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A Simple Model for Concurrent Object-Oriented
Programming

Emil Sekerinski

Abstract— It has been argued that objects can be naturally
thought of as evolving independently and thus concurrently; an
object is a natural ”unit” of concurrency. Yet, current main stream
object-oriented languages treat concurrency independently of
objects: concurrency is expressed in terms of threads that have
to be managed separately from objects. We argue for a model for
concurrent object-oriented programs in which no such distinction
is made. The only syntactic additions needed are extending classes
by actions and allowing methods to be guarded. Execution is
governed by a simple rule for atomicity. The model allows
concurrency to be seamlessly introduced in classes, thus for
example allowing concurrency to be introduced in subclasses
of a class hierarchy. This permits concurrency to be treated
as an implementation issue in the same way as the choice of
an algorithm. The model relieves the programmer from having
to distinguish between the process and class aspects in software
design. We illustrate the model by examples, discuss its rationale,
and outline our current implementation.

Index Terms— Object-oriented concurrency, action-based con-
currency.

I. I NTRODUCTION

A reoccurring theme in the history of “high level” program-
ming languages is how languages relieve the programmer from
idiosyncrasies of processors and from details of translation
techniques: For example, Fortran translates arbitrarily nested
arithmetic expressions by manipulating an expression stack.
Algol 60 supports recursion and scoping rules as we know
them today. Pascal takes over the memory layout of program-
mer defined types. Functional and object-oriented languages
offer automatic garbage collection of dynamically allocated
memory blocks.

It has been argued that objects can be naturally thought of
as evolving independently and thus concurrently; an objects
is a natural ”unit” of concurrency. Yet, current mainstream
object-oriented languages treat concurrency independently of
objects: concurrency is expressed in terms of processes (or
threads) that have to be managed separately from objects. Our
goal is to offer the programmer one further relief, namely that
from explicitly managing processes of concurrent programs.

Historically processes were introduced for managing physi-
cal resources. This is reflected in concurrency theories like pro-
cess algebras and atomic (shared variable) actions that centre
around explicitly declared processes—typically corresponding
to resources—and their parallel composition. Eliminatingthe
need for explicitly declaring and composing processes sim-
plifies the design process of object-oriented programs: rather
than having the class structure and the process structure astwo
interdependent design views, we have only one, namely that of
the class structure. Concurrency is expressed by adding actions
to objects, with the possibility of introducing concurrency in

subclasses of a class hierarchy. This permits concurrency to
be treated as an implementation issue in the same way as
the choice of an algorithm. On the other hand objects can be
used to manage resources, very much like processes can, so
no expressiveness is lost.

The purpose of this paper is to demonstrate the viability
of this “process-less” model of concurrent programming by
a series of examples and to argue that an efficient imple-
mentation is possible. We start by introducing the language
in which the programs are expressed. A formal theory for
verification and refinement is outlined in [14]. While in this
theory each class is defined in terms of an action system
and the whole program as the parallel composition of action
systems, no explicit parallel composition operator is present
in the language. A prototypical compiler that translates tothe
Java Virtual Machine is presented in detail in [12]. Here we
only sketch the implementation.

Briot et. al. [7] give an useful overview of concurrency
in object-oriented programming which we follow to classify
our approach. The level of concurrency can be characterized
as quasi-concurrent, like in ABCL/1 [15], as several method
activations may coexist, but at most one is not suspended.
This is in contrast toserial objects like in POOL [2] that
support only one method activation and fully concurrent
objects like with Actors [1]. Our objects would be classified
as autonomousrather thanreactive as they may be active
without receiving a method call; in Java all objects are reactive
and autonomous activity is expressed through threads. The
acceptance of messages isimplicit rather thanexplicit as in
Ada and POOL, where each object has abody that controls
entry into the object; condition synchronization is achieved
throughguards instead. The communication between objects
is throughsynchronous method calls, as in Ada, POOL, and
Java, rather than through message queues as with Actors.

The closest work is the Seuss approach of Misra [13] and
OO-action systems of Bosangue, Kok and Sere [5], [6]. We
share with these approaches the use of synchronous method
calls, the use of guards for condition synchronization, andthe
use of actions to express autonomous activity. While in Seuss
only a fixed number of objects can be declared, we allow
dynamic object creation, as in OO-action systems. A difference
is how atomicity of actions and methods is guaranteed if
they contain multiple method calls. Suppose we have an
(unguarded) actionx.m ; y.n and methodn of objecty is not
enabled. In OO-action systems, following the theory of action
systems, the whole action is therefore not enabled; thus, ifwe
were to executex.m, we would have to roll back. In Seuss
this is solved by allowing a call to a guarded method to be
only the first statement in an action or a method. Beside being
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inconvenient, this forbids that a unguarded method is refined
by a guarded one is a subclass (though Seuss does not consider
subtyping). We do not have this restriction, but allow that an
action or method “gets stuck” at the point where a method
is called. That is, actions and methods are atomic only up
to method calls. While our compiler accepts these programs,
we note that for verification and refinement programs have
to be translated such that method calls appear only as the
first statement in methods and actions [14]. The underlying
refinement theory of Büchi and Sekerinski [8] assumes this
form of programs.

