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A Simple Model for Concurrent Object-Oriented
Programming

Emil Sekerinski

Abstract— It has been argued that objects can be naturally subclasses of a class hierarchy. This permits concurrancy t
thought of as evolving independently and thus concurrentlyan  pe treated as an implementation issue in the same way as
object is a natural "unit” of concurrency. Yet, current main stream the choice of an algorithm. On the other hand objects can be

object-oriented languages treat concurrency independeht of dt h lik
objects: concurrency is expressed in terms of threads thatdve used 1o manage resources, very much like processes can, so

to be managed separately from objects. We argue for a modelfo NO expressiveness is lost.

concurrent object-oriented programs in which no such disthction The purpose of this paper is to demonstrate the viability
is madfe. The only synt.actic additions needed are extendin@;a;seg of this “process-less” model of concurrent programming by
by actions and allowing methods to be guarded. Execution is a series of examples and to argue that an efficient imple-

governed by a simple rule for atomicity. The model allows L . . .
concurrency to be seamlessly introduced in classes, thusrfo Mentation is possible. We start by introducing the language

example allowing concurrency to be introduced in subclasse N Which the programs are expressed. A formal theory for
of a class hierarchy. This permits concurrency to be treated verification and refinement is outlined in [14]. While in this
as an implementation issue in the same way as the choice oftheory each class is defined in terms of an action system
an algorithm. The model relieves the programmer from having 5nq the whole program as the parallel composition of action
to distinguish between the process and class aspects in sedire S . .
design. We illustrate the model by examples, discuss its riahale, systems, no explicit paralle_l compos_ltlon operator is enés
and outline our current implementation. in the language. A prototypical compiler that translateths

: ' . Java Virtual Machine is presented in detail in [12]. Here we

Index Terms— Object-oriented concurrency, action-based con- . .
currency. only sketch the implementation.

Briot et. al. [7] give an useful overview of concurrency
in object-oriented programming which we follow to classify
our approach. The level of concurrency can be characterized

A reoccurring theme in the history of “high level” program-as quasi-concurrentlike in ABCL/1 [15], as several method
ming languages is how languages relieve the programmer frativations may coexist, but at most one is not suspended.
idiosyncrasies of processors and from details of tramsiatiThis is in contrast toserial objects like in POOL [2] that
techniques: For example, Fortran translates arbitramisted support only one method activation and fully concurrent
arithmetic expressions by manipulating an expressiorkstaobjects like with Actors [1]. Our objects would be classified
Algol 60 supports recursion and scoping rules as we knag autonomousrather thanreactive as they may be active
them today. Pascal takes over the memory layout of programithout receiving a method call; in Java all objects are tigac
mer defined types. Functional and object-oriented languagend autonomous activity is expressed through threads. The
offer automatic garbage collection of dynamically all@ht acceptance of messagesingplicit rather thanexplicit as in
memory blocks. Ada and POOL, where each object hadady that controls

It has been argued that objects can be naturally thoughtesftry into the object; condition synchronization is ackigv
as evolving independently and thus concurrently; an objethroughguardsinstead. The communication between objects
is a natural "unit” of concurrency. Yet, current mainstrearns throughsynchronous method callas in Ada, POOL, and
object-oriented languages treat concurrency indepelydeht Java, rather than through message queues as with Actors.
objects: concurrency is expressed in terms of processes (ofhe closest work is the Seuss approach of Misra [13] and
threads) that have to be managed separately from objects. O®-action systems of Bosangue, Kok and Sere [5], [6]. We
goal is to offer the programmer one further relief, namebtthshare with these approaches the use of synchronous method
from explicitly managing processes of concurrent programscalls, the use of guards for condition synchronization, ted

