [3]. One of the advantages claimed in [3] was no need for hidden
functions to specify modules with delays. The algebraic specifications of those modules have
required hidden functions. On the other hand, what we really want is to specify the visible
behavior of a module in the most easy and readable yet precise way. The states are auxiliary
concepts, and the invisible calls seem to serve well as the state constructors.
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12 Enhancements and Exceptional Behavior

Large specifications are best developed and presented in a number of steps of increasing complex-
ity. In particular, we suggest that the first step describes the normal behavior and exceptional
behavior is added in the second (or later) step. The second step can be seen as an enhance-
ment of the first step, in the sense that it additional behavior is specified while the original is
preserved.

Let us take the stack module and a trace t = PUSH (i;).PUSH (i3). . . .. PUSH (i,). Suppose
that the stack has a bound n, i.e. t is a state of the full stack, and consider the trace:

t.PUSH (int1) = PUSH(ir).PUSH (i3). ... .PUSH (i,).PUSH (in11).

Since we cannot prevent such an access program call to occur, the question arises what behavior
this trace describes. Defining the transition relation to be empty in this case allows nontermi-
nation. Alternatively, we can specify that PUSH (i,+1) should be ignored or that it replaced
the previous top element.

However, in any case the state structure of the module is independent of its exceptional
behavior. All states of the stack are entirely defined by its normal behavior.

Let TA = (Ag,C,0,1) be a trace assertion specification. If x(¢, a) = 0 then for all d € O, we
have p(a:d)(t) = (, which means that a at ¢ is a misuse and it does not generate any normal
behavior. In principle, an enhancement of TA consists in defining new o such that o’ (a:d)(t) # 0
when k(t,a) = 0. It is a structure complimentary to TA. Formally, an enhancement enh(7TA)
of TA is a triple

enh(TA) = (Ap,C', o),

where: Aps is an enhanced call-response alphabet, C' C (A%,) is an enhanced set of canonical

traces, o' € Agi — C' < C' is an enhanced transition relation, which is defined only if the
transition relation of TA is not defined,

VieC . YaeXg .k (t,a) =1=k(t,a) =0,

where k and k' are the competence functions of TA and enh(TA), respectively.
The enhancement enh(TA) is called plainif Ay C Ag, and C' C C. Non-plain enh(TA) means
that there are some special error recovery states and some separate error recovery procedure.

We shall not consider such examples in this paper.
For Stack and Drunk Stack a plain enhancement can be defined by:

d(POP)(c) = ¢ (TOP)(e) = {e}  and o'(PUSH(i))(tpur) = {tuir}

where t7,;; is the canonical step-trace corresponding to the full stack, and ¢'(a:d)(t) = 0 for the
rest of t, a, and d. For the Unique Integer module the enhancement can be defined by:

Ql( GET:nil) (ta”) = {ta”}

where t,; is the canonical trace corresponding to the state where all available integers are used
up, and o'(a:d)(t) = 0 for all other ¢, a, and d.
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Enhancements describing exceptional behavior are typically output independent, hence can be
represented in a Mealy form (Ag/, 7(C’),d’,v"). The definition is practically identical as for
output independent TA’s. The only difference is that the enhancements do not possess initial
step-traces.

For Stack and Drunk Stack the plain form of an enhancement can be defined by:

5/(POP) (8) = 5/(TOP) (8) = {8}, 5/(PUSH(d))(tfu”) = {tfu”}, U/(TOP)(tfu”) = nil,

and ¢'(a)(t) = 0 for the rest of ¢ and a.

We obtain the enhanced trace assertion specification E'TA by taking the composition (union) of
TA and the enhancement enh(TA): The full specification is just a union of TA and enh(TA),
ETA= TAU enh(TA), i.e.

FTA = (Ag UAg,CUC ' oU0, to).

Hence ot = p U o’ satisfies p* € (AUAg) = (CUC') & CUC', and forall t € CUC',a €
ApUAR,de OU O,

o(t,a:d) if t € CAK(t,a)=1
o'(t, a:d) otherwise

oF(a:d)(t) = {

Proposition 12.1 For any plain enhancement enh(TA):

TA < TAU enh(TA)

Proof. Since enh(TA) is plain, we have that ETA = TAU enh(TA) = (Ag,C,0U o', ty). We
apply Theorem 5.1 with R = Id. Refinement follows immediately from the above observation
that o1 defines additional behavior only if x(t,a) = 0. [

Mealy In a

For every output independent ETA we can standardly built its Mealy form ETA
very similar way we may define an enhancement for the trace assertion specification with state
constructors as a composition of a trace assertion specification with state constructors and its

enhancement.

13 Specification Format

To be useful in practice, the trace assertion technique must provide some specification formats.
Two such formats are described and later used. Any trace assertion specification in the standard
form consists of four sections: Syntaz, Canonical Step-trace Definition, Trace Assertions and
Dictionary. A trace assertion specification in the Mealy form consists of five sections: Syntaz,
Canonical Step-trace Definition, Trace Assertions, Output Values and Dictionary.

In the Mealy form the Syntaz section is just a table which specifies for each module access-
program name f € FE, the possible inputs input(f) and by the number of arguments each
program takes and the type of each argument, and the possible outputs output(f) by the type
of each return value. In the standard form it also specifies call-response formats for all access
programs.
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In the Canonical Step-trace Definition section, the predicate canonical and the initial canon-
ical step-trace are defined. In general this could be a complex definition with a tabular notation
involved (c.f. [27, 33]). However, in the majority of (well thought of) cases this is a relatively
simple formula. The convention

[e(2:)]i-;
as a shorthand for e(z;).e(z;41). ... .e(23) and € if k < j, is often used.

