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Introduction

This collection of papers is produced by participants of the graduate course CAS 703 Software
Design, winter term 2005/06, at McMaster University. The course was divided into two parts.
In the first part the instructor gave seminars on fundamental topics in software design. For
the record, these were:

1. Elements of Programming 8. Object-Oriented Modelling

2. Modularization 9. Requirements Analysis

3. Abstract Programs 10. Object-Oriented Design

4. Testing 11. Reactive Programs

5. Exceptions 12. Configuration Management

6. Functional Specifications 13. Software Development Process
7. Object-Oriented Programs

For the second part, students selected a topic for which they reviewed the literature, gave a
presentation, and wrote a paper. This report consists of those papers, in order of presenta-
tion. Some of the articles are surveys and some develop new ideas; they are all beyond the
material found in textbooks on software design. The topics range from issues in program-
ming languages to programming tools, design principles, pedagogical issues, and managerial
issues. All papers are sound starting points for further research.

Emil Sekerinski
April 2006
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Chapter 1

Lei Hu: Design Recovery of
Specifications

The objective of this paper is to describe how to recover specifications from source code
during the design recovery process. We first outlines some basic reverse engineering concepts
in §1.1 and §1.2, which are followed by the description of process of design recovery in §1.3.
In §1.4 we explore the spectrum of design recovery techniques and conduct a comparison on
various aspects. In §1.5 we concentrate on two formal approaches based on formal methods
to derive specifications from source code are introduced. Finally, we give the conclusion and
future work.

1.1 Introduction

During the last three decades, the emergence of large software systems has created a great
impact on modern society. These large software systems, such as e-commerce, banking sys-
tem and telecom system, have been developed and applied in various domains of our daily
life. However, the rapid growth of software systems in both size and complexity has resulted
in a dramatic increase of investment in maintenance. Software maintenance has been recog-
nized as one of the most costly phases in the software development. Studies on the effort of
the software development show that the portion spent on software maintenance has increased
dramatically from 49% in 1977 to more than 90% in 1995 [6]. For example, it was estimated
that Nokia Inc. used about $90 million just for preventive Y2K-bug corrections [14].

The first step in the software maintenance phase is to try to understand the design that
already exists. To keep the maintenance phase to be as efficient as possible, we need to obtain
appropriate design abstractions to facilitate program maintenance and program understand-
ing. Ideally, these design abstractions should be acquired from software documentation and
original software developers. Nevertheless, it is often the case that such documentation is
out-of-date or nonexistent and original software developers have moved away. As a result,
the maintainers are faced with the task of recovering the intent of the original author without
any guidance but the analysis of the source code. These situations demand the techniques
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and tools of reverse engineering.

In this survey, we first give a brief introduction to reverse engineering and some related
terms in software engineering. Then design recovery is discussed. Finally, we focus on the
derivation of formal specifications used in design recovery.

1.2 Reverse Engineering Review

Reverse engineering is the process of analyzing a subject system to identify the system’s
components and their interrelationships and create the representations of the system in
another form or at higher levels of abstraction [4].

In fact, the term "reverse engineering” stems from the process of the analysis of hardware
whose objective is to analyze a competitor’s products or to duplicate the system. As Rekoff
mentioned in a landmark paper on the topic, he defines reverse engineering as ”the process of
developing a set of specifications for a complex hardware system by an orderly examination
of specimens of that system”. Compared with the hardware systems, in the software system,
the goals of reverse engineering is to gain a sufficient design-level understanding to aid
maintenance, strengthen enhancement or support replacement and migration [4].

Reverse engineering is required especially when it would take us long time to understand
a software system because of the incorrect and antique documentation, the complexity of the
system and the insufficient knowledge of the maintainer of the system. By performing reverse
engineering, we can recover the lost information, facilitate the migration between platforms,
improve or provide documentation, provide alternative views, extract reusable components,
cope with complexity, detect side effects and reduce maintenance efforts. Design recovery
and redocumentation are the two primary subareas of reverse engineering.

¢ Redocumentation is the creation or revision of a semantically equivalent represen-
tation within the same relative abstraction level [4]. The precondition of the redoc-
umentation is the design documentation of the existing subject system. What we do
is to use other views to represent the system (for example, dataflow, control flow and
data structure). Redocumentation provides an easy way to visualize the structure of
the system component.

e Design recovery is a subset of reverse engineering in which domain knowledge, exter-
nal information, and deduction or fuzzy reasoning are added to the observation of the
subject system to identify meaningful higher level abstractions beyond those obtained
directly by examining the system itself [4].

We note that reverse engineering, a process of examination, does not change the subject
system.
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Requirement Design Implementation
Forward Forward
Engineering Engineering
__Reverse Reverse
~ Engineering Engineering

Restructuring

Restructuring

Restructuring

Figure 1.1: Relationship between terms.

Some Related Terminology

There are some confusable terms in the software life cycle. To avoid the confusion and to
fully understand the concept of reverse engineering, we give the corresponding definitions of
these terms. Figure [4] shows these terms and their relations to each other and to three
major phases: requirements, design, and implementation in life-cycle model of a software

system.

e Forward Engineering is the traditional process of moving from high-level abstrac-
tions and logical, implementation-independent designs to the physical implementation
of a system [4]. Here we use the word ”forward” to distinguish it from reverse engi-

neering.

e Reengineering also called renovation or reclamation, is the examination and alter-
ation of a subject system to reconstruct it in a new form and the subsequent imple-

mentation of the new form [4].

e Restructuring is the transformation from one representation form to another at the
same relative abstraction level, while preserving the subject system’s functionality.
Restructuring does not need to understand the semantics of the system. It simply

transforms an unstructured code into a structured one.
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Analysis (Abstract)

Extract

Source code Repository

View o
> Visualization

Figure 1.2: Process of Design Recovery

1.3 Foundation of Design Recovery

Being a subset of reverse engineering, design recovery occurs throughout the software life
cycle, from the software development to maintenance. To develop new software, we always
prefer to spend some time trying to understand the structure of similar mature systems.
Likewise, when we perform software maintenance, we always face such kinds of questions
like what a program does, how it does it, why it does it, and so forth. To answer these
questions, we need to understand the system’s structure through design recovery.

Process of Design Recovery

Current research in software reverse engineering mainly focuses on two areas: representing
software systems and analyzing software systems. Therefore, we can divide the process of
design recovery into extract, analysis (abstract) and view as shown in Figure [I.2]

Source codes are extracted by extractor, and then stored into a software repository. By
different analysis techniques, these data are abstracted to provide a deeper understanding of



Design Recovery of Specifications 7

the software system. Abstractions of the system are then viewed by appropriate visualization
ways. The extract — analysis (abstract) — view process provides a classical framework
for the reverse engineering techniques. Reverse engineering tools like Rigi [13], Bookshelf [9]
and DALI [15] all follow this process.

Representing Source Code

Source code is often the only accurate and reliable source for us to start the reverse engi-
neering activities. Although source code contains some important information, some design
information cannot be directly acquired from the program codes. For example, to describe
software architecture which emphases to lay out the modular structure and relationship. In
contrast, a detailed dataflow and controlflow analysis requires a fine grained representation
of each source code object (variables, methods, paragraphs) and their occurrences in pro-
gram statements. Therefore, we need to find certain appropriate ways to represent the code
to facilitate design recovery process.

In reverse engineering, we always choose graphs to represent the software artifact, since
graphs own the strong mathematical foundation and abundant efficient algorithmic suppor-
tance. In the following part, we will introduce some famous graph models such as, TA [12],
RSF [13], and TGraphs [6], which have been applied in software reverse engineering success-
fully. We also give a simple example using TGraphs to represent a small program.

1. TA, the Tuple-Attribute language, allows us to store information about certain types
of graphs conveniently. This information includes:

(a) Nodes and edges in the graph, and
(b) Attributes of these nodes and edges.

The information of program, represented by TA, can be interpreted to be a graph data
base.

2. RSF, comes from the reverse engineering tool Rigi, created at the University of Victo-
ria. A RSF file consists of a sequence of triples and one triple on a line. A RSF triple
can represent an arc between two nodes like arcType, startNodeName and endNode-
Name. For example, using a domain model that has function and data type nodes
interconnected by call arcs, a token-level RSF stream then contains triples like:

arcType | startNodeName | endNodeName
call main printf

call main listcreate

data main FILE

data listcreate List

3. TGraphs, are directed graphs, whose nodes and edges may be attributed and typed.
Each type can be assigned an individual attribute schema specifying the possible at-
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v1:Function

name = main

el:isCaller e2:isCaller

/ .
- line =12

line = 8 ~

v3:FunctionCall

v2:FunctionCall

e6:isinput
1 2} /{1
1 {2} e7:islnput 2} /)
e3:isCallee ed:isCallee
v4:Function v5:Function
e5:islnput
e8:isInput
e9:isOutput e10:isOutput
v6:Variable v7:Variable
name = a name =b

Figure 1.3: A program fragment represented by TGraph [0]

tributes of nodes and edges. Here, we give a simple example to show how to represent
a program fragment using TGraphs.

int main()

{
int a;
int b;
a=max(a,b);
b=min(a,b);
}

In Figure [I.3] the functions main, max and min are represented by the nodes of type
function. These nodes are attributed with the function name. FunctionCall nodes
represent the calls of functions max and min. They are associated with the caller by
isCaller edges and to the callee by isCallee edges. The isCaller edges are attributed
with a line attribute showing the line number which contains the call. Input param-
eters (represented by variable nodes that are attributed with the variable name) are
associated with isInput edges. The ordering of parameter lists is given by ordering
the incidences of isInput edges pointing to FunctionCall nodes. The first edge of type
isInput incident to function call v2 (modeling the call max(a,b)) comes from node v6
representing variable a. The second edge of type isInput connects to the second pa-
rameter b (node v7). The incidences of isInput edges associated with node v3 model
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isCallee> .
FunctionCall -
0.* 0..* <isOutput
0..* {ordered}
0.* <islnput
1 N 0.x 1
. \ .

Function \ isCaller Variable

— 1 isCaller> —
name : string line : int name : string

Figure 1.4: Graph class definition

in the reversed parameter order. Output parameters are associated with their function
calls by isOutput edges.

Describing Graph Classes by UML Class Diagrams

As we have seen above, TGraphs provide a simple structural graph-based means to repre-
sent source code. However, for different reverse engineering tasks, we need different TGraph
structures. As we mentioned before, if we want to describe software architecture with em-
phasis on the modular structure and relationship, we need to redefine the meaning of the
nodes and edges to represent the software system as an attributed relational graph at a
higher-level of abstraction. UML class diagrams offer a convenient declarative language to
define a graph class with respect to a given application context.

Figure [I.3] offers a fine grained representation of program structures, focusing on the de-
scription of functions, function calls, variables and their interdependencies. Figure shows
a possible graph class definition of this graphs, depicted as an UML class diagram [6]. Node
classes (FunctionCall, function, and variable) are defined by classes. Edge classes (isCallee,
isInput, and isOutput) are defined by associations. Attributed edge classes (isCaller) are
described by association classes. The orientation of edges is depicted by an arrow. Mul-
tiplicities denote degree restrictions. Ordering of incidences is indicated by the keyword
ordered.

Extracting Facts from Source Code

All program understanding and analysis activities in reverse engineering rely on the data
stored in the repository. Therefore, extracting accurate and reliable facts from source code
then storing them into the repository is an important step in the design recovery process. The
extracting step is conducted by an extractor in the design recovery process. An extractor is a
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Figure 1.5: Abstract Syntax Tree

program which processes source code and outputs facts about the code in a software exchange
format (SEF) . CPPX, a C++ Extractor, was developed by the team of Dean, Malton and Ric
in 2001. This Open Source tool is based on GNU’S GCC front end and produces information
according to the Datrix schema [18]. A schema is derived from a domain model, a description
that relates entities in the schema to their real-world counterparts, thus providing a basis
for meaningful interpretation of the data [8]. The extracting process mainly include the
following steps.

1. Parse the source code to extract abstract syntax tree as shown in Figure [1.5]

2. According the given graph class (schema), extract graph representation of the system
by abstract syntax tree traversal.

Analysis

In the analysis process, for different reverse engineering tasks, a variety of techniques are used
to recover design abstractions from a combination of source code, existing design documen-
tation (if available) and general knowledge about application domain. The recovered design
abstraction must include conventional software engineering representations such as formal
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Plan-Based

Informal

Pasing-Based

Techniques

Transformation

Formal

Translation

Figure 1.6: Classification of Reverse Engineering Techniques

specifications, module breakdowns, data abstractions, dataflows, and program description
language [1]. In the context of design recovery, we can classify the design abstraction into
structural abstractions and functional abstractions. A structural abstraction is a description
of a software system based on the syntactic properties of a programming language. For
example, the abstraction of module is a structural abstraction. In contrast, the functional
abstraction is a description of a software system that is based on the semantics of a pro-
gram. In other words, a functional abstraction describes program behavior. For instance,
abstraction of formal specifications is a functional abstraction.

1.4 Classification of Design Recovery Techniques

The analysis techniques in design recovery process can be classified according to the un-
derlying approach used to analyze softwares. The classification of techniques is shown in
Figure [1.6]

1. Informal techniques

Informal techniques are those methods that rely on pattern matching and user-driven
clustering techniques based on the syntactic structure of code [10]. The informal tech-
niques facilitate the derivation of structural and functional abstractions. The infor-
mal techniques can be decomposed into two additional sub-categories: plan-based and
parsing-based.

e Plan-based techniques rely primarily on using pattern matching to identify
plans within source codes. A program plan is a description of a computational unit
contained within a program where a computational unit performs some abstract
function [10].
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e Parsing-based approach analyzes program through the properties of the syn-
tactic structure of a programming language [10]. In general, the parsing-based
approach constructs a high-level structural abstraction of the source code. This
high-level structural abstraction typically includes data flow diagrams and some
other graphical representations of the design.

2. Formal techniques

Formal techniques are those techniques that are based on using some type of formal
analytical method to derive a specification from source codes [10]. Mathematical logic
is the basis of formal techniques. Each step in the reverse engineering process can be
formally verified. In the reverse engineering, we always use formal techniques to get
the formal specification from source code.

Formal techniques can also be subdivided into two categories: techniques using a
knowledge-base or transformation library to derive formal specifications from code, and
techniques using derivation or translation to derive formal specifications from code.

e Transformation is a method for changing a specification from one form to an-
other while preserving the semantics of the specification. In the context of pro-
grams, a program transformation is a means for changing a program from one
form to another while preserving the semantics of the program. Each program
transformation typically changes a group of programming statements at a once,
where the group is determined by the author of the particular transformation.

e Translation is also a method for changing a program from one form to another
while preserving semantics but at an atomic level of granularity. In the context of
program reverse engineering, a translation technique is usually applied to trans-
lates a program into an equivalent formal specification according to some simple
rules.

The primary difference between transformation and translation is the degree to which
high level knowledge about a problem domain or programming language is incorporated
into the transformation or translation rules. In the case of transformation, the rules
typically involve transforming aggregations of programming statements into simpler,
equivalent sequences of statements or concise formal specifications. In many cases,
a large library of transformations is required to capture the many different possible
code constructions. The translation, in contrast, involves much simpler rules that are
based on single atomic statements such as assignments, alternations, and iterations,
thus requiring fewer rules.
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1.5 Constructing Formal Specifications from Source Code

Definition of Formal Specification

In software engineering, a formal specification is a specification expressed in a language
whose vocabulary, syntax and semantics are formally defined. A specification is formal if it
is expressed in a language made of three components: rules for determining the grammat-
ical well-formedness of sentences (the syntax); rules for interpreting sentences in a precise,
meaningful way within the domain considered (the semantics); and rules for inferring the
useful information from the specification (the proof theory) [19].

Applying Formal Specification in Software Development

Developing and analyzing a formal specification can reduce the costs of software development.
When a conventional software development process is used, validation costs are about 50
percent of development costs and implementation and design costs are about twice the
costs of specification. With formal specification, specification and implementation costs are
comparable and system validation costs are significantly reduces [17]. Since requirements
problems can be discovered by developing the formal specification, we are able to avoid to
rework to correct these problems after the system has been designed.

Motivation of Formal Specification Abstraction in Reverse Engi-
neering

Sometimes we want to re-implement an existing system using latest software technology. To
keep the functionality of existing systems, we need to extract specification from the system
as the new starting point for system improvement, including redesign, re-architecture and
re-development. Several techniques and tools have been developed to perform the formal
specification abstraction in reverse engineering, we can classify these techniques into two
subareas: using weakest precondition and using strongest postcondition. We discuss these
two approaches in the following section.

Using Strongest Postcondition

First we describe an approach to abstract formal specification through the strongest post-
condition predicate transformer sp [7], and Hoare triple [I1]. Following this, we introduce
AUTOSPEC [3], a tool developed to support this approach to derive formal specifications
from program code. Before our discussion of the approach, we first give some prime defini-
tions.

e Precondition is a condition or predicate that must always be true prior to the exe-
cution of some section of code or before an operation in a formal specification.
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e Postcondition is a condition or predicate that must always be true just after the
execution of some section of code or after an operation in a formal specification.

e Hoare triple is of the form @ {S} R, where @ and R are precondition and postcon-
dition respectively.

e Predicate transformer is a total function mapping between two predicates on the
state space of a program.

e wp (Weakest Precondition) the weakest precondition wp(S, R) is the set of all
states where the statement S can begin to execute and terminate with postcondition
R hold.

e sp (Strongest Postcondition) the strongest postcondition sp(S, Q) is a predicate
transformer, which is the set of all states in which there exists a computation of S
beginning with @ true [7]. In other words, given that @ holds, if S terminates, execution
of S results in sp(S, Q) being true.

Primitive Construction

In this section, we describe the abstraction of formal specifications from several primitive
program constructs, such as assignment, alternation, sequences and iteration. For every
primitive constructs, we first give the semantics of predicate transformer sp. Then we will see
how to get the formal specification by using the Hoare triples Q{S}R where R = sp(S, Q).

e Assignment

Suppose we have an assignment statement x := F; where x is a variable, and F is
an expression. The definition of sp of an assignment statement is:

sp(e = E,Q) = (Fv.Qy A (z = EY))
where Q is the precondition. Using the Hoare triple notation, a formal specification of
assignment statement is constructed as:

{Q} x:=FE; {sp(x:=F,Q)}

e Alternation
Suppose we have an alternation statement like
if B — Si;... || B — Su; f1;
Then formal specification of alternation is :
{Q}
if B — Sy || Ba — Su fi
{sp(S1,B1 ANQ)V ...V sp(Sp, B, NQ)}



Design Recovery of Specifications 15

e Sequence

For a given sequence of statements Si;...; S,,,we can find that the postcondition for
some statement S; is the precondition for the subsequent statement S, ;.

sp(S1; 52, Q) = sp(S2, sp(S1,Q))

If we have the sequence Sy; Sy with respect to the precondition (), using a Hoare triple
notation, a formal specification of the sequence statement is constructed as:

{Q}
St

{sp(S1,Q)}
So;

{sp(S2, sp(S1,Q))}

e Iteration
Given an iterative form like:

do B — S od

The loop is executed when B is true. The strongest postcondition semantics for itera-
tion is sp(DO, Q) = ~B A (Ji.i > 0 A sp(I1F*,Q)) [T

Here the notation IF' indicates the execution of "if B — S fi” i times and DO
represents the loop statement. Using the Hoare triple notation, a formal specification
of the iteration statement is constructed as:

{Q}
do B — S od

{=BA(Ji.i >0Asp(IF",Q))}

The following example shows how construct the formal specification of iteration statement
doi<n —i:=1+1od.

The unrolled form of the iteration have the following form:

ifi<n —i:=i+1fi

ifi<n —i=i+1fi

Assume the precondition is {(i = start) A (start < n)}. By applying the sp semantics
for each alternation statement, we get

1. {(i = start) A (start < n)}

2. ifi<n— i:=1+1f1
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3. {sp(i:=i+1,(i <n)A(i=start) A (start < n))
4. VvV

5. sp(skip, (i > n) A (i = start) A (start <n))}

6. <

7. {(i = start+ 1) A (start < n)}

8 ifi<mn— i—i+1fi

9. {sp(i:=i+1,(i <n)A(i=start+1) A (start < n))
10. Vv

11. sp(skip, (i > n) A (i = start + 1) A (start < n))}
12. <

13. {((i = start + 2) A (start +1 < n))

14. v

15. (i >n) A (i = start + 1) A (start <n)}

16. ........

17. {((i = start + (n — start — 1)) A (start + (n — start — 1) — 1) < n))
18. Vv
19. (i
20.
2. {(l=n—-1)A(n—2<n))}

22, ifi< n— i=it+lfi

23. {spli:=i+1,(i<n)AN(i=n—1)A(n—2<n))

Vv

n) A (i = start + (n — start — 2)) A (start + (n — start —2) — 1 <n)}

!

24. 'V

25. sp(skip,(i >=n)A(i=n—-1)A(n—2<n))}
26. <—

27. {i=n}

In the construction of specifications of this iteration statement, we need to make a human
specifier. In line 17, the inductive assertion that ”i = start + (n — start — 1)” is made. In
fact, we make this assertion according the loop invariant "¢ < n”. However, comparing
with this simple iteration statement, to determine an invariant for a complicate program is
a non-trivial thing and the manual application can be prone to error. Therefore, we need to
employ some tools to facilitate us to detect the invariant of the program.

Using Daikon to Detect Invariant

Daikon [5] is an invariant detector developed by Program Analysis Group in MIT. By
running a program, Daikon observes the values that the program computes, and then reports
properties that were true over the observed executions. The output of Daikon is a set of
formulas called an operational abstraction which states properties about a program’s data
structures. The operational abstraction can be written in an assert statement or a formal
specification. By applying Daikon in the construction of formal specifications, we can get
the loop invariant directly rather by a human specifier.

Driving More Abstract Specification

The specifications that are constructed using the strongest postcondition (sp) are called
"as-built” since they are derived from source code, and thus represent behavior based on the
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final product rather than the original design. An approach has been defined to derive more
abstract specifications from as-built specifications by requiring that the derived abstraction
and the as-built specification satisfy a abstraction matching which is defined as follows:

Abstraction Match

Let I be a program with specification ¢ such that the corresponding precondition and
postcondition are iy, and 7,0, respectively. Let [ be an axiomatic specification with pre-
condition l,.. and postcondition l,,s. A match is an abstraction match ¢f ¢ < [, so that
(lpre - Z'pre> A (ipost - lpost) [3]

To preserve an abstraction match relation, we can weaken the postcondition of a speci-
fication. For example, suppose [ is a specification with precondition I,.. and postcondition

Ipost- Let I' be a specification with precondition I}, and postcondition I, . If Lpost — 1,4,
we can get I < I' by
((I]/)re A Ipre) A (IPOSt - Ijlaost)) = (([}/77“6 - [pre) A ([POSt - [glaost)) (11)

Expression (1.1) provides a basic idea to derive a more abstract specification by weakening
the postcondition. In Table several options are provided to weaken the postcondition.

Operation Lost Lot

Delete a conjunct | ANBAC | ANC

Add a conjunct ANB (AANB)VC
Nto — ANB A— B

N toV AANB AV B

Table 1.1: Weakening the postcondition [3]

AUTOSPEC (Semi-automated specification and generation system) is a system using
the semantics of the strongest postcondition predicate transformer to construct formal spec-
ifications from source code. It was developed by Gannod and Cheng. The high-level design
of the AUTOSPEC system is shown in Figure [3]. The AUTOSPEC system interacts
with three entities: the user, a specification editor called SPECEDIT, and a theorem prover
called TPROVER.

The process of execution is as follows: AUTOSPEC system reads a file according to the
user’s decisions on how a source file analysis should proceed. Then, the system generates
formal specifications based on the use of strongest postcondition, and annotates the original
source code with those specifications. The user also interacts with the AUTOSPEC indirectly
via the use of the SPECEDIT and TPROVER tools.

The main component of the AUTOSPEC system is the analysis, or SP component. The
SP component is responsible for constructing formal specifications from programming con-
struct according to the semantic definitions we described in previous part.

1. SPECEDIT: a specification editor with a graphical user interface front-end that sup-
ports the user to construct or modify specifications. It allows the user to save the
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File SpecEdit

Annotation
Modified
Annotation
AutoSpec
Decision
Consistent Flag

Tprover User

Figure 1.7: Design of AUTOSPEC System

specifications to files for later modification or for incorporation into other tools that
use first-order logic as an input language [3]. The SPECEDIT is composed by two
components: a parser and a user interface. The user interface facilitates users to con-
struct a syntactically correct specification. The parser is responsible for checking the
syntax of the specifications modified by users.

2. TPROVER: a tableau theorem prover that verifies the consistency of specifications
modified by a user [3]. In the process of extracting specifications, there exist many
interactions between the user and the AUTOSPEC system. The interactions include
the modification of a specification by the user and the incorporation of the modified
specifications into the current analysis. The TPROVER component can verify whether
modified specifications are consistent with the former specifications generated by the
SP components. The input of TPROVER is the source file containing a first-order
logic specification.

Using Wide Spectrum Language (WSL)

Wide Spectrum Language(WSL)

WSL is a ”Wide Spectrum Language” which includes both low-level programming con-
structs and high-level abstract specifications within a single language [20]. Such a language
forms an ideal tool for deriving formal specification from source code in reverse engineer-
ing. By using WSL, we are able to use transformations not only for restructuring at the
same abstraction level, but also transforming from low-level source code to a high-level ab-
stract specification. A transformation is an operation which maps any program satisfying
the applicability conditions of the transformation to an equivalent program [20]. Since all
the transformations in WSL have been proved correct, we only need to apply it in reverse
engineering process. The proof is based on the semantics of weakest precondition. It was
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shown in that two programs S1 and S2 are equivalent if and only if the corresponding weak-
est precondition wp(S1, R) and wp(S1, R) are equivalent formulas for any formula R [20].
If we ensure that each step in the reverse engineering process consists of proven transforma-
tions, the abstracted specification is guaranteed to be a formal specification of source code.
To abstract the specifications from source code using WSL, we usually need to perform the
following steps:

First Step: Restructure and Simplify

First, we perform restructuring and simplification transformation to source code. For
instance, eliminating expression of switch by representing the complicated control flow as a
simple double-nested loop.

Second Step: Using Abstract Data Types

After applying restructuring and simplification transformation to source code, we replace
the low-level procedures and data structures with the higher level abstraction using some
appropriate abstraction data types like stacks, sequences and random access files [2].

Third Step: Restructure and Simplify again

Since in step 2 we use abstract data types to replace the low-level data structure, we can
possibly perform a further simplification and restructuring.

Fourth Step: Abstracting Specification

In the last step, we use higher-level operators based on [16] to describe the functionality
of the low-level expression.

FermaT: A tool for Reverse Engineering

FermaT is a program transformation system developed by M.P Ward. The system is
implemented in MetaWSL, an extension to WSL and C language. The basic idea of FermaT
is program refinement and equivalence [2I]. The prototype of FermaT, called ”Maintainer’s
Assistant” was designed to test the idea rather than be a practical tool. Although ” Main-
tainer’s Assistant” include a large number of transformations, it is far less efficient than
desired. Based on ”Maintainer’s Assistant”, FermaT is constructed by making some im-
provement described below:

1. By adding domain-specific constructs, WSL is extended to MetaWSL, a language for
writing program transformation.

2. By adding an abstract date type, programs can be represented as tree structures.

3. Adding constructs for pattern matching, pattern filling and iterating over components
of a program structure.

The system structure is composed by
1. A parser for MetaWSL
2. A interpreter for MetaWSL

3. A translator from MetaWSL to C
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4. A small C runtime library

5. A WSL runtime library

Comparison between using WSL and Strongest Postcondition

The two approaches we discussed in §1.5 both belong to the formal techniques in reverse
engineering. The main difference between them is that the approach using Strongest Post-
condition directly applies the strongest postcondition predicate transformer to the code to
construct formal specifications, while the latter takes the weakest precondition predicate
transformer as a guideline for constructing formal specifications.

1.6 Conclusion

In this report we have given an overview of reverse engineering and design recovery, and
discussed two approaches to abstract formal specifications from existing systems. As we
have seen, reverse engineering is a process of analyzing and understanding software system
by recovering its design and formal specifications. The recovery of formal specification is
an essential stages in a reverse engineering application. Over the past two decades, sev-
eral techniques and tools for formal specification abstraction have been introduced. These
approaches have been proved successful through a number of challenging small case study
programs. Our future investigation should focus on automating the process of abstracting
formal specifications from source code.

1.7 Problems

1. Compare these two specifications for the statement S, tell which one is more abstract,
why?

Specificationl:
{r}

S

{Q1 N Q2}
Specification2:
{r}

S

{—Q:1 Vv Qq}

2. Compare the reverse engineering, reengineering and inverse engineering.
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3. Determine the strongest postcondition { R} for the following program segment: {x = 2}

y:=3*zx*—mz; x:=(y*x)/5 {R}.
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Chapter 2

Jiacong Zhang (Kevin): Theories of
Refactoring

Refactoring is a practical and meaningful technique, which is the process to restructure
software without changing its original external behavior. In this report, we will discuss the
refactoring skills, current refactoring tools and the theories for its correctness.

2.1 Introduction

Every programmer does refactoring no matter they are on purpose or not. After finishing
coding a program, they would do some clean up work: moving a method from on class to
another more related class; extracting a big chunk code and make them as a new function;
even renaming a variable to make it more meaningful. The purpose is to make software easy
to understand and extend, meanwhile keep its original behavior. Experienced programmers
normally do refactoring by hand. But later automatic refactoring tools appeared to make
it more efficiently. At the same time some theories also have been researched to support
to prove the correctness of refactoring. In chapter two, some background knowledge about
refactoring are introduced; in chapter three, we will discuss something about refactoring
tools, including the criteria of refactoring tools and some popular refactorings for different
language; two refactoring theories are presented in chapter four.

2.2 Background

What is refactoring?

Refactoring is the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure. Two points need to be
emphasized here. First, we should make sure that the purpose to restructure the software
is to make the software system more readable to people, more convenient to add new fea-

23
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tures later, and after the refactoring process, the software system may even become better
designed than before. Some changes that don’t enhance the software’s readability, flexibility,
and improvability are not refactoring. For example, changing an array sort operation with
replacing the insertion algorithm by quick sort algorithm or heap sort algorithm is not refac-
toring, because the change does not improve any readability of the system. On the contrary,
the more complex algorithm may even decrease the readability, although it does improve the
performance of the software system. The second point is that the external behavior does
not change after refactoring. Users of the software system can not tell any interfacial and
functional difference from the original system. It should be the "same” system for them.

Martin Fowler, the conspicuous advocator of software refactoring, gave the definition of
refactoring in his book as follow [4]:

Refactoring (noun): a change made to the internal structure of the software to make it
easier to understand and cheaper to modify without changing its observable behavior.

Refactoring (verb): to restructure software by applying a series of refactorings without chang-
ing its observable behavior.

Why do we need refactoring?

Refactoring refines the software design

Normally, software designing is finished before coding and refactoring is done after finish-
ing the implement partial or all the functions of based on the design. So, how refactoring
refine the design? So how can refactoring refine the software design? A poorly designed
system usually takes more code to do the same thing. When developers want to modify
some functions of the system, they have to change a lot of places to implement the modifi-
cation. However, refactoring can eliminate these duplications and ensure everything is said
only once, which is just the essence of a good design.

Refactoring makes code easy to understand, helps to find bugs

Refactoring makes the code easier to be understood for sure. That’s just some purpose of
doing refactoring. Nowadays, a programmer’s code is often read by other developers by the
programmer himself to continue development. So, making code easy to understand is very
important. If code is easy to understand, everything is clarified very clearly, it is also difficult
to miss a bug, because bug is also exposed obviously within the refactored code.

Refactoring helps to speed up programming

People will feel confused why refactoring can speed up programming. Let’s imagine if a
programmer wanted to add some new features on an existing software system, which was
poorly designed. He has to spend lots of time to read and understand the existed code, and
also spend lots of time to add new code in several places to do the same things. However, if
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he did refactoring on the original code first, he would implement the new function in a very
easy way, even in several minutes.

Refactoring and Test

Having a solid test is the essential precondition for doing refactoring. Even an experienced
programmer cannot avoid making mistakes and introducing bugs when doing refactoring.
So the best way is to do the test after doing any basic refactoring. Martin Fowler said that
the correct rhythm of refactoring is ”test, small change, test, small change, test...” [4]. The
rhythm allows the refactoring to move quickly and safely. With the refactoring rhythm,
the test program has to be run very frequently, so an automatic test program for checking
the result by itself is necessary. It means that the test only output "ok” or "failure” and
exception information. In this case, programmers don’t have to spend lots of time in checking
the result. It’s hard to imagine that the hundreds of output string lines on console are checked
one by one.

History of Refactoring

The term ”Refactoring” most probably comes from the quote of Peter Deutch in 1989 that
"anterface design and functional factoring constitute the key intellectual content of software
and are far more difficult to create and recreate than code” [2]. Based on this, William F.
Opdyke and Ralph E. Johnson thought that ” If separating function into objects is factoring,
then changing where the function exists must be refactoring” [10]. In 1992, William F.
Opdyke developed the first detailed written work on refactoring in his doctor thesis. Later,
Don Roberts and John Brant, who are both Ralph Johnson’s students, developed the first
automatic refactoring tools ”"Refactoring Browser” for refactoring Smalltalk programs. In
1999, Martin Fowler wrote the book ” Refactoring: Improving the Design of Existing Code” [4]
to build a comprehensive catalog of refactoring skills. Recently, Tom Mens prompt the
idea of ”Formalizing Refactoring with Graph Transformations” [§] to prove the refactoring
preserving software behavior.

Refactoring skills

An experienced object-oriented program can refactor his code efficiently. He knows where he
should extract a method from a big chunk of code; where to extract superclass or create sub-
class in his hierarchy class design; where to move fields or methods between objects; where
to change the inheritance to delegation and so on. That’s because he really understand the
object-oriented conception and know how to put it into programming practice. Since the ar-
ticle does not focus on the detailed operation for each refactoring, here I just list the outline
of these refactorings and give some corresponding examples, which lets you have a visual
understanding what refactoring is. Remember that refactoring is not dogmatic. Program-
mers refactor their code mostly based on their programming experience and understanding
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of object-oriented conception.

Simple Example

When we find that subclass uses only part of its superclasses interface or do not want to
inherit data from it. Then, we can create a private field for the super class, adjust methods
to delegate to the superclass, and remove the subclass. Inheritance is a wonderful thing, but
sometimes it isn’t exactly what we want. Programmers often start inheriting from a class but
then find that many of the superclass operations are really true of the subclass. In this case
they have an interface that’s not a true reflection of what the class does; or they may find
that you are inheriting a whole load of data that is not appropriate for the subclass; or they
may find that there are protected superclass methods that don’t make much sense with the
subclass. In this case, delegation can be used instead and make it clear that programmers
are making only partial use of the delegated class. They can control which aspect of the
interface to take and which to ignore.
Example
public class NodeList : ArrayList{

public NodeList(){}

public void Add(Node item){

base.add(item);

}
public new Node this[int index]){
get{
return (Node) baselindex];
}
}

}

After replaced the inheritance with delegation, we get
public class NodeList {

private ArrayList _nodelist;

public NodeList(){

_nodelist = new ArrayList();

}

public void Add(Node item){
_nlist. Add(item);

}

public new Node this[int index]{
get{return (Node) _nlistlindex]; }
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2.3 Refactoring Tools

In previous chapter, we described how to manually refactor programs. Yet manual refactoring
really is like cutting down a forest with an axe - we need refactoring tools to take a real chain
saw to the problem. [4]

Why do we need refactoring tools?

An experienced object-oriented programmer can do refactoring for his code after he imple-
ments the software functional requirements, by which he makes his code more readable, easy
to add new features and well-designed. But, doing factoring by hand is time consuming,
because after refactoring, programmers have to check the safety, which means to check if
the refactored code preserved the original code behavior. Future more, programmer cannot
avoid making some careless mistakes or introducing bugs even with an exact test suite, es-
pecially when they are tired. Forgetting to remove a reference of a variable while refactoring
just to delete this variable; renaming a method name or signature but not synchronizing a
place that calls this method are most typical examples. Even though later, those mistakes
were caught by compiler, test or code review, you need spent time fixing it. Yeah, it does
waste time. The fact prevents programmers from making refactoring while they know they
should. So, we need automatic refactoring tools.

Normally, all the refactoring tools can do the safety checking. A programmer who wants to
refactor a program merely needs to ask the tool to check the refactored code. If it is safe,
perform the refactoring. Using a refactoring tool can provide many benefits. It can make
many simple but tedious checks and flag in advance problems that if left unchecked would
cause the program to break as a result of refactoring.

As refactoring becomes less expensive, design mistakes become less costly. Because it is
less expensive to fix design mistakes, less design needs to be done up front. Up front design
is a predictive activity because the requirements will be incomplete. Because the code is not
available, the correct way to design to simplify the code is not available. The correct way to
design to simplify the code is no obvious. In the past, we had to live with whatever design
we initially created because the cost to change the design was too great. With automatic
refactoring tools, we can allow the design to be more fluid because changing it is much less
costly.

Criteria for a refactoring tool

Here, let’s further discuss some of the criteria that an automatic refactoring tool must have
to be successful. Both technical criteria and practical criteria are important.

Technical Criteria [11]
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1. Program Database One of the first requirements that we recognized was the ability to

search for various program entities across the entire program. For example, a program
might want to find all calls that can potentially refer to a particular method. Tightly
integrated environments such as Smalltalk constantly maintain this database [12]. At
anytime, the programmer can perform a search to find cross references. The mainte-
nance of this database is facilitated by the dynamic compilation of the code. As soon
as a change is made to any class, it is immediately compiled into bytecodes and the
database is updated. In more static environments such as Java, the code is entered
into text files. Updates to the database must be performed explicitly. These updates
are very similar to the compilation of the Java code itself.

. Abstract Syntax Trees (ASTs) AST is a kind of parse tree, which is a data struc-

ture that represents the internal structure of the method itself. We know that most
refactorings have to manipulate portions of the system that are below the method level.
These are usually references to program elements that are being changed. For example,
if an instance variable is renamed (simply a definition change), all references within
the methods of that class and its subclasses must be updated. Other refactorings are
entirely below the method level, such as extracting a portion of a method into its own,
stand-alone method, or assigning a common sub expression to a temporary variable
and replacing all occurrences of the expression with the temporary. Any update to
a method needs to be able to manipulate the structure of the method. To do this
requires AST. Here is the AST example for the following method. see Fig.

public void hello(){

System.out.printin(” HelloWorld”);

}

. Accuracy The refactorings implemented by a tool must reasonably preserve the be-

havior the programs. Total preservation of behavior is impossible to achieve. For
example, what if a refactoring makes a program a few milliseconds faster or slower?
The usually would not affect a program, but if the program requirements include hard
real-time constraints, this could cause a program to be incorrect. However, refactorings
can be made a reasonably accurate of most programs. As long as the cases that will
break a refactoring are identified, programmers who use those techniques can either
avoid the refactoring or manually fix the parts of the program that the refactoring tool
cannot fix.

Practical Criteria [11]

1. Speed The analysis and transformations needed to perform refactorings can be time

consuming if they are very sophisticated. The relative costs of time and accuracy al-
ways must be considered. If a refactoring takes too long, a programmer will never use
the automatic refactoring but will just perform it by hand and live with the conse-
quences. Speed should always be considered. Therefore, a few refactorings may not
be implemented in refactoring tools because they cannot be implemented safely in a
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MethodNode
Identifier StatementList
| |
"hello’ Statement
|
M essageSend
|
FieldAccess Identifier ArgumentList
| | | |
Identifier Identifier "printIn" String
| | |
"System" "out" "Hello World"

Figure 2.1: Abstract Syntax Tree for hello world.

reasonable amount time. But most refactorings are extremely fast and very accurate.
Another approach to consider if an analysis would be too time consuming is to simply
ask the programmer to provide the information. This puts the responsibility for accu-
racy back into the hands of the programmer while still allowing the refactoring to be
performed quickly.

. Undo Automatic refactoring allows an exploratory approach to design. You can push
the code around and see how it looks under the new design. Because a refactoring is
supposed to be behavior preserving, the inverse refactorings, which undoes the orig-
inal, also is a refactoring and is behavior preserving. Without undo features, it is
very difficult to find an old refactored version of program when we do some tentative
refactorings. This is annoying and wasting time. With the addition of undo, we can
explore with impunity, knowing that we can roll back to any prior version. We can
create classes, move methods into them to see how the code will look, and change our
minds and go a completely different direction, all very quickly.

. Integrated with Tools In the past decade the integrated development environment
(IDE) has been at the core of most development projects. The IDE integrates the edi-
tor, compiler, linker, debugger, and any other tool necessary for developing programs.
Refactoring tools is also need to be integrated into IDE to make it convenient to do
refactoring while you are doing development. Simply having them at your fingertips
will make refactoring tools easy to be accepted and popularized. And it is also the rea-
son why most current commercial refactoring tools of different languages are integrated
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within the corresponding popular IDEs. We will show this in later section soon.

Language Features and Programming Style Supporting refactoring

Some language features and programming styles support refactoring, compared with those
of others. For example, Java is one of such languages. In Java, we know that it has static
typing feature, which makes it relatively easy to narrow possible reference to the part of the
program that you might want to refactor. And also, let’s say if you want to change a method
name, since Java has class inheritance and protection-access control mode (public, default,
protected, private) features, this makes it easier to determine where the references of the
methods are, even if there exist some different methods with the same name. If the method
to be renamed is declared private to the class, then references to that function can occur only
within the class itself; If the method is declared protected, references can be found only in
the class, its subclasses (and their descendents); Even if it is declared as public, the analysis
is still limited to the classes listed for ”protected” methods and operations on the instances
of the class that contain the method, its subclasses, and its descendents. In Smalltalk, such
analysis is more difficult. [9]

Several good design principles applied during initial development and throughout the soft-
ware development process make it easier to do refactoring and evolving software. For exam-
ple, defining member variables and most methods as private or protected is an abstraction
technique that often makes it easier to refactor the internal of a class while minimizing
changes made elsewhere in a program. (Recall one of Refactoring problems: Changing Pub-
lished Interface) Using inheritance to model generalization and specialization hierarchies
makes it fairly straightforward to later generalize or specialize the scope of member variables
or functions using refactorings to move these members within inheritance hierarchies.

Therefore, refactoring tools is languages sensitive. Here we list some refactoring tools of
some languages, whose features support doing refactoring.

Current refactoring tools for different languages [3]
Smalltalk

1. Smalltalk Refactoring Browser I mention it first because it is the original refac-
toring tool and still one of the most full-featured, which is developed by Don Roberts
and John Brant. [I3] They not only developed the first complete refactoring tool, but
also proved the correctness of doing refactoring, which I will go further to discuss in
next chapter.

Java

1. RefactIT It is the most popular refactoring tool nowadays. And it can restructure
Java source-code by its over 30 refactoring operations and wizards; It can also be
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integrated within almost all current Java development IDE such as Eclipse, JDevelop,
JBuilder, NetBeans etc. It is the most popular refactoring tool nowadays. And it can
restructure Java source-code by its over 30 refactoring operations and wizards; It can
also be integrated within almost all current Java development IDE such as Eclipse,
JDevelop, JBuilder, NetBeans etc.

2. IntelliJ Idea This is a fully fledged IDE whose abilities go far beyond refactoring. I
think they have succeeded in really moving forward the state of the art for IDEs.

3. Eclipse The Java part of Eclipse, JDT, is able to perform several types of automatic
refactorings on Java projects, classes, and their members. There are several ways to
quickly select a refactoring for an element in a Java project.

4. JFactor A plug-in tool - works with JBuilder and Visual Age. Instantiations is a well
respected outfit with a long history in Smalltalk and Java VM and compiler technology.

NET

1. ReSharper ReSharper was created to increase the productivity of C# developers.
It comes equipped with a rich set of features, such as intelligent coding assistance,
on-the-fly error highlighting and quick error correction, unmatched support for code
refactoring, and a whole lot more. ReSharper’s tight integration with Visual Studio
NET provides quick and easy access to all of its advanced features right from the IDE.

2. C# Refactory C# Refactory 2.0 parses large solutions far more rapidly. A new
refactoring "move member” is introduced. Extract super class and push up member
refactorings have been refined. Toolbar/keyboard customizations are persistent, The
screenshots below illustrate improvements to the user interface in version 2.0.

3. Refactor! Pro A general .NET refactoring tool that supports both C# and Visual
Basic. A VB only version (below) is available as a free download from Microsoft.
Works with VS 2005 only.

Most of the above are commercial refactoring tools, except Smalltalk Refactoring Brower and
Eclipse. But frankly speaking, Eclipse doesn’t have as many refactoring features as other
tools such as RefactIT as well as quality and reliability, although it is already very robust.

2.4 Refactoring Theories

Refactoring must preserve software original observable behavior, and refactoring tools have
to be fast and reliable. But how can we tell if a refactoring tool is reliable? Is there any
theories to proof the tools can safely refactor a program?
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SuperClass
SuperClass
L
EmptyClass
| | SubClassl SubClass2
v ¥
SubClassl SubClass2

Figure 2.2: Remove Class Refactoring with an Empty Class. [11]

Refactor Correctness Proving Strategy

Refactoring occurs at different levels. In high level, refactoring is represented as big changes
of the whole software system, such as changing the major design; in low level, refactoring
is represented as many primitive changes. For example, just rename a variable. High-level
refactorings can be implemented in terms of several low-level refactorings. So, if we can
implement the low-level (primitive) refactorings correctly, then the high-level refactorings
will be correct for sure. Then how can we prove the correctness of the low-level refactoring.
William Opdyke first tried this strategy as follow. First, identified 23 primitive refactorings,
for each primitive refactoring, he defined a set of preconditions that would ensure that the
refactoring would preserve behavior.

Here is the example of the precondition of Remove an empty class primitive refactoring.
There are two cases that the refactoring might happen. First is that the class is unrefer-
enced and has no subclasses. The second is that the class is unreferenced, has subclasses,
but has no methods or instance variables. In this case, the class is removed and all of its
subclasses become subclasses of the original class’s superclass.(see Fig. He arrived at
his collection of refactorings by observing several systems and recording the types of refac-
torings that OO programmers applied. His refactorings were defined in terms of C++, but
many of them are applicable to other OO languages. The seven program properties that his
refactorings preserved are defined as follow: [9]:

1. Unique Superclass: FEvery class must have exactly one superclass. Fven though his
research focused on C++, he only considered single inheritance systems.

2. Distinct Class Names: FEvery class in the system must have a unique identifier.
Even in the presence of nested scopes or namespaces, this property must be true.

3. Distinct Member Names: This property enforces distinct member names within a
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single class. The method can still be redefined in either superclasses or subclasses.

4. Inherited Member Variables Not Redefined: Classes cannot define variables
that are inherited from their superclasses.

5. Compatible Signatures in Member Function Redefinition: In C++, it is
critical that overriding methods have the same signature as the overridden method.

6. Type-Safe Assignments: After a refactoring, the left-hand side of every assignment
must be of the type or a subtype of the type of the variable on the right-hand side.

7. Semantically Equivalent References and Operations: Semantic equivalence
was defined operationally. The program had to produce the same value for a given set
of inputs both before and after a refactoring.

Thus he got that the 23 primitive refactoring are correct. Then, he created 3 more compli-
cated refactorings by composing the primitive refactorings. Since each primitive refactoring
was behavior preserving, the composition was necessarily behavior preserving.

Use FOPL to Define and Prove Refactoring

Although, the strategy is there, proving the behavior preserving of refactoring is still very dif-
ficult, because the analyses that ensuring the property is difficult to computer and prove. So,
later Don Roberts, who develop the first refactoring tools (Smalltalk Refactoring Brower),
gave an alternative definition of refactoring.

First, as we already know that the precondition of refactoring is the assertions that a pro-
gram must satisfy for the refactoring to be applied. Then the refactoring can be defined
as program transformations that have particular preconditions that must be satisfied before
the transformation can be legally performed.

Definition (without postcondition): [11] a refactoring is a pair R = (pre; T) where
pre is the precondition that the program must satisfy, and T is the program transformation.

Then Don suggested representing and storing the program with Abstract Typed Trees, which
provides the way of expressing transformation on programs as tree-to-tree transformation
rules. To ensure that a particular refactoring is legal, the program must meet certain criteria.
A program must be analyzed to determine if it meets these criteria. So, he defined some
Analysis Functions to describe the relationship between different software entities such as
methods, classes and instance variables. Each transformation can be analyzed by Analysis
Function and Abstract Syntax Tree function.

Analysis Functions is divided into two categories [I1], primitive and derived. Primitive Anal-
ysis Functions are to form the basis for the program analysis that ensures valid refactorings.
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These are the fundamental functions that a program analysis framework must compute to
implement the refactorings.

e.g: Superclass(classname) The immediate superclass of classname

Derived Analysis Functions are useful to describe the preconditions of refactorings. They
can be computed from the primitive analysis functions.

e.g: Subclasses(classname) The set of all immediate subclasses of classname.
Subclasses(class) = {c|Superclass(c) = class}

Then, he specifies refactorings’ preconditions with the form of First Order Predicate Logic.
By this way, he moved the transformation out of a language which is difficult to reason
into a more tractable (First Order predicate calculus). Therefore, all the refactoring can be
proved by First Order Predicate Calculus composed of Corresponding Analysis Functions
and Abstract Syntax Trees’ Function.