Historically processes were introduced for managing physise of actions to express autonomous activity. While in Seus
cal resources. This is reflected in concurrency theoriegdib- only a fixed number of objects can be declared, we allow
cess algebras and atomic (shared variable) actions thatecedynamic object creation, as in OO-action systems. A diffeee
around explicitly declared processes—typically corresfiog is how atomicity of actions and methods is guaranteed if
to resources—and their parallel composition. Eliminating they contain multiple method calls. Suppose we have an
need for explicitly declaring and composing processes sifunguarded) actiom.m; y.n and methoch of objecty is not
plifies the design process of object-oriented programs$erat enabled. In OO-action systems, following the theory ofatcti
than having the class structure and the process structiweas systems, the whole action is therefore not enabled; thwee if
interdependent design views, we have only one, namely thatwere to executexcm, we would have to roll back. In Seuss
the class structure. Concurrency is expressed by addifanact this is solved by allowing a call to a guarded method to be
to objects, with the possibility of introducing concurrgrin  only the first statement in an action or a method. Beside being
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inconvenient, this forbids that a unguarded method is rdfintheir name, actions cannot be called, they can be executed

by a guarded one is a subclass (though Seuss does not consithemever their guard is true. The assertion staterassértb

subtyping). We do not have this restriction, but allow that achecks whether boolean expressiomolds. If it holds, then

action or method “gets stuck” at the point where a methakecution continues, otherwise it aborts. The assignment

is called. That is, actions and methods are atomic only @mssigns simultaneously the values of thedisb the listx of

to method calls. While our compiler accepts these progranvariables. The nondeterministic assignment statermest s

we note that for verification and refinement programs hagelects an element of the sgtand assigns it to the list

to be translated such that method calls appear only as tifevariables. This statement is not part of the programming

first statement in methods and actions [14]. The underlyitgnguage, but is included here for use in abstract progrAms.

refinement theory of Buchi and Sekerinski [8] assumes thisethod callz := c.m(e) to objectc takes the lise as the value

form of programs. parameters and assigns the result to the distf variables.
Much of the inspiration and several of our examples coniethere is no result returned, we simply writem(e). The

from themoB\ approach that was initiated by Jones [10], [11bbject creatiorc := new C(e) creates a new object of class

even thoughrofB\ is defined in terms of the calculus and C and calls its initialization with value parameterThe type

our language is defined in terms of action systems. We dastc := d asC checks ifd is of classC; if so, it assigns

not directly supportearly return and delegatestatements as d to objectc, otherwise it aborts. We do not further define

mofA does, but we do allow methods (and actions) to hdentifier, expressionandtype

guarded;roX supports mutual exclusion, but not condition

synchronization. I1l. READER-WRITER LOCKS

We illustrate the constructs of the language by a series of

. i o examples. Consider the problem of ensuring that a resosrce i
We start by giving the (slightly simplified) formal syntax ofgjther accessed by up ®readers or a single writer. We can
the language in extended BNF. The constrai¢h stands for g 5o by objects of the clas®eaderWriter

eithera or b, [a] means that is optional, and{a} means that

a can be repeated zero or more times: classReaderWriter
attr n,N : integer

initialization (R : integer)

II. A CONCURRENTOBJECTFORIENTED LANGUAGE

class::= classidentifier] inherit identifier]
{ attribute| initialization | method| action} end

i ) n,N:=RR
attribute::= attr varList method startRead
initialization ::= initialization [(varList) | statement whenn>o0don:=n—1
method::= method identifier[ (varList )] [: typeList] method startWrite

[when expressiordo] statement whenn=Ndon:=0
action::= action [identifier] method endRead

[when expressiordo] statement ni=n+1
statement:= assertexpressior method endWrite

idList := exprList| n:=N
idList :c exprList| '

identifieridentifier[ ( exprList)] | end
idList := identifieridentifier[ (exprList)] | The class initialization sets attributésandn to the maxi-
identifier := new identifier[ ( exprList)] | mum number of readers. The class maintains the invabiant
identifier:= expressiorasidentifier | n < N. MethodsstartReadand startWrite are enabledif their
begin statemen{ ; statemen} end | respective guard is true, otherwidisabled If rw is an object
if expressiorthen statement elsestatement | created byrw := new ReaderWrite(N), then a typical access
while expressiordo statement of the resource would bew.startRead, ... ; rw.endWrite
var varList ; statement The atomicity policy is that all methods and actions are aom
return exprList up to method calls. Hence all methods and the initialization
varList ::= idList : type{, idList : type} of the classReaderWriterare executed atomically, but the
typeList::= type{ , type} calls rw.startReadand rw.endReadmay be suspended. The
idList ::= identifier{ , identifier} call rw.startReadmay continue only whestartReadbecomes
exprList::= expressior , expressior} enabled, the caliw.endReadmay continue at any time. We

assume here that all attributes are private to an object hind a
Fhethods are public (our implementation offers a finer cdntro
of visibility).