In the standard form the Trace Assertions section is a sequence of trace assertions of the

form

olad)(t) ={ts,..., 4}

for all calls a defined in the Syntax section. The traces ¢, ¢, ..., {; are the canonical step-traces.
Since p is a total function it must be defined for every possible a¢ and d. The convention that
empty relations or sets, respectively, are specified by omission is used. If for particular values of
t, a and d, the value of the function p(a:d)(t) does not appear in the Trace Assertions section
this means that p(a:d)(t) = 0. In the Mealy form the Trace Assertions section is a sequence of
trace assertions of the form 6(¢,a) = {t1,..., &}.

To specify transition deterministic trace assertions the following tabular notation is used?.

‘ Conditions ‘ Trace Patterns ‘ Equivalence ‘
o(a:d)(t) =| conditionl patternl(t) this_c’

The column FEquivalence defines the canonical step-trace ¢’ such that p(a:d)(¢) = {t'}. Since ¢
here is a variable, ¢’ could be different for different ¢, the columns Conditions and Trace Patterns
are used to specify all different cases. The column Trace Patterns contains appropriate patterns
(or their characteristic predicates) for ¢, while the column Conditions contains predicates on the
trace and argument variables. The first row above should be read if conditionl and patternl(t)
then p(a:d)(t) = {this_c’}. The columns Conditions and Trace Patterns can be omitted if not
needed. The empty cells in those columns denote the predicate true.

For trace assertions which are not transition deterministic the tabular notation is slightly
different, namely:

‘ Conditions ‘ Trace Patterns H Clusters H
conditionl atternl (t t t t t

g(a:d)(t) — o P ( ) 1,1 ‘ 1,2 | 11,3 ‘ 1,4
condition? pattern2(t) ta1 to,2

In this case the rows should be read as follows:

if conditionl and patternl(t) then o(a:d)(t) = {ti1, 12, ti3, tiats

if condition2 and pattern2(t) then o(a:d)(t) = {tz1, 2,2},
etc. Since in this case the canonical step-traces do not represent equivalence classes but some
clusters of traces the third column has now the name Clusters.

For the Mealy form we have also the Qutput Values section, which defines the value function
v. A similar tabular notation is used, in this case a table consists of the columns Conditions,
Trace Patterns and Value. The nil values are specified by omission.

2See [17, 19, 26] for details on tabular notation.
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Syntax of Access Programs

‘ Name ‘ Argument ‘ Value ‘ Call-Response Forms ‘

POP POP:nil
PUSH integer PUSH (d):nil
TOP integer TOP:d

Canonical Step-traces
canonical(t) < t=[PUSH(d;)]7—; N0 < n < size
lg=¢

Trace Assertions

‘ Trace Patterns ‘ Equivalence ‘

o(POP)(t) =| t = s.PUSH (d) s
Yo t=c¢ £
‘ Condition ‘ Equivalence ‘
o(PUSH (d))(t) =| length(t) < size t.PUSH (d)
% length(t) = size t

‘ Condition ‘ Trace Patterns ‘ Equivalence ‘
o(TOP:d)(t) = t = s.PUSH (d) t
% d=nil t=¢ €

Dictionary
size : the size of the stack
length(t) : the length of the trace ¢

Figure 4: Enhanced Trace Assertion Specification for Stack Module

The Dictionary section provides the definitions of the terms, auxiliary functions, types and
other structures that are used in the body of the specification. The Dictionary section is rather
short for simple examples.

The format for enhanced trace assertion specification is basically the same as the described
above. The only difference is that new rows that correspond to the enhancement are added.
We use the convention that all the rows added by the enhancement are marked by the symbol
“%” at the beginning.

Figures 4, 5, 6, 7, 8 present various forms of trace assertion specifications of the Stack,
Drunk Stack and Very Drunk Stack modules in the specification format described above.
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Syntax of Access Programs

‘ Name ‘ Argument ‘ Value ‘
POP
PUSH integer
TOP integer

Canonical Step-traces
canonical(t) < t=[PUSH(d;)]7—; N0 < n < size
lg=¢

Trace Assertions

‘ Trace Patterns ‘ Equivalence ‘

o(POP)(t) =t = s.PUSH (d)

Yo t=c¢ £
‘ Condition ‘ Equivalence ‘
o(PUSH (d))(t) =| length(t) < size t.PUSH (d)
% length(t) = size t

- ‘ Trace Patterns ‘ Equivalence ‘
eTonn = o eTOR= . t2e /
Yo

t=c¢ t

Values

‘ Trace Patterns ‘ Value ‘
v(TOP)(t) = t=s.PUSH(d) d
% t=¢ nil

Dictionary
size : the size of the stack
length(t) : the length of the trace ¢

Figure 5: Mealy Form of the Enhanced Trace Assertion Specification for Stack Module
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Syntax of Access Programs

‘ Name ‘ Value ‘ Call-Response Forms ‘

‘ GET ‘ integer‘ GET:d ‘

Canonical Step-traces
canonical(t) < t=([GET:d;]"_ ) N0 < n <size A (d; =d; & i=7])
lg=¢

Trace Assertions

‘ Condition ‘ Equivalence ‘
o(GET:d)(t) =] length(t) < limit N\ GET:d ¢t | t— GET:d
% length(t) = limit A d = nil t