Recall that a basic FOL language L= (F, P), where F is the set of function symbols and P is
a set of predicate symbols. A model M= (D, I) for language L is a pair where D is domain
of discourse and I is a mapping which assign value from within D to the symbols with F and
P. [7] Consider each program p induces a model Mp, evaluate the precondition pre of each
refactoring, check if the model Mp satisfies the precondition pre. If pre is satisfied, we say
that the refactoring is legal. It can be expressed as follow [11]:

A refactoring R = (pre, T) is legal for a program p iff =u,pre

Formalizing Refactorings with Graph Transformations

In view of the wide acceptance of graph-like representations in today’s refactoring tools, it
seems natural to use graph rewriting as the basis for the desired formal model. Indeed, most
refactoring tools represent the source code by means of an abstract syntax tree augmented
with extra links to represent frequently used relations (e.g., inheritance, method invocation
and variable access). Since a refactoring is supposed to change that graph, a formal specifi-
cation for a refactoring would quite naturally correspond with a number of graph rewriting
rules regardless of programming language [14]. Tom Mens explored the use of graph rewriting
for specifying refactorings and their effect on programs. He introduced a graph representa-
tion for programs and demonstrated that it is possible to prove that refactorings preserve
certain program properties, and that graph rewriting is a suitable formalism for such proofs.

He validated this approach as following steps as follow:
1. Converting source code into a graph

2. Getting a formal graph representation of an abstract syntax tree augmented with
variable access and method invocation relations (program graph)
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3. Getting the graph of refactoring by graph production

4. Getting the graph of precondition of refactoring by graph production by using graph
rewriting with negative application conditions [5] [6]

5. Verifying the preconditions and invariants in the graph representation by showing
that a rewrite rule applied on a graph satisfying the necessary precondition actually
preserves the necessary properties. In particular the properties of access, update and
call preservation are considered

The main idea of the approach is to use graph formal representation to specify an abstract
syntax tree augmented with the relation between different methods of a program, use graph
rewriting rules to represent the program transformation (refactoring), and use graph rewrit-
ing with negative application condition to express precondition of refactoring. Due to it is
not the focus of this report, I just give an example on the definition of programming graph
to give you the idea how can software be represented as graph form.

Programming Graph Definition: [§]

Let 32 be a set of node labels and A a set of edge labels. A (labeled) graph over ¥ and A is
a S-tuple G = (VG,EG, nlabG), where VG is the set of nodes; nlabG : VG— ¥ is the node
labeling function and EG C VG x A x VG is the set of edges.

Thus programs are represented by typed, labeled, directed graphs. They are called pro-
gram graphs. In a program graph, software entities (such as classes, variables, methods and
method parameters) are represented by nodes whose label is a pair consisting of a name and
a node type.

Example: LAN Simulation [I]
public class Node{
public String name;
public Node nextN ode;
public void accept(Packet p){
this.send(p); }
protected void send(Packet p){
System.out.printin(name + nextNode.name);
this.nextN ode.accept(p); }
}
public class Packet{
public String contents;
public Node originator;
public Node addressee;

}

public class PrintServer extends Node{
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public void print(Packet p){
System.out.println(p.contents); }
public void accept(Packet p){
if (p.addressee == this) this.print(p);
else super.accept(p); }
}
public class Workstation extends Node{
public void originate(Packet p){
p.originator = this;
this.send(p); }
public void accept(Packet p){
if (p.originator == this) System.err.printin(”no destination”);

else super.accept(p); }

}

Fig. [2.3| [8]shows the Node type set ¥={C, M, MD, V, VD, P, E}, and the Edge type
set A={ 1, i, m, t, p, e, ¢, a, u}, which form the graph of the above program.

Fig. 2.4] [8] shows the graph representation of the LAN simulation example, and Fig. [2.5] [§]
give the method definition of Node class.

2.5 Concluding Remarks

1. Software refactoring should become a necessary part of software development process,
just like designing, coding, debugging and testing.

2. Refactoring techniques depends on the Object-Oriented conception. Object-Oriented
programming languages support the design of code reuse.

3. Current refactoring tools almost can do any refactorings to restructure software and
refine the software design, but not one hundred percent. Programmers still have to do
some refactoring by hand.

4. Directly proving the correctness of refactoring is difficult. We need to abstract refac-
torings of certain language and represent it with a formal specification, which is easy
to analyze and prove. (FOPL calculus or graph)

2.6 Exam Question

1. Refactor the following code by decomposing conditional
if(data.before(SUMMER_START)||data.after(SUMMER_END))

charge = quantity * _winterRate + _winterServiceChange;
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node type description examples
C Class Node, Workstation, PrintServer,
Packet
M Method signature accept, send, print
MD Method Definition System.out.printin(p.contents)
\% Variable name, nextNode, contents, origina-
tor
VD Variable Definition public Node nextNode
P Parameter of a method definition | p
E (sub)Expression in method defini- | p.contents
tion
Edge type description examples
1: M—MD dynamic method lookup accept(Packet p) has 3 possible
method definitions
V —VD variable lookup ::
i: C—C inheritance class PrintServer extends Node
m: VD—-C variable membership variable name is defined in Node
MD—C method membership method send is defined in Node
t: V=C variable type String name
M—-C method return type String getName()
p: MD—P parameter definition send(Packet p)
P—C parameter type send(Packet p)
e: MD—E expression in method definition System.out.printin(p.contents)
E—E subexpression in method definition | p.contents
c: E=M (dynamic) method call this.send(p)
a: E—={V | P} | variable or parameter access p.contents
u: E—={V| P} | variable or parameter update p.originator = this

Figure 2.3: Node type set X={C, M, MD, V, VD, P, E} and Edge type set A={ 1, i, m, t,

p7 e7 C7 a’ u}
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Figure 2.5: Method definitions in class Node
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else

charge = quantity * _summerRate;

2. Explain the difference and relation between refactoring and design pattern.

3. Give the precondition of the primitive refactoring ”create_empty_class”.
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Chapter 3

Saba Aamir: Memory Management
Strategies In Programming Languages

Memory management is a complex field of computer science and there are many techniques
to make it more efficient. As software grows to be more complex, memory management has
become a marathon task. Memory management involves the memory needed for a program’s
objects and data structures from the limited resources available, and re-cycling that memory
for re-use when it is no longer needed.

Many languages manage memory by explicitly allocating and deallocating data on the
heap. Examples of these types of languages include Pascal, C and C++. Some logical,
functional and most object oriented languages (with the exception of C++) use garbage
collection to manage the heap automatically. Examples include Smalltalk, Eiffel, Java,
Oberon and some other languages. Some other languages e.g Modula-3 offer both explicitly
and automatically managed heaps [I7]. This paper discusses different techniques of memory
management.

3.1 Introduction

Memory management is the process of coordinating and controlling the use of memory in a
computer system or program. It can be divided into three areas:

e Hardware Memory Management deals with the electronic devices that actually store
data. This includes RAM, memory caches, memory management unit (MMU) etc..
The MMU is a hardware device responsible for handling memory accesses requested by
the main processor. This typically involves translation of virtual addresses to physical
addresses, cache control, bus arbitration, memory protection, and the generation of
various exceptions. Not all processors have an MMU.

e Operating system memory management is concerned with virtual memory and its pro-
tection. In the operating system, memory must be allocated to user programs, and

41
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reused by other programs when it is no longer needed. Sometimes the operating system
has to pretend that the computer has more memory than it actually does, and also that
each program has the computers memory to itself. Both of these are made possible by
using virtual memory. Many operating systems support protection of memory pages.
Memory pages are fixed blocks of virtual memory used for transfer of data between
virtual memory and disk. Individual pages may be protected against a combination
of read, write or execute accesses by a process. A process which attempts a protected
access will trigger a protection fault. Pages can be protected for a number of rea-
sons: an operating system may want to protect pages for security, or to implement
“copy-on-write” or “demand-zero-filled” pages.

o Application memory management involves obtaining memory from the operating sys-
tem, and managing its use by an application program. Application programs have
dynamically changing storage requirements. The application memory manager must
cope with this while minimizing the total CPU overhead, interactive pause times, and
the total memory used. It is a complex task to manage application memory such that
the application can run most efficiently, as the operating system may create the illusion
of nearly infinite memory. Ideally, these problems should be solved by tried and tested
tools, tuned to a specific application.

In this research paper we are dealing with the third type i.e “Application Memory Man-
agement” unless specified otherwise.

3.2 Explicit Memory Management Strategies

Manual memory management is where the programmer has direct control over when memory
may be recycled. Usually this is either by explicit calls to heap management functions like
malloc() and free(), or by language constructs that affect the stack (such as local variables).
The key feature of a manual memory manager is that it provides a way for the program to
say, “Have this memory back; I've finished with it”; the memory manager does not recycle
any memory without such an instruction.

The malloc() function allocates unused space of indeterminate value whose size is equal
to the size of an object, which it takes as an argument. A pointer is returned if the allocation
succeeds which points to the start (lowest byte address) of the allocated space. If the size of
the space requested is zero, the behaviour is implementation-dependent; the value returned
will be either a null pointer or a unique pointer. If the space cannot be allocated, either a
null pointer is returned or an exception is raised depending upon the implementation.

The free() function releases an allocated block of memory. It takes a pointer that has
been returned by malloc() as an argument and has no return type.

Strengths And Weaknesses Of Explicit Memory Management. The most impor-
tant strength of manual memory management is that developers have complete control on
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the allocation and de-allocation of memory. This way developers can decide exactly before
which statement memory needs to be allocated and exactly at which statement and under
which pre-conditions the memory will be de-allocated.

Manual memory management also has some problems associated with it, which follow.

e Premature free or dangling pointer. Many programs give up memory, but attempt to
access it later and crash or behave randomly. This condition is known as premature
free, and the surviving reference to the memory is known as a dangling pointer. This
is usually confined to manual memory management.

e Memory leak. Some programs continually allocate memory without ever giving it up
and eventually run out of memory. This condition is known as a memory leak.

e Poor locality of reference. Another problem with the layout of allocated blocks comes
from the way that modern hardware and operating system memory managers handle
memory: successive memory accesses are faster if they are to nearby memory locations.
If the memory manager places far apart the blocks a program will use together, then
this will cause performance problems. This condition is known as poor locality of
reference.

e [nflexible design. Memory managers can also cause severe performance problems if they
have been designed with one use in mind, but are used in a different way [7]. These
problems occur because any memory management solution tends to make assumptions
about the way in which the program is going to use memory, such as typical block
sizes, reference patterns, or lifetimes of objects. If these assumptions are wrong, then
the memory manager may spend a lot more time doing bookkeeping work to keep up
with what’s happening.

3.3 Semi-Automatic Memory Management Strategies

Reference Counting

Reference counting is a semi-automated memory-management technique which keeps track
of the number of active references to an object. Many languages and applications have
adopted algorithms based on reference counting, for example, early versions of the Smalltalk
object-oriented language, InterLisp, Modula-2+ and the Adobe Photoshop program. Many
operating systems also use this method, such as Unix, to determine whether a file may be
deleted from the file-store. It is suitable for real-time programming and is used in distributed
systems where tracing all pointers, as in the case of garbage collection, is impractical.

Algorithm for Reference Counting. In reference counting, each cell has an additional
field, the reference count. The storage manager must maintain the invariant that the ref-
erence count of each cell is equal to the number of pointers to that cell from roots or heap
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cells [17]. The initializing phase of the algorithm is to place all cells in a pool of free cells,
which is usually implemented as a linked list along with a free_list pointer to the head of the
chain.

The reference count of free cells is zero. On the allocation of a new cell from the pool, its
reference count is set to one which is incremented each time a pointer is set to refer to this
cell. The elimination of a reference to the cell decrements the count by one; Fig. [3.1] [L7]. If
this causes the reference count to drop to zero, the reference counting invariant implies that
there are no remaining pointers to this cell so it can be returned to the list of free cells.

reference
root R root
T+ -
L TR sE ]
before after

Figure 3.1: Update(left(R), S).

allocate()
newcell := free_list
free_list := next(free_list)
return newcell

New()
if free_list = nil
abort “Memory exhausted”
newcell := allocate()
RC(newcell) := 1

return newcell

Every time on a modification of a pointer reference, the compiler must generate code
to update the referenced object’s reference count. Update overwrites the word in the heap
that is its first argument, R, with its second argument, S, which is assumed to be a pointer,
increments the reference count of S to take account of this new reference and removes the
original pointer from R to its target, *R, so the reference count of *R must be decremented
too. Suppose the pointer at R originally referred to node T. If this pointer was the last
reference to T, delete can return T to the free list after recursively deleting any pointers
from T.
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free(N)
next(N) := free_list
free list := N
delete(T)
RC(T) := RC(T) - 1
if RC(T) =0
for U in Children(T)
delete(*U)
free(T)
Update(R, S)
delete(*R)
RC(S) :== RC(S) + 1
*R:=S

Strengths and Weaknesses of Reference Counting. The strength of the reference
counting method is its incremental nature. Memory management overheads are distributed
throughout the computation. Management of active and garbage cells is interleaved with
the execution of the user program whereas in non-incremental schemes like mark-sweep, the
execution of a program is suspended to perform garbage collection. This makes reference
counting a suitable method in a highly interactive or a real-time system [9].

Due to the fact that few cells are shared and many are short-lived, (suggested by empirical
studies of a wide range of languages like Lisp [I0], Cedar, Standard ML [3], and C and
C++ [5]) the standard reference counting method reclaims these cells as soon as they are
discarded, in a stack-like manner, whereas under a tracing scheme the garbage collector
is invoked reclaiming the memory only when the heap is exhausted. Immediate reuse of
cells generates fewer page faults in a virtual memory system, and possibly better cache
behaviour [21].

Another benefit of reference counting over garbage collection schemes is that its spatial
locality of reference is likely to be no worse than that of its client program. A cell whose
reference count becomes zero can be reclaimed without access to cells in other pages of the
heap. This contrasts with tracing algorithms which typically need to visit all live cells before
reclaiming dead ones [11].

The most serious disadvantage of reference counting is the high processing cost paid to
update counters to maintain the reference count invariant. It requires significant assistance
from the compiler and imposes overhead on the mutator. The term mutator is used for the
user program from the perspective of the garbage collector [13]. In contrast, pointer updates
have no memory management overhead under a simple tracing regime.

Another major drawback of simple reference counting algorithms is that they fail to
reclaim cyclic structures. Examples of cycles include doubly-linked lists, and ’trees’ in which
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U U
before ! ¢ after : ¢

Figure 3.2: Reference counting cyclic data structures: after delete (right(R)) the cycle STU
is neither reachable nor reclaimable.

leaf nodes contain a pointer back to the root node. Many implementations of lazy functional
languages based on graph reduction handle recursion by using cycles.

Consider the structure in Fig.|3.2| [I7]. Deleting the pointer right(R) causes the reference
count of S to decrement but it remains non-zero causing the control to return to the user
program with out reclaiming S, T and U. This causes memory leaks.

Memory Pools

Memory pools are also a semi-automate memory management technique. They are suitable
for programs that go through specific stages, each of which has memory that is allocated
for only specific stages of processing. For example, many network server processes allocate
memory whose maximum lifespan is the life of the current connection, i.e., per-connection
memory allocation. At the end of the stage, the entire memory pool is freed at once.

In pooled memory management, each allocation specifies a pool of memory from which
it should be allocated. Each pool has a different lifespan. The world’s most popular web
server Apache uses memory pools.

There are two well known pools that can be used in a program. They are GNU libc’s
obstacks implementation which are included by default in GNU-based Linux distributions
or Apache’s Apache Portable Runtime which has a lot of other utilities to handle all aspects
of writing multiplatform server software [6].

Strengths and Weaknesses of Memory Pools. The advantages of memory pools are
that it is simple to manage memory for the application. There are standard implementations
that are very easy to use. Memory allocation and deallocation is much faster, because it is all
done a pool at a time. Allocation can be done in O(1) time, and pool release is actually O(n)
time, but divided by a huge factor that makes it O(1) in most cases [6]. For the safe recovery
of program in case regular memory is exhausted, error-handling pools can be pre-allocated.

The disadvantages are that memory pools are only useful for programs that operate in
stages. They often do not work well with third-party libraries. The pools may need to
be modified with the changes of program structure, which may lead to a redesign of the
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memory management system. The selection of a pool should be done with care since any
wrong allocations can be hard to catch.

Smart Pointers

Smart pointers are pointers which are wrapped by classes to form pointer-like objects [21].
C++ does not offer any safe-guards to the programmers using raw pointers for memory
management which may lead to memory leaks and heap corruption. It does not have a
garbage collection mechanism as part of the language like other object-oriented languages
have. Thus the approach to use smart pointers is adopted.

The C++ standard library provides a smart pointer called auto_ptr [2] as a template class.
The constructor of auto_ptr allocates memory for whatever type is being pointed to and the
destructor deletes whatever is pointed to whenever auto_ptr leaves its scope. Making use of
auto_ptr objects instead of raw pointers ensures that memory leaks will not occur because
as soon as auto_ptr objects go out of scope, their destructors will activate and deallocate the
memory. This is particularly important in the context of exceptions.

Smart pointer owns the object it points to. They offer ownership management in different
ways [2]. Some smart pointers can transfer ownership automatically by assigning one smart
pointer to the other. In doing so the source smart pointer becomes null and the destination
holds the ownership of the object. This behaviour is depicted by auto_ptr.

A number of additional smart pointers are available in the Boost library including
scoped_ptr, shared_ptr and weak_ptr.

e Scoped_ptr is used for pointers local to a function or class. Unlike auto_ptr, it is
non-copyable and therefore enforces sole-ownership.

e shared_ptr is a reference counted pointer which allows multiple ownership of the object
pointed to. When the last shared_ptr goes out of scope, the object is deleted.

e weak_ptr is a non-owning observer of an object it points to. weak_ptrs do not affect
the reference count when constructed or destructed. When the last shared_ptr goes
out of scope then all weak _ptrs observing that shared_ptr are reset to null.

3.4 Automatic Memory Management Strategies

Automatic memory management is a service, either as a part of the language or as an
extension, that automatically recycles memory that a program would not otherwise use
again. Automatic memory managers (often known as garbage collectors, or simply collectors)
usually do their job by recycling blocks that are unreachable from the program variables (that
is, blocks that cannot be reached by following pointers). Garbage collection was invented by
John McCarthy around 1959 to solve the problems of manual memory management in Lisp
programming language.
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Figure 3.3: Reachable and unreachable objects.

Garbage collectors are usually run when the available memory drops below a specific
threshold. Generally, they start off with a “base” set of data that is known to be available
to the program which consists of stack data, global variables, and registers. They then try
to trace through every piece of data linked through those. Everything the collector finds
is good data; everything that it doesn’t find is garbage and can be destroyed and reused
(see Fig. . To manage memory effectively, many types of garbage collectors require
knowledge of the layout of pointers within data structures, and therefore have to be a part
of the language itself.

Automatic memory management is often more efficient and allows the programmer to
work on the actual problem. The module interfaces are cleaner. There are fewer memory
management bugs as compared to explicit memory management. The drawback of using
automatic memory management is that memory may be retained because it is reachable,
but won’t be used again.

There are several basic strategies for garbage collection like mark-sweep, mark-compact
and copying. There are also some incremental collectors that result in shorter collection
pauses since the entire heap need not be collected at once and some concurrent collectors
that can run while the user program runs [I]. Others must perform an entire collection at
once while the user program is suspended (also called stop-the-world collectors). Hybrid
collectors are also available, such as the generational collector employed by the 1.2 and later
JDKSs, which use different collection algorithms on different areas of the heap.

Regardless of the algorithm chosen, trends in hardware and software have made garbage
collection far more practical. Empirical studies from the 1970s and 1980s show garbage col-
lection consuming between 25 percent and 40 percent of the runtime in large Lisp programs.
While garbage collection may not yet be totally invisible, it sure has come a long way [13].

Most modern languages use mainly automatic memory management: Basic, Dylan, Er-
lang, Haskell, Java, JavaScript, Lisp, ML, Modula-3, Perl, PostScript, Prolog, Python,
Scheme, Smalltalk, etc.
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The Mark-Sweep Garbage Collection

The mark-sweep or mark-scan algorithm was the first garbage collection algorithm to be
developed that is able to reclaim cyclic data structures. Variations of the mark-and-sweep
algorithm continue to be among the most commonly used garbage collection techniques.
When using mark-and-sweep, unreferenced cells are not reclaimed immediately. Instead,
garbage is allowed to accumulate until all available memory has been exhausted. If a request
is then made for new cell, the execution of the program is suspended temporarily while the
mark-and-sweep algorithm collects all the garbage from the heap and return it to the pool
of free cells. Once all unreferenced cells have been reclaimed, the normal execution of the
program can resume. A call to New returns a pointer to a new cell from the free_pool.

New()
if free_pool is empty
mark_sweep()
newcell := allocate()
return newcell

Algorithm for Mark-Sweep Garbage Collection. The mark-sweep algorithm is called
a tracing garbage collector because it traces out all live objects to determine which cells are
available for reclamation. It consists of two phases.

mark_sweep()
for R in Roots
mark(R)
sweep()
if free_pool is empty
abort “Memory exhausted”

In the first phase, the mark phase, all cells reachable from root are marked. Each cell
contains an extra bit, the mark-bit, to be used by the garbage collector to record the liveness
of the cell. As mark traverses all cells reachable from the roots, the mark-bit is set in each
cell visited.

mark(N)
if mark_bit(N) = unmarked
mark_bit(N) := marked
for M in Children(N)
mark(*M)
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Figure 3.4: The graph after the marking phase. All unmarked cells (with unshaded mark-
bits) are garbage.

Termination of the marking phase is enforced by not tracing from cells that have already
been marked. When the marking phase has completed, all cells reachable from root will have
had their mark-bits set. An example of marking is shown in Fig. [3.4in which cells that have
been marked are indicated by shading their mark-bits. Any cell that is left unmarked could
not be reached from root, and hence must be garbage.

In the second phase, the sweep phase, the entire heap is scanned and all the unmarked
cells are reclaimed. At the same time, the mark-bits of active cells is cleared in preparation
for the next invocation of the collector. If the sweep phase fails to recover sufficiently many
free cells, the heap must be expanded or the computation aborted. In the algorithm, free
simply returns its argument to the free pool for recycling.

sweep ()
N := Heap_bottom
while N < Heap_top
if mark_bit(N) = unmarked
free(N)
else
mark_bit(N) := unmarked
N := N + size(N)

Strengths and Weaknesses of Mark-Sweep. Mark-sweep is simple to implement, can
reclaim cyclic structures easily, and doesn’t place any burden on the compiler or mutator
like reference counting does. These advantages of mark-sweep over reference counting have
led to its adoption by some systems [17].

One of the disadvantages of mark-sweep is that collection pauses can be long, and the
entire heap is visited in the sweep phase, which can have very negative performance conse-
quences on virtual memory systems where the heap may be paged [4]. Non-interruptible,
globally traversing mark-sweep algorithms are not practical for safety-critical, real-time,
highly interactive or distributed systems.
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The major drawback of mark-sweep is that every active (that is, allocated) cell, whether
live or not, is visited during the sweep phase. A significant percentage of objects are likely to
be garbage (objects that are active but not live), which means that the collector is spending
considerable effort examining and handling garbage [13]. Thus the asymptotic complexity of
this algorithm is proportional to the size of the entire heap including both live and garbage
objects [20].

Mark-sweep collectors also tend to leave the heap fragmented. In a real memory system
the effect on performance may not be great although benefits of caching could be lost. In a
virtual memory system such fragmentation may lead to loss of locality between associated
cells of a data structure and result in ’thrashing’, that is, excessive swapping of pages to
and from secondary storage [4]. In either case, fragmentation makes allocation more difficult
as suitable ’gaps’ must be found in the heap to accommodate new objects. It can also
cause allocation failures even when sufficient free memory appears to be available but is not
contiguous.

The Copying Collection

In a copying collector, another form of tracing collector, the heap is divided into two equally
sized semi-spaces, one of which contains active data and the other is unused. When the
active space fills up, the execution of a program is suspended. The collector then traverses
the active data structure in the active space, Fromspace, copying each live cell into the
inactive space, Tospace, when the cell is first visited, refer to Fig. [18]. The roles of the
spaces are then flipped, with the old inactive space becoming the new active space. Since
garbage cells are simply abandoned in the old active space, Fromspace, copying collectors
are often described as scavengers - they pick out worthwhile objects amidst the garbage and
take them away.

from root to from root to

scan

J
o[éfe] 4=

[ — free

free
limit «— limit

Figure 3.5: Copying live cells in Fromspace to Tospace. free points to the next free location

The copying collection compacts data structure into the bottom of Tospace resulting in
low allocation costs. The out of space check is a simple pointer comparison and space is
allocated by incrementing the free space pointer by the size of the object which is passed as
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a parameter n to New. Thus compacting collectors can allocate objects much more efficiently
than collectors that causes fragmentation.
init()

Tospace:= Heap_bottom

space_size := Heap _size / 2

top_of_space := Tospace + space_size

Fromspace := top_of_space + 1

free := Tospace

New(n)

if free + n > top_of_space
flip()

if free + n > top_of_space
abort “Memory exhausted”

newcell := free

free := free + n

return newcell

Algorithm for Copying Collection. First, the roles of Tospace and Fromspace are
swapped by flip, which resets the variables Tospace, Fromspace and top_of_space. Each cell
reachable from a root is then copied from Fromspace into Tospace. For clarity, a simple
recursive algorithm [12] is used.

flip()
Fromspace, Tospace := Tospace, Fromspace
top_of space := Tospace + space_size
free := Tospace
for R in Roots
R := copy(R)

Copy(P) scavenges the fields of the cell pointed at by P. To preserve the topology of
shared structures, a forwarding address, which is the address of the copy in Tospace, is left
in the Fromspace object when it is copied. Whenever a cell in Fromspace is visited, space is
reserved in the Tospace if it is not already being copied. Otherwise its forwarding address
is returned. In this recursive copying algorithm, the forwarding address is set to point to
this reserved memory before the constituent fields of the object are copied which ensures
termination and that sharing is preserved.

The forwarding address might be held in its own field in the cell. More generally it can
be written over the first word in the cell provided that the original value of the word is saved
beforehand. In Algorithm [I7], it is assumed that the forwarding address field of cell P is
P[0], and forwarding_address(P) and P[0] are used interchangeably.
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— Note: P points to a word, not a cell

copy(P)
if atomic(P) or P = nil —P is not a pointer
return P
if not forwarded(P)
n := size(P)
P’ := free —reserve space in Tospace
free := free + n
temp := P [0] ~field 0 will hold the forwarding address

forwarding_address(P) := P’
P’ [0] := copy(temp)
fori:=1 to n-1 —copy each field of P into P’
P [i] := copy(P[i])
return forwarding_address(P)

An Example. Consider the collection of the structure [I8] shown in the Fig. When
the active space, from, fills up, i.e., when free reaches limit, garbage collection is initiated.
Suppose P is a pointer in the from space pointing to from space. There are three possibilities.

from root to from root to
v scan
a a o b
[ o [ o
? free
b b
e B
[¢ C
[ o — | o
d < d
e e
o] o]
free
limit l— limit

Figure 3.6: Copying objects reachable from roots

e If P points to a from-space object that has not been copied, then object pointed by P
is copied to free in the to-space, P[0] is set to free and free is incremented.

e If P points to a from-space object that has already been copied to to-space, then P[0]
is a special forwarding pointer that indicates where the copy is.

e If P points to an object elsewhere, then P is left unchanged in the to-space.

The collection starts by copying the objects reachable from the roots and setting scan to
the start of the to-space, see Fig. [3.7]

Then all objects between scan and free are visited and all pointers in those are forwarded.
Finally, all the live objects are copied to the to-space and the forwarded addresses are reset.
Everything in the from-space is now garbage and can be reclaimed, see Fig. [3.8
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Figure 3.7: Setting the forwarding address
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Figure 3.8: Copying all live objects completes the collection.

Strengths and Weaknesses of Copying Collection. Copying collection has the ad-
vantage of only visiting live objects. The duration of collection cycles in a copying collector
is driven by the number of live objects []].

In copying collection the set of live objects are compacted into the bottom of the heap.
This improves locality of reference of the user program, eliminates heap fragmentation and
reduces the cost of object allocation.

Objects that become garbage before the next collection cycle, the deallocation cost is
zero, as the garbage object will be neither visited nor copied.

However, copying collectors have the added cost of copying the data from one space to
another, adjusting all references to point to the new copy. In particular, long-lived objects
will be copied back and forth on every collection.

The costs of the copying algorithm are twofold: First, the algorithm requires that all
live objects be copied every time garbage collection is invoked. If an application program
has a large memory footprint, the time required to copy all objects can be quite significant.
A second cost associated with copying collection is the fact that it requires twice as much
memory as the program actually uses. When garbage collection is finished, at least half of
the memory space is unused [16].
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Mark-Compact Garbage Collection

The mark-compact garbage collection combines the desirable features of both mark-sweep
and copying collection. The copying algorithm has excellent performance characteristics, but
it has the drawback of requiring twice as much memory as a mark-sweep collector. The mark-
sweep algorithm has the unfortunate tendency to fragment the heap. The mark-compact
algorithm eliminates fragmentation without the space penalty of copying but at the cost of
some increased collection complexity.

Like mark-sweep, mark-compact is a two-phase process, where each live object is visited
and marked in the marking phase. Then in the compaction phase, marked objects are copied
such that all the live objects are compacted at the bottom of the heap and their pointers are
updated. If a complete compaction is performed at every collection, the resulting heap is
similar to the result of a copying collector. There is a clear demarcation between the active
portion of the heap and the free area, so that allocation costs are comparable to a copying
collector. Long-lived objects tend to accumulate at the bottom of the heap, so they are not
copied repeatedly as they are in a copying collector.

The algorithm can be expressed as follows [16]:

for each root variable r
mark (r);
compact ();

Theory Behind Mark-Compact. Mark-compact collection is like mark-sweep with com-
paction capability like copying collection. It marks all the live objects starting from the root

set; Fig. [3.9] [18].
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free free

Figure 3.9: Marking phase of Mark-Compact.

In a compaction phase, Fig.|3.10, each object’s new address, which is the sum of the sizes
of all objects encountered so far, is calculated and is stored as forwarding field. All pointers
are updated to point to the new locations.
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Figure 3.10: Calculating new addresses and updating pointers.

Finally, the objects are moved to their new location; Fig. |3.11] leaving the pointers
unchanged. On this occasion, all objects are unmarked and all forwarding pointers become
unused again [I§].

TR

free

Figure 3.11: Compacting the live objects.

Strengths and Weaknesses of Mark-Compact Collection. Like copying collection,
new objects are allocated by incrementing the free pointer; eliminating the need to main-
tain free lists. However, unlike copying collection, compaction supports locality and better
caching by preserving the original order of objects. Copying collection always moves all the
objects back and forth, where as, in mark-compact, long-lived objects are accumulated at
the bottom of the heap and stay there.

Mark-compact requires one extra pointer for forwarding in each object; whereas mark-
sweep does not need any extra space and copying collections needs twice as much space.
Like with mark-sweep, the marking phase traverses the live objects on the entire heap which
results in swapping if it is larger than main memory. Like copying collection, only live objects
are copied; sometimes only 5% of the heap objects are live.



Memory Management Strategies In Programming Languages o7

Generational Collection

In any application heap, some objects become garbage shortly after their creation, some
survive for a long time and then become garbage, and others can remain live for the entirety
of the program’s run. Empirical studies have shown that for most object-oriented languages,
the vast majority of objects, as much as 98 percent, depending on the metric for object
youth, die young [I4]. Object’s age can be measured in wall-clock seconds, in total bytes
allocated by the memory management subsystem since the object was allocated, or by the
number of garbage collections since the object was allocated. This also support the weak
generational hypothesis that “most objects die young” [19]. This plays a significance role in
the choice of a collector.

A generational collector divides the heap into multiple generations. Objects are created
in the young generation, and objects that meet some promotion criteria, such as having
survived a certain number of collections, are then promoted to the next older generation.
A generational collector is free to use a different collection strategy for different generations
and perform garbage collection on the generations separately.

Of the objects that survive past their first collection, a significant portion of those will
become long-lived or permanent. The various garbage collection strategies perform very
differently depending on the mix of short-lived and long-lived objects. Copying collectors
work very well when most objects die young, because objects that die young never need to be
copied at all. However, the copying collector deals poorly with long-lived objects, repeatedly
copying them back and forth from one semi-space to another. Conversely, mark-compact
collectors do very well with long-lived objects, because long-lived objects tend to accumulate
at the bottom of the heap and then do not need to be copied again.

Minor Collections. One of the advantages of generational collection is that it can make
garbage collection pauses shorter by not collecting all generations at once. When the al-
locator is unable to fulfill an allocation request, it first triggers a minor collection, which
only collects the youngest generation. If the minor collection frees enough heap space, the
user program can resume immediately otherwise it proceeds to collect higher generations
until enough memory has been reclaimed. In the event the garbage collector cannot reclaim

enough memory after a full collection, it will either expand the heap or it will throw an
OutOfMemoryError [3].

Intergenerational References. A generational tracing collector starts from the root set,
but unlike traditional tracing collectors that visit all live objects, does not traverse references
that lead to objects in the older generation, which reduces the size of the object graph to be
traced. This leads to a problem; how to prevent minor collection from reclaiming an object
if it is only reachable through an older generation object?

To address this problem, generational collectors must explicitly track references from
older objects to younger objects and add these old-to-young references into the root set of
the minor collection. There are two ways to create a reference from an old object to a young
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Figure 3.12: Intergenerational references.

object. Either one of the references contained in an old object is modified to refer to a
young object, or a young object that refers to other young objects is promoted into the older
generation.

In Fig.[3.12] the arrows represent references between objects in the heap. The bold arrows
represent old-to-young references that must be added to the root set for a minor collection.
The dotted arrows represent references to old objects, either from the root set or from the
young generation, which don’t need to be traced when collecting only the young generation.

Tracking Intergenerational References. The garbage collector needs to have a com-
prehensive set of old-to-young references when it wants to perform a minor collection. The
mutator and garbage collector can work together to maintain this set of old-to-young ref-
erences as they are created. When objects are promoted into the older generation, the
garbage collector can note any old-to-young references that are created as a result of the
promotion, which leaves only the tracking of intergenerational references created by pointer
modifications.

The garbage collector can track old-to-young references that arise through modifying ref-
erences held within existing objects in several ways. It could track them in the same manner
as maintaining reference counts in reference-counting collectors (the compiler could gener-
ate additional instructions surrounding pointer assignments) or could use virtual memory
protection on the old generation heap to trap writes to older objects. Other ways to handle
intergenerational references are remembered list, card marking and page marking [18].

Influence of Memory Management Strategies on Software Design

Memory management strategies used in different languages has vast impact on modern soft-
ware design. The basic problem in managing memory is knowing when to keep the data
it contains, and when to throw it away so that the memory can be reused. There are two
different views due to the strategies used in software design.



Memory Management Strategies In Programming Languages 59

People in favor of automatic memory management argue that manual memory manage-
ment conflicts with the principles of abstraction and modularity [I7]. They argue that by
using automatic memory management, programmers are relieved of the burden of book-
keeping detail and their time is better spent on the higher-level details of the design.

Memory management by the run-time systems is adopted by all high-level programming
languages for static and stack-allocated data. The programmers do not have to worry where
to place the global data, or how to setup or take down procedure activation frames on the
stack. This abstraction principle also applies to heap-allocated data. Automatic memory
management also decreases the chances of one module to cause the failure of another module
through space leaks, space overflows and premature reclamation of storage. The software
developer doesn’t have to worry about these anymore. This is very helpful in case of large-
scale projects involving multiple teams of developers working on different modules.

For good design, every module should communicate with as few others as possible, and
if any two modules do communicate, they should exchange as little information as possi-
ble [15]. Adding book-keeping detail to module interfaces weakens abstraction and reduces
the extensibility of modules. Modifications to the functionality of a module might entail
alteration of its memory management code. Since liveness is a non-local matter, changes to
book-keeping code might radiate beyond the module being developed.

However, the people on the other side of the ring, i.e., those in favor of manual memory
management, argue that real-time systems demand that the time spent serving memory
requests will be very small and all memory requests will be satisfied which is not possible with
the automatic memory management. It is also said that although automatic management
removes the two major problems of explicit storage management, dangling pointers and
space leaks, it is still vulnerable to other errors, and moreover raises debugging problems of
its own.

Automatic management doesn’t have any solution for the problem of data structures that
grow without bound. Such data structures are “surprisingly common”, with one example
being the caching of intermediate results to avoid re-computation [I7]. It should also be
noted that developers by nature don’t trust the code of anybody else and hence they try to
use manual memory management where-ever possible. In selecting the strategy to manage
memory, the following points should be considered.

1. Footprint of the final compiled file (i.e total space required by the final compiled file).

The footprint is the “size of the software in memory when it is running live” in the
system memory. The footprint of the program using automatic memory management
is larger than the same program using manual memory management. This is because
automatic memory manager also includes the code with automatic memory allocaters
and de-allocaters. Automatic memory manager also has to keep track of each and
every memory allocations and changes and their deallocations in proper order. Code
written using manual memory management doesn’t have these components.

Automatic garbage collection is an integral part of some of the languages. The problem
with using these languages in real time applications is that all mission critical systems
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(routers, switches and all medical equipments etc) have a limited size of memory resid-
ing within their assembly. Hence one has to be very careful so that the final compiled
file has a smaller size and can fit in the memory on that device. Smaller size gives it a
better chance to fit on all sorts of low memory platform or devices.

. Pause or delay while collecting garbage.

This is also a very critical factor while selecting any language. In languages using
automatic memory management, the garbage collection task or tasks run in the back-
ground at the expense of other tasks running at that time. This is the reason that a
small pause or delay in program execution is felt during the garbage collection.

Care should be taken to confirm that a small pause will not cause problems in program
execution. For example a person browsing internet can wait a few seconds more for
his GUI to appear on the PC. On the other hand a person on ventilator cannot wait
extended period of time and can expire. Care should also be taken that time consumed
by garbage collection will not cause any other task to time-out.

. Selection of exact time when destructor or de-allocator are called.

Manual memory management enables the software developer to control that after which
statement “destructor” is called and exactly under what terms and conditions the de-
allocator is called. Unfortunately with automatic management there is no guarantee
when the de-allocator will be called. It is called automatically by the system and there
may be situations when other higher priority tasks are called instead of calling the
de-allocator. This delays the return of memory to the system, whereas the developer
might be under false impression that this memory has been returned to the system.

. External fragmentation.

A poor allocator can do its job of giving out and receiving blocks of memory so badly
that it can no longer give out big enough blocks despite having enough spare memory.
This is because the free memory can become split into many small blocks, separated
by blocks still in use. This condition is known as external fragmentation.

How This Influence can be Avoided

One way of avoiding the problems like above is to write one’s own allocator and de-allocator [6].
This confirms that one will have no surprises while calling and using somebody else’s code.

A well-designed memory manager can make it easier to write debugging tools, because much

of the code can be shared. Such tools could display objects, navigate links, validate objects,

or detect abnormal accumulations of certain object types or block sizes.

Why is This Influence Un-Avoidable

This influence is un-avoidable in some instances as it is totally against the nature of the
problem being resolved. For example Smalltalk cannot be used for Real Time programming.
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The reason being that Smalltalk does a lot of automatic garbage collection which will cause
all sorts of code footprint increase, execution pauses and delayed response times.

Similarly, C/C++ is not very suitable for GUI based applications, reason being that
C/C++ doesn’t have much automatic memory management support, which is critical in
GUI refreshment and other GUI based tasks.

3.5 Programmers Point Of View

Programmers generally tend to keep things in their hands. They tend to take care of all the
aspects of the program themselves and seldom rely and believe in other peoples code. This
is the reason that most of the times programmers hate to let go the power in their hands
and use some third party tool to make important decisions about their code.

It is a very common complain of Java programmers that for instance, once an object
moves to native method, optimizer should think that it escapes, but in reality it might
happen that it does not.

Another important point which C++ developers point to is that Java doesn’t have any
destructors. Destructors are automatically called when an object of its type is being de-
stroyed /deleted.

The “finalize()” method in Java can not be a replacement of destructor, since it is not
known when it will be actually called. Sometimes some resources must be released just
before exiting the method’s frame. Even if it is 100% sure that object that allocates those
resources does not escape, one can not rely on that optimizer will allocate this object on the
stack and will call finalize() method just after method ends.

So “finalize” method should not be used for resource deallocation, instead some other
method like freeResources() should be defined having construction like this:

try{MyObject WithResources o = new MyObjectWithResources();

finally{

o.freeResources();
}

which is manual memory management (or manual resource management) anyway. What
this means is that stack-live objects exist and are used, and it could be nice if I could use
“stacknew” operator instead of “new” and do not write code like above. However I agree
that it is not safe (one can use this in wrong cases), and should not be in Java.

3.6 Conclusion

There are numerous patterns of memory management at one’s disposal to match the project
requirements. Each pattern has a wide range of implementations, each of which has its
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Strategy Allocation speed | Deallocation speed | Cache locality Ease of Use | Generality | Usable in real time
Custom Depends on Depends on Depends on Very Depends on
. . . . . . . None . .
Allocator implementation implementation implementation | difficult implementation
Simple Fast for small
Allocator memory usage Very fast Poor Easy Very No
GNU malloc | Moderate Fast Moderate Easy Very No
Reference Yes (depends on
. N/A N/A Excellent Moderate Moderate malloc
Counting . .
implementation)
Yes (depends on
Pooling Moderate Very fast Excellent Moderate Moderate malloc
implementation)
Garbage Moderate(slow
& when collection Moderate Poor Moderate Moderate No
Collection
occurs)

Table 3.1: Comparison of memory allocation strategies.

benefits and drawbacks. Comparing several memory management strategies, see also Ta-
ble 1.1 [6], I conclude that there’s a tradeoff between numerous optimization possibilities,
such as performance, speed, ease-of-implementation, and ease-of-use.

3.7 Exam Questions

1. The efficiency of a garbage collection scheme is the rate at which memory is reclaimed.
Let M be the size of the heap and let f be the fraction of the heap occupied by live
data. Estimate the running time, amount of space reclaimed and efficiency of the
mark-sweep and copying garbage collection schemes as a function of f and M.

2. What are the drawbacks of explicit memory management?

3. How are intergenerational references handled in generational garbage collection?
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Chapter 4

Andi Huang: Fault Tolerance

Computer based systems have developed in scope and complexity greatly. Meanwhile, highly
reliable software is significantly required in many areas. For instance, in railway software
system, nuclear reactor control system, aircraft control system, the high reliability becomes
more and more important, since the cost and consequences of these systems’ failing will
lead to serious results. Ideally, software could be developed without errors. However, the
current state of the practice is that fewer errors are introduced, but creating or obtaining
components without faults are almost infeasible. It would be very dangerous to assume the
software developed is error-free. Thus, we must accept that errors will happen, and build
additional redundancy so that errors in the operation of a system are detected and corrected.
Our goal is to correct an erroneous internal state of the system before it propagates to cause
an externally observable failure. To achieve this, we turn to software fault tolerance. The
classic definition [18], [4] of software fault tolerance is: using a variety of software methods,
faults are detected and recovery is accomplished.

This paper surveys the techniques in achieving software fault tolerance, which includes re-
covery blocks (RcB), N-version programming (NVP), distributed recovery blocks (DRB),
consensus recovery blocks (CRB), acceptance voting (AV), retry blocks (RtB), N-copy pro-
gramming. Also, techniques in measuring software fault tolerance such as reliability models
and fault injection technique are surveyed.

During the exploration of this survey, Dhiraj’s book [13] and Laura’s book [16] provided
a comprehensive overview of software fault tolerance; while Lee’s book [22] gave a deeper
analysis; Jeffrey’s book [12] and Daniel’s book [20] were really good on measuring fault tol-
erance. Of course, all those paper and other books listed in the bibliography provided a lot
of valuable information to understand fault tolerance techniques.

65
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4.1 Techniques For Achieving Software Fault Tolerance

There are four phases in achieving software fault tolerance: error detection; error confinement
and assessment; error recovery; fault treatment. Based on the recovery strategy, software
fault tolerance can be classified into to two classes: backward recovery and forward recovery.

Backward recovery: after an error happens, backward recovery techniques will try to re-
cover the system to an error-free state (checkpoint) by rolling back the system to a pre-
viously “good”, error free state. The advantages of backward recovery are: it provides a
general recovery scheme (a uniform pattern of error detection and recovery); it can handle
unpredictable errors caused by residual design faults if the errors do not affect the recovery
mechanism; it can be used regardless of the damage sustained by the state; it requires no
knowledge of the errors in the system state. The disadvantages of backward recovery are:
it requires many resources such as time and stable storage to perform checkpointing and
recovery; it often requires the system to halt temporarily.

Forward recovery: after an error happens, forward recovery technique will try to recover
the system to an error-free state by finding a new state from which the system can continue
to operate. This state may be a degraded mode of the previous error-free state. The advan-
tage of forward recovery is: it is efficient in terms of the overhead (time and memory), which
can be crucial in real-time applications where the time overhead of backward recovery can
exceed stringent time constraints. The disadvantages of forward recovery are: it requires
knowledge of the error; it is application-specific and can only remove predictable errors from
the system state.

In fault tolerance, redundancy is a key supporting concept. It can be in several forms
such as hardware, software, information, and time, providing the additional capabilities and
resources needed to detect and tolerate faults. In this paper, we will focus on software and
information(data) redundancy.

As we know, simple redundancy such as simply replicate the identical software or use the
same information(data), the same error will probably still be there. It is necessary to imple-
ment diversity in redundancy. As a result, design diversity and data diversity become the
key techniques in achieving software fault tolerance.

Design Diversity

Design diversity [5] is the provision of identical services through separate design and imple-
mentations. The goal of design diversity is to make the modules as diverse and independent
as possible, with the ultimate objective being the minimization of identical error causes. We
want to increase the probability that when the software variants fail, they fail on disjoint
subsets of the input space. In addition, we want the reliability of the variants as high as
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possible in order that at least one variant will be operational at all times.

Recovery Blocks (RcB): RcB technique is one of the two original design diverse soft-
ware fault tolerance techniques. It was introduced in 1974 by Horning, et al. [9]. The RcB
technique is categorized as a dynamic technique [16]. In dynamic software fault tolerance
techniques, the selection of a variant result to forward as the adjudicated output is made
during program execution based on the result of the acceptance test (AT). The AT is used
to verify that the system’s behavior is acceptable based on an assertion on the anticipated
system state.

Usually, there are many ways to realize a program function through different algorithms
and designs. These differently implemented programs, which are called variants, will have
different degrees on efficiency in many criteria such as reliability, execution time and memory
utilization. In RcB, these variants are arranged depending on their efficiency in a decreasing
order. In other words, the most efficient variant, which is called primary try block, will
be placed in the first place and the less efficient variants, which are called alternate try
blocks, will be placed serially after the primary try block. Also, acceptance test (AT) and
backward recovery are hired in the RcB. The general ReB pseudocode and structure [16] are:

ensure acceptance test Recovery block structure:
by primary try block Establish
else by alternate try block 1 Checkpoint

else by alternate try block 2 |

Execute Alternate

ol Variant Exists
else by alternate try block n 4 No
xception
else error ignals
valuate Restore
By AT Fail | Checkpoint
l Pass
Discard
Checkpoint
l Exits RcB y Exception

The RcB pseudocode above states that the technique will first try to ensure the AT, us-
ing the primary try block. If the result does not pass the AT, then n alternate try blocks
will be tried sequentially. During the process, if any try block’s results passes the AT, then
RcB finishes and returns. Otherwise, an error occurs.
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The RcB technique provides a unifying framework to achieve software fault tolerance, incor-
porating strategies for error detection by AT; backward error recovery provided automati-
cally by a mechanism; fault treatment which simply uses an alternate module; no strategy
for damage assessment is needed because of the backward recovery.

It should be pointed out that a highly effective acceptance test (AT) is required for the
RcB technique. If an error cannot be detected by the AT, then this error may lead to the
failure because those recovery mechanisms cannot be triggered with a “poor” AT. However,
there is a conflict at some point: on the one hand, it is desirable to have an AT as compre-
hensive as possible; on the other hand, there is a need to keep the AT simple so that it’s
run-time overheads is reasonable and the AT itself is not prone to design faults.

Two augmentations to the basic RcB technique have been suggested: in some implemen-
tations of RcB, especially for real-time applications, there is a watchdog timer (WDT) [§],
which can provide extra control on the time for the executive; the other augmentation is
to use an alternate routine execution counter. This counter is used when the primary fails
and alternate takes the execution. The counter controls the times to execute the alternate,
providing the ability to take the primary out of service for “repairing” while the alternate
continues the algorithm execution tasks.

N-Version Programming(NVP): NVP is the other original design diversity software
fault tolerance techniques. NVP was suggested by Elmendorf in 1972 [7] and developed by
Avizienis and Chen [5], [6]. NVP is categorized as a static technique [16]. In static software
fault tolerance techniques, a task is executed by several programs and a result is accepted
only if it is decided as an acceptable result, usually through a majority vote. The technique
is called static because the various programs executing the task will execute in the same way,
regardless of which result(s) was decided as acceptable by the decision mechanism (DM).

In NVP technique, there must be over two variants, which have been independently designed
to satisfy a common specification. These variants will run parallel and the best results will
be decided by the DM. The general N-Version Programming pseudocode and structure [16]
are:

run Version 1, Version 2, ..., Version n

Result if (Decision Mechanism (Result 1, Result 2, ..., Result n ))
return Result

else Error
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Input

!