A class is declared by giving it a name, optionally statin
the class being inherited, and then listing all the attebut
initializations, methods, and actions. Initializatioresvg only
value parameters, methods may have both value parameters

and return a result, and actions don’t have parameters. Both IV. PRIORITY QUEUE

methods and actions may optionally haveguard a boolean A priority queue offers a methoddd(e) for storing integer
expression. Actions may be named, though the name deesa methodremovefor removing the least integer stored
not carry any meaning; while methods can be called usisg far, and a methodmptyfor testing whether the priority



gueue is empty. Our implementation is by a linked list od priority queue can have at most as many concurrent actions
nodes. Elements are stored in attribatén ascending order as there are nodes in the queue.

(duplicates are allowed). Attribulepoints to the next node or

The atomicity policy allows that as soon as control passes

is nil at the last object, which does not hold a queue elemes.another object, another method call can enter that qlject
An element is added to the priority queue by either storirgction of that object can be initiated, or a method or actim c
it in the current node if it is the last one (and creating gesume its suspended execution. ActidndddanddoRemove
new last node), or by depositing it in the current node anghntain calls to another object, hence at those calls eixelus
enabling an action that will move either the new element er thaccess is dropped. As at the cdlladd(p) and l.add(m) in
element of the current node one position down. The minimabAddattributea is false, methodadd andremoveand actions
element is removed by returning the element of the curresidAddanddoRemovere all disabled while methoeimptyis
node immediately and enabling an action that will move thenabled. Thusmptycan also be called after the caladd

element of the next node one position up, or setltpeinter

to nil if the node becomes the last one:

classPriorityQueue
attr m, p : integer
attr | : PriorityQueue
attr a,r : boolean

initialization 1, a,r := nil, false false

method empty: boolean
when notr do
return | = nil
method add(e : integer)
when nota and notr do
if | = nil then

beginm:=e; | := new PriorityQueueend

else
beginp:=e; a:=trueend
method remove: integer
when nota and notr do
beginr := true; return mend
action doAdd
when ado
begin
if m < p then l.add(p)

else beginl.addm) ; m:=pend;

a:= false

end

action doRemove
whenr do

begin
if l.emptythen | := nil
elsem := l.remove,
r .= false

end

end

leaves the current object and before it returns; for example
that call may get suspended and not return immediately.
Objects are similar to monitors in the sense that both
guarantee exclusive access to private data. Method calls to
other objects—the equivalent of nested monitor calls—are
openas the exclusive access to the first object is dropped and
only regained when the call returns. By comparison, method
calls in Java arelosedas exclusive access to all objects in
the call chain is retained. It is known that closed callswallo
less concurrency and are more prone to deadlocks, see e.g.
[3] for a discussion. On the other hand, open calls requige th
class invariant to be established or all methods and albasti
of that object to be disabled before a call to another object.
While the second approach has the same effect as closed calls
our point is that the programmer can chose either extreme or
some approach in between by selectively disabling methods.
We note that compared to traditional monitors (and to some
extend to Java), there are no condition variables sigmal
and wait operations, and no processes as explicit language
constructs—their role is taken over by guarded methods and
actions.

V. LEAF-ORIENTED TREES

The next example is about parallelizing operations on sets.
The implementation is by leaf-oriented trees, i.e. treagtith
the internal nodes contain only guides and the elements are
stored in the leaves. Insertion either creates two new teave
only deposits an element in an internal node. Each node has
an action that would eventually move the deposited element
one level closer to its final position. This action needs tlwho
a lock only on the current node and one of its children. Thus
insertions can proceed in parallel in different parts ofttiee.
The methodsadd and has are guarded in order to prevent

Methodsadd andremoveare disabled if eithea is true—a possible overtaking:
request for adding has been deposited-+isrtrue—a request

for removing has been deposited, whdmptyis disabled ifr classTree

is true. We note tha& andr cannot be true at the same time. attr root : Node

If ais true, then cannot benil and the queue is not empty, initialization root := nil

hence independently @t the testl = nil reflects whether the method add(x : integer)

queue is empty. However, if is true, then the queue may or if root = nil then root := new NodgX)

may not be empty, hence methedhptyhas to wait untilr elseroot.add(x)

becomes true. method hagx : integer) : boolean
Actions cannot be called, they can be initiated whenever if root = nil then return false