Dictionary

limit : the number of available integers limit = mazinteger — mininteger + 1
mazinteger : the maximum available integer

mininteger : the minimum available integer

length(t) : the length of the trace ¢

Figure 6: Enhanced Trace Assertion Specification for Unique Integer Module

14 Refining Modules

We illustrate the refinement of trace assertion specifications by showing that Drunk Stack is
refinened by Stack. From the Trace Assertion section in Figure 4 we get following transition
relation pg for Stack:

0s(POP)(t,t) & 3d,s. (t=s.PUSH(d)ANU =s)V(t=c At =¢)
&S3d . t=t.PUSH(d)V (t=c Al =¢),
t,t') < (length(t) < size At' = t.PUSH(d)) V (length(t) = size Nt = 1),

0s(PUSH (d))(
(t,t) ©3ds.(t=s.PUSH(A)NU =t)V(d=nilANt=c At =¢).

0s(TOP:d)

We transform p into g such that t (¢(a:d)) t' < (a,t) o (d,t') (see Section 5):

65(POP, t)(nil,t') & o5(POP)(t, 1),
o5 (PUSH (d), t)(nil, ') & os(PUSH(d))(t, 1),
6s(TOP, t)(d, t') & 05(TOP:d)(1, 1),
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Syntax of Access Programs

‘ Name ‘ Argument ‘ Value ‘ Call-Response Forms ‘

POP POP:nil
PUSH integer PUSH (d):nil
TOP integer TOP:d

Canonical Step-traces
canonical(t) < t=[PUSH(d;)]7—; N0 < n < size
lg=¢

Trace Assertions

‘ Trace Patterns H Clusters H
t = PUSH (d) €
POP)(t) =
o POPY) = P USH (). PUSH () | = . PUSH(d)) B
Yo t=c¢ £
‘ Condition ‘ Equivalence ‘
o(PUSH (d))(t) =| length(t) < size t.PUSH (d)
% length(t) = size t

‘ Condition ‘ Trace Patterns ‘ Equivalence ‘
o(TOP:d)(t) = t = s.PUSH (d) t
% d=nil t=¢ €

Dictionary
size : the size of the stack
length(t) : the length of the trace ¢

Figure 7: Enhanced Trace Assertion Specification for Drunk Stack Module
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Syntax of Access Programs

‘ Visible Name ‘ Abstract Name ‘ Argument ‘ Value ‘ Call-Response Forms ‘

POP POP:nil
PUSH integer PUSH (d):nil
TOP integer TOP:d

‘ ‘ pushl ‘ integer ‘ pushl(d) ‘

Canonical Step-traces
canonical(t) <t = [pushl(d;)]7—y N0 < n < size
lg=¢

Trace Assertions

‘ Trace Patterns H Clusters H
t = pushl(d) €
POP)(t) =
o )(® t = s.pushl(dy).pushl(dy) || s.pushl(dy) | s
Yo t=c¢ £
‘ Condition H Cluster H
o(PUSH (d))(1) = length(t) f size — 1 || t.push1(d).push1(d) | t.pushl(d)
length(t) = size — 1 t.pushl(d)
% lenght(t) = size t
‘ Condition ‘ Trace Patterns ‘ Equivalence ‘
o(TOP:d)(t) = t = s.PUSH (d) t
% d=nil t=c¢ €
Dictionary

size : the size of the stack
length(t) : the length of the trace ¢

Figure 8: Enhanced Trace Assertion Specification for Very Drunk Stack Module
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JFrom the Trace Assertion section in Figure 7 we get the following transition relation ppg for
Drunk Stack:

ops(POP)(t,t) & 3d,dy,dy,s. (t=PUSH(d) Nt =e)V
(t =s.PUSH (dy).PUSH (dy) A (t' = s.PUSH (dy) V t' = s)V
(t=ecAt =¢)
f=4 Eld7 d17 dy . t = t/PUSH(d) Vi= t/PUSH(dl)PUSH(dQ)\/7
(t=cnt' =¢)
ops(PUSH (d))(t,t') < (length(t) < size Nt' = t.PUSH(d)) V (length(t) = size Nt = t),
ops(TOPd)(t,t') << 3s.(t=s.PUSH(d)ANt' =)V (d=nilANt=c At =¢).

We transform ppg into gpg:

ops(POP, t)(nil, t") < ops(POP)(t, 1),
ops(PUSH (d), t)(nil,t") < ops(PUSH (d))(t, 1),
ops(TOP,t)(d, 1) & ops(TOP:d)(t,1).

For showing simulation between Drunk Stack and Stack, we have to find a relation R between
the canonical traces of Drunk Stack and those of Stack. Let subseq(z, y) be a relation between
sequences z and y which holds if elements of x occurr in the same order in y, i.e. subseq is the
smallest relation such that for any sequences z,y and element a:

subseq(z,z) and subseq(z,y)= subseq(z.a,y.a) and subseq(z,y)= subseq(z,y.a).

Intuitively, the canoncial traces of Drunk Stack correspond to those of Stack with some PUSH (d)
elements interspersed. Hence we define:

R(t, 1) < subseq(t', ).