Version 1 Version 2 Version n

T—L—

Get Results

<>

Output Select Exception

N-Version Programming structure

The NVP pseudocode above states that the technique invokes n versions in parallel. The
results of these executions are provided to the DM, which will determine the result. If a
correct one can be adjudicated, it will be returned. Otherwise, an error occurs.

Here is an example: to perform sort, there are some variants, which can be implemented
with different algorithms such as heap sort, quick sort, bubble sort and so on. The input
data will be executed simultaneously on these variants and the results will be gathered and
adjudicated by the DM. Here is DM can be a majority voter.

When a DM can be successfully implemented, the NVP is a simple and attractive tech-
nique for fault tolerance: error detection is provided by DM; error recovery involves ignoring
the values identified as erroneous by the check; and the fault treatment simply results in
the versions determined to have produced erroneous results be identified together with a
reconfiguration to avoid reinvoking failed versions subsequently.

One thing should still be pointed out that even though NVP utilizes the design diversity
principle, it cannot be guaranteed that the variants have no common residual design faults.
If this occurs, the purpose of NVP is defeated. The DM may also contain residual design
faults. If it does, then the DM may accept incorrect results or reject correct results, NVP is
defeated again.

Two augmentations to N-Version Programming have been suggested, just by using a dif-
ferent decision mechanism than the basic majority voter: one optional DM is the dynamic
voter. It has the ability to handle a variable number of result inputs, since the basic DM
can only cope with fixed number inputs; the other augmentation is voting on the results as
each version completes execution, instead of waiting for the completion of all versions. This
scheme is more efficient than the basic NVP, assuming the versions have different expected
execution times. Since the NVP will exit as soon as any acceptable result is found.



70 Andi Huang

Distributed Recovery Blocks (DRB): DRB technique was developed by Kane Kim
[TT] as a means of integrating hardware and software fault tolerance in a single structure. As
the name suggests, it is a modification of the RcB. The difference between DRB and basic
RcB is that the primary and alternate recovery block are resident on two or more nodes
interconnected by the network.

This technique is mainly applied in real-time applications, distributed and parallel comput-
ing systems, and handles both hardware and software faults. Although DRB uses recovery
blocks, it implements a forward recovery scheme, consistent with its emphasis on real-time
applications. The general pseudocode of DRB [16] is:

run RB1 on Node 1, RB2 on Node 2

ensure AT on Node 1 or Node 2

by Primary on Node 1 or Alternate on Node 2
else by Alternate on Node 1 or Primary on Node 2
else Error

The above DRB pseudocode states that the technique executes the recovery blocks on both
nodes concurrently, with one node executing the prime and the other executing the alternate.
It first tries to ensure the AT with the primary recovery block on node 1. If this result fails
with the AT, then the DRB tries the result from the alternate recovery block on node 2. If
neither passes the AT, then backward recovery is used to execute the alternate on Node 1
and the primary on Node 2. The results of these executions are checked in the same way as
before. If neither of these results passes the AT, then an error occurs. If any of the results
are successful, the result is passed on.

DRB technique has the following useful characteristics [11]: regardless of whether a node
fails due to hardware faults or software faults forward recovery can be accomplished in the
same way; the recovery time is minimal since maximum concurrency is exploited between the
primary and the shadow nodes; the increase in the processing turnaround time is minimal
because the primary node does not wait for any status message from the shadow node.

Consensus Recovery Block (CRB): CRB technique was suggested by Scott, Gault,
and McAllister [19]. It’s a kind of hybrid fault tolerance strategy, which combines both RcB
and NVP fault tolerance techniques. Briefly, CRB technique processes in NVP style, which
is then followed by RcB style. If either of them succeeds, the result is passed to the successor
computing station. If neither succeeds, then the system raises an exception. Meanwhile, in
CRB technique, the importance of the AT used in the RcB is reduced. Also, it can handle
cases where NVP would not be appropriate because of multiple correct results (MCR: two or
more dissimilar correct answers exist for the same problem, for the same input, which will
cause DM do the wrong decision).
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The general pseudocode and structure for CRB [16] are:

run Ranked Variant 1,
Ranked Variant 2, ..,

Ranked Variant n Tnput

if (Decision Mechanism (Result 1,

Result 2, ..,

NVP —————

Result n )) Voted Correct Result
return Result
else
ensure Acceptance Test Y
by Ranked Variant 1 [Result] Recovery Block |————#=
else by Ranked Variant 2 [Result] Accepted Result
else by Ranked Variant n [Result] Exception
else raise failure exception
return Result Consensus Recovery Block Structure

In CRB, all n variants are ranked by their reliability and service. These n variants first
are invoked concurrently in NVP style. If the DM can produce a correct result, then CRB
exits. Otherwise, the result of the highest rank variant will be sent to AT. If that variant’s
results fail on AT, then the next highest rank variant’s result will sent to the AT, and so on,
until an acceptable result passes the AT or no variant is left.

In the RcB part of the CRB technique, the existing results of variant execution, the ones
that just failed to result in a majority decision, can be run through the AT again, which
provides some kind of tolerance to transient fault. The system fails if both the NVP and the
RcB portions of the technique fail to come up with a correct result.

A general disadvantage of all hybrid strategies such as the CRB is that an increased com-
plexity of the fault-tolerance mechanism will result in the increasing of the probability of
existence of design or implementation errors.

Acceptance Voting(AV): the AV technique was proposed by Athavale [3]. It is the
other kind of hybrid fault tolerance strategy, which incorporates both AT and voting-type
DM technique. The AV technique is also implemented with forward recovery. In brief, in
AV technique, the output of each module is first presented to an acceptance test and only
those results that pass the acceptance test are to be used by DM (vote). A dynamic voting
algorithm is required in this technique, since the DM may see varying number of results.
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For example, if two results pass the AT, they are compared. If three results pass, they will
be voted upon. If no results pass the AT, then the system fails. It also fails if the dynamic
voter cannot select a correct result. The general pseudocode and structure for AV [16] are:

: : . Distribute Input
run Variant 1, Variant 2, ..., Variant n 1sibute fnpu
ensure Acceptance Test 1 by Variant 1 -— ¥
ensure Acceptance Test 2 by Variant 2 Variant1 Variant 2 Variant n

ensure Acceptance Test n by Variant n Y
Result 7, Result 7, ..., Result m pass ATI AT2 AT3
the AT — 3. —

if (Decision Mechanism

(Result 7, Result j, ..., Result m ))
return Result

else

return failure exception

Gather Results

Y

DM

Result Selectedl lException

The Acceptance Voting Structure

In the AV fault tolerance technique, the reliability of AV is quite important to the suc-
cess of this fault tolerance technique. As one can see from the structure, AV acts as a
pioneer, which means if it allows erroneous results to be accepted, then the advantage of
catching potential related faults prior to being assessed by the voter-type DM is minimal
at best. Also, as a kind of hybrid fault tolerance strategies, a general disadvantage such as
increasing in the probability of existence of design or implementation errors will also apply
to AV technique.

Data Diversity

To complement the design diversity techniques in achieving software fault tolerance, Am-
mann and Knight [2] proposed the use of data diversity. Data diversity involves obtaining a
related set of points in the program data space, running the same software on those points,
and then using a decision algorithm to decide the resulting output. In data diverse tech-
niques, those “diverse” data are obtained through data re-expression algorithms (DRA). The
goal of DRA is to produce data points which are outside of the failure region.

Data diversity and design diversity are analogous at some point: design diversity tech-
niques use different alternate to run on the same data; data diversity, however, use different
expressions (version) of data to be run by the same program.
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Retry Blocks (RtB): similar to ReB in structure, the RtB technique also uses acceptance
tests (AT) and backward recovery to achieve fault tolerance. It is categorized as dynamic
fault tolerance technique too. Here is the general pseudocode for Retry Blocks technique [17]:

ensure Acceptance Test

by Primary Algorithm(Original Input)

else by Primary Algorithm(Re-expressed Input)
else by Primary Algorithm(Re-expressed Input)

Deadline Expires
else by Backup Algorithm(Original Input)
else failure exception

In basic RtB, there are one DRA and a watchdog timer (WDT). The function of the WDT
is to trigger the backup algorithm if the primary algorithm cannot produce any acceptable
result within a specified period of time.

The pseudocode above states that the technique will first try to ensure the AT, using the
primary algorithm on the original input. If the algorithm results pass the AT, then the RtB
is complete. Otherwise, it will hire DRA to re-express the original input and run the same
algorithm again until AT finds an acceptable result or the deadline of WTD is reached. If
it is the latter case, a backup algorithm will be invoked on the original input data. If this
backup algorithm is not successful, an error occurs.

To achieve effective RtB, highly effective AT is required. The reason is quite similar as
what has been discussed in RcB technique. Also, the success of this techniques highly de-
pends on the efficiency of the re-expression algorithm used. DRAs are very application
dependent and in-depth knowledge of the algorithm is required. There is no general rule for
the derivation of DRAs for all applications. Usually, a simple DRA is more desirable than a
complex one because the simpler algorithm is less likely to contain design faults.

N-Copy Programming(NCP): similar to NVP in structure, the NCP technique also
uses a decision mechanism (DM) and forward recovery to accomplish fault tolerance. It is
categorized as static fault tolerance technique too. The general pseudocode for NCP [17] is:

run DRA 1, DRA 2, ..., DRA n
run Copy 1(result of DRA 1),
Copy 2(result of DRA 2),

Copy n(result of DRA n)
if (Decision Mechanism (Result 1, Result 2, ...,Result n))
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return Result
else failure exception

In the NCP technique, there is one or more DRAs, a DM and at least two copies of a
program. DRAs are hired to run on the original inputs to re-express and try to get di-
verse data, standing outside the failure region. The copies execute in parallel using the
re-expressed data as input except one use the original inputs. A DM is hired to examine the
results of the copy executions and selects the “best” result.

The NCP pseudocode above states that the technique will first run different DRA on the
same original input and then execute those re-expressed data on program copies concur-
rently. The results of the copy executions are provided to the DM. If a correct result can be
adjudicated by the DM, then the result is returned. Otherwise, error happens.

To achieve effective NCP, highly reliable and efficient DM and DRA are required. If DM
does contain residual design faults, then the DM may accept incorrect results or reject cor-
rect results. Also, a simple DRA is more desirable than a complex one since the simpler
algorithm is less likely to contain design faults itself.

Other Techniques

Besides the techniques for achieving software fault tolerance, which have been discussed
above, there are still many other techniques. Since the available size of this paper, we
will just list these techniques without detail analysis: Two-Pass Adjudicators(TPA) [15]
technique which combines both data and design diversity; Robust software approach, which
does not use any form of redundancy, such as monitoring techniques, atomicity of actions,
decision verification, and exception handling to partially tolerate software design faults;
Resourceful Systems [1|; Byzantine fault tolerance [10].

4.2 Techniques For Measuring Software Fault Tolerance

In order to evaluate the efficiency of fault tolerance mechanisms, techniques in measuring
software fault tolerance such as reliability models and fault injection have been introduced.

Conventional reliability Models

Reliability models [13] are intended to illustrate the effect of failures of elements on the over-
all system, particularly where some elements are redundant or incorporate fault tolerance
provisions. In the conventional reliability model, redundant elements are placed in parallel
and all essential functions required for the system are placed in series. The failure proba-
bility of a function that consists of two redundant elements is the production of the failure
probabilities of the individual elements. The reliability of a system is the product of the
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reliability of all its functions. Here are the figures of conventional reliability models [21]:

—  RI® |

RI(1) R2(t) w. | Rn@

R2(t)

a: Series connection

- Rn(t) —

b: Parallel connection

If R;(t) is the reliability of module ¢ and if the model are assumed independent, then the
overall system reliability is:

Rserial(t) = H?:l Rl(t)
Rparallel@) =1- H?:l[l - Rl<t)]

Fault tree diagrams (FTDs) and reliability block diagrams (RBDs) are two of the most
commonly used approaches based on this conventional reliability model. Fault trees repre-
sent all the sequences of individual component failures that cause the system to failure, in
a treelike structure. It is a pictorial representation of the combination of events that can
cause the occurrence of system failure; In RBDs, the system reliability is represented by the
reliability of each component in a series-parallel logical structure. The most fundamental
difference between FTDs and RBDs is that RBDs work on system success combinations,
while FTDs work on system failure combinations.

While this conventional modeling technique can be used to depict the structure of fault
tolerance, it is not suitable for quantitative evaluation because it does not account for the
two most significant factors that contribute to the system failure after fault tolerance is im-
plemented: undetected failure and correlated faults. In NVP, the undetected failure includes
those that never reach the Voter, while in the RcB approach, they arise from inadequate
coverage of the Acceptance Test (AT). Correlated faults are those faults present in two or
more versions of a program.

State Transition Model

Compared to the conventional reliability model, state transition model [I4] does consider
the undetected failures and correlated faults. It will be illustrated here by evaluating the
reliability of a RcB system.
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The figure below is a representation of these potential causes of system failure for a re-
covery block with a single alternate. A given recovery block can be one of the following four

states:

1. Primary routine operates satisfactorily
2. A failure in the primary software has been detected
3. Alternate routine operates satisfactorily
4. Recovery block fails

Primary is O

Alternate

(2)

Failure

Detected

(4)

RcB

Failure

State Transition Model

The system failure probability is represented by the probability of all paths that originate
from state 1 and terminate at state 4. These paths are:

1. 1 to 4: undetected failure of primary routine

2. 1 to 2 and 2 to 4: detected failure of primary routine and a correlated fault in the
alternate that prevent state 3 from being achieved

3. 1to2,2to 3 and 3 to 4: detected failure of the primary routine followed by satisfactory
operation of the alternate and then followed by an uncorrelated fault in the alternate.

The transition probability table for this system is:

From/To
1

N

1 2
1-f cf
0 0
0 0
0 0

3
0
u

4
f(1-c)
1-u
1-s

1

2 »w - o

coverage( error detection capability)

failure probability of the primary routine
success probability of the alternate routine
probability of no correlated faults exist in the

primary and alternative
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The probability failure of the RcB, P[F], is the sum of the probabilities leading to state 4:

P[F] = P[1,4] + P[1,2]P[2,4] + PI[1,2]P[2,3]|P[3,4]
= f(l—=¢)+cf(l —u)+cfu(l—s)
= f(1—cus)
= f(1-E)

Where F is to represent the effectiveness of the fault tolerance provisions. If there is no fault
tolerance, P[F| = f.

The example above shows that state the transition model is able to provide a quantitative
reliability evaluation to those system which is incorporated with fault tolerance. Meanwhile
the importance of the efficient AT and diverse variants in RcB technique have been showed.

Fault injection

Fault injection [12] consists of the deliberate insertion of artificial faults in a computer system
or component to assess its behavior in the presence of faults and allow the characterization of
specific dependability measures. It improves our ability to observe the software in the most
stressful circumstances and gains insight into how the software fault tolerance has achieved.
There are four main methods for fault injection:

1. Messages-based: this approach corrupts the messages between components as they
execute.

2. Memory/Storage-based: this approach corrupts the values of information either in
database, in memory, or on a disk.

3. Debugger-based: this approach uses a debugger to inject errors into a running process

4. Process-based: this approach affects the state of the system by manipulating processes,
for example, by having high-priority process affect system state.

Here is an example of injecting fault on a NVP system (with 3 versions): the injected fault
is common design fault. The goal is to predict whether problems that manifest themselves
in individual versions can propagate out the NVP system: the fault is applied to all the
three versions, what we are interested in measuring is that how often the simulated fault
will produce identical results which can confuse the DM. Given two incorrect but equivalent
result, the voter will pick a result that is different from what it would have selected had fault
injections not occurred.

Fault-injection technique allows us to simulate imaginable and unimaginable event to show
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how tolerant the system is. We can take the appropriate steps to improve the tolerance
of the software if the results from the simulation are unacceptable. In this manner, fault
injection plays a important role of measuring fault tolerance.

Other Techniques

Besides the basic techniques for measuring software fault tolerance above, there are still some
other techniques proposed: Monte Carlo simulations; Markov chains / Markov graphs [20].

4.3 Conclusion

We have surveyed the traditional techniques of achieving and measuring software fault tol-
erance. In the achieving part, techniques belonging to design diverse and data diverse are
mainly surveyed; in the measuring part, basic reliability models and fault injection are sur-
veyed.

Since the growing demand for high reliability in many systems, software fault tolerance tech-
niques will play an even more important role in the near future. We should select different
techniques to achieve and measure software fault tolerance, depending on the application’s
requirements, available resources and characters of each different techniques.

4.4 Questions

1. In the ReB (recovery blocks) technique, why are variants arranged depending on their
efficiency in a decreasing order?

2. Please compare RcB and NVP on the four phases in software fault tolerance.

3. In reliability models, why do we say state that the transition model is “better” than
conventional reliability model at some point?
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Chapter 5

Jay Parlar: Dynamic Languages

Dynamic languages have a long history in computation, going back as early as the initial
Lisp implementations in the 1950s. More recently, dynamic languages have been labeled
“scripting languages”, and their use in production systems has been limited. One reason for
this is the inherently slower execution speed of many dynamic languages. However, various
type inference techniques have been developed which drastically increase the execution speed
of some dynamic languages. Even when such techniques are not possible, there are still many
reasons why a dynamic language would make a good choice for program development.

5.1 Introduction

Dynamic Languages are typically viewed as those languages that are dynamically typed, and
high level [3]. In general, a dynamic type system is one where the type of any given variable
or method will not be known at compile time.

Instead, all type information is determined dynamically at run time. In fact, the type
information for a variable can change many times during a single execution of the program.
In addition, explicit declarations of variable types are not made (as would be the case in
traditional statically typed languages like C++, Java and Pascal).

For example, we have the following arbitrary Ruby code:

def somefunction(x)
if x > 1 then
y =25
else
y = IlabCH
end
return y
end

There are four key points to note about this example, that mark it as code from a dynamic
language:

81
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1. No type is given for the function argument x
2. No variable declaration for y is given

3. Depending on the result of the conditional x > 1, y will be assigned an R-value [25]
of type String or type Integer.

4. No return type is given for somefunction. In fact, depending on what y is, the function
could return an integer value, or a string value.

It should be noted that points 1, 2 and 4 could also apply to polymorphic functions in
statically typed languages. However, it is point 3 in combination with the other points that
strongly identifies this as a dynamically typed language.

Strachey [25] defined this nicely as:

...types are to be attributes of R-values only and that any type of R-value
may be assigned to any L-value.

Having to wait until runtime implies a stronger possibility of having something going
wrong with program execution. However, with most dynamic languages, the flexibility al-
lowed by their dynamism will, in many cases, outweigh the cost of losing compile time type
checking.

5.2 History of Dynamic Languages

If one’s definition of a dynamic language is simply that type information of a variable is not
known at compile time, then assembly language could be viewed as a dynamic language!
Assembly language works purely with bit strings in computer memory, and what those bit
strings represent at any time is only known to the programmer.

Bit strings in computer memory are known as an “untyped universe” [6]. Other ex-
amples [6] include S-expressions in pure Lisp, A-expressions in A-calculus and sets in set
theory.

However, most true dynamic languages do have an actual type system, where the type is
stored with the R-value.

Probably the oldest dynamic language is Lisp, which had its first implementation in
1958 [11]. Lisp has just a few basic types, namely lists and atoms, and from atoms, numbers
and symbols are defined [27]. From these basic types, higher level types can be defined.
Even with higher level types, Lisp still manages to operate without explicit type declarations
(although using Common Lisp’s optional declarations [I7], one can introduce optional type
declarations [16]).

Smalltalk, one of the earliest object oriented languages, and one of the earliest dynamic
languages, saw its first version in 1972, with another major release (Smalltalk-76) in 1976 [12].
Smalltalk is still in use today, being used to develop modern systems, such as web application
frameworks [24]. Interestingly, Smalltalk was always used to design “real” systems. In
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later years though (esp. the early 1990s), most dynamic languages were called “scripting
languages”, and not used to design full programs. Instead, they were used for simple scripting
tasks.

Traditionally, dynamic languages have been called “scripting languages”, as in the past
they have only been used for scripting predefined components of a system. Probably the
most famous and heavily used of these is Perl, created in 1987 by Larry Wall [15]. Perl was
developed by Larry Wall out of a need to perform various scripting tasks on text files. This
heritage still holds today.

For whatever reason (probably much to do with the typical uses of Perl), many people
in the 1990s would not even contemplate using dynamic languages for “production” or “en-
terprise” tasks. There was a common notion that they were too slow and/or unsafe to use
in such environments [19].

In just the past few years though, there has been a resurgence in the interest of dynamic
languages (including Lisp), lead greatly by languages such as Python and Ruby, which were
designed as “general purpose” languages, as opposed to specialized scripting languages [3].

5.3 Type Systems
In general [0]:

A type system has as its major purpose to avoid embarrassing questions about
representations, and to forbid situations where these questions might come up. In
mathematics as in programming, types impose constraints which help to enforce
correctness.

So the main goal of a type system is for protection of the programmer, to help prevent
errors. However, it must be stressed that no type system can guarantee that no errors will
occur at runtime [14]:

Type systems are always prey to the Halting Problem. Consequently, a
type system for a general-purpose language must always either over- or under-
approximate: either it must reject programs that might have run without an
error, or it must accept programs that will error when executed.

In addition to helping to avoid variable representation problems, a type system can also
be used to increase performance. For example, by identifying integer variables at an early
stage, a compiler can ensure that arithmetic is performed on them at the assembly level [7].

As a simple example, note the following C code:

int x,y,z;
x=1; y=2;
z=Xx+Yy;
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Using GCC3.3, on PowerPC, the compiler outputs (without optimization) the following
assembly fragment:

1i r0,1

stw r0,32(r30)
1i r0,2

stw r0,36(r30)
lwz r2,32(r30)
lwz r0,36(r30)
add r0,r2,r0
stw r0,40(r30)
mr r3,r0

The compiler knows that all variables in the code are simple integers, thus no runtime
type checking needs to be done, and the basic assembly instruction add can be used to add
them together.

Compare this with the following Python code:

def simple_int_addition():
x =1
y =2
zZ=3x+y

In the Python interactive interpreter, one can view the byte code that will be generated
for this method (an excerpt from the interpreter session is shown):

>>> import dis
>>> dis.disassemble(simple_int_addition.func_code)

2 0 LOAD_CONST 1 (1)
3 STORE_FAST 1 (%)
3 6 LOAD_CONST 2 (2)
9 STORE_FAST 0 (y)
4 12 LOAD_FAST 1 (%)
15 LOAD_FAST 0 ()
18 BINARY_ADD
19 STORE_FAST 2 (2)

On first glance, this seems roughly equivalent to the assembly code generated for the C
program. However, the BINARY_ADD opcode does not simply cause an assembly level add to
be performed [23]. Instead, it will cause the Python interpreter to analyze the types of both
variables, check (through dynamic lookup) if an addition method is defined for those two
types, and then perform the addition.
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As a small example of the potential performance benefits of typing, in [10] there is a
comparison between a prime number generator written in Python, and one written in C.
With Python, one has the option of coding performance critical modules and functions in
C, and calling those C modules from Python.

For the prime number example, two versions were written, one in pure Python, the other
a Python program calling a C module.

The time taken for the pure Python version to calculate the first 1000 prime numbers
was 0.317926 seconds. The version that had a Python program importing a C prime number
generator took only 0.027067 seconds, a 12 times speed increase.

Not all dynamic languages (including Python) will be this slow in all cases, but the
example does give a good idea of what kind of performance one can expect.

Static and Dynamic Typing. In a static type system, types are “are associated with
constants, operators, variables, and function symbols” [6]. The implication of this is that at
all times during program execution, the type of anything in the program is known, without
having to do any explicit checking.

Some statically typed languages, such as C, C++ and Java, require that the programmer
enter the type information themselves, while languages like ML and Haskell can infer types
at compilation time (this will be discussed in greater detail later).

Dynamic typing is a system in which no type information is explicitly given for variables,
and none is automatically inferred. Instead, variables are created “on-the-fly”, with type
information attached to the R-value. A variable can freely change its type by giving it a new
R-value with different type information attached.

Another signature of a dynamic type system is that function signatures do not have type
information associated with their arguments. Take the following Python code as an example:

def foo(x):
return x + 1

There is no type information given in the signature of foo to indicate the type of object
x is supposed to be. In this example, one must inspect the function itself to determine what
kind of objects are acceptable (in this case, that being any object that can be summed with
an integer).

It must be noted that the type information ¢s present at runtime, otherwise the Python
interpreter would not be able to determine how to add together x and the integer 1. This
can be explicitly seen in the following example, which again shows captured output from the
interactive interpreter:

>>> def foo(x):
print "Type of x is", type(x)
return x + 1

>>>y=5
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>>> type(y)

<type ’int’>

>>> print foo(y)

Type of x is <type ’int’>
6

Type Inferencing. Having a purely dynamic type system usually implies certain perfor-
mance constraints. In general, the type of an object not being known until runtime prevents
the kind of compile time optimizations one can achieve with a static language.

However, there have been many attempts at addressing these performance constraints,
particularly through the use of type inference.

Type inference is defined as [5]:

...the process of finding the most accurate type information for a program
that does not explicitly state the types of variables at compile-time, all without
inferring any inaccurate information

Compile time type inferencing is already used successfully in many statically typed func-
tional languages, such as Haskell and Standard ML. However, compile time type inferencing
in dynamic languages presents a slightly different problem, as in many cases it is impossible
to know ahead of time what type a variable will be (usually thanks to eval and its cousins).

Even the notion of type inferencing a static imperative language has different concerns
than that of a functional language (mostly due to the ability to have assignment statements).
Suzuki [26] solved this imperative type inference problem in the Smalltalk language, basing
his research off the work done by Milner [18] for the ML language.

It is theoretically possible to write a program which asks a user to type in a new class
name, and the program will then dynamically create a class definition and instantiate a new
variable of that class. Obviously, a type inferencer cannot anticipate that, not without being
able to read a user’s mind.

However, there are occasions where type inferencing can work. In the simple_int_addition
example above, a type inferencer should be able to determine at compile/analysis time that
z = x + y will only ever represent the addition of two integers, due to the two integer
assignments of x and y that occur directly above it.

Brett Cannon attempted to build a compile time type inferencer for Python as part of
his Master’s thesis [5]. The conclusion he came to was that without restricting any of the
dynamism of Python, and without changing the language’s syntax or semantics, the most
type inferencing that could be done is of atomic variables in local namespaces (ie. local
variables in method bodies).

So if a method as follows was given:

def dosomeinference(x):
a=>5
b=a=x*x
return b
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The only aspect of that method that could be inferred is the type of a, as it is a local
variable, and works with an atomic type (integer). The variable b involves a variable of
unknown type, thus its evaluation would still have to be done dynamically at runtime.

The result of his experiment adding the type inferencer to the Python interpreter was a
speedup of less than 2%, which at the same time added a great deal of complexity to the
source code of the Python interpreter.

Not all dynamic languages have such problems with type inferencing. The Self language
has now been using type inferencing for some time [2] [7].

The original Self compiler performed Cartesian Product type inference [2] only. Carte-
sian Product type inference works on method calls to improve performance of polymorphic
methods.

It works by analyzing all occurrences of a method call, and computing a Cartesian product
of the types of the arguments, of all calls. Then each tuple in the Cartesian product can be
analyzed separately, essentially creating a list of all the monomorphic method calls that are
possible.

In [7], enhancements were made to the Self compiler to add iterative type analysis.
Iterative type analysis performs analysis on method bodies, as opposed to method calls.
The addition of iterative type analysis to the Self compiler caused a two-fold speed increase
over the previous compiler.

The reason that these algorithms worked so well for Self, but not for Python, has to do
with runtime capabilities of the languages. The example given earlier of a program that
prompts a user for a new class name illustrates this perfectly. At compile time, all the
information that will be used at runtime is not necessarily present in a Python program.

Cartesian product type inference and iterative type analysis require all source code to
be available at compile time, and that is not guaranteed with a Python program, or any
program written in a language that can generate code at runtime.

The Python community has responded to these issues with a few separate projects, but
three of the most interesting are:

1. Psyco [23]
2. ShedSkin [§]

3. PyPy]

Psyco. The Psyco project is essentially a Just-in-time [4] (JIT) compiler for Python. In-
stead of analyzing source code before execution, it analyzes running code during execution.
When it sees sections of code that can be replaced by its own specially written assembly
instructions, it will step in, and run the assembly code in place of having the interpreter
perform its normal execution.

thttp://codespeak.net/pypy/dist /pypy/doc/news.html
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In some cases (particularly integer-arithmetic-intensive programs), the speedup has been
as much as 100 times. However, there are cases where no portions of a program can be aided
by the Pscyo JIT, and the overall result is a slower program.

Luckily, a programmer has the option of profiling their code, and having Psyco only apply
itself to the sections of the program they feel would benefit from the JIT.

ShedSkin. ShedSkin is a project aimed at producing a high-speed Python-to-C++ com-
piler. The project uses various type inference techniques to analyze Python source code, and
generate highly efficient C++ code.

Developed as part of the author’s Master’s thesis, the author has developed it with a
strong awareness of the existing literature (taking advantage of many of the references given
here, [26] 18] 2]. Tt is still in its early stages, but sample programs have already seen as
much as a 65-fold speed increase [|

However, because of its early stages, the compiler can only operate on a small subset of
Python code. No code from the standard library can be used, metaclasses cannot be used,
nor can any of Python’s powerful reflection capabilities.

PyPy. The PyPy [21] project is an attempt to implement the Python language, in Python
itself!

The reason for this is that current Python interpreters are written in C and Java, both
of which are lower-level languages than Python (due to their limited basic data types, forced
explicit type declarations, early binding, etc.). An implementation of Python written in
a higher-level language, like Python, would result in a code base for the interpreter that’s
much easier to understand and work on.

A second goal of the PyPy project is for automated interpreter generation. With that,
people could automatically generate Python interpreters written in, for example, Lisp, or
C++, or JavaScript, etc.

To facilitate these goals, the PyPy project has specified a subset of Python called
“RPython”. This subset eliminates many of the issues that prevent type inferencing from
working on regular Python code. With this, the new Python interpreter can be written in
RPython, and then type inferencing can be combined with the automated backend generators
to produce reasonably fast Python implementations.

PyPy probably has the strongest chance of becoming the community accepted high-speed
compiler. The PyPy community has strong ties to the core Python developer community, and
they have been awarded funding from the European Union to continue their development [g].

5.4 Disadvantages of Dynamic Languages

Throughout the history of dynamic languages, they have traditionally had a number of
disadvantages compared to more traditional static languages.

Zhttp://shed-skin.blogspot.com /2006 /01 /006-update.html
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Execution Speed. The topic of Execution Speed has been covered quite thoroughly in
section However, it bears repeating. Typically, dynamic languages will be slower, in
terms of raw execution speed, compared to a statically compiled language performing the
same task, assuming both languages have adequate interpreters/compilers [3].

In applications where raw performance is required (including many numeric applications,
high quality graphics rendering, etc.), the choice to use a dynamic language may result in
problems down the road.

Somewhat related to execution speed is tasks that are very low-level (drivers for an OS,
etc.). It is usually preferable to write these types of applications in C or assembly, as one
often needs access to parts of a system that a high-level dynamic language might abstract
away (such as memory management, CPU registers, etc.).

Type Errors. There are a certain class of errors that occur in dynamic languages that
will not occur in static languages, namely type errors.

An example of a Python interactive interpreter session is shown, illustrating the simplest
example of this:

>>> def f(x):
return 1 + x

>>> f("abc")
Traceback (most recent call last):
File "<stdin>", line 1, in 7
File "<stdin>", line 2, in f
TypeError: unsupported operand type(s) for +: ’int’ and ’str’

So a function f was created which accepts a single argument x, and sums that argument
with 1 (or more precisely, applies 1 and x to the + operator, which is polymorphic).

The + operator is not defined when the two objects passed to it are a string and an
integer. Because of this, a TypeError is raised at runtime.

There would be no way to detect this error without actually running the program. Thus,
if a given program ended up being released, without certain code execution paths being
tested, it is possible that a type error could occur at runtime.

Another class of runtime error that is closely related has to do with typos, or missing
variables. As an example:

>>> def g():
y =1
x =2

return y + z

>>> g()
Traceback (most recent call last):
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File "<stdin>", line 1, in 7
File "<stdin>", line 4, in g
NameError: global name ’z’ is not defined

In this example, we define a function g that defines two local variables, and is supposed
to sum them and return the result. However, the programmer made a mistake, and instead
of typing y + x, they typed y + z.

The interpreter lets the function be defined without complaint, and it is not until some
piece of code actually executes the function that we will see a mistake has been made.

As a final example of a problem a compiler would catch:

>>>z =5

>>> def g():
y=1
X =2

return y + z
>>> g()
6
Here the same function g has been defined, but a variable z is available in the global
namespace. Because of this, the addition goes through without a runtime error. While many

static languages would allow the addition with a global variable, most would emit a compiler
warning that the variable x had gone unused in the function.

Scalability. A common criticism of dynamic languages is that they do not scale very
well. For example both Ruby and Python [I3] can only utilize one processor at a time,
when programming with a threaded model. So even on a multiprocessor computer, only one
Ruby/Python thread (per process) will be able to run.

Of course, this does not prevent a programmer from using a multi-process model (as
opposed to multi-threaded), creating separate instances of the interpreters for each process.

The other issue of scalability that is often considered is in terms of the system size [3].
Many believe that as systems get larger, static interface checking will be the only way to
make sure everything still works correctly together.

The fact that method signatures give no type information can be hinder-some, for exam-
ple, consider the following Ruby class:

class DataModel
def addMoreData(data)
. do some stuff
end
end
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By the method signature of addMoreData, there is no syntactic way to tell what type of
data should be passed in. In some ways, this breaks classic information hiding [20] strategies,
as one must go into the code of the method to ascertain what is required.

5.5 Advantages of Dynamic Languages

While as with any technology, dynamic languages present a number of disadvantages, there
are a number of advantages to using dynamic languages, which have made them popular for
so long now.

Scripting. The classic use for dynamic languages, and the one most people are familiar
with, is for scripting [19].

Due to the fact that type declarations are not required, dynamic languages are usually
incredibly flexible, making them perfect for small scripting tasks.

One trait most scripting languages possess is easy-to-use file and string processing con-
structs. Many scripting tasks deal with parsing over some files, and checking the string
contents of them, so scripting languages try to make those tasks as easy as possible.

Consider the following Python script which iterates over all the lines of all the files named
on standard input, and replaces the string “foo” in those lines with the string “bar”:

import fileinput,sys
for line in fileinput.input(inplace=True):
if "foo" in line:
line = line.replace("foo","bar")
sys.stdout.write(line)

Now try to imagine how much longer the equivalent program would be in C++4-, Java,
or most other static languages. Just the syntactic support for checking substrings (ie.
"foo" in line) is something that gives Python an advantage over most static languages,
languages which would usually require some explicit function calls and comparisons. The
Python approach is closer to natural English, and easier to read.

Or consider the following Tcl command (from [19]:

button .b -text Hello! -font {Times 16} -command {puts hello}

This command dynamically creates a new button object, which displays a string of text
in a 16 point Times font, and prints out the message “hello” when a user clicks on it.

An equivalent command in C++ using Microsoft Foundation Classes would require 25
lines of code, and multiple functions. Even simply setting the font is a tedious task [19]

CFont *fontPtr = new CFont();

fontPtr->CreateFont (16, 0, 0,0,700, 0, 0, O, ANSI_CHARSET,
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OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");

buttonPtr->SetFont (fontPtr) ;

So for simple scripting tasks, dynamic languages have proven themselves to be ideal, with
most static languages being much too heavy-weight relative to the importance of the job.

Built-in Types. Most dynamic languages come with high-level built-in types, such as
hash tables, dynamically extensible lists, strings with dozens of useful methods, etc. In
static languages, types like this are usually implemented as classes in a library, if at all.

Python, for example, has built in dictionaries (hash tables). These are a part of the
language definition, and have their own special syntax to create them, namely {}. The
reason this is so important is that having syntactic support for high-level data-types that
will be used over and over reduces the amount of “finger-typing” needed. Code becomes
more compact, concise, and easier to read.

Python dictionaries can take almost any object as keys (and all the keys do not have
to be of the same type), and they can take any object as the paired values, and again, the
values in a dictionary do not have to be of the same type.

>>> contain = {}

>>> contain[3] = "ABCD"

>>> contain["foo"] = 9999
>>> "foo" in contain.keys()
True

>>> "bar" in contain.keys()
False

>>> 9999 in contain.values()
True

>>> contain[3]

?ABCD’

>>>

This short example showed a few of the interesting features of Python dictionaries.
1. A dictionary named contain was initialized.
2. A value "ABCD" was added, with a key of 3

3. A value 9999 was added, with a key of foo (notice that the value has a different type
than the value added in the previous step)
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4. "foo" in contain asks if the key "foo" is in the dictionary

5. "bar" in contain asks if "bar" is in the dictionary. Since we haven’t added it, False
is returned.

6. contain[3] asks the dictionary for the value paired with key 3

This example only showed a few of the uses and methods of dictionaries, but it is easily
seen how usable they are, with minimum effort.

Code Compactness. Dynamic languages, for a variety of reasons, tend to involve higher
degrees of code compactness than many static languages. In general, this relates to the fact
that dynamic languages tend to be higher-level, with higher-level constructs available to aid
in reducing code size. The widely accepted estimate is that a static language will require
5-10 times the number of lines of code than a dynamic language implementing the same
functionality [9].

One study [22] did an empirical comparison of scripting languages versus traditional static
languages (Java, C, C++) and found that the working with the scripting langauges took no
more than half the time than doing an equivalent program in one of the static languages,
and the resulting programs were half as long.

As an example (from [9]) of this, we will show a simple class and its constructors in
Java, and compare that with equivalent code in Python.
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Java:

public class Employee

{

private String myEmployeeName;
private int myTaxDeductions
private String myMaritalStatus

constructor #1
public Employee(String argEmployeName)
{

myEmployeeName = argEmployeeName;

constructor #2
public Employee(String argEmployeName,
int argTaxDeductions)

{

myEmployeeName
myTaxDeductions

argEmployeeName;
argTaxDeductions;

constructor #3
public Employee(String argEmployeName,
int argTaxDeductions,
String argMaritalStatus)

{
myEmployeeName = argkmployeeName;
myTaxDeductions = argTaxDeductions;
myMaritalStatus = argMaritalStatus;
b

Python:

class
def

Jay Parlar

Employee(object):

__init__(self,

argEmployeName,

argTaxDeductions = 1,
argMaritalStatus = "single"):

self .EmployeeName = argEmployeeName
self.TaxDeductions = argTaxDeductions
self .MaritalStatus = argMaritalStatus
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This class creates an Employee object, with three attributes:
e myEmployeeName

e myTaxDeductions

e myMaritalStatus

Each of the attributes is given a default value. We want, on construction of the class,
to require that a name is given to the instance, but allow the argTaxDeductions and
argMaritalStatus status fields to be optional.

Obviously, the Python equivalent is much shorter. Instead of having to build separate
constructors, the optional arguments to the constructor have been declared as keyword ar-
guments. This means they are given a default value if not explicitly used when creating the
instance.

So for example, the following instantiations could be performed:

>>> bob = Employee("Bob")
>>> jane = Employee("Jane", argMaritalStatus="married")
>>> bill = Employee("Bill", argTaxDeductions=0, argMaritalStatus="married")

While this is obviously just one particular example, showing how fewer constructors are
usually required, it accurately represents the general trend of dynamic languages. Namely,
that over the course of a program, the number of lines required will end up being much fewer
than in a static language (for a variety of reasons).

5.6 Interactive Interpreter

A final aspect of many dynamic languages, that should be discussed in more detail, is the
interactive interpreter.

An interactive interpreter is a program that provides the user with a simple prompt.
From that prompt, they can begin executing statements of the language. Programs that
work almost exclusively from the prompt of an interactive interpreter include Maple E] and
Matlab [

The basic Python interactive interpreter prompt, on startup, will look something like
this:

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)

[GCC 3.3 20030304 (Apple Computer, Inc. build 1666)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

3http://www.maplesoft.com/
4http:/ /www.mathworks.com
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The >>> characters indicate that the prompt is waiting for user input. In Ruby and
Common Lisp, respectively, we see:

irb(main) :001:0>

and

iiidididdid 00000 o 0000000 00000 00000
ITIIITITI 8 8 8 8 8 o 8 8
I \ ‘+7/ 1 8 8 8 8 8 8
\ =+ 8 8 8 00000 80000

- _|__=’ 8 8 8 8 8

I 8 o 8 8 0 8 8

—————— +-————- 00000 8000000 0008000 00000 8

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2000
Copyright (c) Sam Steingold, Bruno Haible 2001-2005

[1]1>

Dynamic languages are not the only languages though that provide an interactive prompt.
Many functional languages, such as Haskell, also provide an interactive prompt. However,
the interactive prompts of functional languages do not always give the programmer the
full power of the language. For instance, some Haskell interactive prompts do not let you
define new functions, while some allow new functions to be defined, but only with the let
statement.

Dynamic languages, because of their very nature, do not require this. Take Common
Lisp for example, where we can define new functions right inside the interpreter:

[1]> (defun add5s (x) (+ x 5))
ADD5S

[2]> (add5 10)

15

Or take Python, where one can even define entirely new classes in the interpreter, and
create instances of them right there:

>>> class Test(object):
def foo(self):
print "Someone called ’foo’"
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>>> t = Test()
>>> t.foo()
Someone called ’foo’

The power of this feature should be obvious: It allows the programmer to quickly proto-
type algorithms and data structures they wish to use in their actual program. This enables
a form of iterative development that is not directly possible with most static languages.

In addition, the interpreters usually let the programmer import files they’ve created for
some program, and then perform interactive tests on the structures and functions contained
in those files.

Dynamic Typing. Just as dynamic typing has been shown to have disadvantages, it also
comes with several strong advantages which make it quite appealing to have.

Often times, dynamic typing is called “duck typing” [I]. The basic premise behind duck
typing, is that as long as an object has a method of the correct name, that takes the correct
number of arguments, then it will be called, no matter what type the object itself is. In
essence, “If it looks like a duck, and quacks like a duck, it must be a duck” [1].

An example of this is as follows:

>>> class A(object):
def text(self):
print "Class A ’text’"

>>> class B(object):
def text(self):
print "Class B ’text’"

>>> def call_text(x):
x.text ()

>>> call_text(A())
Class A ’text’
>>> call_text(B())
Class B ’text’
>>>

In this example, we declared two different classes, A and B. Neither inherits from the
other, and they have no common superclass (other than object, which is the superclass
of every class in Python). The function call_text takes a single argument, and on that
argument attempts to call the text method.

The point here is that call_text doesn’t care at all about the type of x. All it cares about
is that x has the text method. If that method is not present, then a runtime AttributeError
will be raised.



98 Jay Parlar

The key reason one would want this functionality is flexibility. While in a language like
Java or C#, one could define either a base class, or even better, an interface, the end result
is not exactly the same.

The reason is that one does not always know which methods they may want to use,
beforehand. In the Java SW'T library, a large number of widgets have a Text property. The
Java designers decided that it is a reasonable field name, and have stayed consistent with
it in defining the SWT library. A Java interface IText could be created, but then every
class that implements Text would have to also declare that it implements that interface, in
addition to every other interface the class might already implement.

An interface could instead be declared that encapsulated the Text property and other
properties, for the purpose of reducing the number of interfaces required. Then, every class
that wanted to have Text would also have to implement the other methods in the interface,
whether or not they were actually useful.

While this might be viewed as “safer”, it is restricting to the programmer. A key notion
of dynamic languages in general is flexibility, trying to prevent the compiler from “fighting”
the programmer as is often the case in static languages.

Whether exchanging some perceived safety for increased flexibility is a good thing, is up
to each individual programmer to decide. However, many dynamic language advocates have
years of personal empirical [22] data to show that the benefit of flexibility vastly outweighs
the cost of lost safety, in the long run.

That is the question in general with dynamic languages. It is not one feature in particular
that makes dynamic languages “better” or “worse” than static languages. Instead, it is the
combination of features available in dynamic and static languages that will affect how an
individual programmer views them, and decides how to use them.

It should be noted that there are some static languages (notably Objective Caml) that
provide type inferencing systems which bring their static type systems very close to dynamic
type systems, in terms of flexibility. However, these languages also tend to be functional
languages, which for a variety of reasons (good and bad), have not become a viable option
for a majority of programmers.

5.7 Conclusion

A brief introduction to dynamic languages, and what separates them from more traditional
static languages, has been given. To accompany this, a short history of dynamic languages
has been given.

The key separating feature is the type system. Static type systems can often be used to
increase execution speed of a program, and this is one of the reasons that dynamic languages
are typically viewed as “slow”. However, some dynamic languages can take advantage of
various type inferencing techniques, to greatly improve run-time execution speed.

Not all languages can though. Python, for instance, has proved to be too dynamic to
work well with most type inferencing techniques. Type inference can be applied reasonably
successfully, but only if certain aspects of dynamism are removed.
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In addition, a bevy of other disadvantages and advantages of dynamic languages have
been covered, including run-time safety and built-in types, respectively.

A brief introduction to the uses of interactive interpreters was given. While interactive
interpreters are often present in statically compiled languages, they tend not to be as flexible
as the interactive interpreters of purely dynamic languages.

Finally, the benefits of dynamic typing for flexibility, as opposed to interfaces and sub-
classing, were discussed. Many people find that losing some potential safety is more than
made up for by the flexibility provided by dynamic type systems.

5.8 Exam Questions

1. Explain one disadvantage of using a dynamic language
2. Explain one advantage of using a dynamic language

3. Explain why type inferencing can’t work in some dynamic languages
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Chapter 6

Yu Wang: A Survey of Software
Distribution Formats

Nowadays various computer architectures and operating systems are developed. Software
development does not focus on any single of them anymore. Instead, software companies and
distributors concerns more about how their software system can be deployed as universal as
possible.

We call both architectures and operating systems platforms. Without a multi-platform
solution, assume we have M instruction set architectures, to design a software that is exe-
cutable over all the possibilities, we will have to compile the software M times or even more,
due to combination of different hardware components. Whereas with a multi-platform solu-
tion, the software needs only to be written once, and by techniques of the solution, it is able
to achieve the same functionality as if the code is compiled M times in previous case.

We define software distribution format to be any form in which software is distributed.
In this article, we give discussion on several software distribution formats, which are fat
binary, software for virtual machines and source code distribution, where the topic of virtual
machines are divided into application oriented and platform oriented. In term of compilation,
these distribution formats can be considered as fully compiled, half compiled and not compiled.

At the end, comparison on these formats is drawn in conclusing remarks.

6.1 Fat Binary

An immediate solution to universal software distribution is to have the source code compiled
into several binaries against different architectures, and have all of them available to the
computer of end user, so that the binary selectively installed based on the architecture of
that computer. This solution is known as fat binary [25] or univeral binary [1], such that
compiled binaries are archived and compressed into a single package and allow the system
to choose which binary should be installed according to its architecture at the install time.

Due to multi-architecture packaging in fat binary, one disadvantage is that the size of the
package to be distributed tends to be larger than other solutions introduced in this article.

103
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A fat binary for software with size s often ends up with a size of M x s, for M instruction
set architectures. But because fat binary format is easy to be applied technically when
producing software, this technique is still widely used, such as the instance that it makes
Apple Computer’s migration from PowerPC architecture to X86 architecture in 2005 much
smoother [20].

A similar solution to fat binary is the deployment of PocketPC applications using Mi-
crosoft Installer format (MSI) [2]. A PocketPC is a handheld computer running WindowsCE
based operating system by Microsoft and was originally developed in November of 1996. Typ-
ical steps of installing an application into a PocketPC are that first have the setup package
installed on a desktop workstation, and then transfer the cabinet binary file (CAB) when
synchronizing with the PocketPC device when it gets connected [14].

Due to historical reason, current PocketPC devices come with processors in different
architectures, such as Intel XScald] Hitachi SH3 and MIPS, which raise the problem of
compatibility when distributing software applications. Since the computing performance of
handheld devices are not as powerful as desktop computers, the solution should be as much
independent of the processor as possible. In this case, fat binary is most appropriate.

In term of compilation, fat binary can be considered as fully compiled distribution format.
Other than universal distribution for different architectures, fat binary is also used for other
purposes, such as applications with different localized versions. Such cases are rare and are
out of the scope of our topic.

6.2 Application Oriented Virtualization

To make the software adoptable for different platforms, one can consider a machine that
virtually exists on top of each platform, such that the software only needs to be written for
this virtual machine and it is able to be executed on every platform from the point of view
from users. Here we classify modern virtual machines into two types, application oriented
virtualization and platform oriented virtualization which is discussed in next section.

We define application oriented virtual machine to be virtual machine which provides a
set of non-native instructions and allows applications, which is compiled against to this
instruction set, to be launched and executed in the virtual machine. The language of such
instruction set is commonly referred as intermediate language. The code in intermediate
language is called intermediate code. An application oriented virtual machines bridges the
underlying platforms and its applications, to allow applications running on multi-platforms.

Modern application oriented virtual machines are either abstract stack machines or register-
based machines. A stack machine model and manipulate memory spaces as stacks, where
structured data and function calls are pushed to the stacks and are popped as needed. A
register-based machine calls operations against finite registers such that input data is com-

!See www.intel.com/design/intelxscale
2See http://www.superh.com
3See http://www.mips.com
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puted results are placed in the registers. To narrow the scope of our topic, register-based
machine is not discussed here. For detailed differences between two types of machines, one
can refer to [I8].