Much of the inspiration and several of our examples come
from theπoβλ approach that was initiated by Jones [10], [11],
even thoughπoβλ is defined in terms of theπ calculus and
our language is defined in terms of action systems. We do
not directly supportearly return and delegatestatements as
πoβλ does, but we do allow methods (and actions) to be
guarded;πoβλ supports mutual exclusion, but not condition
synchronization.

II. A C ONCURRENTOBJECT-ORIENTED LANGUAGE

We start by giving the (slightly simplified) formal syntax of
the language in extended BNF. The constructa | b stands for
eithera or b, [a] means thata is optional, and{a} means that
a can be repeated zero or more times:

class::= classidentifier[ inherit identifier]
{ attribute | initialization | method| action} end

attribute ::= attr varList
initialization ::= initialization [ ( varList) ] statement
method::= method identifier[ ( varList ) ] [ : typeList]

[when expressiondo] statement
action ::= action [ identifier]

[when expressiondo] statement
statement::= assertexpression|

idList := exprList|
idList :∈ exprList|
identifier.identifier[ ( exprList) ] |
idList := identifier.identifier[ ( exprList) ] |
identifier := new identifier[ ( exprList) ] |
identifier := expressionas identifier |
begin statement{ ; statement} end |
if expressionthen statement[ elsestatement] |
while expressiondo statement|
var varList ; statement|
return exprList

varList ::= idList : type{ , idList : type}
typeList::= type{ , type}
idList ::= identifier{ , identifier}
exprList::= expression{ , expression}

A class is declared by giving it a name, optionally stating
the class being inherited, and then listing all the attributes,
initializations, methods, and actions. Initializations have only
value parameters, methods may have both value parameters
and return a result, and actions don’t have parameters. Both
methods and actions may optionally have aguard, a boolean
expression. Actions may be named, though the name does
not carry any meaning; while methods can be called using

their name, actions cannot be called, they can be executed
whenever their guard is true. The assertion statementassertb
checks whether boolean expressionb holds. If it holds, then
execution continues, otherwise it aborts. The assignmentx :=
e assigns simultaneously the values of the liste to the listx of
variables. The nondeterministic assignment statementx :∈ s
selects an element of the sets and assigns it to the listx
of variables. This statement is not part of the programming
language, but is included here for use in abstract programs.A
method callz := c.m(e) to objectc takes the liste as the value
parameters and assigns the result to the listz of variables.
If there is no result returned, we simply writec.m(e). The
object creationc := new C(e) creates a new object of class
C and calls its initialization with value parametere. The type
cast c := d asC checks if d is of classC; if so, it assigns
d to object c, otherwise it aborts. We do not further define
identifier, expression, and type.

III. R EADER-WRITER LOCKS

We illustrate the constructs of the language by a series of
examples. Consider the problem of ensuring that a resource is
either accessed by up toR readers or a single writer. We can
do so by objects of the classReaderWriter:

classReaderWriter
attr n, N : integer
initialization (R : integer)

n, N := R, R
method startRead

when n > 0 do n := n− 1
method startWrite

when n = N do n := 0
method endRead

n := n + 1
method endWrite

n := N
end

The class initialization sets attributesN andn to the maxi-
mum number of readers. The class maintains the invariant0 ≤
n ≤ N. MethodsstartReadandstartWriteareenabledif their
respective guard is true, otherwisedisabled. If rw is an object
created byrw := new ReaderWriter(N), then a typical access
of the resource would berw.startRead; . . . ; rw.endWrite.
The atomicity policy is that all methods and actions are atomic
up to method calls. Hence all methods and the initialization
of the classReaderWriterare executed atomically, but the
calls rw.startReadand rw.endReadmay be suspended. The
call rw.startReadmay continue only whenstartReadbecomes
enabled, the callrw.endReadmay continue at any time. We
assume here that all attributes are private to an object and all
methods are public (our implementation offers a finer control
of visibility).