The first condition for Stack to simulate Drunk Stack using R is that the initial trace ty = ¢ of
Drunk Stack and #y = € of Stack are in relation R, which holds trivially. The second condition
is 0ps Craxr 05, which is defined as:

@DS((I, t) #* 0= ((Id X R) o @5)((1, t) - (@DS o (Id X R))(a, t) A ((Id X R) o @5)((1, t) #* 0,

where a are all the calls of Drunk Stack and Stack, and ¢ ranges over all canonical trances of
Drunk Stack. We consider the cases a = POP, a = PUSH(d), and a = TOP separately. For
a = POP, we have that gpg(POP, t) # () for any canonical trace ¢ and similarly o,(POP, t) # 0.
As R is a total relation, it is easy to see that ((Id X R) o gg)(POP,t) # () for any canonical
trace t. Hence above condition simplifies in this case to:

((Id X R) o pg)(POP,t) C (ops o (Id x R))(POP,t),
which is equivalent to:

(3t . subseq(t', ) AN (Fd .t =t".PUSH(d)Vv (' = ANt =¢))
= (Elt/ . (Eld7 d17 d2 .= t/PUSH(d) Vi= t/PUSH(dl)PUSH(dQ) vV (t =cAt = 5))
Nsubseq(t”, ")),
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for all ¢”. This holds according to the rules of logic and above definition of subseq. The cases
a = PUSH (d) and a = TOP follow similarly. In total, this establishes Drunk Stack Cp Stack,
which according to Theorem 5.1 implies Drunk Stack < Stack.

Trace assertion specifications like Stack can be further refined into modules with a “more
concrete” state space. For example, a Stack implementation could use an array 4 and integer
N, related to the canonical traces of Stack by

R(t,A,N) < N = length(t) Nt = A[1..N],

where A[1..N] selects the subsequence of A with the first N elements. Such refinement steps
can be carried out in a standard way, e.g. [10, 21]. However, this establishes a link between
abstract trace assertion specifications and efficient implementations.

15 Multi-Object Modules

In practical applications, it is not unusual that a module is designed to implement several
independent homogeneous objects. For example in some applications, one may need to design
a (multi-object) stack module that implements two or, in general, any number of stacks, plus
for instance the stack concatenation operation. The module may be self-initializing, i.e. the
first use of PUSH (stack_name, i) creates a stack stack_name or may require object generator
like new(stack_name). A natural way of modeling such modules is to define the global states as
sets of states of individual modules, with the empty set as the initial state. We already know
how to specify individual states (by canonical step-traces) and relationships between them (by
trace assertions). Note that the sets can be specified by sequences, the sequence “{a,b, c}”
specifies the set consisting of the elements a, b, ¢. This convention is used for years and is
easy to understand®. We need only an apparatus to make the states of individual objects
distinct, to transform global states by both global calls (like concatenate, which affects more
than one individual state, or new, which create a new local state), and local calls (like PUSH,
which affects only one local state). The states of individual objects may be made distinct
by adding individual labels to them. For instance {stackl — PUSH (3).PUSH (5), stack2 —
PUSH (3).PUSH (1).PUSH (8), stack3 — ¢} may represent a global state consisting of three
stacks stackl, stack2, stack3, where the local state of stackl is PUSH (3).PUSH (4), the local
state of stack2 is PUSH (3).PUSH (1).PUSH (8) and stack3 is empty. The stackl, stack2 and
stack3 are unique labels attached to appropriate canonical step-traces, creating labeled step-
traces. This lead us to the concept of uniquely labeled sets.

15.1 Uniquely Labeled Sets

Let X be a set and £ be a set of labels. A subset X of £ x X is a labeled set. We shall
write @ — 2 € L X X instead of (a,2) € L x X. If L = {1,2,3}, X = {a,b} then
{1~ a,1— b,2+— a} is an example of a labeled set.

®In a sense {a, b, c} and {a.b.c) describe the same object, only the interpretation is different, see Section 7.
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Aset X C L x X is uniquely labeled if for all o« € £ and for all z,y € X,
(a—z2eX Namyeld) & z=y.

A is uniquely labeled if every element of it has an unambiguous label. For example {1 —
a,2 — a} is uniquely labeled, while {1 — a,1 — b,2 — a} is not. The family of all uniquely
labeled sets over £ x X is denoted by U (L, X). Note that () is uniquely labeled, and for every
X eU(L,X), |X] <|L]. In particular we are interested in the family U (L, (A*)), where A is
an alphabet.

For every uniquely labeled set X' C £ x X, let L(X') be the set of all its labels,

LX)={ael]|TzeX. a—zrel}
For every a € £ and every X € U(L, X), let
X o=z and X|ja=a—z

if @ — 2 € X for some z, and undefined otherwise. For instance if X = {1 — «a,2 — b} then
Xl = aand X ||a =1+ a, while X|3 and X' || 3 are undefined. The operator | is called
“projection” and || is called “selection”. Note that X'||a = o — X, if X|av is defined.

For every two uniquely labeled sets X', ), we define the operation <= and ¢ as follows:

XY Y=X¥\{a—nzeX|aclLD)}U)Y,
XYY =xXuyY\{amz|ze XANae LX)NLD)}.

Note that X' «= Y, X' @ Y are always uniquely labeled and XY ¢ Y = Y & X', but it may happen
that X <= Y # Y <= X'. The operation < replaces elements of X' by the elements of J with the
same labels. If L(X) C L(Y) then ¥ «> Y=Y and ¥ Y =Y\ X. If L(X)NL(Y) =0 then
XY= Y=XUY=XaG)Y. Forinstance {1 — a,2+— b} < {1l — b} ={1+— b,2— b}, and
{1~ a,2—b}y&{l— b} ={2— b}. The operator « is called the labeled replacement, the
operator @ is an auxiliary operator that is used to define concatenation and weak concatenation

for the elements of U (L, (A*)).