As software is distributed in intermediate code, eventually it has to be compiled again, by
the built-in compiler from virtual machine, into native machine language to be understood
by computers. We often refer the compilation from intermediate language to native machine
language as code generation. Depending on the time when the compilation takes place, two
types of code generation are considered. The first one is called install-time code generation.
As named, the intermediate code is compiled during the time when the software get installed.
After this stage, software program is completely compiled into machine language of target
platform, and will be running natively.

One major weakness of install-time code generation is that, if the software to be compiled
is relatively large in code size, it will probably take a long time for the installation stage to
complete its work. If this is the case, we change strategy to another type of code genera-
tion, called Just-in-time (JIT) compilation. In this mode, intermediate code are selectively
compiled during the running time of the software.

The condition of selective compilation is that the JIT compiler only compiles intermediate
code encountered in current program state, such as the code after a conditional branch. Since
the time taken for compiling a block of code is much shorter than compiling all the code, large
software as mentioned above can be load and executed faster, with its usability guaranteed.

In JIT compilation, once the intermediate code is compiled, compiler output is saved
in memory for possible calls in future. As the program life time progresses, more and
more intermediate code are translated. Since the native code is directly executable on the
underlying hardware, it runs faster than the code blocks which are not yet compiled. This
leads to a situation that the performance of a software running in JIT mode gradually gets
improved, with respect to the beginning when the program is loaded. Eventually all the
code blocks are compiled into native code, and the performance reaches its maximum. We
call the stage before the intermediate code completely compiled JIT warm-up stage. In term
of compilation, software for application oriented virtual machine can be considered as half
compiled distribution format.

It is suspected in [4] that the earliest proposal that comes up with the concept of JIT is
[13] back in 1960s. The author believed that the compilation of function code into machine
code can be done on the fly, thus no compiler output needs to be saved in physical storage,
which conforms the idea of JIT. From that time on, several implementations of JIT compilers
for different languages are researched, such as [15], [10] as well as [22].

Java Virtual Machine

The actual time when JIT got well known, is when Sun Microsystems released Java in
1990s. It contains a virtual machine is called Java Virtual Machine or JVM, which is
designed to run applications only written in Java language originally. There does exist
third-party implementations that compile course codes in other programming language into
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intermediate code executed by JVM]LI], but its designers have integrated JVM tightly with
whole Java development environment, and thus supports object model of Java directly, such
as inheritance and interfacing. Low level methods of objects include static methods, virtual
methods and interface methods.

Aggregate data such as object is stored only after the memory is dynamically allocated
for it, and is collected when it is no longer accessible. Scalar data is stored in either local
variable, structure field or on the stack of abstract machine. When invoking methods, scalar
data and/or reference to aggregated data are pushed onto the evaluation stack, and the
returned value of the methods are presented on the top of the stack.

In file system, compiled Java intermediate code exists as class files, or a single compressed
JAR file. The filename of each class file has to be the same as the public class name within the
file. Classes can be organized using the directory structure from the file system. Each class
file is in byte code format, where JVM instructions are presented as one-byte opcodes ranging
from 0 to 255. Hence there are about 250 instructions by which JVM intermediate language
is formed. These opcodes contains instructions such as load and store, arithmetic, type
conversion, object creation, operand stack management, control transfer, method invocation
and etc.

In JVM, instructions are type specific, such that type checking is necessary before a value
is passed to the instruction. Primitive types include byte, short, int, long, char, float and
double. Type specific instructions with the same functionality differ in the first character
of the instruction name. For instance, iadd and fadd are both arithmetic instructions that
calculate the sum of two values, but one take integer type and the other one take float point
type.

JVM is considered to be architecture neutral in [19], because it aims to emulate low level
instruction in byte code for its virtual architecture, to in order to minimize the gap with the
underlying actual architecture. Because of this, on some architecture, it is even possible to
execute the byte code instructions directly in machine level, such as ARM926EJ-S 32-bits
RISC CPUH

On September 30, 2004, Sun Microsystems released Java 1.5, which adds language fea-
tures including generics, metadata, autoboxing/unbozing and enumerations. For detailed
specification of JVM, one can refer to [21].

Common Language Runtime

Based on the experience of Java Development Kits, Microsoft released its competitive .NET
Framework in early 2002, which contains a virtual machine mechanism known as common
language runtime or CLR, where common language is the new name of intermediate language
for its virtual machine. Similar to JVM, it is an abstract stack machine with instructions
specific to stack operations, as previously described.

In contrast to the architecture neutral JVM, CLR does not restrict to single program-
ming language, as long as a language can be compiled to the common language. Therefore

4See http://www.arm.com/products/CPUs/families/ARMOEFamily . html



A Survey of Software Distribution Formats 107

CLR is considered to be language neutral and it makes possible that objects are not tied to
a particular object oriented language, but are generally defined by the common language.
Because all data structures and message passing are based on a set of rules, known as com-
mon language specification (CLS), the interoperability allows that one object can exchange
information with another object where both of them are originally implemented in different
languages [6].

Applications for CLR, or .NET applications, are mostly presented as one or more portable
executable (PE) files, which is originally an executable format for native programs under
Windows operating systems, can be dynamically loaded. To fit the applications into virtual
machine domain, metadata is include in each PE file.

The information contained in metadata gives the description of the application, such as
types, members, references and class information, which can be used by the runtime for
memory allocation, method invocation, object location, code verification and etc. Based on
class information, a class can be loaded as either value class such as struct or reference
class such as class.

Same as JVM, CLR uses byte code when representing its virtual machine instructions.
The instructions are specific to stack manipulations, such that values and methods are pushed
to and popped from the abstract stack during the execution. The difference is that, unlike
JVM, instructions in CLR is not type specific. When calling add instruction, JIT compiler
will automatically correspond the value stored in the stack slots to the correct types, as
information about variable types are already included in the metadata. Having designed the
common language in this way, it widens the value passing semantic, hence multi-language
interoperability is well supported [11].

When we say CLR, we refer to the implementation of the virtual machine. while the
specification is defined in common language infrastructure or CLI. It is now an international
standard accepted by Ecma International’] which allows anyone other than Microsoft to im-
plement the corresponding CLR environment, such as Mono Projecﬂﬂ and DotGNU Project[].
Their implmentation does not contains Windows targeted libraries such as WinForm.Net,
which is not a part of CLI specification.

Garbage Collection In Virtual Machines

While program is running, occupied memory space is not always freed by the program itself,
while actually it is a responsibility of the program. This is often due to bad programming
habit from developers. Without a mechanism that automatically cleans the memory, if this
happens, memory will be eventually consumed undesirably and no other programs are able to
access the memory resource anymore after that. Such mechanism is called garbage collection.

In object oriented virtual machines such as JVM and CLR, whether a memory slot of
some object is garbage is decided by the its reachability. During the runtime, virtual system

°See http://www.ecma-international.org/publications/standards/Ecma-335.htm
6See http://www.mono-project.com
"See http://www.gnu.org/projects/dotgnu/
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scans through the list of objects in the hash table periodically, to see if the inspected memory
space belongs to any object or its sub-objects. If no object is found, the memory space is
considered to be unreachable and can be collected with no problem.

In general cases, it is not realistic to scan through the memory completely, as it might
affect the usability of the program. To more efficiently have the task done, modern virtual
machines divide the memory segments into generations, where generation 1 is the newest
generation and so on. It is by observed experience that newer allocated memory tends to be
more possible to be unused during the program life cycle; while an older memory segment
tends to be more useful in future. Basic algorithm is that,

e after the garbage collector scans through the objects for the first time, survived mem-
ory slots can be labeled as generation 2 and leaving remaining memory slots labeled
generation 1;

e In the coming rounds of collection, only garbage in generation 1 is scanned and col-
lected, until no memory can be release anymore [7].]]

While distributing cross-platform software applications running on virtual machines, it
is particularly important to have memory garbage collection well facilitated in terms of
the performance and stability of the running application, since the memory management
techniques at the bottom layer may vary on different platforms.

6.3 Platform Oriented Virtualization

While application oriented virtual machines allows applications running correctly without
knowing about the architecture it is running, in some other cases, people do concern about
the architecture for particular purposes. For software engineers and developers, it is possible
that the software they are implementing is to be tested on different operating systems. For
users, some of them want running a second operating system without partitioning their hard
drive again. There are many other cases can be thought of, and we define virtual machine
for such purposes to be platform oriented virtual machine.

To distinguish platform oriented virtual machines from application oriented virtual ma-
chines easier, we use the name platform emulator instead. This is actually the essential
difference between a platform oriented virtual machine and application oriented virtual ma-
chine, where a platform emulator is implemented to provide an virtual computer environment
whose hardware components are either mapped from the physical system or virtualized by
software modules.

We call each of such computer environment guest computer and the actual computer
running the emulator is called host computer. A guest computer is supposed to be no different
from the actual physical computers, such that it follows the standard steps to power on, boot
and shutdown. In most cases, any software can be executed on the guest computer with no
problem, including operating systems.
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To a host computer, guest computers are just software instances running in different
processes independently. This is done by separating resources, such as memory space and
storage space for each of the guest computer, so that more than one guest computer are
allowed to be running on the host computer. In some emulators, storage space is usually
saved as a separate partition in the hard-drive of the host computer or a disc image in the
file system, such as VMware [24]. Before the guest computer is turned on, the platform
emulator maps the image file as a hard drive device to be accessed by the guest computer.

The file image containing the software system is called virtual appliance, which provides
a great convenience for distributing large software systems [17]. Software companies which
produce operating systems, firewalls, databases can distribute the corresponding virtual
appliances for users to try and run, without offending the existing platformff]

Other commercial platform emulators such as Microsoft Virtual P(f] provides the same
functionality as VMware. The emulator Win4Linm only provides emulation specific to Win-
dows systems under Linux. Open source platform emulators include bochél;r] and QEMUF_?],
which provide multi-architecture emulations. For PowerPC emulation, one should consider
PearP(™| which is specific to MacOS X operating system. More emulators can be found at
[28] which also provide a good comparison between these emulators.

6.4 Distribution In Source Code

A special architecture-neutral format is source code distribution. To software companies
and distributors, it is important to gain as much business clients and end users as possible
on different architectures and platforms, to in order to increase the market share of their
software. Ignoring the concern of copyright and protection of intellectual properties, the
scenario of distributing software in the form of source code is considered.

The scenario is usually found in the community of free and open source software, or
FOSS in shorthand. Such software systems and applications are mostly licensed under BSD
license, GNU General Public License and MIT License[12], which in common let their source
codes viewable in the public domain and allow people to study and even make modifications
to the source. It it believed such licenses reduces significant amount of time and manpower
for software developers building new software by either using or learning the opened source
code [3].

There are two types of source codes. One is to be compiled, such as code written in C
and C++; the other one is to be interpreted, such as code written in Perl and Python. We
call the code to be interpreted as script in the following paragraphs, to differ from code to

8Virtual appliances for VMware can be downloaded at http://www.vmware.com/vmtn/appliances/.
QEMU appliances can be downloaded at http://free.oszoo.org
9See http://www.microsoft.com/windows/virtualpc
10See http://www.windlin. com/
1See http://bochs.sourceforge.net
128ee http://fabrice.bellard.free.fr/qemu/
13See http://pearpc.sourceforge.net
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be compiled.

Code To Be Compiled

Consider the compiled code whose binary only runs natively on specific architecture or
operating system instead of running on a virtual machine. It turns out that during the
software deployment, it might be more feasible to distribute its source code, in addition
of distributing this program in binary form, if the code follows particular standards. Such
standards are supported by the operating systems on which the program are intended to be
executed. One example is POSIX, which stands for Portable Operating System Interface,
with the X standing for the application programming interfaces, or API, inherited from Unix.

Incorporated with ANSI C standard, POSIX standard is widely supported by Unix sys-
tems, as well as non-Unix systems such as Linux. Windows NT based operating systems
support POSIX only in real-time part [27]. For applications that is not Windows native but
POSIX accordant to run under Windows, one can try installing one of Cygwin environment[]
and Windows Service for UNIX["®| which provide more POSIX compatibilities to Windows
operating system.

Any source code conforms POSIX standard is able to be compiled into corresponding
native binary format. It is very similar to install-time compilation from virtual machines,
except that instead of intermediate code, source code is compiled. It is not necessary to
use the same compiler to achieve this, as long as the compiler being used supports ANSI C
standard. One famous example is the Hello World program, as shown below, which can be
compiled almost anywhere.

#include <stdio.h>

int main (void) {
printf ("Hello, World!\n");
return O;

}

As we have discussed previously, executable and linkable binaries have limitation on
running anywhere due to lack of cross platform support. Even some software applications
can be running on virtual machines, and each platform has its own implementation of such
virtual machines, it still does not broaden the limitation. This is because there is a large
amount of software applications have not yet been ported to virtual machines.

The idea of source code distributions is as illustrated above, such that software companies
and distributors provide the standard compliant source code to the end users, and allows
users to compile the source code on their computers. We have given an example in later
section.

14See http://www.cygwin. com
15See http://www.microsoft.com/windows/sfu/
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Script To Be Interpreted

Comparing with compiled programs, scripts are typically more portable and tend to be
smaller in file sizes. It is because the statements in scripts are usually at a higher level than
low level code in compiled programs, with the same semantic information remained. The
difference between a compiler and an interpreter is that, the compiler translates the given
code into machine code which has the same semantic as its source code, and then to be
executed directly by the computer; whereas the interpreter goes through each statement of
the give script and meanwhile it executes that statement without knowing what statement
is going to be executed next.

During the running time of a script, interpreter accesses the run-time information, such
as input and output and conditional branches, and keeps the program states synchronized
with the semantic specified in the statements of the script. In most cases, source code is the
only form in which a software, written in interpretive language, presents. In other words,
the script itself is the software.

Scripts can be executed on multi platforms, if their interpreters are implemented on
these platforms. Generally, the interpreters can be categorized into two difference kinds,
one is stand alone interpreter and the other one is integrated interpreter. For example, most
interpreters for languages Perl and Python previously mentioned are stand alone interpreters.
These two languages are widely used in operating systems which support POSIX standard,
mainly for system administration and small application. Provided that the interpreters are
pre-installed, a script can be written so that it can be directly called. An example of Hello
World program written in Perl is given below.

#!/usr/bin/perl
print "Hello, World!\n";
END

The first line in hw.pl specifies the path of desired interpreter, so that when the script is
called, the shell environment, automatically locates the interpreter for the script to be inter-
preted. Similar syntax applies to Python. Under operating systems that does not natively
provide a shell environment for the purpose, one can either installing a shell environment
from third party, such as previously mentioned Cygwin environment, or pass the path of the
script as a parameter to the interpreter.

Integrated interpreters are mostly referred to the script engines built within browsers.
Gecko based browsers such as Mozilla Firefox'®, provide support of JavaScript. Microsoft’s
Internet Explorer supports both JavaScript and VBScript, where the latter one is derived
from Visual Basic languagd”|

Comparing with Internet Explorer, Gecko browsers are more dependent on JavaScript.
Binding with the XML User Interface Language, or XUL, which is a markup language for
building graphical user interfaces within the browser, it allows applications other than web

16For more information about JavaScript, visit http://www.mozilla.org/js/
"For more information about VBScript, visit http://www.microsoft.com/vbscript/
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applets to be created[29]. Examples include the many dialogs from Mozilla Firefox browser
are their selves written in XUL. Normally, these applications are shipped in a particular
format, so called Cross-Platform Install, or XPI in shorthand. With supported browsers,
installation from XPI file is extreme easy, by just clicking on the link to it and the installing
process is automatically launched™]

Adaptive Compilation

For given source code to be successfully deployed in a group of computers with different plat-
forms, the code has to follow supported standards. Moreover, during the stage of installing
or deploying, we want to help the build system to tweak the process adaptively, so that the
source code can be successfully compiled and thus executable by the system. The problem
we want to solve is that, for the same functionality, the corresponding API on different plat-
forms might differ. For instance, the memcpy() function found on GNU C Library, is named
as becopy() in BSD System Library with their arguments reversed to each other.

Such tweaking usually involves the steps such that, after inspecting the system environ-
ment, related identifiers are defined and passed to the code preprocessor by the build system.
Based on the defined identifiers, the preprocessor conditionally selects correct branches in-
side the source code, to ensure the correct API is being used. See the following code segment
in C language as an example.

#ifdef BSD_MEM
#define memcpy(_dest, _src, _1) bcopy(_src, _dest, _1)
#endif

The above statements are called macros, which is supposed to be understood by C pre-
processor. These macros are saying that, if identifier BSD_MEM is define, then define bcopy()
as memcpy(), with the destination and source pointers swapped. In the scenario that the
build system finds out that the current operating system uses BSD System Library, it might
compiles the source code with the parameter ~-DBSD_MEM passed to the preprocessor.

Almost all compilers for C language support this option, and the preprocessor is auto-
matically launched before each compilation. Now, with the source code preprocessed, the
compiler translates all the occurrences of memcpy/() into beopy(), hence the compatibilities
is guaranteed.

The example above describes a solution for codes to be compiled, while the same technique
applies to code to be interpreted, or script, too. In both case, build environment information,
such as architecture type and paths to the required libraries, is detected before preprocessing.
To detect the build environment, GNU tools Autoconf, Automake and Libtool, which is
included in the GNU Coding Standards [16], are used to interact with operating system for
obtaining the information [23]. Among steps of building,

18For more XUL applications, visit http://addons.mozilla.org
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e Autoconf generates portable shell scripts of tweaking build parameters, such as macro
identifiers shown above;

e once the shell scripts are generated, Automake produces configure script based on
the shell script for generating makefiles;

e configure script now can be called to tweak compiler parameters and makefiles are
generated according to the environment information;

e to compile the source code, use make command which execute makefiles, with the help
of Libtool for producing portable libraries.

Adaptive compilation can be found on highly customizable operating systems from open
source communities. Popular distributions such as Gentoo LinuxlT_g] and FreeBSD@ both
provide similar source code package releasing systems named Portage and Ports System
respectively. Each system stores a directory of software as a telephone book and allow end
user search for particular applications. Source code of selected application will be retrieved
remotely, compiled and installed in steps above. In term of compilation, source code can be
considered as not compiled distribution format.

There is a project, called Linux From Scratch or LFSE-L even provide no actual code at all.
Instead, it provides manuals of how to build and configure a complete operating system by
obtaining the required source code manually. Even the compiler itself has to be downloaded
and compiled by an existing compiler from somewhere else.

6.5 Other Distribution Formats

Slim Binaries

In 1997, slim binaries is introduced in [9], which proclaimed that source code can be trans-
lated into intermediate code represented by tree structure. When executing, the time taken
for accessing mechanical storages, which are mostly hard drive and floppy drive, can be used
for compiling intermediate code into native binary code. It is a form of just-in-time com-
pilation. Comparing with byte code, tree presentation is convenient for storing semantics,
such as conditional branches.

We have defined that application oriented virtualization is basically to have an abstract
machine executing byte code, which is an analogy to an real computer running native machine
code. Thus the mechanism of slim binaries does not belong to this category. It is neither
a distribution format in source code, since source code should be human readable in our
definition.

19Gee http://www.gentoo.org
20See http://www.freebsd.org
21See http://www.linuxfromscratch.org



114 Yu Wang wangy22@mcmaster.ca

Slim binaries is believed to be a replacement of Java in [§]. The author pointed out that
a virtual machine is not able to verify its byte code efficiently, since semantics have to be
analyzed again and it is redundant; where with code stored in tree presentation, it is easy
to verify the semantic structure for slim binaries. Another advantage of slim binaries is that
the code size is even smaller than native machine code, because of the semantics represented
in tree structure, mentioned in [5].

Architecture Neutral Distribution Format

Mentioned in both [9] and [II], there used to be a specification commissioned by Open
Software Foundation which is called Architecture Neutral Distribution Format (ANDF). It
was an attempt to distribute software in the form of intermediate code, to executed on stack
based virtual machine. Instead of being compiled just-in-time, the intermediate code is to
be compiled at its installation stage, but install-time code generation is not as time efficient
as JIT, as mentioned in section [6.2] on page [L05]

In modern platforms, static variables and functions are saved in corresponding memory
offsets in binary files, as well as intermediate code for virtual machines. One major reason
that ANDF got faded after 90s, is that variables and functions are symbolically saved in the
intermediate code, which eases the reverse engineering for its source code. For commercial
software companies, using such format is identical to disclosing its intellectual properties to
the public.

After 2000, free and open source software became much more popular. FOSS developers
at this point concerns more on how wide their software can be distributed, rather than the
protection of intellectual properties. Because of this, other than distributing software in form
of source code, ANDF can be a good choice [20]. Actually, there are ANDF based projects
still running healthy, such as the TenDRA projectl?], which provides C/C++ compilers for
ANDF.

6.6 Concluding Remarks

In above sections, we have discussed four forms in which software can be distributed, known
as software distribution formats, which are fat binary, intermediate code for application
oriented virtual machine, appliance for platform oriented virtual machine and software dis-
tributed in source code. These software distribution formats can be commonly found in
existing software distributions.

Fat binary include fully compiled binaries for target platforms in a single file. It typically
archives more than one binary files, and hence the file size is relatively large. Since the
only operation required before execution is extraction of the binary corresponding to correct
platform, it is considered to be a convenient for average users. It is used for software

22Gee http://www.tendra.org
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distribution on Mac OS X operating systems from Apple Computer and PocketPC devices
promoted by Microsoft.

Application oriented virtual machine provides an environment running applications in
form of half compiled intermediate code. The intermediate code requires to be compiled
either at install time or in time for execution. Just in time compilation is considered to
be efficient, as only code branches need to be compiled while running. Popular examples
include Java Virtual Machine designed by Sun Systems, and Common Language Runtime
from Microsoft .Net Framework.

Platform oriented virtual machine loads appliances as guest computers, running on top
of a host computer. Guest computers are separate process instances and can be running
without interfering each other and their host computer, which is good for risky task such
as product testing. Since appliances are computer images, which has nothing to do with
compilers, so they are neither fully compiled, half compiled nor not compiled distribution
format. Number of appliances are provided and can be found at VMware website and
FreeOSZoo website listed above.

Software in the form of source code, which is not compiled, can also be used when
distributing. File size of source code is the smallest comparing to all other distribution
formats, because it is written in plain text and can be compress efficiently. The weakness is
that before running the software, compilation is required. Distributions in source code are
commonly found in open source communities, such as Gentoo Linux, FreeBSD and Linux
From Scratch, and their users tends to be advanced.

There are other software distribution formats not introduced here, such as Flash Media
from AdobeFj It is a format of universal distributable multimedia applications, which is
mainly formed by scripts, intermediate codes and usually multimedia contents. Similar to
application oriented virtual machines, a Flash file is to be executed by Flash Player, which
can be either executed stand alone or as a browser plug-in.

Because of various software distribution formats as we mentioned, multi-platform support
for software is made possible. As computer performance improved along with time, the gap
of efficiencies in both compilation and execution between these formats is believed to be
narrowed in future. Combinations of existing formats are expected.

6.7 Exam Question

1. What are fat binary and slim binaries?

2. What are the differences between application oriented virtual machine and platform
oriented virtual machine?

3. Compare all formats discussed in the paper.

23Qriginally designed by Marcomedia which is a part of Adobe now. See http://www.macromedia.com
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Chapter 7

Ayesha Kashif: History of Statecharts

Statecharts were first presented in 1984 [§] by David Harel of The Weizmann Institute of
Science, Rehovot, Israel. Since then many variants of statecharts have been proposed in
the literature. One of the varient is Modecharts [16], a specification language for real-time
systems presented by Farnam Jahanian and Aloysius K. Mok, for the first time in 1988. It is
similar to statecharts in some ways, but it is tailored to represent time constraint systems.
Another one is ECSAM (Embedded computer system Analysis and Modeling method) [19)]
which was first used in 1980 by Jonah Z. Lavi and his team and further development in
1983 by a cooperative effort between Dr. Lavi and Prof. Harel. OMT [I8] incorporated
statecharts in UML in 1997. UML has adopted statecharts and has given them semantics
that differ from Harel’s in several points. However, the definition of state machines and
their behavior in the OMG definition of UML [I8] is vague and incomplete in several points.
Then in 2002, Christian Prehofer [21] introduced a new approach for modular design of
highly-entangled software components, called Plug and Play.

7.1 Introduction

The development life cycle of a system involves many tasks and is carried out by a professional
team. The classical waterfall model [22] has the following steps: requirements analysis,
specification, design, implementation, testing, and maintenance. Over the past 35 years,
many techniques of this model were proposed with different approaches to the life cycle
development. The system development life cycle contains a requirement analysis phase. To
correct the specification errors and misconceptions if discovered in a later stage, then it will
become very expensive, so the system behaviors should be carried out as early as possible.
The main part of the specification stage is the construction of the system model.
Statecharts are especially effective for reactive systems in contrary to the transformational
system [§]. A reactive system continuously interacts with its environment, using inputs
and outputs that are either continuous or discrete and these inputs and outputs can be
asynchronous. It has many possible states depending on the modes of operation, the current
value of variables and the past behavior. Some of the examples of reactive systems include
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online interactive systems such as automatic teller machines (ATMs), computer-embedded
systems such as avionics, automotive and telecommunication systems and control systems,
such as chemical and manufacturing systems. The main problem is to describe the behavior
of a reactive system, in such a way that it understandable as well as formal enough to add
computer simulations, which is the set of inputs and output events, conditions, actions and
few additional constraints.

The modeling approach, the Statecharts language [9], extends the state-transition dia-
grams. The three basic elements of these statecharts are hierarchy, concurrency and commu-
nication. So these make the state diagram highly structured, compact and expressive that
can express complex behavior as well as compositional and modular approach.

7.2 STATEMATE

The first article that introduced the language of statecharts [10] presented only a brief discus-
sion of how its semantics could be defined. Since then many variants of statecharts have been
proposed in the literature. Harel in 1989 [4] presented rigorous semantics for the first time.
This section discusses the semantics of statecharts as a STATEMATE approach [I5]. So the
actual semantics of statecharts presented by David Harel were actually for STATEMATE [4].

Semantics of Statecharts

A semantic definition of a language to specify the behavior must be detailed enough to show
how the model will execute or how the system will react to the inputs from the environment
to give the outputs. The main part of the system model is an activity-chart [15] in which
the functional capabilities of the system are captured by activities with the data elements
and the signals that can flow between them.

There are three [I5] types of states in statecharts: OR-states, AND-states and basic
states. OR-states have sub-states which are related by ”exclusive-or”. AND-states have
orthogonal components which are related by AND. Basic states do not have any substates
or do not have any parent like the root.

Transition is labeled [15] as "e[c]/d” where e is the event that trigger the transition, c is
the condition which if true only then e will occur, and a is the action. Events and conditions
are closed under the Boolean operations or, and and not. The expression e[c| is interpreted
as "e and ¢”. Beside appearing along transitions, actions can also appear with the entrance
to or exit from the state.

The behavior [14] of a system is a set of possible runs, each representing the response of
the system to a sequence of external stimuli by the environment. A run consists of a series of
snapshots of the system’s situation; such a snapshot is called status. The first is the initial
status and then each subsequent one is obtained from its predecessor by executing a step.
see figure 1. A step take zero time to execute and the time interval between two consecutive
steps is not the part of the step semantics but depend on the execution environment and the
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time model. An event generated in step n may be sensed in step n+1 only and not in the
steps following n+1 step even if those steps also execute at time t.

Basic System Reaction

For a given root state R, a configuration related to R is the set of state A obeying the
following rules:

1. A contains R.

2. If A contains a state B of type OR, then it must also contain one of B’s substate.
3. If A contain a state C of type AND, then it must also contain all of C’s substates.
4. The only states in A are those required by the above conditions.

As shown in figure 2. B1,C'1 is not maximal, the full configuration is B, C, A and R.
Also the configuration is closed upwards [I5] means that when the system is in any state A,
it must be in A’s parent state which is R in this example.

Figure 3 illustrates three cases of Chain reaction each with two steps. All start with the
system in A when the external event E occurs. In Figure 3 (a), an event G is generated by
reaction £//G in one compound state A and triggering another reaction in the orthogonal
component B. In figure 3 (b), the subsequent step in the chain takes place, triggered by the
derived event ex(Al) indicating an exit from Al. In the third case, figure 3 (c), the reaction
triggered by E causes the system the system to move to B and as a result the transition
event F will take the system to state C.

Multiple external changes can occur exactly at the same time so multiple reactions may
get enable and perform at the same time too. Like in figure 4, while in A1 and B1 when E
occurs takes the two transitions at the same time.
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Here comes the problem of order in which the action are performed. In figure 5, when
E occurs , both actions are performed in the same step. The value of Y after carrying out
Y:=X in this step depends on whether or not the assignment of | to X was performed before.
This can be resolve by postponing the actual value update until the end of the step, when
they are carried out at once.
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Execution consists of steps triggered by external changes and the advancement of time which
may cause chain of steps. The time calculated in dealing with the explicit time expressions
appearing in timeout events and scheduled actions is measured in terms of some abstract
time unit common to the entire statechart and different statecharts have different time units.

There are two time schemes [15]. In synchronous time scheme, the system executes a
single step in every unit. It is best suited for modeling digital systems where the execution
is synchronized with clock signals. The asynchronous time scheme is flexible as it allows
several steps to take place with in a single point in time. So change can occur any moment
between steps and several changes can occur simultaneously. This set of steps is called a

super-step [1].
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Dealing with History

As explained earlier, Statecharts have two kinds of history connectors H and H*. As an
example, consider figure 6, in which E1 to be taken. If the system was in A1 when it was
most recently in A, then E1 is taken as if its target state was Al and the full transition is
E1,E2. But if the system was in A2 most recently the target state of E1 is then A2 and
the full transition is E1,E3. If these both were not the case or A’s history was cleared then
E1 is treated as if its target is A and the full transition is E1,E4 E2. In this last case E4 is
taken so any actions associated with E4 are executed. The actions that erase the history of

\

Figure 6.

a state are called history-clear(S) [2] for S and deep-clear(S) also clears the history of S with
the history of all its descendent states too.

STATEMATE: Working Environment

STATEMATE is a commercial tool, designed for the specification and design of real life
reactive systems. It specify and analyze the system under development (SUD) [2] from
three point of views: structural, functional and behaviorial. For these views STATEMATE
provides three graphical languages.

Structural View

It is described using the language of module-charts, which describe the SUD [2] modules or
the physical components, the environment modules and the clusters of data and/or control
signals. Encapsulation is used to capture the submodule relationship.
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Conceptual View

It is captured by activity-charts which are quite similar to module-charts. Here we have
shapes for activities or functions carried out by the system. It also contains two additional
kinds of objects: data-stores and control activities. Data-stores are for representing database,
data variables and data structures. Where as control activities gives the behavioral view of
the system so appear empty here and they will be described in the third graphical language.

Behavioral View

Statecharts are used here to give the repeated decomposition of states into sub-states in
an AND/OR fashion, combined with the broadcast communication mechanism and all the
other features described earlier in this paper.

Queries, Reports and Documents

STATEMATE provides a querying tool called the object list generator [15] to give user
the data from the database. In addition to fixed format reports, STATEMATE also has
document generation language with which user can make their own documents by writing
programs with particular structure, contents and appearance. Other then the reports, there
are different data dictionaries, interface diagrams and tree versions of various hierarchies
(called N squared -diagrams [15].

Execution and Dynamic Analysis

STATEMATE can carry out a step of the SUD’s [2] dynamic behavior with all the con-
sequences. The most basic way to run the SUD is in step-by-step fashion. At each step
the user generated external events, changes conditions and carries out other actions such as
changing variables. Thus all of these will happen in a single step. When the user gives the
7go” command, STATEMATE responds by transforming the SUD into the new resulting
status. A special "simulation control language” (SCL) [15] is designed to enable the user
to retain control over how the execution goes. Program in SCL are just like conventional
programs in a high-level languages with breakpoints.

Code-generation

STATEMATE can translate the model of the system into code of a high-level programming
language. Currently Ada and C [15] are incorporated. The code generated will be a prototype
code as reflects only the design decisions. Debugging mechanism is also present with which,
user can trace the executing parts of the code back up to the STATEMATE model.
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7.3 ECSAM

ECSAM is an Embedded computer system Analysis and Modeling method. It was first
used in 1980 at the Israel Aircraft Industries (IAI) by Jonah Z. Lavi and his team. Further
development in 1983 by a cooperative effort between Dr. Lavi and Prof. Harel which
resulted in the development of the statechart formalism and the subsequent development of
the STATEMATE. Dr. Lavi continued development of ECSAM and introduced E-level and
S-level model concepts, see [19].

Overview

The ECSAM approach addresses conceptual and design models and defines relationship
between them. Both are used concurrently to analyze and design the system and to represent
the behavior and dynamics characteristics of the system, as shown in the Figure 7 below:
ECSAM can be viewed as a kind of prism that splits the system description into a conceptual

Design

Architecture

Design
Model

Conceptual
Architecture

Conceptual
Model

System
Capabilitie
s

Operating

Modes
Statecharts and f

Figure 7. E-Level Modes

model and a design model.
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Design model

It describes the design architecture of the system, the structure of its hardware and software
subsystems and their mutual relationships.

Conceptual model

It describes the dynamic behavior of the system by three views:

1. Conceptual Architecture View: internal conceptual subsystems and their functionali-
ties, and the external and internal interfaces of the system.

2. System Capabilities View: dynamic process expressed in terms of the transformations
it performs, its data-flow, and the associated process control.

3. Operating Modes View: main operating modes of the system and the transitions be-
tween them.

Modeling Process Overview

Modeling of the system is carried out as a sequence of steps from the major phases.

1. System’s environmental model (E-level mode): which describes the system’s external
structure and behavior(statcharts) as seem by operators and users.

2. Conceptual model (S-level model): which describes the system’s internal conceptual
structure and dynamics.

Statecharts and E-level Models

The E-level modes describes the modes(states) of the E-level system, the transitions between
then and their graphical representation using statecharts [§]. Typical examples of the system
E-level modes(states): Off, On, Deployment, Standby. Transitions between modes are
sequential operations and finite. When an event occurs, the system can react by performing
a specific action, such as generating a signal, setting the value of a variable , and/or making
a transition to another state. Events that cause reactions are called triggers.

Unlike state transition diagrams, the sources of triggering events are specified in the
augmenting view that deal with conceptual structure and dynamics process.

ECSAM adopted statechart notations to describes the system’s behavior by:

1. the system’s operating modes, the transitions between them, and the control of the
system’s capabilities (invocation, termination, suspension, and resumption)

2. the process control charts that describe the process dynamics, including logic and
timing
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Figure 9.

The basic features of statecharts used here can be shown by an example of home alarm
system (HAS). as shown in the figure 9. Initial mode is off. By Power_on event, the system
changes its mode(state) from off to on and by Power_of f event, system returns to off
mode. On is the parent state of Sys_modes and Pwr_source or these two are the sub-states
or sub-modes of on created by an and-decomposition.

Extension of statecharts notations

ECSAM extends the basic statechsrt notations and semantics to express more complicated
situations.

Encapsulation of states: Statecharts has a top-down embedding and bottom-up encap-
sulation. Usually it is advisable to start with a top-level description and specify the
internal details later but when the internal decomposition of the state is more complex,
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a @ operator also known as is-a-chart operator, can be inserted before the name of the
state to indicate that the state is specified in a separate chart.

Conditions and element expressions: Statecharts have C-connector and the arrows em-
anating from the C-connector must be mutually exclusive and more then two arrows
can emanate from one C-connector. But if the conditions are not mutually exclusive
then nondeterminism may occur. In ECSAM, there is a way to present transitions that
have common triggering events. The arrow leading to the C-connector is labeled by
the common triggering event, while the arrows emanating from the C-connector are
labeled by the different conditions.

History entrances: The history entrance in statecharts indicates entry to first-level states
only. If for example, have two substates then the "memory” of the history entrance
would not ”"remember” in which of two substates the system was last, and the entrances
would be the one speciifed as default. ECSAM extends the hsitory down to the lowest
level, the H-connector can appear with an asterisk attached (H*), indicating entry to
the most recently visited state on the lowest level. This connector is called a deep-
history connector.

Supporting Tools

ECSAM models and reports can be created using widely available word processing programs
that provide graphical support. Over the years, CAS?FE tools providing varying levels of
support of the ECSAM method have been developed. Currenltly, Statemate MAGNUM
(developed by I-Logic) supports most aspects of the ECSAM method. Previously, tools such
as Teamwork (developed by Cadre) and STP (developed by IDE) supported specific aspects
of ECSAM.

7.4 UML Statecharts

Harels statechart is mainly designed for function-oriented structure. OMT [I8] incorporated
statecharts in UML in 1997. The primary authors were Jim Rumbaugh, Ivar Jacobson, and
Grady Booch, who originally had their own competing methods (OMT, OOSE, and Booch).

Overview

UML extends statecharts for object oriented structure with some semantic modifications to
the statecharts. It is a discrete language that emphasize on the dynamic behavior. The
most common things in the UML to model with explicit state machines are classes and use
cases. A use case is a named piece of functionality visible in a context that returns a result
visible to one or more objects in that context (called actors). UML defines twelve types of
diagrams, divided into three catogories:
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Structural Diagrams: includes the class diagram, object diagram, component diagram,
deployment diagram

Behavior Diagrams: includes the use case diagram, sequence diagram, activity diagram,
collaboration diagram, statechart diagram

Model Management Diagrams: includes packages, subsystems, models

The UML provides two different kinds of state machine formalisms: statecharts and ac-
tivity diagrams. They differ in the kinds of situations to which they are applied. Statecharts
are used when the transition from state to state takes place primarily when an event of
interest occurs. Activity diagrams are appropriate when the object (or operation) changes
state primarily upon completion of the activities executed within the state rather than the
asynchronous occurrence of events.

Statecharts and UML

The definition of state machines and their behavior in the OMG definition of UML is vague
and incomplete in several points [7].

Broadcasting events: Statecharts [8] are based on event broadcasting. This is simple and
convenient for small models but difficult for large ones, because it results in global
coupling of all components. UML is quite unspecific in this issue: the way events
are transported from their source to the event queues of the state machines where
they should take effect is undefined. Within a state machine, a dispatched event is
broadcast.

Synchronous event processing: Statecharts [8] employ synchronous event processing.
This means that the state machine immediately reacts to an external event and does
all state transitions and processing of events triggered by state transitions instanta-
neously, i.e. in zero time. In particular, all reactions to an external event are completed
before the next external event can happen. UML queues events instead of immediately
reacting to them. However, once an event is dequeued, it is processed synchronously.
Synchronous event processing may have nice formal properties, but it comes with a
bunch of semantic problems (see [5]) and may lead to counter-intuitive behavior.

Kinds of actions: Harel statecharts have a quite simple action scheme: actions are trig-
gered by state transitions and work synchronously, i.e. in zero time. UML, on the
other hand, has introduced an elaborate action scheme, distinguishing entry actions
(triggered and completed prior to entering a state), exit actions (triggered upon exiting
a state and completed before proceeding to the next state) and do actions (executed
while the system is in a particular state). For modeling requirements, it suffices to have
two kinds of actions: those that are triggered and completed during a state transition
and those that are executed while the system is in a particular state. Having these two
kinds, one can employ a simple and powerful action triggering system.
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Event queues: The UML event queues are an implementation oriented concept that can
be omitted for requirements models, thus yielding much simpler event semantics.

History Both Harel and UML statecharts provide a history mechanism that allows easily
re-entering that substate of a statechart which had been the last active one before the
statechart was left.

State transition trigger conditions: Both Harel and UML statecharts use events and
guard predicates for controlling the triggering of a transition. Usually, the trigger
conditions and the triggered actions are written as annotations of the state transition
arrows.

Integrating statecharts: Harel models behavior and functionality as two separate models
which both have a decomposition hierarchy of their own. The models communicate
by references to variables and by invocation of operations. UML, on the other hand,
considers statecharts as auxiliary models that are embedded in the specification of
classifiers in order to describe their internal behavior. UML thus integrates the models
of a classifier and of its behavior, which makes it easy to model local behavior. However,
as UML has no true composition of components (where the composite is a higher-level
abstraction of its components, see [2]), it is awkward to specify global behavior in UML

UML Statecharts are a powerful visual formalism for capturing complex behavior and
apply well to both functionally decomposed systems and to object-oriented ones. Objects
are composite entities consisting both of information (attributes) and operations that act on
that information (methods). Statecharts add a number of useful extensions to the traditional
flat Mealy-Moore state diagrams, such as nesting of states, conditional event responses via
guards, orthogonal regions, and history.

7.5 Modecharts

Modechart is a specification language for real-time systems. The semantics of Modechart is
defined in terms of Real time logic RTL [17] which is a logic specially for absolute timing
of events. Modecharts uses the concepts of modes from the work of Parnas et al. at the
Naval Research Laboratory. Modes can be thought of as partitions of the state space of a
system. Although it is similar to statecharts in some ways, but it is tailored to represent
time constraint systems. From Statecharts it borrows the compact representation of large
state machines.

Modes

Modechart specifications consist of modes,transitions and external events. Modes can be
thought of as hierarchical partitions of the state space, and are related by a containment
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relation, as dictated by how they are syntactically composed (sequentially or in parallel).
The basic modes with no children are called atomic modes.

A serial relationship among several modes (children of a serial mode) indicates that the
system operates in exactly one of the modes, at any time. Several modes can also be in
parallel, in which case the system operates in all modes simultaneously. A mode is depicted
graphically as a box, with all its child modes represented inside it.

Modes vs State variable

Despite the similarities, there are important semantic distinctions. A state variable repre-
sents information about data whereas a mode represents some control information about
the system. The value of state variable is changed explicitly by completing the execution of
an action which takes nonzero units of time to perform. Consequently, a state attribute S
cannot become true and then become false at the same instant of time, i.e., the two events
can not happen at the same time. A mode entry or exit is implicit in that it does not require
the execution of an action; a mode transition is taken when a certain condition is satisfied
so can happen at the same instant of time.

Transitions

Transitions allow the system to switch from one mode to another (possibly in different levels
within the hierarchy). Transitions can be triggered by events, which can be external or
internal. All the events in the system are instantaneously broadcast and transitions, once
triggered, are taken instantaneously. Serial modes may designate one mode as their initial
mode, which is instantaneously entered once the serial mode is entered (unless some other
child has been entered explicitly with a transition crossing or terminating at it). Transitions
between modes in parallel are not allowed. Entry of a parallel mode forces the system to
enter all its children. A transition out of one mode requires exit out all modes in parallel
with it. A transition is depicted as a directed edge, departing the source mode and ending
in the destination mode.

Each transition has a transition condition associated with it. There are two types of tran-
sition conditions in Modechart, namely timing conditions and triggering conditions. Timing
conditions are those that have the form (Ib , ub) , where [b is a lower bound and ub is an
upper bound. Triggering conditions are of the form, p; Aps A ... A p,, where each p; specifies
a condition for taking the transition.

Tool

Modechart has been developed as a graphical specification tool in SARTOR (Software Au-
tomation for Real-Time Operations) [20], a design environment for hard-real-time software
currently under development at the University of Texas at Austin. The goal of SARTOR
is to mechanize the analysis and synthesis of real-time software from systems specification.
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An implementation of Modechart serves as a front-end for SARTOR which provides a suit
of tools to analyze a specification for satisfaction of safety requirements.

7.6 Plug and Play

In 2002, Christian Prehofer [2I] introduced a new approach for modular design of highly-
entangled software components using statecharts. He structure the components into features
which will become usable and self-contained services and then he model each feature individ-
ually using statecharts. For the composition of components between the features, he consider
the interaction between them. Then the full component descriptions are created automati-
cally in a plug-and-play fashion by combining the statecharts for the required features and
their interaction. Also he develop different classes of statecharts and showed the interactions
on a case-to-case basis.

Statecharts

Statecharts are used for graphical description where transitions are labeled by the functions
which trigger these transitions. An external function call triggers a transition labeled with
this function depending on the current state of the statechart [3]. The following notation is
used for labeling transition:

called sunction()|[condition|/action

Here the calledjunction() is the external event which initiate the transition. Note that
all three labels may be empty then in this case it will be an internal transition without an
external event, also called spontaneous transition.

An example is the statechart in Figure 8 describing the basic functionality of an answering
machine in a feature called BasicAnsMachine. There are two states, Waiting (for a phone
call) and Answering. The initial state is Waiting,.

deliver() / record()

[Answering} 4{ Waiting }

incoming() / pick()

Figure 8. The BasicAnsMachine
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Semantics

The semantic model uses an external black-box view of the component. It is based on the
function calls from the outside which trigger transitions. Omnly the input and output is
considered and not the internal states. A possible run can be specified by a trace of the
externally called functions and the resulting actions of the statechart [13]. For example the
trace for the statechart in figure 8 of incoming() and deliver() transitions is triggered by the
external function calls.

Input sequence: incoming(),deliver(),incoming(),deliver(),...

Output sequence: pick(),record(),pick(),record(),...

Refinement

Here the refinement of statecharts is by specifying a component in more detail to reduce
the under-specification. So a step-wise refinement by adding more specific behavior. The
main benefit of this graphical refinement rules is the ease of use. These rules are based on
syntactic input and output events.

Following are the elementary statecharts refinement operations:

1. Add new behavior which was not specified before like adding a new state or transition
to a state.

2. Eliminate alternative transitions, if any exists. This will reduce the non-determinism
and specifies the behavior more precisely.

3. Add internal or compatible behavior, which does not change the original output. So the
new behavior can abstract from the additional behavior and the old behavior remains
the same.

4. Eliminating transitions for exceptional cases. So refinement only holds if some excep-
tional case does not occur.

Modeling Features and Interactions by Statecharts

A feature is like a class in an OO-design which is an interface with functions and encapsulates
internal state. Plug-and-play approach describes both features and interactions by partial
statecharts to describe a high-level view of their behavior. The key point is that the features
and interactions are as the fragments of statecharts. For a concrete feature combination, it
uses extensive use of hierarchical statecharts and parallel composition of statecharts.

There are three kinds of modeling features with statecharts:

1. Base features which a complete statechart, including initial and final states.

2. Transition-based features which refine a transition locally and do not add externally
visible in out transition to a statechart.
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3. State-extending features which add global states and externally-visible transitions.
These features extend the states of other features and also the external visible interface.

7.7 Hypercharts

Hypercharts is an extension to statecharts to support Hypermedia specification1984 [6]. The
specification of hypermedia applications is a complex task as it requires the use of suitable
models capable of capturing the synchronization requirements related to the presentation of
dynamic data such as audio and video. Such models must be able to specify both the conven-
tional navigation elements of hypertext and the complex timing and sequencing relationships
of multimedia presentations.

A hyperchart is a conventional statechart extended with three new set of notations [6]:
timed history, timed transitions and synchronization mechanisms.

Timed history

The assignment of the timed history symbol - a clock icon - to a transition t with a state s
as its destination means that if s has been active in past, then the firing of t will recover the
value of the timed history register of s, in addition to recovering the last configuration of s in
terms of its sub-states. Similarly to the history symbols defined in conventional statecharts,
the timed history symbol has a recursive version implying that the timed history registers
of s and all its sub-states, recovered by conventional recursive history.

Timed transitions

Hypercharts provides a temporal notation which allows the specification of transitions whose
firing is determined by the time progress during the active time period of its source states.
Using timed transitions it is possible to specify multimedia presentation requirements such
as delay and jitter.

Synchronization Mechanisms

It is provided by M:N synchronized transitions. An M:N synchronized transition is grouped
into five components : source states, source arcs, target states, labels and a synchronization

type.

7.8 Concluding Remarks

Statecharts were introduced as a development [I1] over modeling techniques such as tradi-
tional state machine modeling. The weaknesses inherent in state machine modeling such
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as overly complex diagrams for larger systems, and the lack of concurrent support were
addressed by the statechart method.

Statecharts overcame these weaknesses [I2] by introducing concepts such as orthogo-
nal regions and and-states. These concepts allow for the specification of far more complex
real time systems than traditional state machine modeling. The strength of statechart ap-
proach lies in the similarity to state diagrams and availability of direct reconstruction and
re-implementation, introduction of and-state, direct relevance to embedded software system
with possible extensions.

Several variants of statecharts have been introduced and there have also been several
attempts to underpin the intuitive meaning of statecharts with precise semantics.

7.9 Exam Question

1. Describe the main three elements of statecharts.
2. Describe what a history indicator is used for in statechart diagrams.

3. A vacuum cleaner of a company has the following design: If it is activated, it starts
vacuuming the offices, afterwards the canteen and at last the laboratory. If it has
finished cleaning the laboratory, it starts again in the offices. If it is deactivated, it
returns to its locker and stops there. Every time on changing his operational area,
it empties his dust bin into some container. If it runs low on energy, he goes to a
recharging station, and recharges its batteries. Afterwards it continues the cleaning
where it has stopped. Draw a statechart diagram modeling the robot’s behavior.
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Chapter 8

Salvador Garcia: Misuse Cases

One of the most important parts in one system is the security. Security requirements are
not enough to analyze all the security in a system, it just considers the functional part. Use
cases are not designed to analyze non-functional requirements, so, they are not enough to
analyze all the security related with a system. For that is necessary to view the system from
a negative way, using hostile cases: misuse cases.

