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Abstract

We discuss how the action systems formalism can
be used in constructing controllers for discrete event
systems. Action systems are based on predicates and
predicate transformers. Our approach is exempli�ed
through applying action systems into a real-world
control problem. We show, how the reachability of
safe states in in�nite unpredictable system, the safety
conditions, can be stated as simple predicates. Veri-
�cation is carried out in a standard manner with the
weakest precondition calculus of Dijkstra.

1 Introduction

Action systems, originally proposed by Back and
Kurki-Suonio [2], are predicate transformer based
systems that operate on some state base. Actions
resemble events, but are more precise, as they ex-
press algorithmically, how the state base is changed.
In action systems, actions are executed in a do-loop
which iterates as long as any of the actions is enabled.
In this loop, actions are connected with a choice op-
erator which models parallel nondeterministic choice
between enabled actions. This allows compact de-
scription of unpredictable behaviour. Therefore, ac-
tion systems have been successfully applied in many
non-trivial applications when modelling reactive and
concurrent behaviour, see e.g.[3, 5].

The use of predicate transformers in discrete
event systems is not new, see e.g. [9]. The novelty
in our approach is that both the controller and its
environment are modelled uniformly by action sys-
tems. This allows reasoning of combined behaviour
with simple predicates.

1.1 Background of the work

This work is part of ongoing activity where formal
methods are tried out in several practical examples
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together with industrial partners. Applications are
mainly concurrent, safety-critical systems from the
�elds of medicine and health care. The example pre-
sented in this paper is carried out in co-operation
with a Finnish company manufacturing diagnostics
devices and laboratory equipments for hospitals and
clinics.

1.2 Overview

We start by brie
y describing actions and action sys-
tems in section 2. A general approach of how to
model a controller and its environment with action
systems is given in section 3. Safety condition veri�-
cation and directions towards its mechanical veri�ca-
tion are also presented in that section. The approach
is then applied to a conveyor belt system in section 4.

2 Actions and action systems

2.1 Actions

An action is any statement in an extended ver-
sion of Dijkstra's guarded command language [8].
It includes abort and skip actions, (multiple) as-
signment, sequential composition, nondeterministic
choice, conditional, and iteration. The language
is de�ned using the weakest precondition predicate
transformer wp(A; q), which for any action A and
postcondition q yields the weakest precondition such
that A terminates and establishes q . Pre- and post-
conditions are predicates over the state variables.
Function q [e=x ] denotes the substitution of free oc-
currences of variables x with expressions e in predi-
cate q . For actions A;B we de�ne:

wp(abort ; q) = false

wp(skip; q) = q

wp(x := e; q) = q [e=x ]
wp(A; B ; q) = wp(A;wp(B ; q))
wp(A [] B ; q) = wp(A; q) ^ wp(B ; q)

This language is extended by allowing pure guarded
commands of the form g ! A, where g is a predicate,
with the meaning:

wp(p ! A; q) = p ) wp(A; q)



Operationally, this action waits till guard g holds and
then executes the body A.

The guard of an action A is the condition g A,
de�ned by:

g A = :wp(A; false):

An action A is said to be enabled when its guard is
true. For example, we have:

g (x := e) = true

g abort = true

g skip = true

g (A [] B) = g A _ g B

g (p ! A) = p ^ g A

Having guarded actions allows us to de�ne condi-
tional and iteration concisely by

wp(if A �; q) = wp(A; q) ^ g A

wp(do A od; q) = (8n:wp(An ; g A _ q)) ^
(9n:: g An)

where A0 = skip and An+1 = An ; A. In the def-
inition of iteration, conjuncts correspond to partial
correctness and termination respectively.

2.2 Action systems

An action system A has the form

A = j[ var x := x0; do A od ]j : z

First, local variables x are initialized to x0, and then
action A is repeatedly executed. This execution ter-
minates only when A is no longer enabled, and aborts
when A aborts.

Local and global variables of A are variables x and
z respectively. These variables form the state vari-

ables of A. All of them are distinct and associated
with an explicit type. Actions are allowed to refer to
any state variable. In the following, we use the key-
words global for global and var for local variables.