The elements of U (L, (A*)) are called uniquely labeled sets of step-sequences, and the elements
of L x (A*) labeled step-sequences. In particular () and o+ £ are labeled step-sequences. For

every 11,7 € U(L, (A*)) we define concatenation “.” and weak concatenation “—" by:

.72 ={a—hbh|lamth EnAa— €t U(m @)
m—n={a—tHh—tHhla—mt eEnNa—t € RtU(n &)

Clearly 71.75 and 71 — 72 are elements of U(L,(A*)). For instance if 4 = {1 — £,2 —
a.(b.a),3 — a.a} and 7, = {1 — a.b,2 — (c.d)}, then we have 7.7y = {1 — a.b,2 —
a.(b.a).(c.d),3— a.a}, i —12={1l— a.b,2— a.(b.a.c.d),3— a.a}.

We also extend the operator €, for any o € £, 7 € U(L, (A)), a € A by:

a€T & Jte (A").a—ter,
ae€T & dJael.dte (AY). a—teETNAEL

For instance, 2 € {1 — a.a,2 — a.(b.a)}, but 3 ¢ {1 — a.a,2 — a.(b.a)}, b € {1 » a.a,2 —
a.(b.a)}, but ¢ ¢ {1— a.a,2— a.(b.a)}.
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15.2 Multi-Objects Trace Assertion Specifications

Let TA= (Ag,C, 0, %) be a trace assertion specification, and let £ be a set of labels. By a free
multi-object trace assertion specification generated by TA and L, we mean a tuple:

LTA= (L x Ap,U(L,C), 0c,0)

where: £ x Ap is the set of labeled call-responses, U (L, C) is the uniquely labeled set of canonical
step-traces, or : L X Ag — U(L,C) < U(L,C) is the transition relation defined for all 7 €
UL,C) and o — a:d € LXA by:

o e = ({7 07 4ol et

The above definition assumes self-initialization of modules, i.e. the first call initializes a given
object in the module. Without self-initialization, the user must initialize an object before the
call relating to this object. The pair (£, TA) describes £LTA completely, since LTA is entirely
specified by the specification TA and the description of L. For instance £ = the set of all
available names, and TA from Figure 4 (without enhancement) describe completely the self-
initializing multi-stack module. We may easily derive that in such a case (we specify normal be-
havior only so far): gz (stl — PUSH(3))(0) = {stl — PUSH(3)}, while pz(st1l — POP)(0) =
0. If 7 = {stl — PUSH(3).PUSH(1),st2 — ¢,st3 — PUSH(5)}, then we have pg(stl —
POP)(r) = {stl — PUSH(3), st2 + ¢,st3 — PUSH(5)}, while pz(st2 — POP)(r) = 0. In
the sequel, except theory part, we shall prefer to write PUSH (st1,3).PUSH (st1,1) instead of
stl — PUSH (3).PUSH (1).

The normal behavior described by £7TA is given by:
LIETA) = (& | 2 € (£x A" A gs(x)(0) # 0},
where o7 is the standard extension of gz onto (LxA)* — U(L,C) <> U(L,C) (see Section 6.1).

The empty trace, ¢, always does belong to L(LTA) since, by the definition, ¢} (¢)(0) =
{0} # 0. For the self-initializing multi-stack trace assertion specification £TA we have 2z =
PUSH (st1,1).PUSH (st2,3).POP(stl) € L(LTA) since o7 (z)(0) = {stl — ¢, PUSH (st2,3)} #
(0, while 2. POP(stl) ¢ L(LTA) since 0% (2. POP(st1))(0)= 0.

For a given LTA, let Q(DE denote the following transition relation, for all 7 € U(L,C) and
o ad € LXA:
de(a— ad)(r) faer

) . —
gﬁ(ou—ﬂz.d)(r)_{@ ifadr
A multi-object trace assertion specification is a tuple:

MTA = (LTA, Ag,,,, 0giob)

where LTA as above, Ap,, is the set of global call-response events, 64,1, the global transition
relation, such that for some X ,:

input (Egop) = UiZo(Sgton X L),
Ogiob € Ngiop = U(L,C) < U(L,C).
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We write a(ay,...,ar) € Ay, and alaq, ..., ap):d € Ay, rather than (a, a4, ..., ax), and
(a,aq,...,ak,d). Forinstance, we write new(«) instead of (new, a) and concatenate(aq, avg, a3)
instead of (concatenate, oy, v, a3).

For every MTA we define the transition relation 6 € ((LXA)UAy ) — U(L,C) < U(L,C),
where for all 7 € U(L,C) and p € (LXA) U Agp:

oc(p)(r) ifpe LXAAnew ¢ Xy
@(p)(T) = Qw/;(p)(T) if pe LXAAnew € Xy
lef)b(p) (T) if pe Aglob

To create a new instance of an object, we use the access program call new € Xy, x £, defined
by:
{re{am )} ifaer

oglob(new(a))(7) = {@ ifodr

In other words 6 = o2 U ogop if new ¢ Xy, and g = g% U 04106 Otherwise.
The global program new(a) is usually accompanied by a program delete(a) € Xy, X L,
which deletes the instance of TA with label a:

04i0b (delete(a)) (1) = {{ T\ {rlla}} gz;;

The normal behavior generated by MTA is defined by:
LIMTA) = {z |z € (LXxA)UAgpp)™ A @™(2)(0) # 0}

For instance ¢ always does belong to L(MTA) since p*()(0) = {0} # 0, if new, delete €
Y giob, then new(oy).new(ayq).delete(ay) € L(MTA) since §*(new(ay). new(ag).delete(ag))(@) =
{a1 = to} # 0, and 9" (new(ay).new(ay).delete(ay).delete (o

L(MTA) since §*(new(ay).delete(az)) () = 0.