8.1 Introduction

Use cases are a sceneario-based technique for requirements elicitation [L0]. They are a mod-
eling technique for analyze and specify functional requirements in an early stage [7]. They
provide scenarios about how the system works when the user is interacting, and help to
describe the requirements in a graphical way. A use case defines a goal-oriented set of
interactions between external actors and the system. The main advantages of use cases are:

1. They are reusable.

2. They are easy to understand.

3. They represent interaction with the user.

4. They can be integrated with other analysis tools.

5. They are a useful technique for requirement’s analysis.

6. They can serve as the basis for the estimating, scheduling, and validating effort.

Actors are users outside the system that interact with the system. A use case is initiated by
a user with a particular goal in mind, and completes successfully when that goal is satisfied.
It describes the sequence of interactions between actors and the system necessary to deliver
the service that satisfies the goal.

139
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However, use cases are focused in the analysis of functional requirements, but not neces-
sarily with non functional requirements like all of those that are related with operational
availability, performance, reliability, reuse and security [9] and [3]. It is easy to make some
assumptions that can be very important within the project [6], and if we ignore them, some
problems can be generated during the next stages, deriving a premature implementation of
the design.

Sindre and Ophal [9] defines security as ”the prevention of, or protection against, access
to information by unauthorized recipients, and intentional but unauthorized destruction or
alteration of that information”, i.e. the protection of the information against a misuse of the
system. On security terms, it is important to consider what are the weakest points in the
system. There can be some security holes that because a lack of design are not considered,
and, it can be a possible vulnerable point for a security attack.

There are some methods to deal with the security of the system, for example the i-Framework
[4], a goal oriented method that works with three elements: actors, intentional elements and
links. Some methods create security requirements [9], while others just deal with the necessi-
ties of the primary requirements. But, they can be very inconsistent, they are not analyzing
exactly in what cases can be applied, they are focused just in the point of view of the user,
and sometimes for a overview of a program in general is very hard to discover in what specific
parts they are effective.

Also, to deal with the security problems, there are some cryptographic approaches that
can help but, if they are not based in a very well designed system, they are not enough to
build a secure application. They must work together with a well designed application, that
can cover all the situations where they can apply [5].

8.2 Basic Concepts

Use cases describe some functions that the system should do; when they are related with
security issues, they model mechanisms to protect the system. For example, in an instant
teller machine, one security requirement is the verification of the card holder and his PIN
number. It specifies that each time an user introduces his card, he must introduce a PIN
to validate that is the cardholder. However, these requirements, are vulnerable to security
threats. An undesired user, can try to guess the PIN number, and access illegally to the
system.

One approach to address security threat analysis is the development of misuse cases [3].
A set of use cases are taken from a positive ”point of view of the user”; misuse cases threat
security requirements within a negative scenario [1]. All security requirements exist because
people that create methods to attack the systems; employing use and misuse cases can im-
prove security by helping to mitigate threats.
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Sindre and Opdahl [9] introduce the concept of Misuse cases to analyze the system in an
hostile way. Formally, a misuse case is "a special kind of use case, describing behavior that
the system/entity owner does not want to occur”. A misuse case is the opposite of an use
case; it represents all the things that can attack a system, but, preserving all the properties
of use cases.

Misuse cases analyze the interaction between applications and the misusers whom seeks
to break the security in the system (misactors). In the uses cases, an actor plays the role
of the users that interact with the system; in the misuse cases, a misactor plays the func-
tion of the users and situations that can break the system. For example, in a car security
system, a possible actor, is the owner of the car; possible misactors are thiefs and the weather.

Misuse cases help to analyze threats, but, are not very helpful for the specification of security

requirements. Donald Firesmith [3] proposes to include use and misuse cases in the analysis
of the system, but remarking the differences between them (Table [8.1).

Table 8.1: Differences between misuse cases and security use cases

Misuse Cases Security Use Cases
Usage Analyze and specify Analyze and specify
security threats security requirements
Success Criteria Misuser Succeeds Application Succeeds
Produced by Security Team Security Team
Used by Security Team Requirements Team
External Actors Misuser, User User
Driven by Asset Vulnerabity Analysis Misuse Cases

8.3 Misuse Case Diagrams

There are three ways to represent misuse cases diagrams (Fig. . The first way (a) is
representing it in terms of normal use cases. It has the advantage that it is in the same
terms; both, because both cases are represented at the same time it can be confusing. The
second approach (b) is to separate totally the use cases and misuse cases, it easy to see how
works each part, but, it is hard to identify the relations among them. It is necessary to see
the whole case or requirement.

For a better understanding of the diagram, Sindre and Ophal [9] proposes to draw in black
color all the issues related with the misuse cases (c¢). Representing them in this way, permits
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Figure 8.1: Diferent representatioins of a misuse case diagram.

to the designer to identify in a fast way how a misuse case and a misactor are related with
the rest of the system. In this way the diagram is simple and legible. Its easy to distinguish
what part of the diagram corresponds to the use and misuse cases and also, all their relations
can be included.

Traditionally, an use case represents functional requirements, and misuse cases represent
non-functional requirements. Another way of looking at the role of misuse cases is to ob-
serve that the typical response to a threat is for the designers to create a subsystem whose
function is to mitigate that threat.

8.4 Method Guidelines

The best approaches for choosing the correct and most important cases, are given when the
designer thinks about what situations are permitted or not in a system and when possible
patterns are analyzed [5], and also, it is necessary to think like an attacker, i.e., from a
misactor’s point view. For choosing the best approach, McGraw suggests the next guidelines:

1. Brainstorming. Get as many ideas as possible.
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2. Answer to general questions applied to all the systems. Try to answer question like
these help designers to identify the problem before it is created. Some example ques-
tions can be:

e How can the system distinguish between good and bad input?
e Can it tell wether a request is coming from a legitimate action?

e Where the misactor can be positionated?
3. Follow attack patterns. Some examples can be:

e Make the client invisible
e Target programs that write to privileged OS resources
e Attack user-supplied configuration files that run commands to elevate privilege

e Leverage configuration file search paths

Manipulate terminal devices

e Perform simple script injection

4. Simplicity. Misuse case diagrams should not contain all the possible misuse cases. It
is necessary to divide them on simpler diagrams, but, no separating them from the use
cases.

8.5 Methodology

Once the main components in a system had been analyzed, Sindre and Ophadl suggest to
follow a methodology that helps to put all the pieces together and to discover new components
in the system’s analysis. [9]

1. Concentrate in normal actors. The design must be focused mainly on the principal
actors, regardless of security issues; a clear concept of the system in general will help
to get a better security analysis.

2. Introduce the major mis-actors. Potential misactors are persons, but, there can be
more possibilites around the system. In an online system two possible misactors can
be a hacker and a competitor.

3. Investigate potential relations between misuse cases and cases. Analyze how possible
attacks can affect to the system. For example, how a "flood system” in a car security
system can affect the functionality in general.

4. Introduce new cases. Considering security issues can derive new cases, and at the same
time, new mis-uses.
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5. Continue with a more detailed requirements documentation. If there are more details
about the requirements, or if , if there are new, we can have a wider view about what
new options can be considered regarding to the security issues.

8.6 Template

The template suggested is very similar to an use case template [8], but, we need to focus
it into a misuse case interpretation, and also add some extra properties. Following the e-
commerce system given in Fig. [8.2] a template for the access control could be defined as
follows:

e Case Name: The name of the case.

e Summary: A brief description of the case.

e Author: Person who analyzed the case.

e Date: Date of the case analysis.

e Basic Path. The principal ways that misuse can take to pursue its goal.

e Extension/alternative paths/exceptional paths. Ways that the misuse can take, but,
that are not very common. Because sometimes are not very visible, they can be the
key point for an attack.

e Preconditions. Preconditions can be of three types:
Triggers: Entry criteria, what initiates the use case.
Assumptions: Conditions that must be true, but is not guaranteed by the system.
Preconditions: Conditions that are ensured by the system.

e Postconditions: They can be of three types:
Worst case threat: Describe the outcome if the misuse succeeds.
Prevention guarantee: Describes the guaranteed outcome whatever prevention path is
followed.
Detection guarantee: Describes the guaranteed outcome whatever detection path is
followed.

e Related business rules. Particular points depending of the system and the business.

e [teration. Covering the necessity of a superficial analysis and after, more detailed
descriptions. Begin in a upper level, an analyze each step in a more detailed way.

e Primary Actor or misuse profile.
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e Scope. The scope of modeling, for example, an entire business, an information system,
and so on.

e Level. The level of abstraction. It can be a summary, user goal, or subfunction.

e Stakeholders and risks. List of the various stakeholders and what their motivations
are. Depending of the abstraction level, risks can be just described, or try to quantify
in costs.

e Technology and data variations. Mention variations without giving the path for each
case.

8.7 Eliciting Exceptions and Test Cases

A program failure leads to exceptions. The system under design should respond to undesir-
able events, and through it, prevent possibly failures [7]. Through misuse case analysis is
possible to discover exceptions, and handle them in a proper way. The candidate exception
scenarios must be generated and requirements to prevent system failures from a proven list
of exception classes must be elicited [1].

Any possible scenario can lead to a test case and misuse cases can help to explore and
analyze conditions and exceptions. Products of use / misuse case analysis that can con-
tribute to effective test planning include.

e Specific failure modes. Useful for real time, embedded and safety - related systems.
e Security threats. Useful for distributed commercial and government systems.
e Exception handling scenarios. Always useful.

A test engineer could view misuse cases as existing purely to ensure better system testing.
A quality engineer could equally well argue that their purpose is to improve the quality of
delivered systems [I].

8.8 Example

Misuse case diagrams are represented within use case diagrams. Fig. shows an exam-
ple about an automated teller michine [3]. The three main requirements are deposit funds,
withdraw funds and query balance. There are security cases to control access, ensure pri-
vacy, integrity and to ensure nonrepudiation of transactions. These user case are specified
to protect the actors (users) from three security threats (misuse cases): spoof user, invade
privacy and perpetrate fraud, that can be done by a cracker or a thief (misactors). It is
important to remark that a user can activate or not a use case, it is represented by lines and
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Figure 8.2: Diferent representatioins of a misuse case diagram.

arrows. When the case must be activated by an user or case, it is represented by an arrow.
When it could be activated by an user or case, it is represented by a line. The following table
documents the case Access Control, for further information, [3] presents the documentation
of the other cases

e Case Name: Access Control.

e Summary: Access control is the extent to which a business enterprise, application,
component or center controls access by its externals. It consists of identification,
authentication and authorization.

e Author: Donald G. Firesmith
e Date: June 2003.
e Basic Path.

— Attempted spoofing using valid user identity.
— Attempted identity and authentication theft.

— Attempted spoofing using social engineering.
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e Alternative paths.
— The misuser can quit at any point.
e Preconditions.

— The misuser has no valid means of user identification.
— The misuser has no valid means or user authentication.

— The misuser has a valid means of user identification enabling the impersonation
of a valid user that is authorized to use a protected resource.

— The misuser does not have an associated valid means of user authentication.
— The misuser has basic knowledge of the organization.
e Postconditions:
— The system shall not have allowed the misuser to steal the user’s means of au-
thentication.
— The system shall not have authenticated the misuser as a valid user.

— The system shall not have authorized the misuser to perform any transaction that
requires authentication.

— The system shall have recorded the access control failure.

— The system shall have prevented the misuser from stealing the user’s means of
identification and authentication.

— The system shall have identified and authenticated the user
— The system shall not have authenticated the misuser.
— The system shall not have authorized the misuser to access the protected resource.

— The system shall have recorded the access control failure.
e Related business rules. All the rules to realize a deposit, user data, privileges, etc.
e [teration. No iterations.
e Primary Actor. Cracker and thief.
e Scope. Instant teller machine.
e Level. Summary
e Stakeholders and risks. External damage

e Technology and data variations. Model of the teller machine.
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8.9 Conclusions

Use cases is a very good design tool for analyzing functional requirements in an early stage;
but, they are not focused in the analysis of non-functional requirements. One of the most
important non-functional requirements that must be considered in a system is security. Use
cases analyze security requirements, they are considered as functional requirements because
the user has a direct interaction and the client asked for them, some of them can be access
interfaces, security algorithms, etc.

Security requirements analyze security issues from a positive and straight forward point
of view. They just set what security processes that must have a system, like check user
and password; but they do not analyze all the possible negative scenarios that can affect or
break the system’s security. For analyze security threats, Sindre and Ophal [9] suggest a
new extension for the use cases: Misuse Cases.

One of the main advantages that they offer is the system analysis from a negative point
of view, trying to do exactly what the system does not want. With that, it is possible to see
another panorama to protect the system, placing a mis-actor to play the role of a normal
actor who tries to attack the system. Also, there is a tool (Scenario Plus ) that already
had implemented this technique. It had the possibility to draw the diagram and it creates
automatically the links between misuse and use cases through searching for underlined use
case names with simple fuzzy matching [2].

But, misuse cases techniques are still in a development stage; there is not enough documen-
tation for a deep analysis, and is not clear how can they be implemented during the other
stages of the software design; there is not a clear method to get all the miuse case and a big
part of the analysis depends on the designer’s criteria.

Misuse cases have not been evaluated in practical applications, just in examples. However,
the industry could be interested on use them because:

e Misuse cases is a close approach to use cases; they are using the same terms as in UML
use cases diagrams.

e Security requirements are a main part in new system, specially those oriented to e-
commerce.

e Misuse cases are small, simple and easy to understand.

The research group of the Norwegian University of Science and Technology, and from Uni-
versity of Bergen, already have been contacted some software development companies in
Norway. They have been interested in this approach. This area is still in development, but
it is already supported, and they are doing the first implementations in real cases, it is not
going to be surprising if in few years it is adopted in the design cycle process.
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8.10 Exam Questions

1. Explain what is a misuse case and a misactor?

2. Explain the main differences between security requirements and misuse cases.

3. The use case diagram of car security /safety requirements includes the next cases: Drive

the car, lock the car, lock the transmission, control the car, control traction and control
braking with ABS. Draw and explain the possible misuse cases, misuse actors, and the
relations between them.
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Chapter 9

Software Design Teaching Methods

Despite the flurry of the research activity in software design, the pedagogical aspects of
teaching method of software design courses have not been as forth coming. This paper
surveys some of the successful methods for teaching software design courses which have been
used in the computer and software engineering departments.

9.1 Introduction

In the present day although most of the universities include a software design course as a re-
quired or core course of an computer science or software engineering major, some institutions
and colleges do not for various reasons.

In this paper we survey some of the software design teaching methods used in computer
science departments. It should be noted that although the notion of “Software Engineering”
is a relatively young discipline, the issues, models, terminology, notation, and emphasis have
varied largely on this important subject. Therefore, teaching software design can be viewed
in many different ways. This problem is also caused by the diversity of the models and the
resultant diversity of the applications in software engineering.

Before we start to introduce some of the successful methods of teaching of software design
used in the computer science departments, we would like to give some interesting notes and
remarks taken from the talk given by Mike Godfrey in Cornell University in 1997. Following
three question were proposed by Mike Godfrey in his discussion: “On the nature of Software
Design:”

1. What is software design?
2. What is good software design?
3. Can good design be taught?

Following explanations are mostly taken from the slides of the talk given by Mike Godfrey,
see [22]. Mike Godfrey points out that in order to answer the question “What is software
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design?”, we must take into account the references such as process, artifacts, and appearances
of software design. In other words, he says that one can examine the structure of a solution
to a problem: how to implement what? Mike Godfrey claims that this question involves
the process/methodology followed in developing software, the artifact produced, and how
the system actually appears to various people. He says that approaches to software design
should be careful to allow for the following items:

1. repeatability;
2. tolerance of creativity;

3. flexibility, modularity, adaptability, re-usability. These are necessary to allow for the
possibility that needs may change, and things will inevitably go wrong;

4. scalability;
5. scrutability.

We are learning from his discussion that the phases of software design run from the more
abstract levels of designing subsystems and sorting out dependencies to the actual coding
process of data structure design and algorithm development. The ways doing the things can
sometimes be very different from how they appear to be done. Choices to be made include:

1. top-down vs. bottom-up;
2. functional decomposition vs. data-centric;
3. object oriented or not.

Again in the same talk he says that it should be noted that the role of documentation is also
very important. Parnas suggests that designing software is similar to proving mathematical
theorems. In other words, it is a very messy business, that when finished is then cleaned up
and documented nicely.

In his talk, Mike Godfrey discusses the question “What is good software design?” as
follows: First of all, the definition of good/quality should be made. In fact this is a philo-
sophically hard question and can be thought analogously as follows: What is good software
design? What is quality? The answer depends on the values of evaluators. For instance:
Is end-system performance of primary importance? Or are you more interested in ease of
maintenance? Or perhaps ease of use? It is clear that the quality will mean different things
to a computer company, for instance, than the Department of Defense. About creative de-
sign, Godfrey says the following things: In a creative software design, there are conflicting
impulses. Even tough well-defined, rigid methodologies tend to stifle creativity and slow the
design process, such methodologies will tend to entail repeatable results. In fact, there are
many instances in which creativity is not a goal. These include things like DoD projects,
traffic light controls, nuclear reactor software and so on. In such projects, the main goals
will be reliability, robustness, security and the like as opposed to creativity.
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With regard to the final question “Can good design be taught?”, although there are
some people who answers this question as: “No, it can not be taught, it is a black art”,
most of the people in the present day believe that: “yes, it can be taught in a way.” The
people who believe the latter claims that there is some structure which can be taught,
in particular: well-defined methodologies and good engineering practice. Godfrey says that
teaching creativity and innovative design presents different problems. Ben Schneiderman has
suggested eight heuristics or “Golden Rules” for user interface design which may also apply
to software design in general. These include: simple error handling, informative feedback,
and consistency. More information about his interesting discussion can be obtained [22].

In this paper we will basically introduce the following software design and engineering
teaching methods.

1. Integrating Testing and Design Methods for Undergraduates: Teaching Software Test-
ing in the Context of Software Design;

2. Teaching Software Design with Open Source Software;

Teaching Undergraduate Software Design in a Liberal Arts Environment Using RoboCup;

-~ W

Teaching Software Engineering Using Lightweight Analysis;
5. Teaching Software Engineering Through Simulation;

6. A brief introduction of a course met on the net.

9.2 Integrating Testing and Design Methods for Un-
dergraduates: Teaching Software Testing in the
Context of Software Design

In this section we would like to introduce a paper motivated from an industry complaint that
students do not directly/easily fit into robust software processes. In this paper a teaching
approach is presented, which is basically to combine design concepts with testing methods.
In the paper it is proposed that integration of testing and design topics allow students to
experience different approaches to the design concepts, and reinforces the life-cycle value of
testing. The paper outlines the positive sides and benefits of the approach.

Most of the following notes are taken from the paper [2I]. The best description of
this course can be given as follows: “An advanced treatment of methods for producing a
software design, the testing of that design and ensuing code. Focus is on Object-Oriented
analysis and design methods, black-box (functional) testing techniques. The method includes
treatment Unified Modeling Language (UML) techniques and their application to software
development.”

In the paper it is pointed out that: This method, integrating testing and design, provides
many opportunities to improve student learning both in testing and design concepts. One
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of the pedagogical reasons for the integration of testing and design is the fact that design
and testing fit together well. This means that good design includes test design prior to
implementation, and this results in students having a stronger mix of design skills to apply
to project works.

From both pedagogical and theoretical point of view, the author lists the reasons for
integrating software testing topics with software design topics as follows:

1. Pedagogical: need to provide enough motivation for software testing topics;

2. Pedagogical: need for students to have skills in software and test design prior to their
application in project courses;

3. Theoretical: desire to demonstrate the inherent relationship between design methods
and test design methods.

Following table indicates the course outline:
1. Review of object orientation;
2. Introduction to testing;
3. Combinational test methods;
4. Structural modeling;
5. Dynamic modeling;
6. State machine design;
7. Inheritance and Polymorphism;
8. Class testing patterns;
9. Architectural modeling;
10. Integration testing and test patterns.

The author points out that the proposed integration topics allows students to experience
different approaches to the design concepts, and reinforces the life-cycle value of testing (for
example, early test planning). This results in students having a stronger mix of design skills
to apply to project course work.

Basically, the approach given in this paper focuses on integrating of Object Oriented
testing and design topics with the aim of students enter their project courses by knowing
firstly, the application of design and analysis techniques to problems, and secondly, the
ability to formulate and execute test plans from the design models they develop, see [4]. The
author of the paper believes that the integration also brings with it learning advantages in
both design and testing. Especially, students can experience first-hand the motivation for
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developing test plans early in the life-cycle, and the ability to use their test-case designs to
help analyze the quality of their design artifacts.
The objectives of this course are listed as follows:

1. Develop a suitable object-oriented design based on requirement;
2. Identify strengths and weakness of different software designs;

3. Develop and apply appropriate tests for object-oriented designs.

The author of the paper tells us that finding an appropriate starting point is a crucial issue for
successful assimilation of the course material, since much of the knowledge and skills applied
in each unit is dependent on the knowledge and skills in previous units and prerequisite OOP
courses.

The main purposes of the course is to teach the students fundamental design techniques,
and to help them have very good skills and techniques for testing: that testing can become
a mental discipline that can help them at all phases of the software life-cycle. Next table
summarizes the key motivational points for the testing material: moving up the stages of
“Mental Discipline” [3].

1. Testing = Debugging: testing exists to support debugging;
Show that software works;
Show that software does not work;

Reduce perceived risk of software failure;

SAEE

Mental discipline: Plan testing before, during design.

From the paper we are learning the fact that when the students taking the class have the
necessary and enough testing fundamentals, the course moves back to design topics and UML
notation. These topics include structural (class) modeling, dynamic (interaction) modeling
and state machine (State Chart) modeling. It is said in the paper that this integration leads
to: State machine design preceeds FSM testing, inheritance and polymorphism preceeds
class testing, architectural modeling preceeds integration testing.

The author points out that: the issue of dependency and sequencing among course topics
is a crucial issue for the success of this integration method. However, the proper synchroniza-
tion of topics and assignments is also one of the most important strengths of this method,
particularly in helping students understand and absorb their knowledge and experience to
grow in their “mental discipline” as testers. It should be noted that even though topics
like State Machine Testing has the prerequisite knowledge of State Machine Design, Struc-
tural (Class) modeling, and Combinatorial Test Models, the advantage with this method is
that most of the dependency amongst the more complex topics is on lower cognitive levels
of understanding, such as terms and definitions. Therefore, students may not figure out
well a design topic prerequisite, but will have another opportunity to learn that topic while
assimilating the equivalent testing pattern.
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9.2.1 Advantages of the Method

The author says that this integrated approach provides students with large opportunities to
learn and experience these benefits first hand. The testing techniques force a detailed analysis
of each of the designs under test, hence students may not figure out the design concept well
in the beginning, however, the test model follows this, which requires students to decompose
the problem while providing a structured means of assessing the quality (testability) of their
design artifacts.

Furthermore, the author says that the integration of design and testing topics improves
several subtopics that are more difficult to learn in separate courses. According to him, from
a design perspective, system approaches to design are increased and improved by the fact
that students learn to plan for testing during (or even before) design. In this way, students
are forced to consider system views: Inputs and outputs, system and subsystem responsi-
bilities and to review these issues. From a testing perspective, integrating the material has
the advantages of clearly demonstrating the value of the effort of early test planning and
design. Hence, students can experience the value of an advanced testing “Mental Discipline”.
Another advantage of this integration of topics is in the related area of testing and quality
assurance. Since many OOT patterns rely on OOA/D models as a prerequisite, a more
“traditional” software testing course must either require design as a background, or can only
teach general techniques. As a conclusion, the author states that from an overall learning
perspective, the integration of the design and testing material helps prepare the students for
project work.

Conclusion and Learnt Lessons

The author tells us that one of the very interesting lessons learnt in this course is that: in
some occasions, students who completed the course reported offers for permanent positions
based on what they were able to explain of their background in the design, testing and UML.
An interesting story of a a success of a student took the course can be seen in the paper [21].

We would like to finish the survey of this paper by pointing out following conclusions:
The author of the paper says that: This integration method provides many cognitive and
theoretical benefits for students. It helps prepare them better for project course experiences,
and for successful starts in careers as software development professionals. In particular,
integrating testing and design leads to at least five significant learning improvements in
topics that are more difficult to achieve in separate courses: These are listed as follows:
Design and Testing Topics Improved at the end of the course:

1. (For Design) Systems Approaches;

2. (For Design) Design Quality;

3

For Testing) Testing as mental discipline;

- (
-
-
-

4. (For Testing) Test planning;
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5. (For Testing) Testing and Quality Assurance.

More information about this interesting and nice method can be obtained from the paper
[21].

9.3 Teaching Software Design with Open Source Soft-
ware

Now we would like to introduce another teaching method known as “teaching software design
with open source software” by David Carrington and Soon-Kyeong Kim [12].

(Most of the following notes are taken from the paper [12]) In this method open source
software tools are used as the main objects of study. In the paper it is pointed out that open
source software provides very good resources for teaching software engineering. Students
taking the course liked the opportunity to use and explore real world software and to study
with open source software tools. The aim of the course was to exposure students realistic
software systems and give them experience dealing with large amounts of code written by
other people.

After we did these introductory explanations about this course, now we will try to describe
the context, goals, teaching way, results of this course as we did in our previous method.

The paper reports the experiences of the authors revising a second year undergraduate
software engineering course on design and testing [5] for a class of more than 260 students.
The authors say that since many open source projects do not provide design documentation,
students can undertake reverse engineering activities to understand the structure of such
tools. The emphasis in the course was given to reverse engineering and maintenance activities
wishing that students gain experience reading and understanding codes of other people.

We are learning from the paper that open source projects provide a large amount of
materials for students to study. Not all are exemplars but it is valuable to expose students
to a variety of programming styles and encourage their critical abilities. Hunt and Thomas
[10] refer to this type of study as “software archaeology”, which is similar to the medical
student pathology laboratory analogously.

The authors point out that incoming students to the course have previously completed
two programming courses using Java and are studying a data structures and algorithms
course in parallel. The course introduces students to the practical aspects of configura-
tion management using CVS (Concurrent Versions System - an open source version control
system).

Assessment for the course consists of four team assignments, a time monitoring exercise
[6], and a final open-book exam. The goals of the course can be listed a follows:

1. Demonstrate the concepts and practice of software design and testing, the UML nota-
tion, software design patterns,code refactoring, and configuration management;
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2. Extend student‘s programming experience, particularly in terms of program size but
also in the use of additional program structures and development methods;

3. Provide students with positive experiences of collaborative learning and some appreci-
ation of the need for life-long learning skills;

4. Expose students to open source software tools an real world code written by other
developers.

Now let us introduce the teaching mechanism of the course: Before the teaching semester
started, the following list of open source software engineering software tools were prepared
with the purpose of that the tools should be potentially relevant to the software engineering
activities of students.

1. ArgoUML: a UML modeling tool;

2. Eclipse: an extensible IDE;

3. JEdit: a programmer'‘s text editor;

4. JRefactory: a tool to perform refactoring on Java source code;
5. JUnit: a regression testing framework.

During the teaching semester, the given assignments required a deep knowledge and
understanding about the selected open source tool. The first assignment asked each team to
select a tool. Each team was required to install and use their tool before giving a five minute
presentation to their tutorial class that explained the issues i-) the purpose of the tool, ii-)
the installation process, iii -) how to use the tool. We are learning from the paper that the
main goal of this assignment was to get teams started and to overcome the difficulties with
tool installation and use. A secondary purpose was to display a range of software engineering
tools to students so that they were aware of the tools being studied by their peers, and so
they could use them if they identified a need.

The second assignment represented investigation of the source code for the selected Java
tool and offer an opportunity to receive feedback on the team’s progress. In the assignment
2, students had to deliver: i-) source code descriptions, ii -) CVS and UNIX build evidence,
iii -) a team learning journal, iv -) a plan for future research.

In the third assignment, each team had to prepare and deliver a 15 minute presentation
about the internals of their Java tool covering the issues: i -) the overall tool structure,
ii -) the subset studied in detail, iii -) the UML diagrams developed, iv -) any patterns
identified, v-) extensions or refactorings planned or completed, vi -) planned or completed
testing related to extensions or refactorings.
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Results and Discussion of the Method

The authors point out that the use of open source software helped achieve the goals of the
course. The response rate to the given survey at the end of the course was good (149 out
of 264) because the survey was administered in the tutorial classes. The survey asked about
how the team was performing, reactions to the team’s Java tool, and course organization.
The questions about the Java tool were (“My Java tool is”):

1. easy to understand;

2. giving me real-world software experience;

3. helping me understand software design and construction;
4. helping me improve my programming skills;

5. helping me improve my knowledge of Java;

6. an enjoyable way to learn this subject matter.

The graphical representation of the course evaluation can be seen in the paper [12]. The
general conclusion of the authors about the course is that students appreciate the benefits
of this approach to studying software design and testing. Nevertheless, at this point in
the course, the authors were not convinced that this method was easy or enjoyable. More
information about this method can be found the paper [12].

9.4 Teaching Undergraduate Software Design in a Lib-
eral Arts Environment Using RoboCup

Now we would like to introduce an achieved method of the teaching of software design given
in the paper titled “Teaching Undergraduate Software Design in a Liberal Arts environment
Using RoboCup” by T.Huang and F. Swenton, [I8]. In this paper the curriculum, client
software, and benefits of an undergraduate software design course based on the RoboCup
software simulation environment. This course utilized the RoboCup to teach software design
to undergraduate students in a liberal arts environment. Most of the following notes are
taken from the paper [I§]. In this paper authors present a software design course, which is
tailored to undergraduate computer science students within a liberal arts environment, based
on the RoboCup soccer simulation platform. Some factors make this course suitable for use
in undergraduate curriculum. Firstly, RoboCup is an research and education platform with
clear objectives and reliable, readily installed server software. Secondly, an easy objective and
a set of simple communication protocols make the systems easy for instructors and students
to learn. Thirdly, the platform allows discussion of a variety of computer science topics such
as real-time programming, multi-agent systems, and artificial intelligence. Fourthly, some
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publicly available client software options make it possible to customize courses for a range
of time constraints and student backgrounds.

Now, here we will simply try to introduce the goals, features, and pedagogical benefits
of the RoboCup platform surveying the paper and the comprehensive details of RoboCup
platform can be found in [I7]. RoboCup is an international initiative whose main goal is to
encourage research in artificial intelligence and robotics by providing a standard environment
in which a wide range of technologies and algorithmic approaches can be explored and
evaluated. As the name suggests, the standard problem is a soccer match played by robots.
International competitions take place regularly in a software simulation league as well as
several physical robot leagues with different size and sensor restrictions.

We are learning from the article that: In the RoboCup software simulation league, two
teams of up to 11 simulated autonomous robots play soccer on a virtual field using simplified
but fairly realistic models for physics, sensors, communication, and player fatigue. For any
given game, a single soccer server process runs the simulation, generates all sensor informa-
tion, and communicates with all players. Each player runs as a separate client process that
receives sensor information from the server at fixed intervals and generates real-time actions.
These clients can run on the same computer as the server or on separate computers. All
communication among players takes place via the server using a predefined communications
protocol. The structure of the simulation environment provides a challenging domain for re-
search in many areas, including multi-agent, uncertain reasoning, realtime decision-making,
machine learning, sensor fusion, and software design and management.

Now we will try the explain the role of the RoboCup in education: The RoboCup initia-
tive is to provide a platform for project-oriented educational experiences. The authors claim
that with a well-established client-server protocol and a substantial body of publicly avail-
able client source code, the RoboCup simulation league provides a rich environment within
which undergraduate students can learn about larger-scale software design and analysis,
software tools and environments, and teamwork. Furthermore, the well-defined objective
and the competitive framework encourage students to develop evaluation methodologies and
to measure progress carefully. The platform itself has been evaluated in the context of its
pedagogical utility, though not specifically as the basis for a software design course, see [25]
for details.

The main goals of the course were to provide computer science students opportunities
to design and develop larger-scale software projects and to work in a programming team.
In the paper it is said that on the theoretical side, the RoboCup environment encouraged
students to address basic issues in artificial intelligence, synchronization and decision-making
under uncertainty, and coordination among autonomous clients. During the semester, four
assignments were given and each assignment involved modifying behavior a RoboCup client
program. Detailed information about assignments can be obtained from the main paper [I8].

Now we will try to explain the client program, and client considerations. It is described
in the paper that: Krislet [26], a Java-based client, provides an interface to the RoboCup
server. In the course the Krislet was chosen to use as a starting point and to build upon it
for the students, on the principle that the students would be better served by extending a
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basic client.

From the paper we are obtaining the knowledge that in order to teach students some
basic principles of client control and to provide simple examples of their implementation,
the authors modified Krislet by adding several utility and client control features. In ad-
dition to providing an immediate entry point for the development of Robocup clients, the
code illustrates several basic concepts and methods such as multi-threading and sharing of
dynamic data, local and global coordinates, and push-down automata, inviting the students
to explore and refine these aspects of the code to suit their client’s needs. The outline and
some features of the NK client and their importance to the course can be obtained from the
main paper [18].

Student Responses

At the close of the term, the course evaluations were given to the students for course as-
sessment. Over two-thirds of the students agreed with the statement, “Building RoboCup
players has helped improve my programming skills substantially,” and nearly %90 agreed
with the statement, “Building our RoboCup players has helped me to improve my ability
to communicate and work with others on a software design project. ”Every student in the
course agreed with the statement, “If I had it to do all over again, I would still choose to take
the RoboCup course this winter term. ”In reaction to the question, “What did you most
enjoy about this course?” the written responses fell into several categories: i -) competition
(9 responses), ii -) teamwork (4 responses), iii -) introduction to new concepts in computer
science (4 responses), iv -) seeing their clients’ performance (4 responses). In response to the
question, “What was the most challenging aspect of building your RoboCup teams?” the
students identified: i -) teams/cooperation, both of students and of players (7 responses),
ii -) implementation of strategic ideas (3 responses) iii -) reasoning under uncertainty (2
responses)

Conclusions

In the paper it is told us that this course is the first course to utilize RoboCup to teach soft-
ware design to undergraduate students in a liberal arts environment. The authors believe
that the assignments and NK client software provide a convenient starting point for instruc-
tors wishing to utilize the RoboCup platform. According to the course evaluations, we are
getting the idea that most students agreed that the course helped them improve both their
software development abilities and their communication as well as teamwork skills. More
information about this method can be obtained from the paper [18].
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9.5 Teaching Software Engineering Using Lightweight
Analysis

Now we will try to introduce a teaching method of Software engineering rather than a
teaching method of software design. The proposed approach in the paper has not been yet
applied and used in a class but the author plans first to apply in a plot course and then he
hopes to extend this application.

The goal of this project is to explore a new pedagogical approach to teaching software
engineering centered on the close integration of analysis tools with instruction in program-
ming methodologies. The author claims that instead of learning methodologies as abstract
ideas, students will benefit from applying analysis tools that embody methodologies to large,
realistic programs. Most of the following notes are taken from the paper [20]. According to
the author, the presented approach in this paper will allow for realistic experience with in-
dustrial scale programs, and enable direct application of theory and methodology to practical
programming.

In this paper, the focus is on the use of lightweight analysis tools that offer clear and
immediate benefits with minimal initial costs. These tools include LCLint [13], [14], [15], [8],
a lightweight static analysis tool that exploits annotations added to the program source code;
the Extended Static Checker for Java (ESC/Java) [§], a static analysis tool that incorporates
an automatic theorem prover; and Daikon [9], a tool for automatically determining likely
program invariants. Examples of topics where these tools can be used for pedagogical benefit
including information hiding, invariants, memory management and security.

Objectives and Description of the Method

The author of the paper makes the following observation in the beginning of the article:
Students often regard the methods and theories taught in software engineering courses as
abstract, academic concepts. Without experiencing their practical impact on realistic pro-
grams, students rarely develop a deep understanding or appreciation of important ideas in
software engineering.

Although Edsger Dijkstra [7] and David Gries [23] proposed elegant approaches to teach-
ing programming that closely integrate proof techniques, they were not accepted as success-
ful. Since there is a big gap between between formal methods and practical programming
experience of students, the previous attempts have met limited success. The author be-
lieves that the lightweight analysis tools are a promising way to shrink this gap. Although
lightweight analysis tools require significant effort to use traditional formal methods, students
can easily and effectively use lightweight analysis tools on real programs.

The author concentrates on lightweight analysis tools since he claims that they are readily
accessible and provide clear and early benefits for limited effort and using lightweight analysis
tools, students will be able to work with and modify industrial programs. Now, let us describe
the analysis tools that were intended to use.
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Analysis Tools

The author points out the fact that the range of selected tools, LCLint, ESC/Java, Daikon,
provides a sampling of the design space of analysis tools where efficiency, effort required,
soundness and completeness are often conflicting goals. Detailed description of these tools
can be seen in [20]. Pedagogical Uses of Analysis tools can be listed as follows: Information
Hiding, Invariants, Security Vulnerabilities, Extensible Checking, and a detailed treatment
to each of these uses can be seen in the main paper [20].

Evaluation Plan

The author asks the following evaluation question: can lightweight analysis tools be used to
improve teaching of software engineering? He says that Software engineering is not yet at the
point as a discipline where there are clear and objective metrics for measuring a student’s
ability. Again, we are learning from the paper that some of the subjective criteria to evaluate
the success of the pilot course include: Do students gain a better understanding of abstract
concepts by using analysis tools? Do students become better software engineers because of
their experience with analysis tools? Are students able to efficiently manage and manipulate
larger programs than with previous techniques? Do students develop original checking rules
and use them effectively? The author uses surveys to assess the effectiveness of the approach
which can be learnt better and in detail from the paper [20]. The author notes that he has
a good track record of supporting LCLint use in teaching and industry, and believes that
continued efforts to support use of lightweight analysis tools in education will contribute to
both educational and research goals. More information about this teaching method can be
obtained from the main paper [20].

9.6 Teaching Software Engineering Through Simula-
tion

This paper introduces plans for SimSE, a detailed, graphical, fully interactive educational
software engineering simulation environment that teaches the software process in a practical
manner without the time and scope constraints of an actual class project. This project
is still not completed but ,once completed, the author claims that, this tool will enable
students to form a concrete understanding of the software process by allowing its users to
explore different approaches to managing the software process and giving them insight into
the complex cause and effect relationships underlying the process.

The author of the paper believe that software engineering education will gain a new
method of teaching that is aimed at effectively introducing students to the software process
as experienced in real-world software engineering projects. Furthermore, the author believes
that industrial organizations will also be able to leverage this environment: by using SimSE
with models that reflect their organization and processes therein, new employees can be more
quickly and successfully trained.
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From the paper we are learning the fact that: This research project is based on the
hypothesis that a game-like, educational software engineering simulation environment is a
solution to the problem of teaching the software engineering process [16]. It is told us in the
paper that simulation should not replace existing educational techniques, but rather, serve
a complementary role. In particular, lectures are still required to introduce the topics to
be simulated and class projects are still required to demonstrate and reinforce some of the
lessons learned in the lectures and simulations.

In the paper the author explains to us that Simulation/adventure games, such as The
Sims [I] and SimCity [2], provide a tremendous source of experience and technology that
can successfully be adapted to illustrate the software process.

It is said to us in the paper that the basic architecture of SimSE environment contains
three main components: (i) a generic simulation engine, (ii) a graphical user interface, and
(ili) simulation models. A detailed discussion of each of these components can be obtained
from the main paper [2§].

Course Evaluation

The author says to us that SimSE will be used in an introductory software engineering class
to understand if its use helps students in achieving a better understanding of the software
process. The author says that in particular, he will be using three different techniques to
evaluate the effectiveness of SimSE. First, the students will be presented with surveys, both
during the class and afterward. Second, he, the author, will compare the grades of one session
of the course, in which students will be introduced to the simulation materials, to the grades
of another session, in which students will not be introduced to those materials. Finally, the
author will track the grades these students earn in subsequent software engineering classes
and do the same comparison.

Now we would like to give syllabus and mention aims and learning outcomes of software
design-I and IT undergraduate courses [11] and [24] in order to have some ideas about what
the other people are studying in software design course. First the syllabus and aims of the
software design-I course can be listed as follows:

1. to provide skills needed in object-oriented program development and software design;
2. to teach the basic strategies for modeling, analyzing and designing software projects;
3. to teach the foundations of software development processes;

4. to develop logic-based specifications of software systems.

At the end of the course it is expected that students would have acquired knowledge of:

1. Object-oriented programming, classes, interfaces, use of inheritance and polymorphism
and the role of software architectures;
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. Foundations of software development processes and the role of design in the software

development life-cycle;

Systems modeling, analysis and design across both architectural and behavioral spec-
ifications;

Modeling and development methodology;
Principles and techniques for the engineering of large software projects;

Fundamental principles of formal specifications, including state, operation and class
schemas.

In the similar way, upon completion of the course students would have obtained the skills

of:

oo

Decomposing problems and designing software architectures;

Producing static and behavioral models of software programs;

Applying software design methodologies;

Developing formal specifications from informal requirements of software systems;

Implementing software models in a structured and efficient way:.

The aim of the software design-II course is basically to teach the principles of Human
Computer Interaction and the Design of Interactive Systems, including Desktop Windowing
systems and the Web and the syllabus of this course can be listed as follows:

1.

— = =
O o= O

N N R

Overview of Human Computer Interaction

The PACT Framework for Designing Interactive Systems
Human Cognition

Input/Output Technologies and Interaction Styles

The Design Process

Accessibility, Usability and Engagement

Principles of Good Design

User Requirements Analysis

Conceptual and Physical Design

Envisionment and Prototyping

. Evaluating Interactive Systems Design

. Designing for the Web
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9.7 Conclusion and Discussion

In the literature there are some other methods about teaching software design, some of
which can be listed as follows: i-) A teaching laboratory and course programs for embedded
software design, [19]; ii -) Teaching software design tools via design patterns, [29]; iii -
) Immersive visual Modeling: Potential use of virtual reality in teaching software design,
[27]. We can easily conclude that although there is not a traditional way to teach software
design, the standard concepts such as verification, modularization, testing, design patterns,
modeling of software design are studied in almost every method about teaching software
design. We are observing in this survey that in the almost every method, main tools given
to the students are object oriented programming languages, Unified Modeling Language
(UML), and students have to know at least one programming language and preferably it is
an object oriented one.

9.8 Exam Questions

1. In the first introduced method in this survey, according to the author of the method,
what are the rational and benefits of the integrating testing and design concepts?

2. Pick two introduced method in this survey arbitrarily, and describe and compare the
evaluation tests to measure the understanding of students in those methods?

3. Do you prefer to study this course in a very specific methods such as RoboCup, SimSE,
and maybe using open source tools? (Personally, I do not!)
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Chapter 10

Lutfi Azhari: Software
Documentation Environments

People who are involved with programming activities know how difficult it becomes to main-
tain (large/complex) codes. Programs that you have written yourself are difficult enough
to understand when you come back to them later. Things are more difficult when the pro-
gram has been written by someone else or a big team, and has been modified so many times
that the existing documentation no longer accurately reflects the program code and struc-
ture. This is a nightmare still awaiting those who are involved with program maintenance,
comprehension, audit, or analysis. Tools that automate the process of code analysis and
documentation help to overcome this problem painlessly.

Software documentation can mean so many things. Code documentation is what most
programmers mean when using the term software documentation. When creating software,
code alone is insufficient. There must be some text along with it to describe various aspects
of its intended operation. This documentation is usually embedded within the source code
itself so it is readily accessible to anyone who may be traversing it.

Often, tools such as Doxygen [6] , Javadoc [10] or DOC++ [I] can be used to auto
generate the code documents; that is they extract the comments from the source code and
create reference manuals in such forms as text or HTML files. Code documents are often
organized into a reference guide style, allowing a programmer to quickly look up an arbitrary
function or class.

Software documentation goes far beyond comments that describe the source code.Unlike
code documentation, design documents tend to take a much more broad view. Rather than
describe how things are used, this type of documentation focuses more on the why. It explains
the rationale behind organizing a data structure or a class in a particular way, points out
patterns, and even goes as far as to outline ideas for ways to improve it later on. None of
this is appropriate for code documents, but it is important for design.

In this paper, I survey a set of code documentation tools. An overview of the tool is
presented along with examples that show how to use them. Moreover, I scratch the surface of
literate programming and documentation of the design and architecture of software systems.

169
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/**
* PrintArgs prints a list of command line arguments.
* @see java.lang.object
* Qauthor Lutfi Azhari
*/
public class PrintArgs {
VA
* main is the entry point to printArgs
* @since 1.0
* Qversion 1
* @param args an array of printArgs command line arguments
*/
public static void main (String [] args)
{
for (int i = 0; i < args.length; i++)
System.out.println (args [i]);

Figure 10.1: PrintArgs.java

10.1 Javadoc

Javadoc is an SDK tool that parses the declarations and documentation comments in one or
more Java source files. It also produces an associated set of HTML files that describe public
and protected classes, inner classes, interfaces, methods (including constructor methods),
and fields.

Javadoc works in concert with the Java compiler [I5]. Javadoc calls a portion of the
compiler to compile only declarations; the compiler ignores member implementations such
as method code bodies. With the Java compiler, Javadoc creates an internal representation
of classes that includes class hierarchies and other relationships. That representation, along
with user-supplied documentation, forms the basis of Javadoc-generated HTML files that
comprise the documentation.

How to Write Doc Comments for the Javadoc Tool

The best way to get comfortable with Javadoc is to play with an example. See Fig for
the PrintArgs application.

Documentation comments begin with /** and end with */. Each comment provides
descriptive information on a class member, followed by a tag section that completes the
comment by specifying various commands. The tag section begins with an @ character and
continues to the */. As a result, no descriptive information can follow the tag section.
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Briefly, a tag is a Javadoc command that provides special processing. Each tag begins
with an @ character followed by a keyword. Examples include:

e @see provides a see-also reference

e Qauthor identifies the source code’s author. The -author Javadoc option is needed to
process the @author tag

e Qreturn specifies the return value of a method

e Qparam specifies the parameters expected by a method

Doclets

Javadoc contains many other features. For example, it uses small documentation programs
called doclets [14] to customize the output and format of generated documentation. The
default doclet produces HTML documentation, but it’s possible to create custom doclets for
generating documentation in formats like XML or RTF. (Javadoc’s ~doclet option identifies
a custom doclet.)

Writing a customized doclet is simple. To do so, we write the Java program that con-
stitutes the doclet. The program should import com.sun.javadoc.* in order to use the
doclet API. The entry point of the program is a class with a public static boolean

start method that takes a RootDoc as a parameter . After compiling the doclet,we run
the Javadoc tool using the -doclet myDoclet option to produce the output specified by the
doclet, where myDoclet is the fully-qualified name of the starting class mentioned above.

Conclusion

Javadoc is an extensible tool used for code documentation. It extracts comments from
the java source files, and produces an associated set of HTML files that describe classes,
methods and fields. Javadoc’s extensibility comes from creating custom doclets to produce
documentation output in different formats like XML, RTF, as well as HT'ML.

As the vocabulary of Javadoc is not heavily typed, and there is only a limited number of
tags that the programmer need to know, it is easy to learn how to effectively use the tool.
This makes Javadoc simple enough to actually get used while coding.

10.2 Doxygen

Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL (Corba
and Microsoft flavors) and to some extent PHP and C# . It automatically parses source and
header files in a directory and hence generates function lists and class/UML diagrams. Fur-
thermore, comments in the appropriate format are parsed and used for the documentation.



172 Software Documentation Environments

/%%
* Class documentation appears here
*/
class someClass{
///variable documentation
int var;
/**Documenting Method 1 */
void Method1();
///Documenting Method 2
void Method2();

Figure 10.2: Comment style in Doxygen

It can generate an on-line documentation browser (in HTML) and/or an off-line reference
manual (in LATEX) from a set of documented source files. There is also support for gen-
erating output in RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML, and
Unix man pages. The documentation is extracted directly from the sources, which makes it
easy to keep the documentation consistent with the source code.

You can configure doxygen to extract the code structure from undocumented source files.
This is very useful to quickly find your way in large source distributions. You can also
visualize the relations between the various elements by means of include dependency graphs,
inheritance diagrams, class hierarchies, and collaboration diagrams, which are all generated
automatically.

Documenting in Doxygen

Like Javadoc, Doxygen automatically generates documentation by analyzing the comments
the programmer has put in his/her code. Doxygen derives documentation from comments of
two basic forms, /** */ and /// (see Fig [10.2). Doxygen documents whatever immediately
follows the doxygen comment.
In some cases it may be desirable to put documentation after an item, in which case you
can use the commenting form /**< */ and ///< (Fig [10.3).
There are a variety of commands that can be used within these special comment blocks.
Doxygen commands are preceeded by either a \ or an @ (either is fine). Some of the more
common ones are param, return, date, author, file.
Special commands for method documentation can be used as follows:
/*%
* Takes an integer and squares it
* \param a The integer to be squared
* @return The integer squared*/

int square(int a);
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/**

* Class documentation appears here

*/

class someClass{
int var; ///< variable documentation after
void Method1(); /#*< Documenting Methodl after */
void Method2(); ///< Documenting Method2 after

I

Figure 10.3: Trailing comments in Doxygen

Conclusion

Like Javadoc, Doxygen can be used to generate documentation by extracting comments
embedded in source code. Several output formats like HTML, RTF, PDF are supported.
The simplicity of comment format makes Doxygen an excellent candidate when selecting
a documentation tool. Unlike Javadoc, UML class diagrams, class hierarchy diagrams and
inheritance diagrams can be produced automatically from undocumented source files.

10.3 DOCH+

DOC++ [1] is a documentation system for C, C++ and Java. It generates TeX output for
high quality hard copies and HTML output for online browsing of the documentation. The
documentation is extracted directly from the C/C++ headers and source files or Java class
files.