The action A is typically of the form:

A b= A1 [] : : : [] Am

Operationally, any of the enabled actions Ai in A is
selected nondeterministically for execution. The ex-
ecution of an action is always atomic. If two actions
refer to disjoint variables, their execution can be in
any order or in parallel. Hence, this models paral-
lelism by interleaving. Action systems are similar to
the Unity logic of Chandy and Misra [6] and are also
related to Lamports Temporal Logic of Actions [10].
However, contrary to these approaches there are no
assumptions about the fairness in the selection of ac-
tions; fairness is not needed here.

2.3 Composition of action systems

Consider two action systems A and B

A = j[ var x := x0; do A od ]j : z
B = j[ var y := y0; do B od ]j : v

where x is disjoint from y . We de�ne the parallel

composition A k B to be the action system

C = j[ var x ; y := x0; y0;
do A [] B od ]j : z [ v :

Thus, it combines the state spaces of the two con-
stituent action systems, merging the global variables
and keeping the local variables distinct. The be-
haviour of a parallel composition depends on how the
individual action systems, the reactive components,
interact with each other via the global variables that
they reference. For instance, a reactive component
does not terminate by itself: termination is a global
property of the composed action system [1].

The modelling of control systems is based on the
prioritizing composition of action systems [15]. Ac-
tion system C = A == B combines the action systems
A and B so, that preference is given to the actions of
A. Therefore the action B can only be selected for
execution when the action A is not enabled, other-
wise the action A is executed:

C = j[ var x ; y := x0; y0;
do A [] : g A! B od ]j : z [ v :

3 Speci�cation approach

3.1 Overall framework

We start by de�ning a uniform framework for the
entire system. It is modelled as a combined ac-
tion system, where the controller has priority over
its environment. When a controller action is en-
abled, it will be immediately taken, similarly to an
interrupt procedure. This behaviour is captured by
Controller == Environment .

Unobservable actions, i.e. unobservable events in
[13], can be presented as stuttering steps in the en-
vironment. Stuttering steps are actions that modify
the local variables of the action system. This kind of
activity does not change the values of any externally
visible variables, and thus, is completely invisible to
other action systems. The amount of stuttering steps
in any action system is assumed to be �nite.

Similarly, uncontrollable actions can be intro-
duced as actions in the environment. Since any
action may abort the entire action system through
abort statement, we can even model aborting be-
haviour in the entire system, including machine
breakdowns and other external disturbances.



Sensors observed by the controller and actuators
that control the physical environment are modelled
as variables which can be read by all of the actions.
Sensors can be modi�ed by the environment actions
and the actuators by the controller actions. Sen-
sors and actuators are initialized by an action Init ,
which is assumed to be executed before the main
loop. Thus, our model is formalized as:

System b= Init ; (Controller == Environment)

When modelling with action systems, any vari-
ables can be made unobservable by hiding them.
Technically hiding means making the variables lo-
cal to some action system. Similarly, variables can
be revealed by declaring them global.

3.2 Safety condition veri�cation

System can be seen controllable, if the controller
guarantees the safety. The safety condition is ex-
pressed as a predicate over the state space of the
whole control system. For proving purposes, we also
need an invariant. It gives a bound on the set of
all reachable states, both safe and unsafe ones. Let
predicates safety , inv and action systems

Controller = j[ var x := x0; do C od ]j : z
Environment = j[ var y := y0; do E od ]j : v

be given. We know that an environment action may
lead to an unsafe state, and that the controller must
re-establish the safety. This allows us to state the
safety condition as following proof obligations [16]:

1. Initialization establishes inv :

wp((Init ; x ; y := x0; y0); inv)

2. Environment preserves inv , provided
that safety holds:

inv ^ safety ) wp(E ; inv)

3. Controller eventually establishes safety and
preserves inv :

inv ) wp(do C od; inv ^ safety)

This also shows that controllability is bound to
the detail level of the environment speci�cation. An
environment speci�cation with unobservable and un-
controllable actions requires more robust controller
speci�cation or less binding safety condition than a
fully observable environment speci�cation.