they are enabled. In principle each object can have oneractio else returnroot.hagx)

being executed in parallel with actions of other objectausth  end



classNode N
attr key, p : integer ‘

attr left, right : Node ini,ool FnPodl
attr a: boolean hrend
initialization (x : integer
key, left, right, a := x, nil, nil, false inPool
method add(x : integer)
when nota do /
if left £ nil then a, p := true, x
else ifx < keythen HEREEER
left, right, key:= new NodgXx), new Nodekey), x object pool
else ifx > keythen
left, right := new Node(kew, new Node{x) Fig. 1. lllustration of the implementation. Boxes with thdool attribute

r . represent active objects, the other boxes represent paebjects. A thin
method has(x : mtegeﬂ : boolean arrow between objects represents a reference, a thick aufrom a thread to
when notado an object represents a reference with a lock.

if left = nil then return x = key
else ifx < keythen return left.hagx)
else returnright.hagx)

_ k resume. In particular, the actiamotifyOneObservemay be
action addToChild

initiated again, as long asotifyObsis not empty, i.e. some

Whe”‘f"do observers have not been notified. Thus at most as many
be.gln notifyOneObserveactions are initiated as there are observers
if p = keythen left.add(p) and all notified observers can proceed concurrently. New
elseright.add(p) ; observers can be added at any time and will be updated after
enil:: false the next call tonotify.

end

The classNodemaintains the local invariar(eft = nil) =
(right = nil) and the global invarianfleft # nil) =
(leftkey< key) A (right.key> key).

VIl. | MPLEMENTATION

In order to test our ideas, we have developed a prototypical
compiler for our language, see [12] for details. The conmpile

i ) currently translates to the Java Virtual Machine. We skéteh
The last example is the observer design pattern [9], &Xinciples of the implementation, see Fig. 1 for an illuttma.

pressed as an abstract program. The pattern allows that1@{k jmplementation relies on the restriction that method an
observers of one subject perform theipdate methods in action guards may refer only to attributes of the objectfitse

V1. OBSERVERPATTERN

parallel: and may not contain method calls. An object that has guarded
classObserver methods is called guarded objectAn object that has actions
attr sub: Subject is called amactive objectotherwise gassive objectAn active
initialization (s: Subject object that has at least one enabled action is calleshabled
beginsub:=s; sattach(this) end object otherwise adisabled object
method update. . . At runtime athread pooland anobject poolare maintained.
end The object pool is initially empty. When an active object is

created, a pointer to it is placed in the object pool (onlyvact
objects are ever placed in the object pool). Each activecobje
has an extra boolean attributePool indicating whether a
pointer to it is in the object pool. Threads request a refegen
to an active object from object pool and evaluate the action

classSubject
attr a,n: set ofObserver
initialization a,n:= {}, {}
method attach(o : Observej

at:h:(?U 'EO}AII guards. If the object is disabled, the thread resetsrtReol
mi f ano ify attribute and removes it from the object pool. If the object

is enabled, the thread executes an enabled action and leaves
the object in the object pool. Each thread obtains a lock to
an object when entering one of its methods or actions and
releases the lock when exiting the method or action. The lock
is also released at a call to another object and obtained agai
re-entry from the call. If a guarded method is called the duar
As soon as execution of the actiamtifyOneObservelin is evaluated and the thread waits if the guard is false. At the
a subjects reaches the calb.update control is passed to exit from a guarded object all waiting threads are notified to
object o and another activity irs may be initiated or may reevaluate the guards.

action notifyOne
whenn # {} do
var o : Observers
begino:e n; n:=n- {o} ; o.updateend
end



Fairness among the actions of an object is ensured by ACKNOWLEDGMENT
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guard in every active object. The object pool is implemented
as a dynamic array. Fairness among the objects is ensured by
retrieving active objects in a cyclical order. The objecbpo S
grows and shrinks like a stack: new objects are added at td Sl Agha. Actors: A Model of Concurrent Computation in Distributed
. . : . . . . Systems Series in Atrtificial Intelligence. MIT Press, Cambridge AM

end and when an object is retrieved, its position is fillechwit 1986.
the last object. Hence adding objects and retrieving object2] Pierre America. dPooI-T: I(A pare(\jllel obgect-orienteddmge- In
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even in the heap for an enabled object and garbage collection currency and synchronization for objects. In T. Rus and MtrBa,
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