IV. PRIORITY QUEUE

A priority queue offers a methodadd(e) for storing integer
e, a methodremove for removing the least integer stored
so far, and a methodempty for testing whether the priority
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queue is empty. Our implementation is by a linked list of
nodes. Elements are stored in attributem in ascending order
(duplicates are allowed). Attributel points to the next node or
is nil at the last object, which does not hold a queue element.
An element is added to the priority queue by either storing
it in the current node if it is the last one (and creating a
new last node), or by depositing it in the current node and
enabling an action that will move either the new element or the
element of the current node one position down. The minimal
element is removed by returning the element of the current
node immediately and enabling an action that will move the
element of the next node one position up, or set thel pointer
to nil if the node becomes the last one:

classPriorityQueue
attr m, p : integer
attr l : PriorityQueue
attr a, r : boolean
initialization l, a, r := nil, false, false
method empty: boolean

when not r do
return l = nil

method add(e : integer)
when not a and not r do

if l = nil then
begin m := e ; l := new PriorityQueueend

else
begin p := e ; a := true end

method remove: integer
when not a and not r do

begin r := true ; return m end
action doAdd

when a do
begin

if m < p then l.add(p)
else beginl.add(m) ; m := p end ;
a := false

end
action doRemove

when r do
begin

if l.emptythen l := nil
elsem := l.remove;
r := false

end
end

Methodsadd andremoveare disabled if eithera is true—a
request for adding has been deposited—orr is true—a request
for removing has been deposited, whileemptyis disabled ifr
is true. We note thata and r cannot be true at the same time.
If a is true, thenl cannot benil and the queue is not empty,
hence independently ofa the testl = nil reflects whether the
queue is empty. However, ifr is true, then the queue may or
may not be empty, hence methodemptyhas to wait untilr
becomes true.

Actions cannot be called, they can be initiated whenever
they are enabled. In principle each object can have one action
being executed in parallel with actions of other objects. Thus

a priority queue can have at most as many concurrent actions
as there are nodes in the queue.

The atomicity policy allows that as soon as control passes
to another object, another method call can enter that object, an
action of that object can be initiated, or a method or action can
resume its suspended execution. ActionsdoAddanddoRemove
contain calls to another object, hence at those calls exclusive
access is dropped. As at the callsl.add(p) and l.add(m) in
doAddattributea is false, methodsaddandremoveand actions
doAddanddoRemoveare all disabled while methodemptyis
enabled. Thusemptycan also be called after the calll.add
leaves the current object and before it returns; for example,
that call may get suspended and not return immediately.

Objects are similar to monitors in the sense that both
guarantee exclusive access to private data. Method calls to
other objects—the equivalent of nested monitor calls—are
openas the exclusive access to the first object is dropped and
only regained when the call returns. By comparison, method
calls in Java areclosedas exclusive access to all objects in
the call chain is retained. It is known that closed calls allow
less concurrency and are more prone to deadlocks, see e.g.
[3] for a discussion. On the other hand, open calls require the
class invariant to be established or all methods and all actions
of that object to be disabled before a call to another object.
While the second approach has the same effect as closed calls
our point is that the programmer can chose either extreme or
some approach in between by selectively disabling methods.

We note that compared to traditional monitors (and to some
extend to Java), there are no condition variables, nosignal
and wait operations, and no processes as explicit language
constructs—their role is taken over by guarded methods and
actions.

V. L EAF-ORIENTED TREES

The next example is about parallelizing operations on sets.
The implementation is by leaf-oriented trees, i.e. trees inwhich
the internal nodes contain only guides and the elements are
stored in the leaves. Insertion either creates two new leaves or
only deposits an element in an internal node. Each node has
an action that would eventually move the deposited element
one level closer to its final position. This action needs to hold
a lock only on the current node and one of its children. Thus
insertions can proceed in parallel in different parts of thetree.
The methodsadd and has are guarded in order to prevent
possible overtaking:

classTree
attr root : Node
initialization root := nil
method add(x : integer)

if root = nil then root := new Node(x)
elseroot.add(x)

method has(x : integer) : boolean
if root = nil then return false
else return root.has(x)

end
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classNode
attr key, p : integer
attr left, right : Node
attr a : boolean
initialization (x : integer)

key, left, right, a := x, nil, nil, false
method add(x : integer)

when not a do
if left 6= nil then a, p := true, x
else ifx < keythen

left, right, key:= new Node(x), new Node(key), x
else ifx > keythen

left, right := new Node(key), new Node(x)
method has(x : integer) : boolean

when not a do
if left = nil then return x = key
else ifx ≤ keythen return left.has(x)
else return right.has(x)

action addToChild
when a do

begin
if p ≤ keythen left.add(p)
elseright.add(p) ;
a := false

end
end

The classNodemaintains the local invariant(left = nil) =
(right = nil) and the global invariant(left 6= nil) ⇒
(left.key≤ key) ∧ (right.key> key).