MTA is self-initialized if new ¢ X,p,, output independent if TA is output independent, deter-
ministic if TA is deterministic and |64, (7, p)| < 1. The concepts of enhancement, full specifi-
cation, Mealy form and state constructors can easily be introduced for multi-objects modules.
The counterparts of Lemma 10.1, Proposition 10.2 and Proposition 12.1 also do hold for multi-
objects trace specifications. Figure 9 represents a full self-initialized multi-object trace assertion
specification for the Cross module that was introduced and analyzed in [14]. The specification
of the Cross module caused some problems when the older convention and techniques were
used [14]. The Cross specification is non-deterministic and output independent. The module
implements up to two sets, labeled by either a or b, each set may contain 0, 1, both 0 and 1
or is empty. There are two local operations INSERT, which inserts an element into a given
set, TEST which tests if an element is in a given set, and one global operation CROSS which
takes two sets and divides non-deterministically their union into two disjoint sets. The module
is self-initializing, the first INSERT creates a set. Figure 10 represents the full multi-objects
trace assertion specification of Multi-Stack with new, concatenate, and delete as global program
calls. The specification is deterministic, output-independent and non self-initializing.
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Labels

L£={a,b}

Syntax of Access Programs

| Name | Type | Argument | Value | Call-Response Forms | Code |
INSERT local Oor1 INSERT (%, i):mnail i
TEST local Oorl Boolean TEST (*,4):d
CROSS global CROSS:nil

Local Canonical Step-traces (Coded)
canonical(t) & (t=eVi=iVi={i1.02))Adi 1,02 € {0, 1} i #1
to =¢£

Local Trace Assertions

o(INSERT (x,4)) () = o e

t—1
| Condition | Equivalence |
o(TEST(*,1):d)(t) = i €t Ad = true t
1 ¢&tAd= false t

Global Canonical Step-traces (Redundant)

global_canonical(7) & ((r=Hawt}v7={br t}) A canonical(t))

=0v
={aws t1,b— t2} A canonical(t1) A canonical(t2))

-
V(T
T0 = @

Global Trace Assertions
o(CROSS)(7) =
Condition || Clusters ||
oerAnlerAlr[=2 [[{am(01),b—e} [{a— 0,61} [ {a= 1,0} [ {are b (01)}
OETALETA|IT|=2 {ae,b— 0} {a—0,b— e}
1ETAODETA|T|=2 {are,b— 1} {a—1,b— ¢}
T={a—eb— e} T
% 7] < 2 T

Extended Local Trace Assertions (Redundant, except for enhancements)

o(INSERT 1 =
o (D)

| Condition Equivalence |
S(TEST(a,i):d _ a1 ETAd=true T
o (e, i):d)(7) a€ETNar i ¢ 17Ad= false T
% adrT T

Figure 9: Enhanced Trace Assertion Specification for (a self-initializing) Cross Module
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Labels £ =available names
Syntax of Access Programs

‘ Name ‘ Type ‘ Argument ‘ Value ‘ Call-Response Forms ‘ Codes ‘
POP local POP (x):mil
PUSH local integer PUSH (%, )il i
TOP local integer TOP ()i
new global label new (k)
concatenate | global | 3 X label concatenate (*, *, )
delete global label delete(x)

Local Canonical Step-traces
canonical(t) < t=[d;]7-y N0 < n < size
lg=¢

Local Trace Assertions
Trace Patterns ‘ Equivalence ‘

o(POP(x))(t) = t=s.d
% t=c¢
‘ Condition ‘ Equivalence ‘
o(PUSH (x,d))(t) = length(t) < size t.d
% length(t) = size t
‘ Condition ‘ Trace Patterns ‘ Equivalence ‘
o(TOP(%):d)(t) = t=s.d t
% d = nil t=c¢ £

Global Canonical Traces (Redundant)
global_canonical (1) < 1= {a; = t;}5_, AN, canonical (t;) A (o = oy < j = 1)
T0 = @

Global Trace Assertions
‘Condition ‘ Equivalence ‘

o(new(a))(t)=| adr T {a— e}

% aeT T

‘ Condition ‘ Equivalence ‘
6(concatenate(ay, ag, a3)(7) =| a ETAas ETAaz €T T ¢ {az — 7|oq.T|ag}
%N oy éTVaydTANasédT T

‘ Condition ‘ Equivalence ‘

o(delete(e))(r) = aer | T\{ra)
% adrT T

Dictionary

size : the size of the stack, length(t) : the length of the trace ¢

Figure 10: Enhanced Trace Assertion Specification for Multiple Stack Module. Extended Local
Trace Assertions are omitted as redundant.
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16 Trace Assertion Method and Algebraic Specification

There are strong similarities between the trace assertion method and the algebraic specification
method (see [7, 34]) for specifying abstract data types. Examples of similarities are:

1. Syntax parts of trace assertion specifications correspond to signatures in algebraic speci-
fication.

2. For output-independent trace assertion specifications, trace assertions correspond to con-
ditional equations,

3. Canonical traces corresponds canonical terms (see [7]).

4. State constructors (as introduced in the paper to solve the problem that it is not always
possible to represent the possible states uniquely by sequences of call-response pairs of
visible functions) correspond to auxiliary/hidden functions in algebraic specification.