As C++ and Java are object-oriented languages, class hierarchies are an important aspect
of documentation that need to be supported. The best way to read such a hierarchy is by
looking at a picture of it. Indeed, DOC++ automatically draws a picture for each class
derivation hierarchy or shows it with a Java applet in the HTML output (see Fig .

Writing Comments in DOC++

Similar to Doxygen, documentation comments are of the following format:

Y
o /// ..

Such comments are referred to as DOC++ comments. Each DOC++ comment generates
a manual entry for the next declaration in the source code. Trailing comments can be used
too.

Every DOC++ comment defines a manual entry. Manual entries are structured into
various fields. Some of them are automatically filled in by DOC++ while the others may be
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Figure 10.4: Snapshot of an HTML documentation page generated by DOC+-+

specified by the documentation writer. Among the various fields are, @doc, @param, @memo,
Q@exception ...
DOC++ automatically imposes a hierarchical stucture to the manual entries for classes,
structs, unions, enums and interfaces, in that it organizes members of such as subentries.
Additionally DOC++ provides means for manually creating subentries to a manual en-
try. This is done via documentation scopes. A documentation scope is defined using a pair
of brackets:

//e{

//@}

just like variable scopes in C, C++ or Java. Instead of “//@” and “//@” one can also use
“/*@*/” and “/*@*/”. All the manual entries within a documentation scope are organized
as subentries of the manual entry preceeding the opening bracket of the scope (see Fig.
10.5).

In addition to this, Java allows the programmer to organize classes hierarchically by
means of “packages”. Packages are directly represented in the manual entry hierarchy gen-
erated by DOC++. When a DOC++ comment is found before a ‘package’ statement, the
documentation is added to the package’s manual entry. This functionality as well as docu-
mentation scopes are extensions to the features of JavaDoc [21].
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/**@name Parameters */
//@{

/// the first parameter
double a;

/// a second parameter
int b;

//@%}

* parameters
* double a
the first parameter
¢ double b
a second parameter

Figure 10.5: Subentries for a manual entry as generated by DOC++

Similar to Java’s packages, C++ comes with the “namespace” concept. The idea is to
group various class, functions, etc. declarations into different universes. DOC++ deals with
namespaces in the same way it does with packages.

There is one more special type of comments for DOC++, namely “//@Include: <files>"
and “/*@Include: <files>*/”. When any of such comments is parsed, DOC++ will read the
specified files in the order they are given. Also wildcards using “*” are allowed. It is good
practice to use one input file only and include all documented files using such comments,
especially when explicit manual entries are used for structuring the documentation.

10.4 SODOS

SODOS [9] [8] (Software Documentation Support) is a computerized environment which
supports the definition and manipulation of documents used in developing software. The
SODOS environment differs from others in that it is based on a database management
system (DBMS) and an object-based model of the Software Life Cycle (SLC). All of the
documents used during the life-cycle of a software project are stored in a project database.
The documents are developed using a predefined document structure and a set of document
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relationships. The document structure consists of the chapter, section, paragraph and figure
hierarchy, and the document relationships consist of mappings between components of a
single document or several documents.

Viewing the development of software as an information management problem, the so-
lution used here is to define all information entering the environment to be part of the
structured database. The various documents generated during the SLC are the principal
objects that are stored in the database. The classification of objects and the inheritance
rules followed in the Class hierarchy of Smalltalk-80 [7] are ideal for defining the structure
and the operations on the objects defined in the model of the SLC environment.

Using SODOS on a Software Development Project

The framework provided by SODOS is available from the start of the project through speci-
fication and implementation and finally to the maintenance and evolution of the completed
software product.

At the beginning of a software project, a document administrator would be responsible
for defining a set of software document standards and software development methodologies.
Each document type is subsequently defined by him, in SODOS, using a database schema
that describes the document structure, internal relationships, keywords, and related docu-
ments. After the document types have been defined, the project database model is then
created and loaded based on the set of document types and methodologies chosen for the
project. The requirements, design and implementation documents are entered by the soft-
ware developer within SODOS. SODOS supports this entry by acting as both an editor and
by reflecting the form of each document type. Moreover, it supports the developer as he
highlights keywords and relationships within the documents. As each document is updated,
the document components and the relationships among components are defined and entered
into the database. Each component consists of text for either requirements, design modules,
code elements or test procedures. Each relationship consists of a link between the component
being defined and another component either in the same document or in another document.

The final product of the software development project is a database containing the Re-
quirements Documents, the Design Documents, the Implementation Notebook, and the test-
ing specifications, plans and procedure documents. The relationships among the components
in each document are also stored in the database, based on the SLC information model rep-
resentation of the documents. The database can then be used during maintenance and evo-
lution of the software system to more easily test the application or change the requirements,
the design specifications or the implementation.

During the maintenance or evolution phase, all of the requirements, design, implementa-
tion and testing documents are available to the maintenance personnel. Changes in require-
ments and the corresponding changes in design and implementation can be traced using the
relationships stored in the database. Queries may be issued against the database to deter-
mine design modules, code or tests associated with the requirement which has changed. The
maintenance personnel then use the SODOS interface to update the Requirement Document,
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the Design Documents, the Implementation Notebooks and the testing documents. These
changes create new versions of the database which are then used for subsequent changes.

Conclusion

SODOS is an attempt to support Software Life Cycle document production through the ap-
plication of database technology. SODOS requires the system/software engineer to identify
keywords or key elements as he creates his documents. Making these identifications requires
only marginal extra effort due to the user-friendly interface. The resulting database con-
tains all documents, code, test data and relationships both within and between documents.
These relationships may be used to determine consistency within a document, structural
completeness of a document and traceability across documents.

10.5 SLEUTH

The SLEUTH [16](Software Literacy Enhancing Usefulness To Humans) system provides a
mechanism to link a collection of documents using typed hypertext links. It consists of both
an authoring and a viewing environment. It also provides the facility to perform keyword
searches on the text of the documentation. It applies information retrieval techniques to
software documentation in order to provide a mechanism that allows a variety of users to find
the answers to questions about software documentation quickly and consistently. Specifically,
given a collection of software documents, a user should be able to find the answer to a specific
question or a broad array of information on a general topic with equal ease.

SLEUTH utilizes Adobe FrameMakeil]] as the basis for both the authoring and viewing
environments. FrameMaker provides a WYSIWYG (What You See Is What You Get) edit-
ing environment and supports both hypertext and cross referencing. It also provides basic
navigational features and provides a toolkit for customization. Many of the basic features
necessary for document creation and editing are provided, allowing effort to be concentrated
on more specialized features. FrameMaker can be used to produce effective hardcopy ver-
sions of the documents because it is a document preparation system. In addition to the basis
provided by FrameMaker, the major components of the SLEUTH system are:

a search engine which allows full text searching on the documents in the collection.
The search engine allows a user to locate information on a specific topic if it is included
in the set of documents.

e the interface to that search engine.
e configurable hypertext and cross-reference filter generators,

e and the facility to produce a directory-structured index for the system and library
source code.
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Figure 10.6: SLEUTH as seen by the documenter

SLEUTH as seen by the documenter (see Fig. [16]) consists of the FrameMaker
editing environment, configurable filter generators, a search engine and the facility to produce
a directory-structured index for the source code. When the initial set of documents has been
completed and the configuration files have been updated, the custom hypertext and cross-
reference filters are generated for the user. The initial set of documents is then passed
through these filters to produce the modified set of documents. The text contained in the
initial set of documents is also indexed for use by the search engine. The indexing process
does not modify the documents. Finally, a directory-structured index is produced for the
source code. This index provides links into the source code, but the indexing process does
not modify the source code. The modified set of documents, directory index and source code
will be visible to the users.

The Authoring Interface The interface presented to the documenter is the standard
FrameMaker WYSIWYG editing environment. The documenter uses FrameMaker to com-
pose the initial set of documents and any associated figures and tables. The SLEUTH system
provides a document template which defines paragraph types, the formats to differentiate
the typed hypertext links and other document formatting information.

Thttp: //www.adobe.com /products/framemaker
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The Search Engine The SLEUTH system currently utilizes a WAIS (Wide Area In-
formation Server) [12] search engine. WAIS is intended for distributed information retrieval
and based on a clientserver model of computation. The indexer is the only portion of the
search engine which concerns the author. The indexer creates a table of the document and
paragraph locations of terms in the documentation text. Terms such as ”a”, 7an”, "the”, etc.
are not indexed. The documentation should be re-indexed whenever changes are released to
the users.

The Filters While composing these documents, the author uses a text editor to configure
the filter generators for the hypertext and cross reference filters. The author provides a list
of terms that will become hypertext links (to glossary entries, appendices, other sections,
source codes and figures) and a list that will become cross-references. The filters produce
document transformation as in Fig. In the segment that has been modified, underlined
terms designate hypertext links. The page numbers are cross references inserted to facilitate
the use of the documents in hard copy form.

System Organization

The software system of the MSS currently consists of four separate programs as shown in Fig. 1. The
programs communicate via a network using a scoket-based communications package written for this
system. The central program in the MSS software system is the control program. It is responsible for
control of the application devices, management of the information that is sent to the desplays and
calculation of critical values for control of devices and location of the seed. The balance of this section
will look at the interactions between the control program and each of the display programs and will also
describe some of the design decisions related to information hiding and devision of responsibility.

System Organization

The software system of the MSS currently consists of four separate programs as shown in Fig.
1(PAGE_F1). The programs communicate via a network using a scoket (page A1)-based
communications package written for this system.

The central program in the MSS software system is the control program (page 7). It is responsible for
control of the application devices, management of the information that is sent to the desplays and
calculation of critical values for control of devices and location of the seed. The balance of this section
will look at the interactions between the control program (page 7) and each of the display programs
and will also describe some of the design decisions related to information hiding and devision of
responsibility.

Figure 10.7: Document transformation using the SLEUTH filters
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Conclusion

SLEUTH consists of an authoring and viewing environment and provides both a mechanism
to link a collection of documents using typed hypertext links and the facility to perform
keyword searches on the text of the documentation. These techniques can improve the
usefulness of software documentation by addressing the needs of a wide variety of users and
by providing these users with a number of ways to uncover the answers to their questions.

10.6 Variorum: A multimedia-Based Program Docu-
mentation System

Conventional software documentation systems are mostly based on textual descriptions that
explain or annotate the program’s source code. Because these systems rely primarily on
texts, it is difficult for program authors to describe the overall algorithm structure and
implementation techniques used, especially those that require visual presentation.

From a software maintainer’s standpoint, the easiest way to understand a program is to
sit side by side with the program’s original author and go over the program line by line, and
explain what the program does and why it was designed the way it is. In practice, this is
rarely the case for the obvious reasons.

Variorum [B)] is a software documentation system that is designed to duplicate this ideal
scenario by providing a multimedia recording and editing tool for program authors to explain
how the programs work, exactly in the way they would have done if they were asked to
work with software maintainers. It uses multimedia technologies like audio, digital drawing
pen as well as text to help program authors record various design decisions and program
annotations. Specifically, program authors can verbally describe the program’s design and
implementation, and graphically illustrate the algorithms or program structures by drawing
figures on digital tablets.

Authoring and Playback Interface

To annotate a program segment, users first define the scope of the annotation by highlighting
the code segment. Variorum allows nested scoping, so one can further annotate a code
segment within another code segment that has already been annotated. This is particularly
useful to, for example, give an overview of what a procedure does and then to detail the
implementation of the tricks used in each block of the procedure. When a code segment is
annotated, the text of the program segment is shown in a different color to distinguish it
from other un-annotated segments.

After the scope is defined, Variorum presents a separate window initialized to the pro-
gram segment highlighted. Users can then verbally explain, with the help of digital pen
sketches, the algorithmic and implementation details of the program segment. Variorum
transparently records the speech inputs and the digital pen strokes, and stores them in a
way that guarantees synchronized playback of these two streams. Users can still type in
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Figure 10.8: Snapshot of an annotation session using Variorum for the bubble sort program

traditional textual annotations as well. Figure [10.8 shows an example screen snapshot of
an annotation session for the ”bubble sort” program.

When source programs are modified, the corresponding annotations should be modified
accordingly to reflect the changes. Variorum does not attempt to solve completely the
well-known problem of out-dated documentation with respect to the source code. Instead,
Variorum supports only timestamp-based change notification to alert program authors of
potential inconsistency, and an annotation editing capability to update existing annotations
in place.

Program maintainers can then access the source code files and annotations using a web
browser. An example snapshot is shown in Figure [10.9] Different colors are used to denote
different nesting levels. By clicking on the underlined annotation links on the program text,
users can access the corresponding annotations. Fast forward/rewind and pause/resume are
provided to help navigating through the annotation sessions

Conclusion

From a cognitive science point of view, understanding a program is essentially a reverse
engineering process - recovering the logical design decisions from the source code [B]. A
multimedia approach to software documentation greatly improves the interactivity and flex-
ibility of the process. It also enhances the quality of the resulting documentation as visual
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bubbleSort(dArray, 0, 99);
cout << “After Sorting” << end1;

for(i=0; i < 100; i++)

cout << i << ™" dArray[i] << endl;

¥
void bubbleSort(int* dataArray, int begin, int end) {
int i, j;
/!
Annotation-1
for (i = end; i >= begin; i--) {
for (j = begin + 1; j <=i; j++) {
//
Annotation-2

if (dataArray[j-1] > dataArray[j]) {
int temp = dataArray[j];
dataArray[j] = dataArray[j-1];
dataArray[j-1] = temp;

//Annotation-2
¥

//Annotation-1
¥

3
/!

Figure 10.9: An example snapshot of the web layout of the bubble sort annotated program
segment

presentations are proven to be most effective for program understanding [19].
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10.7 Literate Programming

"Let us change our traditional attitude to the construction of programs: Instead of imag-
ining that our main task is to instruct a computer what to do, let us concentrate rather on
explaining to humans what we want the computer to do.” (Donald E. Knuth, 1984)

In essence, this is the purpose of literate programming. Such an environment reverses the
notion of including documentation in the form of comments within the code, to one where
the code is embedded within a program’s description. In doing so, literate programming
facilitates the development and presentation of computer programs that more closely follow
the way they are put together and implemented. This, in turn, leads to programs that are
easier to debug and maintain [I1].

When literate programming, one specifies the program description and the program code
in a single source file in the order best suited to human understanding. The program code
can be extracted and assembled into a form understandable for the compiler or interpreter
by a process called tangling’”. Documentation is produced by a process of 'weaving’ the
description and code into a form ready to be typeset (most often by TEX or LATEX), see

Fig [10.10] [13].

weave TEX
\ Source
tangle Code

Figure 10.10: The dual usage of WEB system

Many different tools have been created for literate programming over the years and most
of the more popular are based, either directly or conceptually, on the WEB system created
by D. E. Knuth.

In terms of documentation and explanation, the ability to describe components as they
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come into play in the design of the program —rather than in the order they must occur for
the compiler or interpreter— is a vast improvement over traditional commented code. In
addition to the benefits of improved code and easier maintenance, literate programs can also
serve well as excellent teaching tools.

10.8 Design and Architecture Documentation

Documenting the design decisions that were undertaken during the various development
phases of the system, as well as the architecture adapted are as important sides of software
documentation as is code documentation.

To document the design of the system, one should start with an overview of the system
in hand. Provide a general description of the software system including its functionality and
matters related to the overall system and its design.

Any assumptions or dependencies regarding the software and its use should be docu-
mented. These may concern such issues as related software or hardware, operating systems,
end-user characteristics and possible and/or probable changes in functionality.

Also, it should be taken into consideration to describe any design decisions and/or strate-
gies that affect the overall organization of the system and its higher-level structures. These
strategies should provide insight into the key abstractions and mechanisms used in the sys-
tem architecture [3]. The reasoning employed for each decision and/or strategy (possibly
referring to previously stated design goals and principles) should also be mentioned here.
Such decisions might concern (but are not limited to) things like the use of a particular type
of product (programming language, database, library, etc. ...), future plans for extending or
enhancing the software, and hardware and/or software interface paradigms.

A high-level overview of how the functionality and responsibilities of the system were
partitioned and then assigned to subsystems or components should also be documented [20].
The main purpose here is to gain a general understanding of how and why the system was
decomposed, and how the individual parts work together to provide the desired functionality.

The top-most level should describe the major responsibilities that the software must
undertake and the various roles that the system (or portions of the system) must play. How
the system was broken down into its components/subsystems is important to document as
well. In doing so, one gains a clearer image of the system structure and how that relates to
its intended functionality. Another significant architectural aspect of the system that should
be documented is how the higher-level components collaborate with each other in order to
achieve the required results. And by including the rationale for choosing this particular
decomposition of the system, it becomes easier to extend the software system to attend to
new required functionalities.

Architecture documentation is both prescriptive and descriptive [2]. That is, it prescribes
what should be true by placing constraints on decisions that are about to be made, and it
describes what is true by recounting decisions that already have been made. However, the
best architectural documentation for performance analysis may well differ from the best
documentation for system integrators. Both of these will differ from the documentation
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that a new hire receives. The documentation planning and review process must support all
relevant needs.

10.9 How much documentation is enough?

Quite a lot, certainly more than most programmers, analysts, or program designers are
willing to do. The first rule of managing software development is ruthless enforcement of
documentation requirements [4] [17] .

Why so much documentation? In part, this is because each designer must communicate
with other designers, with his management and possibly with the customer. A verbal record
is too intangible to provide an adequate basis for a management decision. During the early
phase of software development the documentation is the specification and is the design. If
the documentation is bad the design is bad. If the documentation does not yet exist there is
as yet no design, only people thinking and talking about the design which is of some value,
but not much.

In addition to achieving software systems that better meet the specifications and that
are easier to maintain, good documentation has real monetary value [I7]. During the testing
phase, with good documentation the manager can concentrate personnel on the mistakes in
the program. With good documentation the manager can use operation-oriented personnel
to operate the program and to do a better job, cheaper. Without good documentation
the software must be operated by those who built it. Generally these people are relatively
disinterested in operations and do not do as effective a job as operations-oriented personnel.
It should be pointed out that traditionally in an operational situation, if there is some
hangup the software is always blamed first. In these situations, the software documentation
must speak clearly to fix the blame. Finally when system improvements are in order, good
documentation permits effective redesign and updating. If documentation does not exist or
only poor documentation is available, generally the entire existing framework of operating
software must be junked, even for relatively modest changes.

10.10 Summary

Documentation is the castor oil of programming. Managers think it is good for programmers,
and programmers hate it! [I8]. When considering a source code documentation tool, it is
useful to examine different aspects like usability, target media, produced document structure,
comment extraction capabilities, languages supported and inline formatting in order to select
the best tool for the job.

When documenting a software system, one should consider more than just code docu-
mentation that explain the API’s, algorithms and data structures used. The rationale behind
the design of the system should also be documented, as well as the reasons for structuring
the system in a particular way. Without such documents the maintenance and modifiability
of the system become a nightmare, and sometimes even impossible.
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10.11 Exam Questions

1. What characteristics should a documentation tool have to make it a good candidate

for documenting a software system?

2. What are the major differences between DOC++, Variorum and SODOS?

3. What is design documentation? And how is it different from code documentation?
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Chapter 11

Ming Yu Zhao: Object-Oriented
Literate Programming

Object-oriented literate programming is what the name implies: implementing object-oriented
programs with Literate Programming approach. By combining these two approaches, we can
obtain the advantages coming from both of them and avoid or reduce their shortcomings
at the same time. In this paper we, first, talk about object-oriented design and Literate
Programming where both their advantages and limitations are analyzed, respectively. Then,
a way to combine them together is introduced. Finally, we present a sizeable example, a
banking system, which is implemented under the concept of object-oriented literate pro-
gramming.

11.1 Introduction

As a computer programming paradigm, object-oriented programming is a revolutionary ap-
proach of thinking about the process of decomposing problems and developing programming
solutions, totally unlike anything that has come before. It views a program as a collection
of loosely connected objects. Each object is responsible for specific tasks and it is by the
interaction of objects that computation proceeds. Designing an object-oriented program is
like organizing a community of individuals. Each member of the community is given cer-
tain responsibilities. The achievement of the goals for the community as a whole comes
about through the work of each member, and the interactions of members with each other.
By reducing the interdependency among software components, object-oriented programming
permits the development of reusable software systems(see [3], [8]). Object-oriented program-
ming has become the dominant programming paradigm in the past few years. Characterized
by compatibility, reusability and continuity, object-oriented programming significantly im-
proved the software development process. Because for the traditional design, it is impossible
to combine functions if the data structures they access are not taken into consideration and
difficult to build reusable components if they embody functions alone and ignore the data
part. In addition, focusing on requirements definition and the first operational system re-
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lease, the traditional design method hardly satisfies continuity in a long-term concern. In
addition, it is easier to understand, because there is direct mapping from the real-world
to the object-oriented program. However, the results obtained by the use of such method-
ology are not always entirely satisfactory. Most development programmers do not like to
write documentation, but the documentation is, certainly, extremely important for those
maintenance programmers to understand the software system they are responsible for. It
is well known that understanding programs is one of the most time-consuming activities in
software maintenance. Therefore, complete and up-to-date documentation plays a key role
in minimizing software costs and further improvements are required to achieve high quality
programs. Literate Programming introduced by Donald Knuth is an approach to improve
program understanding by regarding programs as works of literature. One can obtain human
readable documentation and computer source code from a single unified program descrip-
tion. It seems that Literate Programming can provide an answer to the problem of the
software maintenance. Object-oriented design is the first stage of object-oriented program-
ming, so in order to find a proper way to combine object-oriented programming with Literate
Programming, we have to examine object-oriented design first(see [0]).

11.2 Object-Oriented Design

There are many object-oriented design techniques, such as Responsibility-Driven Design
coined by Rebecca Wirfs-Brock, Use Case Analysis introduced by Jacobson, Object-Modeling
Technique developed by Rumbaugh, as well as Design Patterns. They share a lot of com-
monalities. That is, they all strive for loose coupling and strong cohesion, hide as much
information as possible, such as data, implementation, class, and even design, apply the
“once and only once” rule, and use intention-revealing names. Additionally, they have same
objectives, which are to give a practical approach to produce high quality object-oriented
software and to provide the knowledge and experience necessary to avoid the most common
risks associated with building production systems. The difference between them is only their
perspective to the problem(see [4], [2]). T prefer Responsibility-Driven Design because it is
among the simplest to explain and suits Literate Programming.

Responsibility-Driven Design is a method for deriving a software design in terms of col-
laborating objects, by asking what responsibilities must be fulfilled to meet the requirements,
and assigning them to the appropriate objects. Responsibility implies a degree of indepen-
dence or noninterference. That is, when Object A gives a request to Object B to do a specific
action, it is not necessary to supervise how the request would be serviced. By responsibility,
Responsibility-Driven Design realizes the concepts of information hiding and modularity.
And it is followed by reusability, one of the major benefits of object-oriented programming.
Responsibility-Driven Design is driven by an emphasis on behavior at all levels of develop-
ment. It is reasonable, because the behavior of a system is usually understood long before
any other aspects(see [3]).

How do we apply this technique in object-oriented programming? First of all, we have
to refine the specification. Because initial specifications are almost always ambiguous and
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Component Name Collaborators
Description of the responsibilities List of other
assigned to this component components

Figure 11.1: Component, Responsibility, Collaborator.

unclear on anything except the most general points. This step can bring us a better handle
on the “look and feel” of the eventual product and make sure if it is in agreement with the
original conception of the client.

Then we decompose the whole problem into activities by asking what/who questions.
First, we identify what activity needs to be performed next. This is immediately followed
by answering the question of who performs this action. In this manner, designing a software
system is much like organizing a collection of people, such as a community. Any activity
that is to be performed must be assigned as a responsibility to a certain component, which
is simply an abstract entity that can perform tasks and may ultimately be turned into a
function, a structure or class, or a collection of other components. Therefore, a component
must have a small, well-defined set of responsibilities and should interact with other compo-
nents to the minimal extent possible. During this process, CRC(Component, Responsibility,
Collaborator) cards are often employed to represent components(See Figure 1.1). Written
on the face of the card is the name of the software component, the responsibilities of the
component, and the names of other components with which the component must interact.
An advantage of CRC cards is that they are widely available, inexpensive, and flexible. This
encourages experimentation, since alternative designs can be tried, explored, or abandoned
with little investment. The physical separation of the cards encourages an intuitive under-
standing of the importance of the logical separation of the various components, helping to
emphasize the cohesion and coupling.

So far, we should have decided that all the activities can be adequately handled by several
components. Therefore, a communication diagram and an interaction diagram can be used to
illustrate the static relationships between components and their dynamic interactions during
the execution time, respectively. See Figure 1.2 and Figure 1.3,

Next, we need to describe the information held by these components. In Responsibility-
Driven Design, most components consist of a combination of behavior and state, where the
behavior is the set of actions the component can perform and the states represent all the
information held within the component at a given point of time. Of course, it is not necessary
that all components maintain state information. The term class is used to describe a set
of objects with similar behavior. An individual representative of a class is known as an
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Figure 11.2: Communication between the components in the Banking System.
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Figure 11.3: An example interaction diagram.
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instance. All instances of a class will respond to the same instructions and perform in a
similar manner. State, on the other hand, is a property of an individual.

Cohesion is the degree to which the responsibilities of a single component form a mean-
ingful tasks that are related in some manner. Probably the most frequent way in which tasks
are related is through the necessity to access a common data value. Coupling, on the other
hand, describes the relationship between software components. In general, it is desirable to
reduce the amount of coupling as much as possible, because connections between software
components inhibit ease of development, modification, or reuse.

After that, we need to refine the components. A component with only one behavior and
no internal state may be made into a function. Components with many tasks are probably
more easily implemented as classes. Names are given to each of the responsibilities identified
on the CRC card for each component, and these will eventually be mapped onto routine
names. Along with the names, the types of any arguments to be passed to the function
are identified. Next, the information maintained within the component itself should be
described. All information must be accounted for.

Now, our focus should move to a software system implementation from the description
of a component. The major portion of this process is designing the data structures that will
be used by each subsystem to maintain the state information required to fulfill the assigned
responsibilities. It is here that the classic data structures of computer science come into play.
The selection of data structures is an important task, central to the software design process.

Once the design of each software subsystem is finished, the next step is to implement
each component’s desired behavior. At this point, each responsibility or behavior should
be characterized by a short description. The task at this step is to implement the desired
activities in a computer language.

Once software subsystems have been individually designed and tested, they can be in-
tegrated into the final product. Starting from a simple base, elements are slowly added to
the system and tested. The application is finally complete when all components have been
added. During integration, it is very like that new errors can be discovered. If so, some of
the components have to be modified, and then individual test is needed before an attempt
to reintegrate these refurbished ones into the system.

Finally, we come to the stage of maintenance and evolution. It is unavoidable that errors
can be discovered in the delivered product. These must be corrected, either in updates
or corrections to existing release or in subsequent releases. Requirement or hardware may
change. So this stage can not be ignored.

11.3 Literate Programming

We have already seen how Responsibility-Driven Design works, then let us talk about Literate
Programming. When writing programs, development programmers should not concentrate
on how to instruct the computer what to do, but instead, they should try to write programs
in a way that other people can understand them more easily. This is the main idea of Literate
Programming introduced by Donald Knuth in the early 80’s (see [5], [1], [9]) and it seems to
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put a dent in the software crisis mentioned above. In fact, it is because that the combination
of two languages, formatting language and programming language, is much more expressive
than either single language by itself. In Literate Programming, programmers analyze and
design software at a high level, just like an author conceives a story for his or her reader.
Hence all the implementations, algorithms, as well as variables could be clearly explained
and justified, which is very important for both development programmers themselves and
maintenance programmers, and further ensures the good quality of the software system.

The first Literate Programming system is WEB, which was published by Donald Knuth
for his TeX typesetting system. The main idea behind WEB is that if an experienced pro-
grammer wants to provide the best documentation of his or her softwares, two kinds of
techniques are necessary at the same time: TeX, a formatting language, and Pascal, a pro-
gramming language. The structure of a software program may be though of a “web” that is
made up of many interconnected pieces. Programmer is responsible to explain each individ-
ual part of the web and how it relates to its neighbors only and computer is responsible for
the laborious work of arranging the parts of the program in an order required by the compiler.
Thus, we can obtain software system as well as its consistent document simultaneity.

Actually, in the area of Literate Programming, all source code goes into one file, from
which “weave” will generate a section headings, a table of contents, a proper index for
identifiers, an alphabetized listing of the code section names, and other things designated
by the author using the web control code and “tangle” will produce the program code for
computer according to the relation tag set by programmer. The author is meant to follow a
narrative order in presenting the parts of the program. As Knuth says “but always it is an
order that makes sense on expository grounds” and further, “there’s no need to be hung up
on the question of top-down versus bottom-up—since a programmer can now view a large
program as a web, to be explored in a psychologically correct order...” (see [3]). Therefore,
in most cases, there will be a number of ways of ordering that will work. I believe that
Literate Programming can be adapted to object-oriented programming.

11.4 Complement and Conflict

We have introduced both object-oriented programming and Literate Programming approach.
It is not hard to see that they complement each other. Because, on the one hand, object-
oriented programming can obtain some advantages from the use of the Literate Programming
approach, such as readability and maintainability. Readability, because by allowing users
to use a more natural literary style of writing to describe the application, programmers are
free to discuss the design decisions and constrains that have led to certain intricacies in the
implementation. Presenting this discussion in book form allows programmers to break it
up into discrete sections. The result will automatically be more readable as the author’s
intentions will be laid out in much more detail. Maintainability, because better factoring
will lead to more well thought out development. The literary style of presentation allows
programmers to not only lay out the software better, but to discuss the algorithms and their
intricacies in detail. When an alteration is required it should be fairly obvious which part or
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section of the book will need to be changed. On the other hand, Literate Programming can
become more popular and be enhanced, because of the merits of object-oriented program-
ming. Popularity, because object-oriented programming has become exceedingly popular
in the past few years. Software producers rush to release object-oriented versions of their
products. Countless books and special issues of academic and trade journals have appeared
on the subject. If Literate Programming can provide the ability of object-oriented program-
ming, then it will naturally attract more and more attention of users. Enhancement, because
object-oriented programming can share reusability, one of its major benefits, with Literate
Programming.

However, in order to combine them together, we have to resolve their incompatibilities.
The main problem comes from the design structure. While an object-oriented analysis and
design is supposed to go seamlessly into an object-oriented implementation, typically the
initial design is presented as a huge diagram that contains no information for its rationale,
in a literate analysis and design approach we generally build up the model gradually. For
example, at the beginning of Responsibility-Driven Design, programmers decompose the
whole problem into components according to the responsibilities, where components are
composed of few empty behaviors and then refined step by step. If fact, factoring is one
of the advantages of Literate Programming, hence one can break up any big block into its
constituent parts. So we can take several succeeded chunks, which share the same name, as
a component of Responsibility-Driven Design and refine the empty chunks later.

Another problem is that most classic Literate Programming approaches are characterized
by language-independence. For instance, such as WEB depends on Pascal and MatlabWEB
depends on Matlab. So we must find out a language-independent Literate Programming
tool, noweb is what we want.

Noweb’s simplicity comes from a simple model of files, which are marked up using a
simple syntax. A noweb file is a sequence of chunks and a chunk may contain code or
documentation. Chunks may appear in any order. Each code chunk has a name and begins
with <chunk name>>= on a line by itself. Each documentation chunk begins with a line that
starts with an @ symbol followed by a space or newline. Chunks are terminated implicitly
by the beginning of another chunk or by the end of the file. If the first line of the file does
not mark the beginning of a chunk, noweb assumes it is the first line of a documentation
chunk. Actually, the noweb manual is only three pages; an additional page explains how to
customize its LaTeX output. It is more important that noweb is language-independent. In
other word, programmer, who wants to develop software with literate analysis and design
approach, is freed from certain programming language.

As Figure 1.2 shows, noweb uses its notangle and noweave tools to retrieve code and
documentation, respectively. When notangle is given a noweb file, it writes the program
on standard output and when noweave is given a noweb file, it produces, on the standard
output, TeX source for typeset documentation. A more detailed introduction of noweb can
be found in [7] and [3]. For all reasons given above, we choose noweb as another one of main
tools in our example.
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Figure 11.4: Dual usage of a noweb file.

11.5 An Example: A Banking System

We take a banking system as our example, which is specified as follow:

1. A banking system has many customers. Each customer may have a savings account, a
cheque account, and an investment account, one account of each type.

2. The bank offers access to cheque and savings accounts through an interactive menu

like that seen in an automatic teller machine (ATM); an investment account cannot
be accessed through the ATM.

3. Savings account accrues daily interest, paid on the current balance and its interest rate
is 4.5% a year. A cheque account gets no interest. An investment account is created
with an initial balance of at least $1000, and accrues daily interest for a period of 3,
6, or 12 months. A 3-month investment account has an annual interest rate of 5.5%,
a 6-month account has a 6.0% rate, and a 12-month account 6.5%. When the account
matures at the end of the period, the total amount is transferred into the customer’s
cheque account.

4. A positive amount may be deposited in an account or withdrawn from an account. A
withdrawal from a savings account decrements the balance by that amount; there are
no charges or penalties for a savings account. A successful withdrawal from a cheque
account costs 50 cents. An unsuccessful withdrawal from a cheque account costs $5.
The balance of an account cannot be negative.

5. The bank system runs for an extended period. At the start of each day, a bank teller
creates new customers, and new accounts for existing customers. Each customer has
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a unique integer key; successive integers are used for each new customer. Customers
and accounts are never deleted from the bank. The ATM then runs all day, handling
multiple customers. To use the ATM, a customer enters his or her unique key (this
simulates putting a card into the ATM) and his or her password, chooses an account,
then chooses commands from the menu. Menu commands are read and executed until
the customer finishes; the ATM then waits for the next customer. A special key of 666
exits the ATM system for the day. Interest is then added to all savings and investment
accounts. Entry of the special key value of 999 into the ATM shuts down the whole
system. The bank data is stored to file when the system shuts down, and is retrieved
from file when the system starts up again.

6. A customer is allowed three attempts to login to the ATM by entering a valid password.
If no correct password is entered after three attempts, then the ATM system rejects the
login attempt and asks for a new customer identifier. If the password is correct, then
the customer is shown a menu of account choices, and the system reads and executes
the choices. Any number of transactions may be made; processing on the account
continues until the customer chooses to exit that account. Multiple accounts may be
chosen and used within a single ATM session.

7. The ATM menu choices (upper or lower case) are

D Deposit

W Withdraw up to the total amount in the account
B Show the balance

Q Quit the system

H Help: Show the menu choices

Literature of the Banking System
Refinement
1. Customers can not withdraw money from his or her investment account.
2. Customers can not deposit money to his or her investment account.
3. A Customer is allowed three attempts to login to the ATM by a valid password con-

tinuously.

Components and Behavior

To identify all the components of the Banking System, a good idea is imagining an execution
of a working system and picking up all the responsibilities.
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According to the specification, the Banking System runs for an extended period and at
the start of each day, bank data is retrieved from a file when the system starts up, so the
responsibilities for making a bank, running the whole system and retrieving bank data are
assigned to a component called the bank:

(bank [198a)= 204al>
(makeBank
(runBank
(retrieveBankData

The teller then creates new customers, so the responsibilities for making a teller, running
the teller, promoting and creating new customers are assigned to a component called the
teller:

(teller [198b)= M99
(make Teller 209d)

runTeller

{
(newCustomers
(askForMoreCustomers

In order to add a new customer, the teller has to send a request to a component called the
customer. In other word, the job of creating customer should be assigned to the component
customer:

(customer [198c)= 990>
(makeCustomer

Every customer is a person, so to create a new customer, we need create a record for the
person first. The responsibility for making a new personal record is assigned to a component
called the person:

(person |198d)= 98>
(makePerson
Making a new personal record is nothing but getting the personal information, including

name, gender and address. These responsibilities concerning new person records are assigned
to the component person:

(person [198d)+= <[[08d [987>
(getName [211d)
(getGender [2124)
(getAddress

It is because there are only two possibilities (male or female) for the gender of a person
that the responsibilities for promoting and verifying the input of the gender are assigned to
the component person:

(person [198d)+= <[I9%¢ T99al>

(readGender
(isGoodGender
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Showing the personal information of a customer is necessary, so the responsibility for
that is assigned to the component person:

(person [198d)+= <981
(showPersonallnfo

Each customer has a unique ID; successive integer are used for each new customer, so
the responsibility for setting ID for a new customer is assigned to the component customer:
(customer [198d)+= <[[98d M09d>

(setCustomerID
Similarly, the responsibility to show the customer information(including the personal

information, account information and customer ID) should be assigned to the component
customer:

(customer [198d)+= <[990l [T99g>
(showCustomer
(showCustomerID

Every customer has his or her own password, so the responsibility for making a password
for a customer is assigned to a component called password:

(password [199d) = 2020
(makePassword

After that, the teller creates new accounts for exiting customers, so the responsibilities
for promoting and creating new accounts are assigned to the component teller, too:
(teller [L98b) += <1985

(newAccounts [215al)
(askForMoreAccounts
(noMore [215c)

But the responsibility for finding a certain customer should be assigned to a component
called the customerManager:

(customerManager [199f) =

(findCustomer

And the responsibility for matching the customer ID should be assigned to the component
customer:

(customer [198d)+= <[199d [99hl>
(matchID

In order to open a new account for a certain customer, the teller has to send a request
to the component customer:

(customer [198d)+= <[99 B0Zal>
(addAccount



1200a)

200Dl

200c]

200d|

200€!

200f]

200 Ming Yu Zhao

Each customer may have a savings account, a cheque account, and an investment account,
so it is reasonable that the responsibilities for making accounts and opening a certain account
for a certain customer are assigned to a component called accounts:

(accounts 200a) = 2005

(makeAccounts
{openAccounts

The responsibility for showing all the accounts of a certain customer is assigned to the
component accounts:

{accounts 200a)+= <200al 202d>
(showAccounts [217c)

One account of each type, so the responsibilities for making, setting, matching and show-
ing account type to a component call account:

(account 200d)= 200d>
(makeAccount
(setAccount Type
(showAccount Type
(matchAccountType

Every account cannot has a negative balance, so the responsibilities for getting and
showing account balance to the component account:

(account 200c) += <200d P00d>

(getAccountBalance
(showAccountBalance

Showing the account information of a customer is necessary, so the responsibility for that
is assigned to the component account:

(account 200d)+= <200d
(showAccountInfo
The responsibility for making a cheque account, setting cheque account type is assigned
to a component called the cheque:

(cheque [200f) = 203dl>
(makeCheque
(setCheque Type

The responsibilities for making a savings account, setting savings account type, and set
the interest rate are assigned to a component called the savings:

(savings [200g) = R03d>
(setSavings Type 2194

(setSavingsRate
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The system should have the ability to show the investment account information to its
owner, so the responsibilities for showing period, showing the elapsed time, and showing the
whole investment account are assigned to the component investment:

(investment [201a)= 2015

(showlnvestment
(showPeriod
(showElapsed

To create an investment account, the customer need to provide an initial balance and to
choose a period, so the responsibilities for making an investment account, setting investment
account type, getting a initial balance and setting a period are assigned to a component
called the investment:

(investment [201a)+= <[20Tal 20Td>

(makelnvestment

(setInvest Type

(getInitBalance

(getPeriod 221

(setInvestRate [221d)

The system should have the ability to show the investment account information to its

owner, so the responsibilities for showing period, showing the elapsed time, and showing the
whole investment account are assigned to the component investment:

(investment [201al)+= <BP01H R0Adl>
(showlnvestment
(showPeriod
(showElapsed

Both savings account and investment account have to deal with the matters concerning
interest, it is reasonable to separate the concept of interest from those two accounts, so
the responsibilities for making an interest account, setting interest rate are assigned to a
component called the interest:

(interest [201d)= 204d>
(makelnterest
(setInterestRate

Next, the ATM runs all day, serving multiple customers, so the responsibilities for making
a ATM, running and serving customers are assigned to a component called the ATM:

(ATM p0Td) = P
(makeATM

(runATM

(serveCustomer
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To use the ATM, a customer need to enter his or her unique ID as well as password, so
the responsibility for logging in is assigned to the component customer:

(customer += <1990
(login
In order to log in, the customer has to send a request to the component password, so
the responsibilities for logging in and validating the password are assigned to the component
password:

(password += <[199d
(loginByPassword
(isPassword Valid

After a customer logs in successfully, he or she can use all accounts he or she has, so the
responsibilities for using accounts and using menu are assigned to the component accounts:

{accounts 00a)+= <2000 202d>
(useAccounts
(useMenu

In order to use his or her accounts properly, the customer should input a valid account
type, so the responsibilities for getting a valid type, reading a key, verifying the key, con-
verning the key to the account type and the existence of a certain account are assigned to
the component accounts:

{accounts 200a)+= <B202d 202d>
(findType
(getValidCommand
(getValid Type
(readAKey
(isEzist

During the process of interacting with customer, many promoting behaviors are needed,
such as and promoting to ask for more

{accounts 00a)+= <[202d| 204Dl>
(askForKey [227d)
(askForMore
(waitForCommand
{

1sValidCommand
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And after the customer chooses either savings account or cheque acount, he or she can
choose the commands from the menu. The menu commands are read and executed until the
customer quits the service. So the responsibilities for making and showing the menu, getting
and doing the choices are assigned to a component called the menu:

(menu [203a) = P03H>
(menuMenu
(showMenu
(getChoice
(doChoice

According to the specification, the menu have five choices, so the responsibilities for doing
deposit, and doing withdraw are assigned to the component menu:

(menu += <[203al 2037~
(do Withdraw
(doDeposit
(doShowBalance

Different type accounts have different rule to deposit and withdraw, so the responsibilities
for depositing money to accounts and withdrawing money from accounts are assigned to the
component savings and cheque, respectively:

(savings [200g)+= <[200g
(deposit
(withdrawSavings

(cheque 2006) += <2001 203>
(withdrawCheque
(deposit

There is a penalty for a withdrawing money from cheque account, so the responsibility
for penalising is assigned to the component cheque:

(cheque 200§) += <203d
(penalise
In the process of getting menu choice, it is very likely that reading in a wrong choice,
so the responsibility for reading choices and verifying choices are assigned to the component
menu:

(menu 203a) += <2030
(readChoice
(isChoice Valid
Entry of the special key of 666 or 999 into the ATM exits the ATM or shuts down the
whole system, respectively, so the responsibilities for exiting the ATM system and shutting
down the whole system are assigned to the component ATM, too:

(ATM o1d)+= <E0Td
(finishATM 231d)

(finishBank [231b)
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Interest is then added to all savings and investment accounts, so the the responsibility
for dealing with the ending work is assigned to the component bank:

(bank += <[198al 204>
(endDay

In order to modify all concerning account information, component bank needs to send a
request to component accounts, so all the detail actioins should be executed within compo-
nent accounts:

{accounts 00a)+= <B02d 204d>
(endDayModify

At this time, when the investment account matures at the end of the period, the total
amount is transfered into the customer’s cheque account, so the responsibility for transfering
money between accounts is assigned to the component accounts:

{accounts 00a)+= <2040
(transfer2Cheque

Otherwise, the system needs to increase the day counter of all the immature investment
accounts, so this responsibilities for verifying the period and adding interest are assigned to
the component investment:

(investment [201a))+= <B01d
(1sMature [232c])

And the system needs to add interest to both savings accounts and investment accounts,
so the responsibilities for calculating and adding interest are assigned to the component
interest:

(interest 201d)+= <R201d

{calculateInterest
(addInterest

At last, when the system shuts down, the bank data is stored to a file, so the responsibility
for storing bank data is assigned to the component bank:

(bank += <2073l
(storeBankData

State Information

So far, all the activities can be adequately handled by these fourteen components. What we
need to do is to describe the information held by these components.

For simplicity, we assume there are only one teller and one ATM in the Banking System,
so these two attributes are assigned to the component bank:

(bank state [204g)= R05al>

(aTeller o6d)
(aATM 06e)
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The Banking System may have many customers, so the attribute patrons is assigned to
the comonent bank:

(bank state 204g)+= <[204g 2050~
(aPatrons

In order to store the bank data, so the Banking System should remember the file name
and have a repository:

(bank state p04g)+= <2053l
(aFile
(aRepository
The component teller and the component ATM should have the same customer infor-
mation as the component bank:

(teller state[205d)=
{aPatrons

(ATM state 205d)=
(aPatrons

Every person has his or her own name, gender and address, so the personal information
should record these information:

(person state [205¢)=

(aName
{aGender [206j]

(aAddress

Every customer has his or her onw password, ID and accounts, so the component customer
should have these three attributes:

(customer state 205)=

(aPassword
(olD 73
(aAccount

Every customer may have a savings account, a cheque account and a investment account,
so the responsibility to remember the account info of a certain customer is assigned to
component accounts:

(accounts state 205g)=
(aSavings
(aCheque
(alnvestment

An account has a balance and a type, so these two attributes are assigned to component
account:

(account state 205h)=

(aBalance
(aType
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Component password should have attribute to remember the password and the max of
attempt times:
(password state [206a)=

(aPassword
(aMazAttempts

Component investment should indicate the minimal initial balance and remember the
period and elapsed days:
R06h  (investment state [206b)=
(aMinimalBalance
(aPeriod
(aDayCounter

Every interest account must indicate the rate of interest:
2060 (interest state [206c)=

(alnterestRate
Designing the Representation
(aTeller 206d)= (204g)
teller: TELLER
(aATM 06e)= (204g)

atm: ATM

We choose structure list to store all the data of customers:

2061  (aPatrons 06f)=
patrons: KEY_LIST[CUSTOMER]

) ™o —
S S ™
& S S
= = o1t

E0g  (aFile poog)=
repository_name: STRING is "patrons.dat"

R06h  (aRepository [206h)=
xml_repository: XML_REPOSITORY[KEY_LIST[CUSTOMER] ]

(aName [206i)= (205¢)
name: STRING

206]  (aGender 206j)= (205¢)
gender: CHARACTER

(aAddress [206k) = (205¢)
address: STRING

(aPassword 206l) = 207hl>

password: PASSWORD
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(alID 207a)=

id: INTEGER

(aAccount 207b)=
account: ACCOUNTS

(aSavings 207d)=
savings: SAVINGS

(aCheque 07d)=
cheque: CHEQUE

(alnvestment [207e)=
invest: INVEST

(aBalance 207f) =
balance: REAL

(aType 07g)=
id: CHARACTER

{aPassword +=

password: STRING

(aMazAttempts 207i) =

max_tries: INTEGER is 3

(aMinimalBalance R07j) =

minimum: REAL is 1000.0

(aPeriod 207k)=
period: INTEGER

(aDayCounter 207l) =
days: INTEGER

(alnterestRate [207m)=
rate: REAL

<2080

(2062
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Implementation of Component

Ming Yu Zhao

The daily cycle of the bank has three parts, to make or retrieve the list of customers, to

make and run the ATM and TELLER, and

to store the list of customers at last. In order to

fulfil this job, the make routine calls every other routine in the class:

(1934)

run the teller then the ATM, at last modifies
. The precondition is that both atm and teller

(1984)

(makeBank [208a) =
make is
do
retrieve
create teller.make(patrons)
create atm.make(patrons)
run
store
io.put_string("%N%NExit banking system}N")
end —--make
Each day, the main task of bank is to
the account information for every customer
could not be Void.
R0SH  (runBank [208b)=
run is
require
atm /= Void
teller /= Void
do
from
until atm.system_finished
loop
teller.run
atm.run
end_day

end
end -- run
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The retrieve routine makes or retrieves the list of customers, so after this routine is
called, the list of customers can not be void any more.

(retrieve BankData [209a) = (198al)
retrieve is

do
create xml_repository.from_file(repository_name)
patrons := xml_repository.at("patrons")
(create list [209b)

ensure
patrons /= Void

end -- retrieve

If there is no data in the file, we create a empty list of customes.