3.3 Mechanical veri�cation of safety

The veri�cation of the proof obligations above can
be carried out mechanically. A theorem prover called

HOL has been successfully used for this purpose [16].
Also, other veri�cation systems can be used. We
have used the PVS prover [7] for verifying the obli-
gations in this paper [14]. PVS, Prototype Veri�-
cation System, has been developed at SRI Interna-
tional. Its use is aimed at specifying and verifying
digital systems, and has been succesfully used e.g. in
veri�cation of fault-tolerant architectures [12].

3.4 Re�nement into an executable program

Action systems can be further re�ned by using re-

�nement calculus [1]. Shortly described, re�nement
of an action system means either incorporation of
new internal activity or modi�cation of old activity
under strict guidelines, which are stated in re�ne-

ment relation. Re�nement relation, in turn, must
ful�ll obligations set by simulation characteristics,
which essentially state that all observable behaviour
of a re�ned action system must be a part of the be-
haviour of the original action system as well. The re-
�nement calculus can be used for example in formal
translation of action system into executable program
code.

Even though our framework combines both the
controller and the environment into one system, it is
still an open model. This is provided by the state
space partitioning in the action systems. Therefore,
independent re�nement of either the controller or the
environment speci�cation using re�nement calculus
is well encouraged [5].

4 The conveyor belt system

4.1 The conveyor belt control system

Our example is part of an autonomous system mak-
ing laboratory tests. In style, it is similar to the pro-
duction cell in [11]. Three belts carry cassettes con-
taining test samples. Inbelt brings in new cassettes
which are processed on the main lane and trans-
ported away on the outbelt. The belts are operated
via motors controlled by microprocessors in a local
network. We leave out the outbelt for brevity, as
it works very much like the inbelt. Therefore, there
are only two motors used as actuators to control the
belts.

A sensor called entry is at the end of the inbelt. It
marks that a cassette is ready to enter the main lane.
There are three sensors on the main lane: entered

marks when the cassette has entered the processing
part, exit marks when it has been processed, and
the purpose of slant is to mark that a cassette is in a
position where a new incoming cassette could cause
slanting. The danger of jamming exists, if there is
not enough space between the cassettes on the main
lane. Figure 1 gives a schematic picture of the con-



veyor belt system. Figure 2 illustrates slanting and
jamming of cassettes.
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Figure 1: A schematic view of the conveyor belt sys-
tem.
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Figure 2: Left: Slanting of cassettes; Right: Jam-
ming of cassettes.

We aim at showing that, with a suitable level of
abstraction, a formal speci�cation of the system can
be developed and stated concisely. Thus, certain real
time and capacity requirements are not considered.

4.2 Sensors and actuators

We start by specifying the Init action, whose purpose
is to initialize all the sensors and the actuators in the
system. Therefore, we have to �rst introduce them
as variables.

The sensor readings are given by variables:

global entry ; entered ; slant ; exit : Bool

Following variables represent the belt actuators,
where inbelt corresponds to the motor status of the
inbelt and running to that of the main lane:

global inbelt ; running : on j o�

Initially, we assume that both belts are on, and
there are no cassettes on them:

Init b=
inbelt ; running := on; on;
entry ; entered := false; false;
slant ; exit := false; false

4.3 Environment speci�cation

The second phase in constructing the speci�cation
is to de�ne the Environment action system. For
this, we �rst need to identify possible local variables
and then formalize the behaviour in separate actions,
which are later bound by the Environment .

4.3.1 Local variables

The environment has two local variables ready and
processing which tell the position of a cassette on the
main lane:

var ready ; processing : Bool

The value of ready equals to a cassette being at
the beginning of the main lane, and the value of
processing equals to a cassette being processed.

4.3.2 Environment actions

The physical behaviour of the environment is cap-
tured by following actions. The general condition in
these actions is that belts are running.