However, there are major differences. The main difference is that

1. Algebraic specification supports implicit equations while trace assertion method uses
explicit equations only.

The functions PUSH, POP, and TOP operating on non-empty stack may abstractly be im-
plicitly defined as [7]:

POP(PUSH (s,a)) =s

TOP(PUSH (s,a))=a

Less abstract, with states of the stack represented as sequences and “.” denoting concatenation,
ezplicit definition of the same part of stack is the following (also see [7]):

PUSH (s,a)=s.a
POP(s.a) =

TOP(s.a) =

Q » W

d, . . ..
“=" by “:f”7 but in the first, implicit, case we can-

In the second, explicit, case we may replace
not. The trace assertion specification is a straight abstraction of the second case. The implicit
definitions might sometimes be shorter, they are usually more abstract. However, typically
explicit definitions are considered to be more readable and easier to understand. The stack
is well-known and easy to understand module, but even here some students have encountered
initial problems to understand that the implicit equations really define the stack, while the ex-
plicit equations are practically self-explained. For more complex modules, as for example parts
of protocols [5, 12], parts of software for aircraft control [31], or intra-processor, inter-process
communication via mailboxes [32] both defining and understanding implicit equations might be
difficult (how simple would equational definitions of the Unique Integer or the Cross module
look like?).

The second difference is

2. The underlying models for algebraic specification are abstract algebras [4], while the un-
derlying model for trace assertion method are automata.
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While as we mentioned before there is similarity between automata and algebras, they are
different models. The other differences:

3. To specify in trace assertion specifications that a function does not change the state, it
is necessary to explicitly write trace assertions expressing this, while in algebraic specifi-
cation it is possible already in the signature to express this so that there is no need for
equations.

4. Trace assertion specifications provide syntactic facilities which makes it possible in certain
cases to specify a function by a single trace assertion, where the use of auziliary/hidden
functions (e.g. in the definition of a stack with overflow [3]) or recursive definitions
(e.g. in the definition of the dequeue function for a queue [7]) are necessary in algebraic
specifications.

5. State constructors that correspond to auziliary/hidden functions are used only to handle
heavy non-determinism, while the use of auxiliary/hidden functions is much wider in
algebraic specifications.

Suppose for instance that PUSH additionally returns the value that is pushed on the top of the
stack. The trace assertion specification requires only small adjustments, in Figure 5 we need
to replace PUSH (d):nil by PUSH (d):d in the last column of the Syntax of Access Programs,
t =[PUSH (d;)]7"— by t = [PUSH (d;):d;]7"—; in the Canonical Step-traces definition (or nothing
if codes are used as in Figure 11), and

‘ Condition ‘ Equivalence ‘
o(PUSH(d))(t) =| length(t) < size t.PUSH (d)
% length(t) = size t
by
‘ Condition ‘ Equivalence ‘
o(PUSH (d):d)(t) = length(t) < size t.PUSH (d):d
% length(t) = size t

Similar minor adjustments are needed for the Mealy form of Figure 6. The algebraic specifica-
tion requires the use of an auziliary/hidden function push, and may look like:

POP (push(s,a)) =s
TOP (push(s,a))=a
PUSH (s, a) = (push(s, a), a)

where PUSH : Stack X integer — Stack X integer. The descriptive power of trace assertion
specification and algebraic specification is the same. Every trace assertion specification can
be transformed into an equivalent canonical terms algebra ([7, 34]), and for every algebraic
specification, a trace assertion specification equivalent to the canonical terms algebra of the
given algebraic specification can be constructed. The constructions in the general case are
formally complex and tedious, even so the intuitions seem to be clear. We will show how such
transformations may look like in some special cases. Those transformations will also emphasize
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similarities and differences.

A trace assertion specification TA = (Ag,C, p, t) is total if it defines a transition for all calls,
ie. k(t,a) =1forall t €C and a € ¥f.

Let TA= (Ag,C, 0, %) be a deterministic and total trace assertion specification. We define
the many-sorted algebra

A1y = (Sorte, Sorto, Sorty, . .., Sorty,,; Op)

where Sorte = C, Sorto = O, Sorty, ..., Sorty,, are the domains of the arguments of the
procedures (function calls) from Ny, and

Op={f|feEYU{f|feE}

where f and f are the functions defined as follows:

) 0 = ) = {J 07

For TA representing the Stack module (Figure 4) the above transformation result in the follow-
ing two-sorted function algebra

ATA = (SOTtC7 SOTtO7 SOTtl; Op)

with Sorte = C = {[PUSH (d;)];_; | 0 < n < sizeNd; € integer}, Sorto = Op = integer U{nil},
Sorty = integer, Op = {PUSH, PUSH, POP, POP, TOP, TOP}, PUSH : Sorte x Sorty —
Sorte, PUSH : Sorte x Sorty — Sorto, POP : Sorte — Sorle, POP : Sorte — Sortp, TOP :
Sortc — Sorle, TOP : Sorte — Sortp, and for every t € C, and every integer i:

P[/JEH(t, i) = t.PUSH (i) if lenght(t) < size, and,
P[/JEH(t, i) =1 if lenght(t) = size,
P(AJEH(t, i) = nil

POP(t.PUSH (i)) = and POP(c) =

POP(t) = ml

TOP(t) =1

TOP(t.PUSH (i)) =i and TOP(€) = nil,

We say that the “tilde” function f is trivial if mnge( ) = {nil}, and that the “hat” function f
is trivial if f(t7 di,...,d.) =t for every t. For the Stack example, the functions PUSH POP
and TOP are trivial.