2090 (create list [209b)= (209a)
if patrons = Void then
create patrons.make
end

Component teller is one of suppliers for component bank, so teller has to provide
routines to its client. First, teller should accept the list of customers, when it is made.
But first of all, we must make sure that the list passed by is not Void. If the parameter is
not void, make can assign this list of customers to the attribute patrons of itself. So we
know that after this operation, attribute patrons of teller should not be void, so

(makeTeller 209c) = (198b)
make (customers: KEY_LIST[CUSTOMER]) is
require
customers /= Void
do
patrons := customers
ensure
patrons /= Void
end —- make

Another supplier routine is run, which is called by component bank to add new customers
and new accounts into the banking system:

200d  (runTeller209d)= (198b)
run is
do

io.put_string("%NAdd new customers and new accounts")
new_customers
new_accounts

end --run
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The main task of the teller is to create new customers and new accounts. Similarly,
we encapsulate the details of these operations into component customer and component
account. In order to add a new customer, we first need to make sure that the list is not
void. And then the teller could apply a new id, and after that add this new customer at
the end of the list. As soon as we finish this operation, the number of customer can not be
decreased. Then, the new_customers becomes:

(newCustomers [210a)) = (198b))
new_customers is
require
patrons /= Void
local patron: CUSTOMER

do
from ask_for_more_customers
until no_more
loop
create patron.make
patron.set_id(patrons.count + 1)
patron.add_account
patrons.add_last(patron)
ask_for_more_customers
end
ensure
patrons.count >= old patrons.count
end -- new_customers

where ask_for more_customers routine is very simple, since it just prompts the user for
more customers and then read in a char, ‘Y’ or ‘y’ denotes yes and ‘N’ or ‘n” denotes no:

(askForMoreCustomers [210b) = (1198D))
ask_for_more_customers is
do

io.put_string("}NAny customers to add(Y/N)?")
io.read_character
io.flush

end ——- ask_for_more_customers
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We know that component teller takes the charge of creating customers, so component
customer has to provide make routine for teller to do so with the specified 1D:

(makeCustomer 211a))= (198)
feature{TELLER}
make is
do

make_person

create password.make

create account.make
end -- make

The make routine, which sets the personal details, is one of supplier routines of the
component person,

(makePerson 211b)= (198d)

make is
do
io.put_string("%NEnter the personal detailsyN")
get_name
get_address
get_gender
end -- make

Whenever the behaviors, such as getName, getGender and getAddress are called, the
correspoding attributes should not be Void any more. So getName should be:

(getName 211d)= (1986)

get_name is

do
io.put_string("%TName: ")
io.read_line
create name.make(io.last_string.count)
name.copy(io.last_string)

ensure
name /= Void

end -- get_name
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After reading in the name from the user, the system need also a valid gender:

(getGender 212a)= (198¢)

get_gender is
do
from read_gender
until good_gender

loop
io.put_string("Valid codes are M, m, F, or f. Try againiN")
read_gender
end
gender := io.last_character
ensure

gender.to_string /= Void
end —-- get_gender

where read_gender routine prompts the user for the gender:

(readGender [212b)= (1981)
read_gender is
do

io.put_string("%TGender (M/F): ")
io.read_character
io.flush

end —-- read_gender

and good_gender routine determines if the entered is a valid gender code:

(isGoodGender [212d) = (1981)
good_gender: BOOLEAN is
do

inspect io.last_character.to_upper
when ’M’, ’F’ then
Result := True
else
Result := False
end
end —-- good_gender
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After obtaining a valid gender, the system need also the address of the user:

BI3a  (getAddress|213a)= (198¢)
get_address is
do

io.put_string("%TAddress: ")
io.read_line
create address.make(io.last_string.count)
address.copy(io.last_string)
ensure
address /= Void
end —- get_address

Before showPersonalInfo is called, we have to make sure that all of those three attribute
could not be void:

2I3E  (showPersonallnfo [213b)= (199al)
show is
require

name /= Void
gender.to_string /= Void
address /= Void
do
io.put_string("%N")
inspect gender
when ’M’ then io.put_string("%NMr.")
when ’F’ then io.put_string("%NMs.")
end
io.put_string(name)
io.put_string(" lives at ")
io.put_string(address)
end

setCustomerID routine just set a specified id for the new customer:

BI3d  (setCustomerID 213c)= (199b))
set_id(key: INTEGER) is

require
key >= 0

do
id := key

ensure
id = key

end —-- set_id
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(showCustomerID 214a)= (199¢)
feature{NONE}
show_id is
do

io.put_string("}NThe customer id is ")
io.put_integer(id)
end --show_id

Another request may come from component teller is to show the information of the
customer, so we need:

(showCustomer [214b)= (1994)
feature{TELLER}
show 1is
require
account /= Void
do
show_person
show_id
account.show
end —— show

(makePassword [214c)= (199d))
make is

do
io.put_string("%TPassword: ")
io.read_word
io.flush
password := io.last_string

ensure
password /= Void

end —-- make
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The new_accounts routine takes the charge of adding any new accounts for existing
customers, and the same as new_customers, we need make sure that patrons is not Void.
And new_accounts routine should be:

(newAccounts 215a) = (199¢)
new_accounts is
require
patrons /= Void
do
from ask_for_more_accounts
until no_more
loop
io.put_string("Input your ID")
io.flush
io.read_int
if patrons.find(io.last_integer) then
patrons.item(io.last_integer).add_account
else
io.put_string("%NThat is not a valid userID")
end
ask_for_more_accounts
end
end --new_accounts

The ask_for_more_accounts routine prompts the user to create more accounts:

(askForMoreAccounts [215b) = (199¢)
ask_for_more_accounts is
do

io.put_string("%NAny accounts to add(Y/N)?")
io.read_character
io.flush

end —- ask_for_more_accounts

noMore routine is simpler, since it just check it the user type in ‘N’ or ‘n’ and then return
a BOOLEAN accordingly.

(noMore 215c) = (199¢)

feature{NONE}
no_more: BOOLEAN is
do
Result := io.last_character.to_upper = ’N’
end —- no_more
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(findCustomer [216a)= (1991)
feature{ATM, TELLER}

find(key: INTEGER): BOOLEAN is
require
key >= 0
local
i: INTEGER
do
from 1 := lower
until i > upper or else item(i).match(key)
loop 1 :=1+1
end
Result := i <= upper
end —— find

(matchID [216b)= (199g)
match(key: INTEGER): BOOLEAN is
do
Result := key = id
end -- match

Component teller also open new accounts for the customer:

(addAccount 216c)= (199hl)
feature{TELLER}
add_account is
require
account /= Void
do
account .make
end
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(makeAccounts 217a))= (200al)
make is
local key: CHARACTER
do
from
until io.last_character.to_upper = ’N’
loop
get_key
key := io.last_character.to_upper

if exists(find(key)) then
io.put_string("%N%TCustomer has that type. Try again")
else
open (key)
end
ask_for_more
end
end —-- make

If the customer does not have the specified kind of account, teller create one for him.
But for an investment account, ensure there is a cheque account:

(openAccounts R17b)= (200al)
open(key: CHARACTER) is
require
key.to_upper = ’S’ or key.to_upper = ’C’ or key.to_upper = I’
do
if (key.to_upper = ’S’) then create savings.make
elseif (key.to_upper = ’C’) then create cheque.make
elseif (key.to_upper = ’I’) then
create invest.make
if not exists(cheque) then create cheque.make_zero end
end
end -- open

When customers want to see their accounts, they can use show routine:

(showAccounts [217d)= (200b)
show is
do

io.put_string("%TThe accounts are:")

if exists(savings) then savings.show end

if exists(cheque) then cheque.show end

if exists(invest) then invest.show end
end -- show
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(makeAccount [218a)= (200¢)
make is
do
set_id
get_balance
end -- make

(setAccount Type [218b)= (200¢)
set_id is
deferred end --set_id

(showAccount Type 218c) = (200c])
show_id is
require
id.to_string /= Void
do

io.put_string("%N%TAccount type is ")
io.put_character(id)
end --show_id

The match routine determines if the specified key match the account id.

(matchAccount Type [218d) = (200d)
match(key: CHARACTER): BOOLEAN is
require
key.to_string /= Void
do
Result := key
ensure
Result = (key
end —--match

id

id)

(getAccountBalance [218¢)= (200d)
get_balance is

do
io.put_string("%TEnter initial account balance: ")
io.read_real
balance := io.last_real

ensure
balance = io.last_real

end -- get_balance

Ming Yu Zhao
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(showAccountBalance [219a)= (200d))
show_balance is
do

io.put_string("%N%TThe balance is $")
io.put_real(balance)
end --show_balance

(showAccountInfo 219b)= (200¢)
show 1is
do
show_id
show_balance
end -- show

Because when the investment account matures at the end of the period, the total amount
is transferred into the customer’s cheque account, we have to define a empty cheque account
for those customer who has investment account.

(makeCheque 219c)= (2001)
make_zero is
do
set_id
end —--make_zero
(setCheque Type [219d) = (200¢)
set_id is
do
id := ’'C’
ensure
id = ’'C’
end —- set_id
(setSavings Type [219¢) = (200g))
set_id is
do
id := ’S’
ensure
id = ’8°

end —--set_id
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A savings account gets daily interest; the interest rate is 4.5%:

(setSavingsRate [220a) = (1200g)
set_rate is
do
rate := 4.5
ensure
rate = 4.5
end —--set_rate
(showlInvestment 220b) = 222al>
show is
do

io.put_string ("%N**xInvestment account**x*")
show_balance
show_period
show_elapsed
end --show

(showPeriod [220c) = 222dv>

show_period is
do
io.put_string("%N The period is ")
io.put_integer(period)
io.put_string(" months")
end --show_period

(showElapsed [220d) = 2220~
show_elapsed is
do

io.put_string("%N The account has run for ")
io.put_integer(days)
io.put_string(" days")

end -- show_elapsed
(makelnvestment [220e) = (201b)
make is

do
set_id
get_min_balance
get_period
set_rate

end -- make

Ming Yu Zhao
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(setInvest Type [221a) = (201b)
set_id is
do
id := I’
ensure
id =1’
end --set_id

(getInitBalance 21b)= (201b)
get_min_balance is
do
from get_balance
until balance >= minimum

loop
io.put_string("%TInitial balance must be at least $1000.%N%N")
get_balance
end
ensure
balance >= minimum
end —-- get_min_balance
(getPeriod 221d)= (201b)
get_period is

do
io.put_string("Enter period(3/6/12): ")
io.read_integer
period := io.last_integer

end —--get_period

(setInvestRate [221d)= (201b))
set_rate is
do
inspect period

when 3 then rate := 5.5
when 6 then rate := 6.0
when 12 then rate := 6.5
end

ensure

rate = 5.5 or rate 6.0 or rate = 6.5

end --set_rate
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show is
do
io.put_string ("%N**xInvestment account**x*")
show_balance
show_period
show_elapsed
end —--show
(showElapsed—l—E (201) <B20d
show_elapsed is
do
io.put_string("%N The account has run for ")
io.put_integer(days)
io.put_string(" days")
end —- show_elapsed
(showPeriod +E (201) <2204
show_period is
do
io.put_string("%N The period is ")
io.put_integer(period)
io.put_string(" months")
end --show_period
(makelnterest [222d)= (201d)
make is
do
set_id
get_balance
set_rate
end --make
(setInterestRate [222¢)) = (201d)
set_rate is
deferred end -- set_rate
(ATM make require 222) = (2234)
require

customers /= Void

Ming Yu Zhao

And at the end of the routine, patrons, local list of customers, should not be void:

(ATM make ensure 222g)= (223al)
ensure
patrons /= Void
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then make routine becomes:

223al (makeATM [223a)= (201¢)
make (customers: KEY_LIST[CUSTOMER]) is
(ATM make require [222f)
do
patrons := customers
(ATM make ensure [222g)

end --make

2230  (runATM [223b)= (201€))
run is
do

io.put_string("%NWelcome to myBank, where your money is my money")
io.put_string("%N%TEnter user id:")
io.read_integer
from
until atm_finished or system_finished
loop
serve_customer (io.last_integer)
io.put_string("%N%TEnter user id:")
io.read_integer
end
io.put_string("NExiting ATM system),N")
end —-- run

(serveCustomer [223c)= (201¢)
serve_customer(id: INTEGER) is
require
id >= 0
patrons /= Void
do
if patrons.find(id) then
patrons.item(id) .login
else
io.put_string("%NThat is not a valid userID")
end
end -- serve_customer
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(login 224a)=

login is
require

(2022)

password /= Void
account /= Void

do

password.login
if password.valid then
account.use

else

io.put_string("Login failure. Exiting system}N")

end

end -- login

[2245]

login is

local tries:

do
from
io
io
io

(loginByPassword [224b)) =

(2021)

INTEGER

.put_string("%TEnter the password: ")
.read_word
.flush

tries := 1

until valid or (tries =

loop
io
io
io
io

tries :=

end

max_tries)

.put_string("Incorrect password. Try again%N")
.put_string("%TEnter the password: ")
.read_word

.flush

tries + 1

end —- login

224]

(isPassword Valid [224c)=

valid: BOOLEAN is

do
Result

:= io.last_string.is_equal(password)

end -- valid

Ming Yu Zhao
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(useAccounts [225a) = (202c)
use is
local key: CHARACTER
do
from get_atm_key
until (io.last_character.to_upper = ’Q’)
loop
key := io.last_character.to_upper

if exists(find(key)) then run_menu(key)
else io.put_string("%TYou don’t have that type of accountN")
end
get_atm_key
end
io.put_string("Thank you!")
end -- use

(useMenu [225b) = (202¢)
run_menu(key: CHARACTER) is

require
key.to_upper = ’S’ or key.to_upper = ’'C’

do
inspect key.to_upper
when ’S’ then savings.menu
when ’C’ then cheque.menu

end
end —-- use_account
(doShowBalance [225¢) = (203b))
show_balance is
deferred end —-- show_balance

(withdrawSavings [225d) = (203d[230a)
withdraw(amount: REAL) is
require
amount >= 0 and amount <= balance
do
balance := balance - amount

ensure
balance = old balance - amount
end -- withdraw
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226 (find Type [226a)= (202d)
find(key: CHARACTER): ACCOUNT is
do
if (key.to_upper = ’S’) then Result := savings
elseif (key.to_upper = ’C’) then Result := cheque
elseif (key.to_upper = ’I’) then Result := invest

end
end —-- find
R26h  (isChoice Valid [226b)= (2031)
valid_choice: BOOLEAN is

do
inspect io.last_character.to_upper
when °’D’, °’W’, ’B’, ’Q’, ’H’
then Result := True
else Result False
end
end —-- valid_choice

226d (getValidCommand [226) = (202d)
get_key is
do
from read_key
until valid_key(io.last_character.to_upper)

or (io.last_character.to_upper = ’Q’)
loop
io.put_string("%NThat is not a valid type. Try again")
read_key
end

end —— get_key

R26d  (getValidType 226d)= (202d))
valid_key(key: CHARACTER): BOOLEAN is
do
Result := (key.to_upper = ’S’)
or (key.to_upper
or (key.to_upper = ’I’)
end -- valid_type

]
-
3

~
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(readAKey 227a)= (202d)
read_key is
do
io.put_string("),TEnter type of account (S/C/I): ")
io.read_character
io.flush
end —- read_key

(isErist 227b) = (202d)
exists(object: ACCOUNT): BOOLEAN is
do
Result := object /= Void
end —- exists

(askForKey 27d)= (202¢)
read_reply is
do
io.put_string("%TEnter type of account, or quit (S/C/Q): ")
io.read_character
io.flush
end -- read_reply

(askForMore [227d)= (202¢)
ask_for_more is
do
io.put_string("}NMore accounts (Y/N)?7 ")
io.read_character
io.flush
end —- ask_for_more

(waitForCommand [227¢) = (202€))
get_atm_key is
do
from read_reply
until valid_reply(io.last_character)
loop
io.put_string("%NSorry, that was not a valid choice.")
io.put_string("%NYou can only use a savings or cheque account")
io.flush
read_reply
end
end —-- get_atm_key
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(isValidCommand [228a)) = (202¢)
valid_reply(key: CHARACTER): BOOLEAN is
do
Result := (key.to_upper = ’S’)
or (key.to_upper = ’C
or (key.to_upper = ’Q’)
end -- valid_reply

|
3
~

2280  (menuMenu [228b)= (203a)
menu is
do
show_choices
from get_choice
until io.last_character.to_upper = ’Q’
loop
do_choice
get_choice
end
end -- menu

(showMenu [228c) = (203a)
show_choices is

do
io.put_string("%N%TMenu choices)N%N")
io.put_string("%TD}%TDeposit money%N")
io.put_string("%TW)TWithdraw money’%N")
io.put_string("%TB%TShow the balance’N")
io.put_string ("%TQ%TQuit the system)N")
io.put_string("%TH)THelp: Show the menu choices/N")

end --show_choices

R28d  (getChoice 228d)= (203al)
get_choice is
do

from read_choice
until valid_choice

loop
io.put_string("%That is not a valid choice. Try again}N")
io.put_string("%The valid choices are D, W, B, Q, and HJN")
read_choice

end

end —-- get_choice
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(doChoice [229a) = (203a)
do_choice is
do

inspect io.last_character.to_upper
when ’D’ then do_deposit
when ’W’ then do_withdraw
when ’B’ then show_balance
when ’H’ then show_choices
end ——inspect
end —-- do_choice

R29h  (doDeposit [229b) = (203b))
do_deposit is
do
io.put_string("%TEnter the amount to deposit: ")
io.read_real
deposit(io.last_real)
end --do_deposit

229 (do Withdraw [229c)= (203b))
do_withdraw is
do
io.put_string("%TEnter the amount to withdraw: ")
io.read_real
withdraw(io.last_real)
end --do_withdraw

(deposit [230a) = (203)
deposit (amount: REAL) is
require
amount >= 0
do
balance := balance + amount
ensure
balance = old balance + amount
end --deposit

229
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(withdrawSavings [230a) =
withdraw(amount: REAL) is
require
amount >= 0 and amount <= balance
do
balance := balance - amount
ensure
balance = old balance - amount
end —- withdraw

(withdrawCheque 230b)=
withdraw(amount: REAL) is
require
amount >= 0
do
if balance >= (amount + 0.5) then
balance := balance - amount - 0.5
else
penalise
end
end —- withdraw

(penalise [230c)=
penalise is
do
io.put_string("%NInsufficient funds")
if balance >= 5.0 then
balance := balance - 5.0
else
balance := 0
end
end -- penalise

(readChoice [230d)=
read_choice is
do
io.put_string("%NEnter menu choice: ")
io.read_character
io.flush
end -- read_choice

(203f)

Ming Yu Zhao
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(isValidChoice 231a)=
valid_choice: BOOLEAN is
do
inspect io.last_character.to_upper
when ;D;’ ;w;’ ’B’, ;Q;’ H?
then Result := True

else Result := False
end
end —- valid_choice
(finishBank [231b)= (203¢)
system_finished: BOOLEAN is
do
Result := io.last_integer = 999
end —— system_finished
(finishATM 231c)= (203g)
atm_finished: BOOLEAN is
do
Result := io.last_integer = 666
end —-- atm_finished

Here, the precondition, patrons # Void, must be satisfied. If this precondition is satis-
fied, then the end_day routine can take care of those issues:

(endDay [231d)= (204a)

end_day is

require
patrons /= Void
local
i: INTEGER
do
from 1 := patrons.lower
until i > patrons.upper
loop
patrons.item(i).account.end_day
i:=1+1
end

end -- end_day
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(endDayModify [232a) =
end_day is
do

if exists(savings) then savings.add_interest end

if exists(invest) then
invest.add_interest
invest.new_day
if invest.mature then transfer end
end
end —- end_day

(transfer2Cheque [232b) =

transfer is

require
cheque /= Void and invest /= Void
do
cheque.deposit(invest.balance)
invest := Void
ensure
cheque /= Void and invest = Void
end —— transfer
(isMature [232c) =
mature: BOOLEAN is
do
Result := days = period * 30
end -- mature

(calculateInterest [232d)=
interest: REAL is
do
Result := balance * ((rate/100)/265.25)
ensure
Result >= 0
end —-- interest

(addInterest [232¢) =
add_interest is
do
balance := balance + interest
end -- add_interest

(204d)

(204¢)

Ming Yu Zhao
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The store routine stores the list of customers, where repository name is the name of
the stored file. But first, we have to ensure that the list of customers can not be void. Then,
the store routine becomes:

(storeBankData [233)= (2044)
store is
require

patrons /= Void
do
create xml_repository.make
xml_repository.put(patrons, "patrons")
xml_repository.commit_to_file(repository_name)
end —- store
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MENU *

ACCOUNT

+ menu

- show _choices

- show _balance

- get_choice

- read_choice

- valid_choice : BOOLEAN
- do_choice

-id : CHARACTER
- balance : REAL

+ make
+ show
- set_id
- show _id

- match ( key : CHARACTER) : BOOLEAN

- get_balance
- show _balance

INTEREST

- rate : REAL

+make
- set_rate

- interest : REAL

+add_interest

|

- do_deposit
- do_withdraw
- deposit
- withdraw
CHEQUE
- make_zero
- set_id
- penalise
- withdraw (amount : REAL)
- deposit (amount : REAL)
SAVINGS
- set_id
- set_rate

+ withdraw (amount : REAL)
+ deposit (amount : REAL)

Figure 11.5: The inheritance structure of the bank accounts.

Inheritance Charts

Ming Yu Zhao

INVEST

- minimum : REAL
- period : INTEGER
- days : INTEGER

+ make

+ show

+ new_day

+ mature : BOOLEAN
- set_id

- set_rate

- get_period

- show _period

- show _elapsed

- get_min_balance

See Figure 1.2 and Figure 1.3. Note * indicates that the class is an abstract class.
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Figure 11.6: The inheritance structure of customer.

Client Charts
See Figure 1.4 and Figure 1.5

PERSON

- name: STRING
- gender: CHARACTER
- address : STRING

+ make

+ show

- get_name

- get_gender

- read_gender
- good_gender
- get_address

CUSTOMER

- password : PASSWORD
+ account : ACCOUNTS
-id: INTEGER

+ make (key : INTEGER)

- set_id (key : INTEGER)

- match (key : INTEGER) : BOOLEAN
- show _id

+ show

+ login

235
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CUSTOMER

- password : PASSWORD
+account : ACCOUNTS
-id : INTEGER

+ make (key : INTEGER)

+ set_id (key : INTEGER)

+ match (key : INTEGER) : BOOLEAN
+ show _id

+ show

+ login

Ming Yu Zhao

PASSWORD

- password : STRING
- max_tries : INTEGER

INVEST

- minimum : REAL
- period : INTEGER
- days : INTEGER

+ make

+ show

+ new_day

+ mature : BOOLEAN
- set_id

- set_rate

- get_period

- show _period

- show _elapsed

- get_min_balance

ACCOUNTS

- savings : SAVINGS
- cheque : CHEQUE
- invest : INVEST

+ make
+ login

SAVINGS

+ make

+ show

+ use

+ end_day

- transfer

- get_key

- read_key

- ask_for_more

- find (key : CHARACTER) : ACCOUNT

- create (key : CHARACTER)

- get_atm_key

- read_reply

- valid_reply (key : CHARACTER) : BOOLEAN
- run_menu (key : CHARACTER)

- valid_key (key: CHARACTER) : BOOLEAN
- exits (object : ANY) : BOOLEAN

D set_id

- set_rate

+ withdraw (amount : REAL)
+ deposit (amount : REAL)

CHEQUE

- set_id
make_zero
- penalise
+ withdraw (amount : REAL)
+ deposit (amount : REAL)

Figure 11.7: The association structure within a customer.
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TELLER

- patrons : KEY_LIST[CUSTOMER]

- new_customers

- new_accounts

- ask_for_more_customers
- ask_for_more_accounts
- no_more : BOOLEAN
+run

+make (customers : KEY_LIST[CUSTOMER])

BANK

- teller : TELLER
-atm : ATM

- patrons : KEY_LIST[CUSTOMER]

- make

- retrieve
- run

- end_day
- shore

KEY_LIST [T -> CUSTOMER]

ATM

- patrons : KEY_LIST[CUSTOMER]

+make (customers : KEY_LIST[CUSTOMER])
+run

+system_finished : BOOLEAN

- atm_finished : BOOLEAN

- serve_customer ( id : INTEGER)

+find (key : INTEGER)
+found : BOOLEAN

CUSTOMER

- password : PASSWORD
+account : ACCOUNTS
-id : INTEGER

+ make (key : INTEGER)

+ set_id (key : INTEGER)

+ match (key : INTEGER) : BOOLEAN
+ show _id

+ show

+ login

Figure 11.8: The association structure of the system.
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11.6 Conclusion

Object-oriented literate programming is one of the most promising analysis and design ap-
proaches, which preserve all the advantages of both side, such as compatibility, reusability,
continuity, readability, consistency of source code and documentation and so on. The bank-
ing system implemented with the tools of noweb and Eiffel is a good example. However,
we have to realize that there do exist some drawbacks that make it hard for it to enter
the mainstream, such as overhead cause by the simultaneous use of different languages and
additional tools, difficulty to actively debug the code being written, and so forth. Anyway,
all of those, I believe, are only temporary obstacles.

11.7 Exam Questions

1. What is the key features of Literate Programming?

2. Many people believe that Literate Programming can improve the quality of software
development. What is your opinion?

3. What is “Design By Contract”? Why we need it?
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Chapter 12

Hongqing Sun: History of Tabular
Expressions

Tabular expressions notations were first formally defined by Parnas in 1992. Using multi-
dimensional mathematic tables (tabular expressions) to represent relations is one of the
Parnas’ greatest contributions to software engineering. By simplifying the presentation of
mathematical functions in documents of software systems, tabular expressions are readable,
precise and verifiable. Also they provide a mean to check properties, such as completeness
and consistency of the relation. In this survey paper, a historic overview is given to trace
the development of tabular expressions.

12.1 Introduction

In [I1] [19] [20], tabular notation and functional documentation advocated by Parnas et
al. have been found to be precise, readable and easy to understand in the documentation
and specification of software. Since then it has been successfully used in many industries,
such as in U.S Naval Research Lab for writing the A-7TE document of software requirement,
Darlington Nuclear Power Plant for inspecting safety-critical programs, and Bell Labs for
writing requitement documents etc.

A table describes the values of variables (state of variables) or actions for different con-
ditions. Tables are multi-dimensional expressions consisting of indexed sets of cells that
contain other expressions. The structure of the table makes it easier for the user to un-
derstand complex conditions and actions. In particular, tabular expressions can be used at
each of the following steps of software development: specification of product requirements,
documentation of designs, product analysis, product simulation, computation of product
properties, implementation, product testing, product maintenance and revision. Fig is
a simple normal function table with two headers H;, H, and grid G.

239



240 Hongqing Sun

flz,y)= ’ H y=10 ‘ y>10| y <10 ‘ H,
x>0 0 y? -2
Hy [2<0 X X4y X-y G

Figure 12.1: An Example of Normal Function Table

12.2 History and Real Word Tables

The history for human being to use tables can go back to around 4, 000 years ago. Examples
next demonstrate how widely tables are used in various aspects by human being.

Everyday Tables

Tables are a familiar part of everyone’s life. From calendar to TV program timetable, they
provide us with an orderly presentation of data.

Course Timetable. Fig.|[12.2]is a traditional course timetable of an university which shows
a relation between courses, locations and times . Less explanation is needed to understand
this table, it is pretty readable.

Department of Computing and Software
Graduate Courses-2005/06 Term2

Mon Tues Wed Thu Fri
8:30 |8:30-10:00 CS 6CD3
CAS 743 S. Poehiman
W. Kahl BSB B140
ITB 222
9:30 |... 9:30-11:00 9:30-10:20 |9:30-11:00
CAS 703 CS6GB3 [CAS 703
E. Sekerinski A. Deza E. Sekerinski
ITB 222 BSB125 ITB 222
10:30
10:00-
11:30
CAS 704
M. Lawford
ITB 222

Figure 12.2: Course Timetable.

HSR Bus Timetable. Bus services are often time-tabled, see Fig.[12.3] The bus timetable
documents a relationship between buses, locations and times, particularly which bus will be
where at what time. These tables are often used by the public to read information concerning
this relationship. This reading process is a little bit complex.
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City of Hamilton
HAMILTON STREET RAILWAY: 51 - UNIVERSITY EASTBOUND WEE

West Go

AMJP.M. Hamilton Main & King & Main & Terminal

Loop Emerson Longwood MacNab .
(Arrival)
(Departure)

AM. 7:55 8:05 8:14 8:23 8:26
AM. 8:10 8:20 8:29 8:38 8:41
AM. 8:25 8:35 8:44 8:53 8:56
AM. 8:40 8:50 8:59 9:08 9:11

Figure 12.3: HSR Route 51 Bus Timetable.

Mathematic Tables

The use of tables within mathematics was commonplace in history, some typical examples
are given below.

Plimpton Tablet. Around 1900 to 1600 B.C, Babylonians engraved mathematical prob-
lems and mathematical tables in the clay tablet using their cuneiform script. The famous
Plimpton 322 [4], is a well studied example of a mathematical tablet. It represents a function
a? + b? = ¢?, such as (3, 4, 5), see the original tablet Fig. [12.4]

Figure 12.4: Plimpton Tablet

A logarithms table. In 1827 Charles Babbage published a table for the logarithms of the
natural numbers within the interval 1 to 10800, see Fig. [12.5]
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% TABLE ©

 LOGARITH

Figure 12.5: A logarithms table in 1827.

12.3 Decision Tables from 1950s

Decision tables, like if-then-else and switch-case statement, model complicated logic in a
precise and compact way. The original purpose of decision tables was used in preparing
information for computer programmers [22].

Structure of Decision Table

A decision table commonly consists of four quadrants [6] as shown below, see Fig. .
It contains the values for all logical expressions pertaining to a certain problem (the condi-
tions) and the corresponding logical outcome using logical rules that connect conditions with
results. All logical expressions are considered simultaneously. A simple example is given to
demonstrate a discount policy in a software requirement document for a shop, see Fig [12.7]

\ Condition H Condition entries \

’ Action stub H Action entries ‘

Figure 12.6: Structure of Decision Table

Decision Tables and Computer Program

Six Labor-Years Vs. Four Weeks. In 1950’s, when the United States Air Force worked
on a complex file maintenance project, attempts at using flowcharts and traditional narratives
failed to define the problem after more than six labor-years of effort. This was typical of most
large projects at that time. Then, in 1958 four analysts using decision tables successfully
defined the problem in less than four weeks. When the right tool was used the problem was
solved almost immediately.
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Corporate Customer Y Y Y Y N

Paid within 30 days Y Y Y N

Invoice Amount >10,000 5,000 to 10,000 <5,000

Discount 3% X

Discount 2% X

Pay full invoice X X X

Figure 12.7: Invoice Discount Policy (decision table)

Decision Tables in Software Engineering. Decision Tables fit so well with Software Fn-
gineering that they are widely used for software development and maintenance from 1960’s.

Research has shown that most bugs are put into programs during the design phase and
they are usually errors in program logic, not in computation. Decision tables are useful at all
phases of software development for the simple reason that all phases of software development
need correct logic.

For practical use, decision tables can be easily used to convert to source code in any
programming language which supports if/then/else or switch/case control constructs and
can be easily checked for any maintenance.

12.4 First Large Application of Tables: A-7E Aircraft
Program Requirements

Before the formal definition of tabular expressions, the requirements document for the A-7E
Operational Flight Program (OFP) for the A-7TE naval aircraft was the first largely appli-
cation of tables. OFP is a well-known example of SCR (Software Cost Reduction) project
which was led by Parnas when he was a consultant to the Naval Research Laboratory in 1977.
Readability, accuracy and completeness of this tabularised document were demonstrated by
a fact that, the documents were reviewed constantly by pilots who had no formal training in
software engineering or formal software notation. Fig. and Fig. are two examples
of tables taken from these documents. Further examples can be found in [L1].

| MODE | //ACE// | //BE//|

*Modish* | Vogue Cool
*Lasting™* X Warm

Figure 12.8: A SCR Selector Table
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\ MODE \ Conditions \
*MI1* A B
M2* M3* | C D
*M4* E F
| 'Point! [ V1] V2 |

Figure 12.9: A SCR Condition Table

12.5 Why Tabular Expressions?

Mathematical notation is commonly used in Software Engineering documents. Only through
the use of mathematics, can we obtain the precision that we need. In Computer Science,
mathematics is also used to verify the correctness of software. Before program verification
becomes practical, the use of mathematics in documentation must be well-established [21].
Specifications and design documents state the theorems that should be proven about pro-
grams.

As stated in [I8], standard computer systems engineering documents are called Functional
Documentation, as a set of mathematical functions or more precisely relations are used to
describe the behavior of software systems. So, each document must contain a representation
of one or more binary functions, or relations.

As conventional mathematical expressions describing the relations are too complex and
hard to parse to be really useful. Instead, Multi-dimensional expressions [I9], call tables
are often easier to read and understand as compared to the equivalent traditional scalar
expression} The examples in Fig. [12.10} Fig. [12.11} and Fig. show three different
formats for an expression representing the function f(x,y). The benefits of representing
expressions in tabular form are shown even more clearly by longer, more realistic, expressions.

(0 if (x>0)A(y=10)

P if (52 0)Ay > 10)

_ )y if (2= 0)A(y < 10)
UG if (z<0)A (y = 10)
x+y if (x <0)A(y > 10)

( xy  if (z<0)A(y <10)

Figure 12.10: f(x,y) described using Traditional Mathematics method

L A term or predicate expression as defined in [20]
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Vo, Yy, ((t > 0Ay =10) = f(z,y) =0A ((z < 0Ay =10) = f(z,y) =)
A(z =2 0Ay >10) = f(z,y) =y2) A ((z 2 0Ay <10) = f(z,y) = —y2)
ANz <0Ay>10)= fz,y) =24+ y) A((ze < 0Ny <10) = f(z,y) =2 —vy)))

Figure 12.11: f(x,y) described using Classic Logic

flx,y)= ’ H y=10 ‘ y > 10 ‘ y <10 ‘ H,
x>0 0 y? -y
Hy [ <0 X X+y X-y G

Figure 12.12: f(x,y) described using tabular notation

12.6 A Milestone of Tabular Expressions

In 1992, working as a director of Software Engineering Research Group (SERG) at Depart-
ment of Computing and Software, McMaster University, Parnas published the paper [19].
In this paper, Parnas gave a formal definition of tabular expressions. Together with the
companion paper [20], a systematic theory of tabular expressions turned out. From then on,
a spectrum of research papers, tools and usages on tabular expressions have been carried out
and developed in many institutes and industries, especially in McMaster University.

Formal Definition of Tabular Expressions

Tabular Expressions is a kind of multi-dimensional notations which uses multi-dimensional
mathematical expressions (called tables) to describe mathematical relations (functions) in
practical applications. It comprises conventional mathematical formulae and logical expres-
sions which is designed for computer engineering.

Tables consist of indexed sets of cells that contain other expressions (including tabular
ones). Tables parse the complex conditional expressions for reader by organizing the expres-
sions into sub-expressions. The format of tables makes the table inspection easier because
it clearly separates distinct domain and range elements.

Logical Expressions in Software Engineering

In the companion paper [20] of [19], Parnas gave a changed interpretations of classic logical
expressions which, are more suitable for use in software engineering applications. A briefly
introduction is given below.

e Relation. A relation is a set of tuples. A binary relation R is a set of ordered pairs,
such that R C X x Y. The set of values that appears as the first element of a member of
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R is called domain. The set of values that appears as the second element of a member
of R is called the range of that relation.

Function. A function is a binary relation with one additional property: for every
member, x, of its domain, there is only one pair (x, y) in the function.

Predicate. A predicate is a function whose range contains no members other than
true and false.

Function Application. A function application is a string of the form f;(V ), where
f; is the name of function, V is a comma separated list of terms. The elements of V
are called the arguments of the function application.

Term. A term is either a constant, a variable, or a function application (including
function tables).

Primitive Expression. A primitive expression is a string of the form R;(V ), Where
V is a comma separated list of terms and R; is the name of a characteristic predicate
of a set of simple tuples.

Predicate Expression. All primitive expressions are predicate expressions. If P and
Q are predicate expressions and xj, is a variable, then (Vxy, P), (P) A (Q), (P)V
(Q), and —~(P) are predicate expressions (including predicate tables).

Syntax of tables

Syntax of tables are systematically defined in this paper.

e Grid. For positive integers n and 1y, ..., [,, a grid, G with dimension n is an indexed

set of n-tuples I such that IC S1 x S2 x ... x S, where S; = {1, 2,..., [;}, 1 <1 <mn,
and the grid entry G;,, ..., G;, is either an expression or a previously constructed grid.

in

e Table. A table, T, consists of a main grid, G, and header grids Hy, Hs...,Hgim(c),

(known as headers) such that for any i, (1 < < dim(G)), shape (Hgim(a)) = (leni(G)).
For any table, T

— dim(T) = dim(G).

— len;(T) = len;(G).

— T; = Gy, where [ is a dim(G)-tuple denoting the index of G.

Expressions

e Any term as denoted above, and any table that is to be interpreted as a function is a

term.
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e Any predicate expression as denoted above, and any table form that is to be interpreted
as a predicate is a predicate expression.

e Any term or predicate expression is an expression. These expressions may be included
in larger expressions, or appear as elements of grids.

Semantics of tables

In [19], ten kinds of Parnas Tables are defined both in more detailed syntax and semantics.
Each kind of table is interpreted as either a relation (function) or predicate, and has certain
cells containing predicate expressions that partition the domain of the table.

e Normal Function Table.

e Inverted Function Table.

e Vector Function Table.

e Normal Relation Table.

e Inverted Relation Table.

e Vector Relation Table.

e Mixed Vector Table.

e Predicate Expression Table.

e Inverted Predicate Expression Table.
e Generalized Decision Table.

Some kinds of tables are introduced below.

Normal Function Table. In a normal table, the predicate expressions in the header
partition the domain, and the grids hold the values of a function. The expression in the

intersected cell of grid G is evaluated to find the value of the function. Fig. [12.13] is a
normal table. The domain of the table is given in headers H; and H,.

y=10 |y > 10 | y <10 | H;
x>0 0 y? -2
Hy | 2<0 X x+y X-y G

Figure 12.13: An Example of Normal Function Table f(x,y)

Inverted Tables. For an inverted table, T, the elements of the main grid, G, and headers
Hy, ..., Hyimery are predicate expressions. The elements of H; are terms. The domain of a
inverted table is given in its main grid and headers Ho, ..., Hyim(r). Fig. from [3] is an
inverted table. The domain of this table is given in H, and its main grid G.
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H low irrational rational high irrational | H,
s = hight irrational m< 100 100< m< 4900 4900 <m
s = low irrational m <99 99 <m < 4899 4899 < m
Hy s = irrational m < 101 101 <m <4901 4901 <m G

Figure 12.14: An Example of Inverted Table f(s,m)

Vector Tables. A vector table, see Fig. [12.15] is a table in which the cells of the grid, G
are terms; the cells of the Header H; are predicate expressions and partition the domain of
a relation, and the cells of Hy are single variables. This table represents a relation whose
range is a set of tuples.

r<10|2=10 | x> 10| H;
y: X+1 X X—l
Hy, | z= —x? 0 x? G

Figure 12.15: An Example of Vector Function Table f(z, (v, 2))

12.7 Theoretical Ripeness in SERG

What is SERG?

The Software Engineering Research Group (SERG)E] at Department of Computing and Soft-
ware, McMaster University, is a group of faculty members, postdoctoral fellows, research
staff, and students working to bring more engineering discipline and precision into software
development.rf]

One of the focus of SERG group is to develop tabular mathematical expressions both
in theory and practice. The work covers refinement of existing theory to more practical
notation for documentation, verification of these theories by developing case studies and ex-
ploratory applications, and development of practical tabular tools that make documentation
and software verification easier and more useful to industry.

Theory of Transformations of Tables

In 1994, Professor Zucker, published a report [30] in terms of tables transformations. Two
kinds of tables, normal function tables and inverted function tabels, are discussed in this

2The SERG grop was renamed to SQRL in 2002
3Cited from http://www.cas.mcmaster.ca/serg/
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report with conjunction as predicate rule. Fig. [12.16]is a transformation of Table. [12.13| by
changing dimension algorithm.

Transformations objective. Transforming tables to other, semantically equivalent ta-
bles, which may be easier to work with.

Satisfying Two Properties. For a transformations ¢ : C' — C’ of tables from one class
C to another class C’. These transformations will satisfy the following two properties.

e ¢ is semantics preserving, in the sense that if T€ C is proper, so is ¢ (7).
e ¢ is computable. If ¢ (T)=T", then T’ is the transform of T under .

Three Algorithms.

e Changing the dimensionality of a table.
e [nverting a Normal Table.
e Normalising an inverted table.

x=0 y=10 0
x=0 y>10 y?
x=0 y<10 -y?
x<0 y=10 X
x<0 y>10 X+y
x<0 y<10 X-y
H1 G

Figure 12.16: A Changing the dimensionality example from Fig. [12.13

A Generalized Model of Table Semantics

In 1995, in [7] Janicki proposed a more rigorous and systematic approach to define the
semantics of the tabular expressions. One generalized definition of tables was given, each
class of table in [20] could be derived as a special case. Based on this generalized model,
other classes of tables other than that in [20], could also be constructed. The central concept
of the approach is so-called cell connection graph which characterizes information flow of a
given table. "where do I start reading the table and where do I get my result ?”, this is the
key point to understand the generalized table model.
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Main concepts introduced include:

e Cell Connection Graph (CCG) , CCG is an asymmetric relation — on the set
{H,...,H,, G}, such that for all A, B € {Hy,..., H,, G} : A+— B=(A=GVB=
G) N A # B, i.e. each arc of the graph either starts from or ends at the grid G. The
relation — represents information flow among table cells. Fig. [7] is an example
to demonstrate CCG.

e Pr, the table predicate rule (defines domain).

e 77, the relation predicate rule (defines range).

ht

X,<0

h2

X;<0 Y2=X P

95

Figure 12.17: An example of (partially) interpreted cell connection graph

General Tabular Expressions. A table expression (or table) is a tuple T = (Pr, 1, —
, Hy, ..., H,, G; V), where U is a mapping which assigns a predicate expression to each
predicate cell, and a relation expression to each relation cell.

Algebra of Normal Function Tables

In the research paper [27] in May 1997, Mohrenschildt defined a function algebra over a
many sorted algebra, which is closed under composition. This function algebra is defined for
usage of tables, and using this, composition of two tables can be defined.

Tables are constructed using the defined algebra and the logic. These tables can be
interpreted as functions by giving the semantics of evaluation. Any algebraic operation or
composition performed on tables can be represented as a single normal table. Some notations
of this algebra are given below.
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Proper Normal Function Table. Let T = (G, H' H?..,H') be a function table, A
header H* = (h{,hj, ..., hj ) is called proper if (a) Universal: hi V hyV ...V hi = true. (b)
Disjoint: the k! are disjoint, hi A hi = false; k # [. A function table is called proper if all
headers are proper.

Composition of Two Tables. A simple example is given here, see fig. [12.18]

x<0 x=0 m=A m=B
T1= T2=
{X--x}| {x -2x} {X- x+1} | {x- x+2}
m=A x+1<0 {x- -x-1}
TloT2= m=A x+1=0 {x— 2x+2}
m=B x+2<0 {xX- -x-2}
m=B x+2=0 {x- 2x+4}

Figure 12.18: Composition of Two Normal Function Table

On a Formal Semantics of Tabular Expressions

In October 1997, a revised and full version of semantics of tabular expressions [8] was released
by Janicki, which actually kept a continuity of notations in [7]. In this paper, relations which
tables represented are defined in more detail on INx OUT, and more detailed cell connection
graph is given to correspond to specific tables, e.g type 1 corresponds to normal tables.

An updated general tabular expression is defined as below: a table expression (or table)
is a tuple T = (Py, rr, Cp, CCG, Hy, ..., H,, G; ¥, IN, OUT), where the predicate
expressions have variables over IN, the relation expressions have variables over IN x OUT,
where IN is the set of inputs, and OUT is the set of output.

Together with other papers above, the notations in this paper theoretically constructed
an infrastructure of the tabular expressions project (Table Tool System- TTS) of SERG. In
the updated versions of this paper [10] [23] [24], composition rules and relation clarification
[9] of tables are discussed in more details. Fig. is an example of the latest version.

Completeness and Consistency

In the thesis [13], a compact conception of completeness and consistency is discussed.
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« A tabular expression (or table) is a tuple:
T=(P;,r;,CCG, H,..H,, G, IN, OUT)

IN: {(x,y)| x Realy Real}

|y=10 | y>10 | y<10 | H OUT: Real
7 1 P+ =H;AH,: defines domain
rr = G: defines range (value)
- 0 2 o2 C;i Ry = U U R, define how to
=0 | Y y combine sub-expressions.
x<0 X Xty X-y
H, G ™~ !
Values(G) [w]>

0 if(xz0)a(y=10) Cell Connection Graph
e e by cce
T <0y a = 10) “Where start to read, where get the result.”

)
if (x < 0)a (y>10)
YA (y < 10)

Figure 12.19: An example of General Tabular Expressions

Complete: Let xy,...,x,, be the list of all free variables that appear in at least one of
predicates: P, ..., P,. A tuple (P, ..., P,) of predicates is called complete if

Va:l, very Tmyy Pl V..V Pn

Consistent: Let zq,...,x,, be the list of all free variables that appear in at least one of
predicates: P, ..., P,. A tuple (P, ..., P,) of predicates is called consistent if

S (F@r, e T \/1§7j<j§n (P A Fy))

A normal table is complete if all its headers are Complete. A normal table T is Consistent
if all its headers are Consistent.

Interpretation of Tabular Expressions Using Arrays of Relations

In 2001, a more algebraic favor research paper [14] was given by Khedri together with
Desharnais and Mili. Starting from understanding grids and headers as separate arrays of
relations , they proposed to interpret tables using relation algebraic operations mixed with
array reduction operations inspired by the programming language APL. This results in a very
elegant formalism that offers an alternative, much more concise way to define semantic rules
for tables. This relation-algebraic semantics can be seen as geared more towards facilitation
of algebraic manipulation and mechanised reasoning about tables [15].
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Another Table Semantics Framework

In 2003, Kahl, in his paper [15], presented a new framework of defining semantic rules
for tables in a general and flexible way. This new table semantics framework is explicitly
motivated by the desire to have an understanding of tables that can be used for reasoning
about tables and table transformation, and also as a basis for machine-support of table
manipulation and transformation. It may therefore appear less direct to the table user, but
the compositional approach has advantages for reasoning and mechanisation. To demonstrate
this, in the appendices of this paper, the basics of a table library are included which are in
the purely functional programming language Haskell; along the same lines, a theory has been
developed in the mechanised theorem proving system Isabelle/HOL (A Proof Assistant for
Higher-Order Logic ), including proofs of the presented table transformation theorems.

Tabular Expression and Concurrency

In 2002 and 2005 respectively, two thesis [29] [12] were published to discuss how to write
a precise mathematical documentation of concurrent software systems using tabular expres-
sions. In both cases, a classic concurrent program of the Readers/Writers problem was used
to illustrate the approach discussed.

In first thesis, a simple model for representing concurrent system is introduced. In the
later one, the author uses program-function tables to describe the function of the program.
Each column in the table is inspected individually; the program is divided into small compo-
nents to be conquered with ease. The correctness of the whole program is implied (evaluated)
by the correctness of the columns examined through the inspection. The Readers/Writers
problem is re-written by assigning each primitive statement a label. In the inspection pro-
cess, the transfer of control from statement to statement is made explicit. The resulting
program is a non-deterministic sequential program with the same behavioral effect as the
original concurrent program. The rewritten program is then examined through checking the
truth-value of the system invariant that fully captures program structure.

12.8 TTS: Table Tool System of SERG

What is TTS?

Table Tool System project was launched in 1995 using the general model of table semantics
in SERG. It was written in C using the X/Motif Graphic User Interface (GUI) components,
on the DEC Alpha workstation ”McSerg”. The goal of the TTS project was to develop an
integrated, extensible system of tools- that is, a set of tools that work together, to facilitate
the use of tabular expressions in computer systems documentation.

TTS was designed as an toolset application system with a tool integration framework
that makes it possible to add new tools to the toolset without having detailed knowledge of
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the existing tools. TTS consists of three parts: TTS Kernel, TTS Infrastructure and TTS
Applications [5]. Figure [12.20]illustrates the TTS structure.

TTS Applications

Tools
Tool Integration
Utilities Framework
TTS Infrastructure
Table Holder Symbol
Information
TTS Kernel

Figure 12.20: TTS Structure

e TTS Kernel. The TTS Kernel hides the representation of expressions and the algo-
rithms for their manipulation. It includes two parts: Table Holder which is used to

store expressions and Symbol Information.

e TTS Infrastructure. The TTS Infrastructure is a collection of modules that provide
general purpose programs for constructing TTS applications. It includes three parts:
Utilities, Tool Integration Framework and Tools, where tools operate on expressions to
provide services like Context Manager (CM) to manipulate expressions in a context.

e TTS Applications. The TTS Applications operate at the documentation level to
allow the user to edit, analyze or interpret documentations.

Table Inversion Tool (Invertor)

Around December 1995, the Table Inversion Tool was carried out

[26] according to the

algorithms of [30]. Also, a new transformation algorithm was given which normalizes an
inverted table to a normal table, preserving its dimensionality. This tool transforms one kind
of table into another, preserving the semantics and show a slice of table. The main menu

look like this way:
1. Load Table.
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Alias Header Name.

Show a Slice of the Table.

Apply a Transformation Algorithm.
Save Table.

Exit.

S Gt N

Developing environment: TTS TH, C, curse lib/Unix.

Table Input Tools
Table Construction Tool (TCT)

In 1996, based on the TTS, a X/windows Table Construction Tool was set up [17]. TCT
was designed for constructing tables with entries are expressions. The system automatically
maintains the syntactic correctness of the expressions at all times. TCT will store entered
expressions in the table-holder in terms of the abstract syntax trees of the expressions. The
interface of TCT consistes of a set of expressions/table editors based on X windows system.
The report [17] includes the algorithms for constructing the tabular expressions and graphic
user interface under the OSF/1 Motif window environment.

Developing environment: TTS, C, DEC windows Motif ToolKit, OSF /Motif ToolKit,
X windows system ToolKit Intrinsics Release 5.

Table Input Method (TIM)

In 2002, an effective editor Table Input Method (TIM) [16] was developed, which met 13
criteria of a ”Effective Tabular Expression Editor”:

Creates correct tabular expressions.

Validates loaded expressions, and warns for invalid expressions.
Allows user to choose when to validate the input.

Lets the user choose preferred notation.

Uses placeholders to indicate missing sub-expressions.

Has configurable table types.

Allows the user to correctly insert and delete rows and columns of cells in the tables.
Has all the standard table and cell editing operations.

Can operate on undefined new symbols.

Can create tables in tables.

Is capable of correcting syntax errors.