Firstly, a cassette appears eventually to the in-
belt:

E1 b=
inbelt = on ^
entry = false

! entry := true

Cassettes are registered to be on the main lane one
at the time:

E2 b=
inbelt = on ^
entry = true ^
ready = false

!
entry := false;
ready := true

A cassette at the beginning of the main lane enters
the processing part, provided that there are no cas-
settes at the slant sensor:

E3 b=

running = on ^
ready = true ^
entered = false ^
slant = false

!
entered := true;
ready := false

An entered cassette reaches the slant position, pro-
vided that there are no cassettes being processed:

E4 b=

running = on ^
entered = true ^
slant = false ^
processing = false

! slant := true

After passing the slant position, cassette enters the
processing part completely:

E5 b=

running = on ^
entered = true ^
slant = true ^
processing = false

!
entered := false;
processing := true

During its processing, the cassette fully passes the
slant sensor:

E6 b=
running = on ^
slant = true ^
processing = true

! slant := false



The processed cassette reaches the exit position:

E7 b=

running = on ^
slant = false ^
exit = false ^
processing = true

!
exit := true;
processing := false

A cassette at the exit position �nally disappears from
the system (outbelt is sometimes on):

E8 b= exit = true ! exit := false

Now, the environment is given as:

Environment b= j[ var ready := false;
processing := false;

do E1 [] : : : [] E8 od
]j : entry ; entered ; slant ; exit ;

inbelt ; running

4.4 Controller speci�cation

Controller actions control the movement of cassettes
on the two conveyor belts by switching the respec-
tive motors on and o�. In the following, controller
actions are already worked out. However, the formal
de�nition of the environment and the safety condi-
tion can be used in the derivation of the controller
actions [16].

In order to prevent jamming, the main lane must
be turned o� if there is a cassette at exit position:

C1 b=
running = on ^
exit = true

! running := o�

The main lane can be turned on again when the cas-
sette at exit position has moved away:

C2 b=
running = o� ^
exit = false

! running := on

The inbelt should be switched o� in case there is a
danger of slanting:

C3 b=

inbelt = on ^
entry = true ^
entered = true ^
slant = true

! inbelt := o�

As soon as the cassette has completely entered the
processing part, the inbelt can be turned on again:

C4 b=
inbelt = o� ^
entered = false

! inbelt := on

Hence, the controller is as follows:

Controller b= j[ do C1 [] C2 [] C3 [] C4 od
]j : entry ; entered ; slant ; exit ;

inbelt ; running

4.5 Veri�cation of the safety condition

Before the veri�cation can be done using the pre-
sented veri�cation rule, safety condition and invari-
ant inv have to be de�ned. The safety condition in
the conveyor system is that the controller should not
allow the cassettes to slant or cause jamming.

safety b= :slanting ^ :jamming

More precisely, there is a danger of jamming, if
there is a cassette is at the end of the running main
lane. Then, another cassette moving on the main
lane could bump into it:

jamming b= running = on ^ exit = true

Slanting could occur, if a cassette on the main
lane has reached the slant position, the inbelt is on,
and another cassette is at the entry position:

slanting b= inbelt = on ^ entry = true ^

slant = true ^ entered = true

For verifying the safety condition in our example
the invariant true is su�cient (note that in other
examples more complicated invariants are necessary
[16]). This leads to the following proof obligations:

1. wp ( (Init ; ready ; processing := true; true);
true)

2. safety ) wp(E1 [] : : : [] E8; true)

3. wp(do C1 [] : : : [] C4 od; safety)

As mentioned earlier, we used PVS for verifying
that our speci�cation ful�lls these obligations [14].

5 Conclusions

We studied the problem of constructing discrete
event system controllers within the action system
framework.

That there are three major advantages in using
this approach: (1) Both the system and its envi-
ronment can be modelled within the same unifying
framework, making it feasible to carry out reasoning
about the systems behaviour as a whole. (2) Action
systems are originally designed for the derivation of
parallel and distributed systems, which makes it nat-
ural to derive and reason about distributed control of
a discrete event system in the sense of [4] for instance.
(3) Action systems are intended to be stepwise devel-
oped within the re�nement calculus [1]. This gives
us a formal framework to transform the controller
speci�cation into an e�cient control program.



The example was taken from an implementation
project. In a closely related paper, Butler, Sekerin-
ski, and Sere [5] show how a high level speci�cation
of a steam boiler is created within the action sys-
tems framework using several levels of abstractions
and the re�nement calculus.
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