Let Am()dlﬁed be the algebra derived from Agy by eliminating all trivial functions. We will
consider Am()dlﬁed as an algebraic equivalent of the deterministic trace assertion specification

TA.

For non-deterministic trace assertion specifications we proceed in a similar manner, but instead
of standard many-sorted algebras we have to use for instance partial algebras (see [34] chapter
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3.3.5).

Consider a many-sorted algebra A = (Sp, 51, . .., Sk; Op). We say that a sort S; is domestic
if for every f € Op, 5; is a component of the domain of f, and there exists at least one g € Op
such that 5; is the range of g. The sort is called foreign if it is not domestic. For instance for
the two sorted algebra that defines stack of integers, the sort stack is domestic and the sort
integers is foreign. Intuitively, the domestic sort is defined by the algebra, and all foreign sorts
are predefined by other means.

An element of s, € S is called a generator of Sy (see [34]), if every element of Sy can be
derived from sy by applying a sequence of operators (functions) from Op.

To transform an algebraic specification in a trace assertion specification we have to resolve the
following two main problems:

1. all implicite equations must be replace by explicite ones,
2. only one domestic sort is allowed.
3. there exists a generator so of Sp.

It appears that many algebraic specifications can be transformed into the form described above,
however the result is usually less general.

Let A = (Sp, 51, ..., Sk; Op) be a many-sorted algebra with explicite equations, one domestic
domain Sy, and suppose sg is a generator of .55. Without loss of generality we may assume that
for every f € Op, the domain of f is of the form 5o X 5 X ... X 5;, i.e. the value of the first
argument of f belongs to Sp, and that S is the set of canonical terms [7, 34] (so in the case of

stack, instead of (1,2) € Sy, we have PUSH (PUSH (stack,1),2) € Sp).

Define F, the set of access program names as £ = {f | f € Op}. For all f € F,| we defined
input(f) and output(f) to be the smallest sets such that:

(v1, ..., o) € input(f) A nil € output(f) < Jt,s € Sy . f(t,vl,...,v)=s
(v1, ..., ) € input(f) A d € output(f) < It e Sy. f(t,v1,...,v5) =d.

Let © be the following mapping that transforms Sy into a set of traces over Ag: O(sp) = € and
for every f(vo, v1,...,vx) € So, O(f(v0, v1, ..., vx) = O(vg).f(v1,..., vg)mil. Now define

TA = (AE7®(SO)7 Qvé)

where: .

o(f(vr, ..., v)mil)(s) ={t} <= f(s,v1,...,04) =1

o(f(vi, ..., m)d)(s) ={s} <= f(s,v1,..., ) =d.
and p(a:d)(s) = 0 for all other cases. We shall consider TA as a trace assertion specification
that is equivalent to the algebra A.

We believe the areas of applications for the algebraic specifications are different than for the
trace assertion method. The algebraic specification is better suited for defining abstract data
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types in programming languages (as SML, LARCH, etc., see [34]). The trace assertion method is
better suited for specifying complex interface modules as for instance communication protocols
[5, 12, 31, 32]. The division follows from the general pattern of applicability of automata based
and algebraic models. One may model integers as an automaton (it is usually defined as an
algebra), or may define the semantics of SCR specification [11] as an abstract algebra (it is
defined as a kind of automaton), however in both cases the advantage as such way of modeling
is hardly seen.

17 Final Comment

An automata-based model for the trace assertion method has been presented and its formal
consistency has been proven. A modified specification format based on this model has also been
proposed. The main points of the model are the following;:

e the alphabet which represent observable event occurrences is built from call-response
events,

e the structure of the trace assertion specification is entirely described on the bases of
normal behavior only,

e the refinement relation captures the externally observable behavior of module specifica-
tions,

e trace assertion specifications can be refined into “more deterministic” and “more total”
trace assertion specifications or into module specifications with some “more concrete”
state space, using a simulation relation,

e exceptional behavior is specified separately as an enhancement of normal behavior, and
such an enhancement may be added to the trace assertion specification, leading a behav-
ioral refinement,

e canonical step-traces (instead of canonical traces) are used to specify states for single-
object modules, and sets of canonical step-traces are used to specify states for multi-object
modules. Sequence notation is used to specify both step-traces and sets of step traces,

o Mealy forms are special cases of a more general yet simpler model,
e multi-object modules are specified using the concept of uniquely labeled sets of step-traces.

Neither the monitored events [11, 27, 33] nor non-sequential modules are considered in this
paper. For non-sequential models a possible delay between a call and its response must be
modeled, so “true-concurrency” models should rather be used [18]. We have shown that the
output value functions are redundant. The theory does not need them, and we believe they
usually make specifications less readable. We have found the standard forms shorter and more
readable than the Mealy forms. For the output dependent trace specifications, the explicit
output functions seem to be useless at all. The specification of multi-object modules is not much
different than single-object modules. The trace assertion method and algebraic specification
can be seen as complimentary approaches. They have some things in common, but substantial
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differences as well. The main difference is the use of implicit equations in algebraic specifications,

and explicit equations only in trace assertions. Their areas of applications seem to be different.
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