VI. OBSERVERPATTERN

The last example is the observer design pattern [9], ex-
pressed as an abstract program. The pattern allows that all
observers of one subject perform theirupdate methods in
parallel:

classObserver
attr sub: Subject
initialization (s : Subject)

begin sub:= s ; s.attach(this) end
method update . . .

end

classSubject
attr a, n : set ofObserver
initialization a, n := {}, {}
method attach(o : Observer)

a := a∪ {o}
method notifyAll

n := a
action notifyOne

when n 6= {} do
var o : Observers;
begin o :∈ n ; n := n− {o} ; o.updateend

end

As soon as execution of the actionnotifyOneObserverin
a subjects reaches the callo.update, control is passed to
object o and another activity ins may be initiated or may

thread
pool

object pool

¬inPool
inPool

inPool

Fig. 1. Illustration of the implementation. Boxes with theinPool attribute
represent active objects, the other boxes represent passive objects. A thin
arrow between objects represents a reference, a thick arrows from a thread to
an object represents a reference with a lock.

resume. In particular, the actionnotifyOneObservermay be
initiated again, as long asnotifyObs is not empty, i.e. some
observers have not been notified. Thus at most as many
notifyOneObserveractions are initiated as there are observers
and all notified observers can proceed concurrently. New
observers can be added at any time and will be updated after
the next call tonotify.

VII. I MPLEMENTATION

In order to test our ideas, we have developed a prototypical
compiler for our language, see [12] for details. The compiler
currently translates to the Java Virtual Machine. We sketchthe
principles of the implementation, see Fig. 1 for an illustration.
The implementation relies on the restriction that method and
action guards may refer only to attributes of the object itself
and may not contain method calls. An object that has guarded
methods is called aguarded object. An object that has actions
is called anactive object, otherwise apassive object. An active
object that has at least one enabled action is called anenabled
object, otherwise adisabled object.

At runtime athread pooland anobject poolare maintained.
The object pool is initially empty. When an active object is
created, a pointer to it is placed in the object pool (only active
objects are ever placed in the object pool). Each active object
has an extra boolean attributeinPool indicating whether a
pointer to it is in the object pool. Threads request a reference
to an active object from object pool and evaluate the action
guards. If the object is disabled, the thread resets theinPool
attribute and removes it from the object pool. If the object
is enabled, the thread executes an enabled action and leaves
the object in the object pool. Each thread obtains a lock to
an object when entering one of its methods or actions and
releases the lock when exiting the method or action. The lock
is also released at a call to another object and obtained again at
re-entry from the call. If a guarded method is called the guard
is evaluated and the thread waits if the guard is false. At the
exit from a guarded object all waiting threads are notified to
reevaluate the guards.
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Fairness among the actions of an object is ensured by
evaluating the guards in a cyclical order. This is done with one
additional attribute for the index of the last evaluated action
guard in every active object. The object pool is implemented
as a dynamic array. Fairness among the objects is ensured by
retrieving active objects in a cyclical order. The object pool
grows and shrinks like a stack: new objects are added at the
end and when an object is retrieved, its position is filled with
the last object. Hence adding objects and retrieving objects
take constant time. Active objects are garbage collected like
passive objects, i.e. when there is no reference from any other
object and no reference from the object pool. With this scheme,
there is no need for a thread to search in the object pool or
even in the heap for an enabled object and garbage collection
is not affected by the presence of active objects.

The object structure effectively helps to control the evalua-
tion of guards. A guard can be thought of as anawaitstatement
preceding the body. In the absence of any syntactic constraints,
the statementawait condrequires repeated evaluation ofcond
after some delay. To reduce resource contention, abinary
exponential back-off protocolcan be employed that starts with
a random delay and doubles it after each failure, similar to
the Ethernet protocol. In the presented scheme no delays are
employed. Action guards are initially evaluated once when a
thread is searching for an action to execute. Method guards are
initially evaluated once when a method is called. Both action
and method guards are reevaluated only after another thread
has exited an action or method of the object and thus possibly
affected the guards.

The memory overhead is that every active object requires
one bit for theinPool attribute, one integer for the index to the
last evaluated action guard, and one pointer in the object pool.
The number of object threads equals to the size of the object
pool array—thus every enabled object will eventually get its
turn. In our current implementation the object pool array can
only grow but not shrink, and so can the number of threads.

VIII. D ISCUSSION

The viability of the proposed approach crucially depends
on the efficiency of the implementation. Our main focus so
far was developing the underlying theory [8], [14]. An early
experimental implementation for a similar, but more restricted
language, was presented in [4] and our current one in [12]. The
compiler currently does not carry out any optimizations like
eliminating synchronization statements when not needed and
detecting which guards do not need reevaluation after specific
exits. There remain the topic of future work. Hence we have
so far not conducted any timing experiments. However, we did
measure the size of the object and thread pool. In programs
like the ones presented, it turns out that typically the object
and thread pool size is significantly smaller than the number
of active objects (i.e. an order of magnitude or more). Hence
in these examples thread management does not constitute a
bottleneck. This gives us some reassurance that highly efficient
implementations are possible.
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