Is easily extended

Can show the table type.
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Developing environment: TTS, DEC Unix, X/Motif2.1, C++, JAVA 2 and JavaCC,
XRT/Table.

Table Checking Tools
An Evaluation Code Generator Tool (TOG)

In 1997, a graduate thesis gave a fresh tool TOG to evaluate (interpret) expressions from
tabular specifications [3]. TOG was designed to generate C code (program) to evaluate any
tabular expression whose interpretation is defined using the general table model semantics of
TTS. This tool provides a common method for storing table semantic information. Also, this
tool may be used to check a requirements specification, or, to test a software implementation
against its documented specification.

Developing environment: TTS, C++.

A Table Checking Tool (TCKkT)

In 2000, a table checking tool (TCkT) [I3] was integrated into TTS. TCkT uses Prototype
Verification System (Known as PVS) as Theorem Prover System, and can automatically
perform the process of checking completeness and consistency of tables.

e Scope: TCKT can check if the domain of a table satisfies completeness and consistency.
It can handle normal tables, inverted tables, and vector tables.

¢ Developing environment: TTS, C++.
e Operation environment: TTS, PVS.
e Input: context file of TTS (*.tts).

e Output: the checking results are displayed to the front-end user and stored in TCkT
for being retrieved by other TTS tools.

e Algorithm

Initialization: open files, initialize PVS session.
Read tabular expressions from TTS context file.
Formulate theorems.

Verify the theorems by using PVS.

The result from PVS is parsed and stored.
Display the checking conclusion to the user.
Close files and Free data structures.

N Ot



History of Tabular Expressions 257

Specialization and Simplification Tool (SAST)

In 1998, another useful tool Specialization and Simplification Tool (SAST) turned out in
TTS [25]. Tables can sometimes be complex and difficult to comprehend. SAST uses ”spe-
cialization” technique to achieve the simplification. Some tables can be simplified directly
without loss of generality. For others specialization may be used. Specialization is a tech-
nique that reduces the domain for which the expression is valid. For tabular expressions,
specialization may remove rows and/or columns when the domain of predicate (condition)
sub-expressions is outside the domain under consideration. User defined constraints narrow
the domain under consideration. Specialization may result in several tables depending on
the constraints, but each table is usually simpler than the original. This tool helps to test
intermediate results involving partial evaluation of the mathematical expression.

For tabular expressions, simplification can occur in two levels: Cell level and Table level.

e Developing environment: TTS, Maple (for computation), C.

e Input: a context file created by CM (context Manager) and TCT (Table Construc-
tion Tool), which contains ordered collection of named expressions with an associated
symbol table.

e Output: appended to the same input file, could be view or printed by CM, TCT or
printed out by Table Printing Tool (TPTool).

Table LATEX Tool (TLT)

In 1999, a table output tool called Table LATEX Tool (TLT) [28] was built in TTS. TLT
produces LATEX representations of expressions that can be viewed /printed as a single docu-
ment or inserted as part of a document. It accepts a single expression from the Table Holder
as input and generates a LATEX file as output.

Developing environment: TTS, C.

Document Indexing Tool (DIT)

In 1999, a companion tool Document Indexing Tool (DIT) of TLT was also finished for
TTS. DIT creates a set of indices for a formal software document. The input to this tool is a
context file, which contains a set of expressions together with a symbol table. The output is
a set of indices, each of which is either a definition index or a use index. A definition index
indicates in which expression and page a specific symbol or sub expression is defined. A use
index indicates in which expression and page a specific symbol is used and the row, column
numbers. Together With TLT, DIT let TTS can generate software documents that contain
both formal and informal material, as well as a set of indices for quick reference.

Developing environment: TTS, C.
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Semantic Refinement Checker (SRC)

In 2001, a refinement tool turned out in SERG, which was base on many-sorted algebra and
PVS. SRC can automate the verification of software documentation through refinement of
tables.

Development environment: C-++.

12.9 Other Table Notations Projects

OPG - Safety Critical Software Tables

In early 1990s, Ontario Hydro (now OPG, Ontario Power Generation Inc) began a project
for redesigning Darlington Nuclear Generating Station Shutdown Systems. In this real time
system which had to obey a working standard for safety critical software [I], numerous tables
were designed in different levels, from software requirement specification level to software
design level and so on. Actually OPG tables are another kind of Parnas tables, there were
four kinds of them: horizontal condition table, vertical condition table, state transition table
and structured decision table. Figure includes simple examples of the mainly used
two kinds of tables: horizontal condition table and vertical condition table. For horizontal
condition tables, they are used in software requirements which are easily to read, and for
vertical condition tables, used in software design which are convenient for multiple outputs.

Horizontal res
Vertical cl c2

cl vl
2 v2 res vl v2

Figure 12.21: OPG tables

Also a table tool [2] was developed to check completeness and disjointness of tables. It
has an interface to MS Word. The checking process has next steps: 1. save a table as Rich
Text Format (RTF). 2. use Design Verification Tool to convert the RTF file to a standard
PVS input file. 3. prove in PVS. All the tables should meet disjointness and completeness
as the following:
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Condition i A Condition j <= FALSE, Vi, j=1,..,n,i#j.
Condition 1 V Condition 2 V...V Condition n <= TRUE.

SCR Tables

After A-TE project, SCR (Software Cost Reduction) project tables became more practical
for formal specifications, especially for documenting the requirements of real-time systems.
During the 1980s and 1990s, SCR tables were used by couples of organizations in industry and
government, e.g. Grumman, Bell Laboratories, and Lockheed(C-130J aircraft), to document
the requirements of many practical systems, including a submarine communications system,
the flight program for Lockheed’s C-130J aircraft and so on.

SCR tables contain first-order predicate logic expressions, and could be interpreted by
certain Parnas tables (formally defined). There are four kinds of SCR tables, condition table,
selector table, event table and mode transition table. Two examples are given in former part
of this article, see Fig. and Fig. [12.9

There is a wonderful tool set called Toolset for SCR tables, including a Editor for creating
a table, a Consistency Checker for checking disjointness (no nondeterminism) or coverage
(completeness, no missing cases) of a table.

RSML Tables

RSML (Requirements State Machine Language) is a specification language developed at the
University of California at Irvine. An AND/OR table is included in RSML with one header
and a 2-dimentiona grid. It Represents disjunctive form of conditions. Also, RSML provides
a consistency and completeness checker for AND/OR tables. A simple example is listed

below, see fig [12.22

Power=on

Shutdown=operate

F “T" —Ture.

Watchdog=operate

“F* — False

IR
M

Reset=pressed

“.* —Don't care

Figure 12.22: AND/OR table

PVS COND/TABLE Constructs

In 1995, Cond and Table constructs were added to SRI’ PVS (Prototype Verification System).
They are used to check disjointness and coverage properties of one or two dimensional tables,
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treated as an IF-THEN-ELSE in PVS theorem prover. In PVS, the definition of disjointness
is: each distinct condition pair is disjoint. Similarly, coverage has the definition: disjunction
of all conditions is true.

TABLE constructs provide a fairly attractive input syntax for tables and are LaTEX-
printed as true tables. Their semantic treatment derives directly from the COND construct.

Tablewise

In 1995, Tablewise tool was released as a commercial decision table tool by Odyssey Research
Associates, Inc in Ithaca, NY (in 1999, becomes a subsidiary of Architecture Technology
Corporation ).

TableWise Functions.

e Overlap checker: displays which pairs of columns belonging to different outcomes over-
lap and how they overlap.

e Coverage checker: displays all combinations of inputs that are not assigned any output
by the table.

e Ada code generator: automatically generates an Ada package containing a subprogram
implementing the decision table.

e Documentation generator: automatically generates an English language description of
the code.

LogicGem

In 1996, another decision table tool with similar function as Tablewise, LogicGem was re-
leased by Catalyst Development Corporation, California. The special fucntion of LogicGem
is that it can generate many kinds of programming source codes like C, C++, Fortran,
FoxPro, Java, Pascal and so on.

12.10 Tabular Expressions Today

While in SQRL in McMaster University, theory research and practical applications on tabular
expressions are on going in "multi-threads”, in University of Limerick, Ireland, Parnas is now
leading another SQRL to establish a new TTS. Simultaneously, some other tabular projects
groups have continuously been using table notations in software documents, Such as U.S.
NRL continuing to work on the SCR method, Odyssey Research Associates keeping on
providing Tablewise for decision tables , etc. If you ”Google” tables in Internet, you will
find numerous pages which are related with software engineering.
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12.11 Exam Questions

1. What are expressions in Tabular Expressions Theory?

2. Is it a must for a function to be total in Tabular Expressions?

3. What is Cell Connection Graph?
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Chapter 13

Jorge Santos: Architecture
Description Languages

The architecture of a software system is a term in common use among software engineers,
however, this architecture is often described in an ad-hoc way and informally. The use of
Architecture (or Architectural) Description Languages allows the description of this architec-
ture to be realized in a formal way. This aids communication by giving a common language
in which to communicate said architecture, allows formal analysis and simulation, allows
reutilization of software components, among other advantages.

13.1 Introduction

For a proper discussion of Architecture Description Languages (ADLSs) is necessary first to
define the concept of Software Architecture.

From [2]: “The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally visible prop-
erties of those elements, and the relationships among them.” The architecture of a system
focuses on the major components of said system and models the interactions between these
components, without regard to their internal mechanisms. Unlike in the design of a system,
the primary interest of a system architecture is are the externally visible components of it’s
elements, such as the services they provide, their performance characteristics, usage of shared
resources and so on; the public aspects of the system’s elements, as opposed to their private
aspects.

This descriptions can be static, such as the interfaces of the modules, their shared data
and so on. They also comprise dynamic aspects, such as the synchronization between the
several software modules.

It is worth to note that every software system has an architecture, whether described
explicitly or not. It is in explicitly describing the architecture of a system that ADLs come
into play. Architecture Description Languages are intended to describe the architecture of a
(software) system.

265
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Architecture Description Languages, then, are languages, more or less formal that allows
us to describe the architecture of a computer system. ADLs are still maturing, there’s little
consensus on what exactly constitute an ADL and what characteristics it should have. Some
of the most common ADLs are: Aesop [3], C2 [9], Darwin [§], Rapide [7], UniCon [13],
Acme [5] and Wright [1].

13.2 Characteristics of ADLs

Although there is no agreement on exactly what an ADL should have to be considered
an ADL, according to [11] they must explicitly model components, connectors, and con-
figurations; furthermore, to be truly usable and useful, it must provide tool support for
architecture-based development and evolution. These four elements of an ADL are further
broken down into constitutive parts.

In [5] it is argued that ADLs share a common ontology (or conceptual basis), the elements
of which are:

Components represent the computational and data aspects of a system. They are similar
to the classes in object-oriented design, and to the boxes in box-and-line descriptions
of software architectures. Some examples of components would be clients, servers, and
databases. The components have at least one interface, and possibly more, that allows
them to interact with the other elements of the environment.

Connectors allow components to interact, since they can’t do it directly. The connectors
correspond to lines in box-and-line diagrams. They specify the means of interaction
between components. They may represent simple communication channels such as
buffers or shared variables or more complex ones, such as a connection to a database
or a communication protocol. Connectors also have interfaces, they specify the way to
interact with the various participants in the interaction represented by the connector.

Systems are connected graphs of components and connectors that describe architectural
structure. They represent configurations of said elements. System descriptions’ over-
all topology is defined independently from the components and connectors that make
up the system (in contrast with programming languages, in which modules are usu-
ally tied via import statements). Another important characteristic of systems is that
they are possibly hierarchical, that is, components and connectors may have internal
architectures. They are akin to the configurations of [L1].

Constraints are akin to module invariants, they represent claims about an architectural de-
sign that should remain true even as it evolves over time. Some of the usual constrains
include restrictions on allowable values of properties, topology, and design vocabulary.
For example, an architecture might constrain its design so that users of a server belong
to a certain group.
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Styles represent families of related systems. An architectural style typically defines a vocab-
ulary of design element types and rules for composing them. Examples include layered
systems, and data flow architectures based on graphs of pipes and filters. Some archi-
tectural styles additionally prescribe a framework as a set of structural forms that spe-
cific applications can specialize. Examples include the traditional multistage compiler
framework, 3-tiered client-server systems, and user interface management systems.

Regarding the tool support mentioned by [11], it is worth noting that although the tools
supporting an ADL is not formally part of the language, it is necessary for it to be useful.
There is a push from the software engineering community to identify a canonical “ADL
toolkit” [4]. Some desirables abilities provided for the tools of an ADL are architectural
design, analysis, evolution, executable system generation, and so forth.

13.3 Differences Between ADLs and Other Languages

In order to more clearly see what ADLs are, we can contrast them to other notations that,
though similar, are no properly ADLs. The languages we use for comparison are implemen-
tation languages, object-oriented modeling notations, and model implementation languages
(MILs). The main criteria that distinguishes ADLs from other languages is the need of ADLs
to model configurations explicitly.

In implementation languages the architecture of a system is only implicit, via subprogram
definitions and procedure calls. MILs typically describe uses relationships among modules
in an implemented system and support only one type of connection.

Object oriented modeling languages, such as UML, can be extended to support modeling
of software architectures [10][I2] to be able to model architectural abstractions that either
differ or do not exist in object oriented design. This has the advantage that there already
are good tools for working with UML, and it is a widely known and used language. The
different ADLs have certain aspects in common with UML, some of which can be expressed
with UML’s extension mechanisms, while others may be included in a UML specification
but can only be interpreted by ADL-specific tools [I2]. Moreover, it is convenient to use a
language that closely matches the concerns facing the software architecture, by making the
peculiar aspects of architecture modeling (e.g. components and connectors) the job of the
software architecture is made easier.

13.4 Some Sample ADLs

Wright

Wright is an architectural description language based on the formal description of the ab-
stract behavior of architectural components and connectors. It is distinguished by the use
of explicit, independent connector types as interaction patterns, the ability to describe the
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Configuration SimpleSimulation
Component TerrainModel(map : Function)
Port ProvideMap = [Interaction Protocoll
Computation = [provide terrain data]
Component = VehicleModel
Port Environment = [Interaction Protocol]
Computation = [compute vehicle movement]
Connector UpdateValues(nsims : 1..)
Role Model_1..nsims = [Interaction Protocol]
Glue = [Data travels from one Model to another]
Instances
Hamilton : TerrainModel ([map of Hamilton])
Bus : VehicleModel
C : UpdateValues(2)
Attachments
Hamilton.ProvideMap, Bus.Environment as C.Model
End SimpleSimulation

Figure 13.1: A sample system

abstract behavior of components using a CSP-like notation, the characterization of styles
using predicates over system instances, and a collection of static checks to determine the
consistency and completeness of an architectural specification. Because the semantics of
Wright specifications are formally defined, an architecture characterized in Wright provides
a sound basis for reasoning about the properties of the system or style described.

To give a view overview of Wright we now illustrate its main ideas via a simple example
system. The system will simulate a bus driving through Hamilton. It will have two com-
ponents, one for simulating the bus and its movements and another simulating the places
through which it drives trough. The two components communicate by transmitting updates
of the values of objects’ attributes. Figure shows the outline of how this would look
like in Wright. Of note in this description is the explicit specification of components and
connectors, as well as the delineation of instances and their attachments. In our example,
the terrain model Hamilton is accessed by the vehicle Bus component will interact with its
environment via the Environment port.

A connector represents an interaction among a collection of components. For example, a
pipe represents sequential communication between two filters, while a RPC connector rep-
resents one component requesting a service of another. A Wright description of a connector
consists of a set of roles and glue. A connector, in our example, C, acts as a source of data
and recipient of data, one for each model it coordinates. The connector glue defines how the
roles will interact with each other.

The parts of a Wright description (port, role, computation and glue) are described using
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a variant of CSP [6]. For example, the Model role of UpdateValues might be defined by:

Role Model = upate!lx — Model
M request — newValue?”y — Model
Mg

This defines a participant in an interaction that repeatedly either provides an updated
value (update!x) or request a new value (request). If it requires a new value, it will be provided
one (newValue?y). It may also choose to terminate successfully at any time (§).

One immediate benefit of describing architectural designs with Wright, obtained from
making the meaning of an architectural description precise, is that it facilitates the commu-
nication of ideas from the architect to the other interested parties. For example, the Model
role defines exactly what actions a component may or may not take if it is to participate in
an UpdateValues interaction. Furthermore it provides a basis for for analyzing architectures.
The description of connectors in Wright can be used to determine whether the connector
satisfies certain critical properties, such as internal consistency of the protocol and whether
the roles are sufficiently constrained to ensure proper behavior by participants. In consider-
ing the UpdateValues connector above, for example, we notice that, as it is described, if both
Bus and Hamilton were to choose to request a value before providing an update, a conflict
would occur. Both expect a value and there is no value available. In addition to analyzing
connectors, components can be analyzed to determine, for example, whether they conform
to their interface specifications.

Wright further structures the description of an architectural configuration by distinguish-
ing between component or connector types and specific instances of them in the configuration.
In the example, UpdateValues is a connector type: it is defined by a set of potential partic-
ipants, the Models, and constrains how the may behave, via the Glue. C is an instance of
this type: the two participants of which are Hamilton and Bus, which are associated with the
protocol in the attachments.

Since the global system behavior is derived from the architectural structure and behavior
descriptions of types, Wright provides a means of extending the type-level guarantees to
system instances. At the configuration level, Wright provides checks to confirm that a given
component port properly fulfills the obligations of any role to which is attached. If the
appropriate constraints are met, then any analyses at the type level automatically apply to
instances.

In addition to describing and analyzing system configurations, Wright permits the de-
signer to describe and analyze entire families of systems, or architectural styles. by formal-
izing a style, the architect is able to leverage analysis across many systems and thus reduce
the effort to produce individual systems.
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Figure 13.2: Elements of an Acme Description

Acme

Acme was originally conceived as a language to interchange architectural representations
between various implementations of the different ADLs, however it has evolved into an ADL
on its own. The creators of Acme call it a second generation ADL [5], meaning that it
has been built on the experience of other ADLs, and has been built with the intention of
providing the basics of ADLs with a simple syntax.

Nowadays the Acme language and toolkit provide three different capabilities:

Architectural interchange as it was its original goal, Acme provides a generic interchange
format for architectural design, thus allowing architects using Acme-compatible tools
a wider access to analysis and design tools.

Extensible foundation for new architecture design and analysis tools. Acme provides
a solid, extensible foundation and infrastructure that allows tool builders to avoid
needlessly rebuilding standard tooling infrastructure.

Architecture description by itself. Although not appropriate for all applications Acme
can serve to describe relatively simple software architectures.

To illustrate the characteristics of Acme we will go trough a small example: a simple
architecture in which a client component is declared to have a single send-request port, and
the server has a single receive-request port is shown in Figure [13.3] The connector has two
roles designated caller and callee. The topology (configuration) of the system is defined by
listing a set of attachments that bind component ports to connector roles, and a graphical
representation can be seen in Figure [13.2]
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System simple_cs = {
Component client = { Port sendRequest }
Component server = { Port receiveRequest }
Connector rpc = { Roles {caller, callee} }
Attachments : [
client.sendRequest to rpc.caller ;
server.receiveRequest to rpc.callee }

Figure 13.3: Simple Client-Server System in Acme.

Acme allows any component or connector to be represented by one or more detailed,
lower level descriptions, called representations, in order to support hierarchical descriptions of
architectures. The ability to associate multiple representations with a design element allows
Acme to encode multiple views of architectural entities. Representations of a component are
illustrated in Figure [13.4]

Rapide

Rapide is an ADL focusing on large-scale, distributed systems. It allows the definition and
execution of models of system architectures. The result of executing a Rapide model is a set
of events that occurred during the execution together with causal and timing relationships
between events. These sets of events together with their causal histories form a poset (a
partially ordered set) [14].

Rapide 1.0 is structured as a set of languages consisting of the Types, Patterns, Architec-
ture, Constraint, and Executable Module languages; called the Rapide languge framewortk.

Rapide implements an interface connection architecture model. It provides tools to ex-
press the functionality offered by an interface, the functionality required by other mod-
ules/interfaces and the connections between interfaces. Rapide also allows for expressing the
requirements/constraints an interface behavior has to exhibit.

The main elements that define a Rapide interface are:

Actions represent a “one-way” message to be sent or received by the interface. They are
asynchronous from the point of view of sender and receiver.

Functions represent a typed request/replay pair with synchronous interaction between the
involved interfaces.

Behavior An interface behavior can be expressed in three ways, either attaching an im-
plementation module to the interface, defining an architecture that implements the
interface, or describing its behavior by means of reactive rules that specify the reaction
of the interface to events offered to it.
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Figure 13.4: Representations and Properties of a Component

Actions and functions may be grouped in services to aid in their reusability.

Interfaces are assembled into an architecture by using connections. Connections, as is
usual in ADLs are dynamic entities, Rapide allows connection behavior to be specified in
terms of the relationships that the events going into a connection and the ones coming out
have.

The semantics of a connection in Rapide is such that when the triggering event is present
(expressed in the left hand side of the connections), the connection triggers and produces
the event specified in the right hand side of the connection. Three types of connections are
supported by Rapide: Basic connections (A to B), pipe connections (A => B), and agent
connections (A ||> B).

Basic connections are identity connections, events A and B are the same.

Pipe connections behave as a single thread control when producing B events, regardless
of the concurrency behavior of the triggering A events.

Agent connections behave as if each B event is generated by a different thread of control,
and thus its produced B events are not related to each other.

The main distinguishing characteristic of Rapide is its model of computation based on
Partially Ordered Sets of Events (posets). Each event represents the occurrence of an activity
within a program at a particular level of detail. Events are generated by communication
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between two components of the system via actions and functions. Actions generate a single
event, while functions generate two events; one corresponding to the function invocation
and another to the function return. Events in Rapide are typed, that means that they are
characterized by the number, order and type of their arguments.

Events can be ordered both by time and causality. Each of these criteria yield partial
orders on the event set of a computation.

Time order is specified with respect to local clocks, since in Rapide there is no required
global clock. Events are ordered with respect to the clocks that apply to it, so times can
only be compared with times obtained by clocks in its scope. This fact of multiple clocks
and the relationship of events to clocks imply that events that are referred to different, non
related clocks are NOT ordered with respect to each other.

Causal order represents the generator/generated events. Both interfaces, via their be-
havior and connections may generate dependent events. Two events A and B are dependent
(A precedes B) if:

1. A and B are generated by the same process or
2. A process is triggered by A and then generated B or

3. A process generated A and then assigns to a variable v, another process reads v and
then generates B or

4. A triggers a connection which generates B or

5. A precedes C which precedes B (transitive closure).

By introducing this concept of order and causality, Rapide enables the programmer to
explicitly visualize and analyze the execution of the system. In a more sophisticated use of
this facility, a system behavior may be expressed as constraints on how events can relate to
each other.

UniCon

UniCon is an architectural description language whose focus is on supporting the variety of
architectural parts and styles found in the real world and on constructing systems from their
architecture descriptions.

As in other ADLs, there are components, where data or computation are located, and
connectors, which are used to connect components. The components export players, which
serve as input or output points. These players connect to connector’s roles, and thus com-
municate with other components. Both components and connectors have a specification part
and an tmplementation part.

Components are specified by an interface, which describes three things: its computa-
tional commitments, constraints on its usage, and performance and behavior guarantees. It
contains three types of information:
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Component type is similar to the type of an object in an object oriented language. The
type of a component captures the semantics of its behavior, the kind of functionality
it implements, its performance characteristics, and its expectations of the style of
interaction with other components.

Properties are attribute-value pairs that specify additional information about a component
as a whole, such as assertions or constraints.

Player definitions are the way in which a component interact with other components, via
connectors.

Connectors are specified by a protocol, which defines the kind of communication possible
among a collection of of components and provides guarantees about those interactions. It
contains three types of information:

Connector type expresses the designer’s intentions about the general class of interactions
to be mediated by the connector.

Properties are attribute-value pairs that specify additional information about a component
as a whole, such as assertions or constraints, just as in components.

Role definitions give the requirements and responsibilities for the players in a connection.
They are the elements to which components’ players associate in a system.

Component implementations can be primitive or composite.

A primitive implementation is a pointer to a a source document external to the UniCon
language that contains the implementation. For example, it could be an object file or a C
language source code file.

A composite implementation is a description of other components and connectors defined
with UniCon. It contains three types of information:

Pieces are the specific component and connector instances used to create the configuration
description.

Configuration information is a description of the way in which components are hooked
together to form a configuration.

Abstraction information is a description of how the players in the component interface
are implemented by players in the component instances of the composite implementa-
tion.
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13.5 Concluding Remarks

Architecture Description Languages, if used consistently, can be an useful tool in the devel-
opment of large systems. By having a formal description of the architecture of the system,
is possible to communicate clearly the design of the system to interested parties, as well as
analyze the system before building it.

Of the four ADLs reviewed in this report, Acme seems to be the more mature one. This
is probably due to the fact that it is based on older ADLs and was originally meant to be an
interchange language for several different tools, thus is encompasses the common elements
of other, older, ADLs. Nevertheless it was not meant to be an ADL by itself, instead aiming
at becoming a basis for the development of other ADLs, so it is not as powerful as could be
required for complex projects.

Wright, by allowing the detailed description of components and connectors, allows de-
tailed analysis of components and connectors, allowing, for example, to determine if compo-
nents conform to their interface specifications.

Unicon allows the construction of systems from their architectural descriptions, this may
have the advantage of simplifying the mapping of the architectural motel to the implemen-
tation of the system, but has the disadvantage of constraining said implementation.

Rapide focuses on modeling and simulation of the dynamic behavior described by an
architecture. It also has code generation and has a strong notion of event-based communi-
cation.

ADLs are still not as well developed as, for example, programming languages or Object
Oriented Design Languages (such as UML). There are several of them and they differ in
several areas, such as area of application. Having a generally applicable and widely available
ADL with good tools would go a long way in establishing the use of this tools in more
projects.

13.6 Exam Questions

1. What is the architecture of a software system?
2. What is a difference between a Component and a Connector?

3. The architecture of a software system can be expressed both in an ADL and a pro-
gramming language. What are the differences in the expression of this architecture in
both cases?
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Chapter 14

Dan Zingaro: On the Practice of
B-ing Earley

This paper aims to formalize a popular technique for recognizing whether a sentence belongs
to a given context-free grammar, with the B Method. To facilitate this, we begin with an
abstract description of a recognizer for context-free languages. In successive refinements,
we make steps which lead us from this abstract description, to Earley’s algorithm. Earley’s
algorithm is certainly elegant in its operation, but it is unclear why it is correct. It is the
goal of this paper to illuminate the workings of the algorithm through the refinement steps,
to obtain a more clear picture of its operation. Earley’s algorithm was chosen because it
runs in worst-case cubic time. While faster algorithms exist, they require complex Boolean
matrix multiplication methods and so O(n?®) appears to be the best practical bound [6].

14.1 Languages and Recognizers

Familiarity with standard Formal Language Theory concepts is assumed-the following are
only the details most relevant to the current work, and mirror those used by Earley [3]. A
grammar G is a quadruple: (T, N, P,S). T is the set of terminal symbols, N is the set of
nonterminal symbols, P is the set of productions, and S is a nonterminal designated as the
“start symbol”. T and N are assumed to be disjoint. Productions in P are (A, B) pairs,
where A and B are made entirely of terminals or nonterminals, and where the length of A
is at least 1. In context-free grammars, the length of A is exactly 1, and it is this subclass
of grammars which is handled by Earley’s algorithm.

We say that sequence y is directly derivable from 7, written m = x, if we can substitute
the symbols corresponding to the left side of some production P in 7, with the corresponding
right-side of production P, and arrive at x. That is, if 7 = pov, and x = prv, 0 — 7 is a
production, and o, 7, 4, v are all sequences, then ™ = y.

Of course, knowing if two sequences are “directly derivable” is not entirely interesting
on its own. However, a related problem, determining if one sequence is derivable in zero
or more steps from another, is the very basis for what it means to act as a recognizer.
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For x to be derivable from 7, then, we require sequences ag, a, ..., ax(k > 0), such that
T =)= q = ... = ay. It is thus evident that Directly Derivable, as defined above, is
transitive, and Derivable is in fact the transitive closure of Directly Derivable. 1t is these
elegant mathematical descriptions which must be used when reasoning with the B method.

A Sentential Form is a string which is derivable from the start (or root) symbol of the
grammar. Since nonterminals are only present to properly construct a grammar, we are
usually interested in sentential forms which are composed of only terminal symbols. These
are called sentences, and so the definition of a recognizer can also be stated as determining
whether or not a given sentence belongs to the grammar, or if the sentence is derivable from
the root nonterminal of the grammar.

14.2 General Context-Free Recognizer Machine

We begin with a context-free recognizer based on the definitions of directly derivable and
derivable given above. Recall that modelling with the B method begins with an abstract
machine, which contains a specification of a software system, or a part thereof [7]. We use the
syntax of Bdfree [2]. Being the first step in the development, our recognizer will act as this
abstract machine, which will undergo refinements in order to arrive at Earley’s recognizer.

It is first necessary to outline the data types, such as rules and grammars, that will be
used by this machine and its refinements. The most straightforward way to represent rules
appears to be via a double, where the first component is a token, and the second component
is a sequence of tokens. We can represent a grammar by a 4-tuple, whose components are the
same as described above. However, not all such 4-tuples are acceptable. First, it is necessary
that the terminal and nonterminal sets be disjoint. Second, since we are only dealing with
context-free grammars, the rules in the grammar must obey the required format of having
a left-hand side consisting of only one nonterminal; this is handled in line The third
restriction on grammars, imposed on line [12] requires that the start symbol be the left-hand
side of just one production. This is advocated by Earley in his original paper [3], because it
simplifies the execution of the algorithm. The proof that all grammars can be transformed
into grammars where the start symbol is involved in only one production is obvious. Let an
arbitrary grammar have a start symbol of ¢, which is necessarily the left-hand side of more
than one production. Simply introduce a fresh non-terminal s, make this the start symbol,
and add the production s — t.

Several other useful operations on grammars are also added at this point. Since the deriv-
able relations require knowledge of whether or not a certain production is in the grammar,
a function gProd is added in lines [15], which returns the productions component of the
grammar tuple. Functions for returning the other components of the grammar are also added
for symmetry (and because they will probably be used later). Finally, for simplicity, we add
a function gFElements for returning the union of the grammar’s terminals and nonterminals.

We can now define directly Derivable starting at line 25 a function from grammars to
relations. The relation returned by the function is between elements of the supplied grammar,
which makes use of the g Flements function just defined. Recall from the definition of directly
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derivable that ¢ — 7 must be a member of the grammar’s productions. This restricts o to
be one nonterminal, and so it is defined as a token, rather than a sequence of tokens, in line
23

The function derivable can then be easily defined, starting at line [32] It is again a
function from grammars to relations, where elements xx and yy are in the relation if they
are in the closure of directlyDerivable(gg).

The final step is to actually provide a means whereby a user can determine if a sentence
is in a given grammar. To facilitate this, an operation isSentence is defined, taking a
grammar and a sentence, and returning TRUFE or FALSFE, depending on whether or not
the root production of the grammar can derive the supplied sentence. This completes the
description of the machine, which is next given in its entirety.

Listing 14.1: Context-free Recognizer

MACHINE recm

SETS TOKENS

CONSTANTS grammars, rules, gProd, gElements, gNT,
gTT, gRoot, directlyDerivable, derivable, seqTokens

PROPERTIES
seqTokens = seq (TOKENS) A
rules = TOKENS x seqTokens N
grammars = {gg | 3p, n, t, s ).
(p Crules An C TOKENS Nt C TOKENS ANs € TOKENS An Nt ={} A
(Va, b ea € TOKENS Nb €seq (TOKENS) A(a, b)) € p = a €n) A
card(rules[{s}]) =1 A
99 = (p, n, t, 8) )} A
gProd = (Ap, n, t, s ep Crules An C TOKENS A
t C TOKENS Ns € TOKENS A (p, n, t, s) € grammars | p) A
gNT = (Ap, n, t, s ep Crules An C TOKENS A
t C TOKENS ANs € TOKENS A (p, n, t, s) € grammars | n) A
gTT =(Ap, n, t, s ep Crules A\n C TOKENS A
t C TOKENS Ns € TOKENS A (p, n, t, s) € grammars | t) A
gRoot = (A p, n, t, s ep Crules An C TOKENS A
t C TOKENS Ns € TOKENS A (p, n, t, s) € grammars| s) A
gElements = (Ap, n, t, s ep Crules An C TOKENS A
t C TOKENS Ns € TOKENS A (p, n, t, s) € grammars | n Ut) A

directlyDerivable = (Agge gg € grammars |
{zz, yy | zz € seq (gElements(gg)) N yy € seq (gElements(gg)) A
(Imu, sigma, nu, taw).
(mu € seq (gElements (gg)) A sigma € gElements (gg) A
nu € seq (gElements (gg)) A tau € seq (gElements (gg)) A
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rr = mu ~(sigma —> nu) Ayy = mu " tau "nu A sigma v tau € gProd (gg))}) A

derivable = (Agge gg € grammars |
{zz, yy | xx— yy € closure(directlyDerivable (gg))})

OPERATIONS
ans «— isSentence (gg, sentence) =
PRE gg € grammars A sentence € seq (gElements (gg)) THEN
ans := bool ([gRoot (gg)] — sentence € derivable(gg))
END
END

14.3 State Sets

There are several ways to describe the operation of Earley’s algorithm. Earley himself [3]
gives two such methods: one is informal, using “dot notation”, and the other is more formal,
using loops, arrays, and linked lists. Jones [5] gives an enlightening account of Earley’s
algorithm in a more mathematical framework, and his ideas are the basis for much of what
follows in the current work. Below, we describe the main ideas of the algorithm, as they
relate to the concept of the state set. By using state sets, we can arrive at another, more
concrete, representation of a recognizer; the only thing we will not have is a systematic way
to generate these state sets. This is returned to in the next refinement.

The algorithm works conceptually in n + 1 phases, where n is the length of the input
string. These phases are all associated with their own set of data, referred to as a state set.
These state sets are composed of so-called Earley items, which, taken in unison, maintain
the entire state of the parser (that is, what has been parsed so far and what can potentially
be parsed next).

Earley items are always described as being tuples. But, while Earley recommends 4-
tuples, most of his epigones (for instance, see [I]) favor eliminating the fourth component—a
lookahead string—and using only triples; we shall eliminate the lookahead as well.

The components of the tuples are typically integers, and require that the productions in
the grammar be ordered so that they can be referred to by unique integers. Jones [5] instead
defines the triples to consist of a rule and two integers, so that no order is required on the
productions. Following Earley’s notation, production D, is of the form C,,,,C,,, ..., C’pp/. If
we designate triples as (p, j, f), then p is a rule of the grammar, 0 <= j <= p’ (j represents
the token in the grammar that was just parsed), and 1 <= f <= n+ 1 (f is the state in
which parsing this production began). A final item is one which has been completely parsed.
In such a case, j = p/, since the last token parsed was the last token in the production.

The algorithm begins with the item (RootRule,0,1) in state set 1. If set ¢ is not related
via any items to set ¢ 4+ 1, then the input is not accepted by the algorithm. Alternatively, if,
at the end of the algorithm, s, is the set consisting of just the triple (Root Rule, 1, 1), the
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input is accepted. The reason why this criterion is synonymous with acceptance is outlined
next.

14.4 Refinement 1 — Intuition Behind State Sets

It is certainly not obvious how using state sets can facilitate the recognition of a sentence
in a grammar. However, after elaborating on a point made by Jones [5], it is more clear.
Consider an item (r, j, f) belonging to state set i. Recall that the f component represents
the state set where the production r began to be parsed. Keeping in mind that a state set
corresponds with the current position in the input string, f represents the fact that the first
f — 1 characters of the input string, followed by the nonterminal on the left-hand side of rule
r, can be generated.

Next, we turn to the j component, which says that we have parsed j tokens of the right-
hand side of rule r. Since we are in state set ¢, and only f — 1 terminals in the input string
have been recognized, it must be the case that the first j tokens can generate the string
consisting of the terminals from f to ¢+ — 1 in the input sentence. We will see that these
conditions are represented in the abstract refinement given in the next section.

Now it makes sense why < RootRule,1,1 > in state set n + 1 means that the sentence
has been successfully parsed. Since f is 1, and this equals the length of the root production,
it says exactly that the right side of the root production can generate the input sentence.

14.5 Refinement 1 — Refinement Machine

We are now at a point to refine our original context-free recognizer machine. It is the
first refinement to rely on state sets, so numerous accessory functions must be introduced.
The conditions for constructing state sets are also complicated, and are split into their own
functions. This is all described presently.

It will be necessary to refer to the left-side (nonterminal) and right-side (sequence of
tokens) of rules, and so two functions (lines [7] and |§]) allow these components to be easily
extracted from the composite rule. States are then defined as triples, consisting of one rule
and two natural numbers. A state set is then conveniently defined as the power set of states
in line [I0L

We can then define stateObj (line [11]), which will be the “object” containing all state
sets; it is therefore represented as a sequence. It will prove convenient to refer to individual
state sets in this object, and so a function extractSet is defined in line [I2] It takes a state
object, and a NAT, and returns the associated state set.

The root (or start) rule plays a prominent role in this refinement, and so to avoid a
messy syntax for referring to that rule, the function gRootRule is introduced (line . It
takes a grammar as input, and returns a double representing the root production. It relies
on previously defined functions gProd and gRoot to do this.
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Let us ignore the condl,cond2,cond3 functions for the moment, and continue with
validObj in line It takes a grammar and an input sentence, and returns valid state
objects for the pair. By walid, I mean that the state sets have length n + 1, and satisfy
certain conditions that make it a consistent set.

The first necessary condition is that some base element exists in the first state set. We
impose this by ensuring that state set 1 of the state object, contains the rule whose first
component is the root rule, whose second component is 0, and whose third component is 1
(see line [31)).

Next, the consistency constraints must be imposed, and this is done with two universal
quantifications, simplified by shuffling the bulk of the code into separate conditions. First,
we check, in line , to make sure that, if a state (r, j, f) is present, then r is really a rule of
the grammar, and that f is between 1 and ¢. The reason for the latter is because, if f > 1,
then the state is saying that more than ¢ — 1 terminals of the sentence can be recognized by
having only looked at ¢ — 1 such terminals, which is impossible E| It is also necessary that j
be between 1 and the length of the right side of rule r.

Recall the stipulation on state sets that the first f — 1 characters of the input sentence,
followed by the left-side of r, can be generated by the grammar. This is housed by condl,
defined in line [16] and imposed in line [35, validObj thus ensures that it is true for all state
sets.

If 7 > 0, then we have another condition to verify; namely, that the first j tokens on the
right side of r can generate the sequence x ¢, xf11,...,x;—1, where z is the input string. This
is handled in line 20| where operations to extract pieces of sequences are used to construct
the derivable condition. cond2 is imposed in line [36]

There is one more necessary condition on state sets, relating a state set i to future state
sets m > i. As explained by Jones [5], if (r,j, f) is in state set ¢, and the j + 1th element
on the right-side of r can produce z;,...,Z,;,_1, then (r,j + 1, f) must exist in state set m.
This follows directly from the definition of state sets, and without it, state set m would not
contain all required elements. The condition is verified by forcing the condition at line [24] to
be true via line 39l

We can then define acceptObj, to consist of the state-set objects which, given a grammar
and sentence, represent the situation where the sentence is accepted by the grammar. Ac-
cepting state objects must of course be valid, and exhibit the additional property that they
contain the required state in the final state set.

The refinement of the isSentence operation returns TRUFE if there is at least one such
valid state object, and FALSE otherwise. The reason why this represents a valid refinement
will be returned to in the next section. For now, the complete refinement is presented.

Listing 14.2: State Set Refinement

1 REFINEMENT recr
2> REFINES recm
s CONSTANTS states, stateSet, stateObj, extractSet, validObj, gRootRule,

!Earley may have developed a landmark parser, but he was certainly no prognosticator
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IsRule, rsRule, condl, cond2, cond3, acceptObj

PROPERTIES
IsRule = (X Is, rs els € TOKENS Ars € seqTokens | Is)
rsRule = (X ls, rs ols € TOKENS Ars € seqTokens | rs)
states = rules X N x NA
stateSet =P ( states) A
stateObj = seq ( stateSet) A
extractSet = (X ss, nn e ss € stateObj Anmn € NAnn >1 Ann <size (ss) | ss(nn) ) A
gRootRule = (Ap, n, t, s ep Crules An C TOKENS Nt C TOKENS A

s € TOKENS A (p, n, t, s) € grammars | s — p(s)) A

A\
A\

condl = (\gg, ss, [f, mr egg € grammars A ss € seq (gElements (g9)) Nff € NArr €
rules |
bool ((Jalpha e alpha € seq (gElements (gg)) A
[gRoot (gg9)] +— (((ss 1 ff—1) « IsRule (rr) ~alpha)) € derivable (gg)))) A

cond2 = (\gg, ss, [f, rr, jj, 1 egg € grammars A ss € seq (gElements (g9)) Aff €
N A
rr € rules Njj € NAdi € N|

bool (rsRule (rr) T 75 — ((ss 1 ii—1) | ff—1) € derivable (gg))) A

cond3 = (\gg, qq, ss, rr, jj, [f, it e gg € grammars A ss € seq (gElements (gg)) A
rr € rules Njj € NAff € NA qq € stateObj Nii € N]|
bool ((Yme m € NAii+l <m Am <size (ss) A
[rsRule (rr)(jj+1)] — ((ss | m—1) 1 ii—1) € derivable (g9) = (rr, jj+1, ff) € extractSet (qq, m)))

validObj = (X gg, ss e gg € grammars A ss € seq (gElements (gg)) |
{qq | qq € stateObj Asize (qq) = size (ss) +1 A
(gRootRule (gg), 0, 1) € extractSet (qq, 1) A
(Vie i € l.size (qq) =
Vr, g, fer eérules N\j ENAf eNA((r, 4, f) € states N(r, j, f) € extractSet (qq, i)) —
(r € gProd (g9) N1 <fANf <i ANj <size (rsRule (r)) A
condl (gg, ss, f, r) = TRUE A
j >0 = (cond2 (g9, ss, f, r, j, i) = TRUE)))) A
(Vie i €1..(size (g9)— 1) =
Vr, g, fer c¢rules N\j ENAf eNA((r,j, f) € states N (r, j, f) € extractSet (qq, 1)) —
(cond3 (g9, qq, ss, v, j, f, i) = TRUE)))}) A

acceptObj = (X gg, ss e gg € grammars A ss € seq (gElements (gg)) |
{zz | zz € validObj (g9, ss) A (gRootRule (gg), size (rsRule (gRootRule (gg))), 1) € zx(size (ss) +
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INVARIANT
(V gg, ss eqgg € grammars A ss € seq (gElements (gg9)) —
(card(acceptObj (gg, ss)) > 1 <= ([gRoot (gg)] — ss € derivable(gg))))

OPERATIONS
ans «— isSentence (gg, sentence) =
PRE gg € grammars A sentence € seq (gElements (gg)) THEN
ans = bool (card (acceptObj (gg, sentence)) > 1)
END
END

14.6 Refinement 1 — Linking Invariant

To ensure that the relationship between an abstract machine and its refinements is valid,
we require the presence of a linking invariant, relating aspects of the previous and current
refinement. The refinement machine just presented includes a refinement invariant which
must still be machine-proven, but for which it is not difficult to understand the intuition. If
there is at least one element in acceptObj, then there must be at least one collection of state
sets which represents the case where the sentence belongs to the grammar. This corresponds
exactly to saying that the root can derive the sentence in zero or more steps, according
to the definition of derivable given in the abstract machine. Conversely, consider all cases
where the root can derive some sentence. This means that the elements of the right-hand
side of the root production, on their own, can derive the entirety of the sentence, and this
corresponds exactly to those state objects which accept their input. So there must be at
least one member of acceptObj in this case, completing the argument for the implication.

14.7 Refinement 2 — Earley’s Algorithm Revisited

The next refinement involves formalizing Earley’s algorithm using the B method. Jones [5]
provides many of the ideas used—the main complication arises in trying to model his closure
relations, described in due time.

Earley’s algorithm seeks to systematically build the state sets from the previous re-
finement. It involves the repeated application of three functions: predictor, scanner, and
completer. We review them for completeness, and assume that they are operating on a state
set (1, 7, f) in state set i.

e Predictor: adds, to state set i, items (q,0,7), where D, = C,.(j + 1)

e Completer: if operating on a final state, then for all items of the form (g, [, g), found
in state set f, if Cy({+ 1) = D,, then add (¢,l + 1, g) to state set @

e Scanner: If Cp.(j + 1) = x;11, add (r,j + 1, f) to state set ¢ + 1
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State set 1 is created by inserting the rule (rootRule,0,1), and then applying the closure
of the predictor to it. If we have a state set i, then set ¢ + 1 can be constructed partially
by applying the scanner to set i, and then repeatedly applying the predictor and completer
to set ¢ + 1 until no new items are added. Jones makes an optimization on the last state
set, in that it is unnecessary to run the predictor on it; we drop this optimization in favor
of simplicity.

14.8 Refinement 2 — Refinement Machine

We can now present the refinement machine for Earley’s algorithm. We begin with the
predictor. Jones defined the predictor as a function which takes, among other things, one
state set, and returns a set of state sets. It was more straightforward to change this so that
the predictor is a function, which returns a relation between state sets. One would then use
the relational image of the returned relation, to obtain the items that the predictor would
relate to a set of items (the cardinality of this “set” may of course be 1, and it is when
operating on the base element).

In my predictor function (and other functions below), double-letter identifiers (like jj)
represent components of the new state, and single letter identifiers (like j) represent cor-
responding components of the old state. It should then be easy to see how the predictor,
starting on line @, works. Firstly, it adds only states where jj7 = 0 (nothing has been parsed),
and ff =i (they are created from the current state set). These states can only result from
non-final states in the old state set, and must also have the property that their left-hand
side equals the j + 1st token on the right; this last part is covered by line [I1}

We then immediately use the relational image in the predictOn function starting at line
[13] to obtain the results of predicting on a given item. Since this must be done “recursively”,
we first take the closure of the prediction, and then restrict ourselves to the subset of interest.

We similarly define the scanner and completer operations according to their definitions.
Scanner additionally takes the input sentence as a parameter, since it must match the next
input character against the next symbol in Earley items. Completer, in contrast, takes the
state-set object as a parameter, since it must look back to previous state sets. We then add
a completeOn function, which works like predictOn, applying the closure of the completer
to a specific state. The scanner has no such closure function: applying the scanner to states
only adds states to the next state set, and so taking the closure would prove futile.

Throughout the algorithm, after applying the scanner to a state set, we want to repeatedly
call the completer and predictor, until nothing new is added. In other words, we are looking
for the closure of the union of the predictor and completer, and this is what we get with the
close Pc function, defined at line[34] Note that this differs from Earley’s original description of
the algorithm, in which he stated that items should be scanned linearly, and the appropriate
function should be applied to the current item to add more items to the end of the list. As
explained in [4], this order is too restrictive, and it is conceptually simpler if the closure of
the predictor and completer are taken first, and then the scanner is applied—in other words,
it is safe to save the scanning until the end.
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It is then possible to proceed as we did with the last refinement. That is, we define a
valid object and an accepting object. This time, valid objects consist of those where the first
state set consists of the objects from the closure of the predictor, and the remainder of the
state sets are equal to the result of the scanner applied to the previous set, and the closure of
the completer and predictor on the current set. The refinement machine is presented below.

Listing 14.3: Earley Refinement

REFINEMENT recrr
REFINES recr
CONSTANTS predictor, predictOn, closePC, scanner, completer, completeOn, validEarley, acceptEarley,

PROPERTIES

predictor = (Aii, ss, gge i € NAss € seqTokens N gg € grammars |

{pp, qq | pp € stateSet A qq € stateSet N
qq ={ 2z | 2z € states A
(Frr, g7, ff err €rules ANrr € gProd (g9) Njj =1 ANff =i ANzz = (rr, 37, ff) A
(Fr, 4, fer €rules N\j ENANf ENA(r,j, f) €pp Nj # size (rsRule (7))

A lsRule (rr) = rsRule(r)(j+1)))}}) A

predictOn = (X i, ss, gg, rif e i € NAss € seqTokens A gg € grammars A rjf € stateSet |
closure (predictor (i, ss, gg)) [{mif}]) A

scanner = (X i1, ss, gg ® i € NAss € seqTokens A gg € grammars |
{pp, qq | pp € stateSet A qq € stateSet A
qq = {2z | 2z € states N
(3 rr, g7, ff err €rules ANrr € gProd (g9) Njj e NAff € NAzz = (rr, jj, ff)
AN@3r, 7, fer €rules Nj eNAfENA(r, 4, f) €pp Ar =rr ANf =f A
y =7+ 1 Nj #size (rsRule (1)) A rsRule (r)(j4+1) € ¢TT (g9) A ss(j+1) = rsRule(r)(j+1)))}})

completer = (X stObj, ii, ss, gge stObj € stateObj Nii € NA ss € seqTokens N gg € grammars |
{pp, qq | pp € stateSet A qq € stateSet N qq = {zz| 2z € states N
(3 rr, g, ff err € rules Arr € gProd (g9) Njj € NAjj # size (rsRule (rr)) A
ff eNAzz =(rr, 57 + 1, ff)
AN@3r, 4, f er €rules N\j ENANf € NAj =size (rsRule (r)) A
(rry 37, [f) € extractSet (stObj, f) A
rsRule (rr)(5j+1) = IsRule (r) A (r, j, f) €pp))}}) A

completeOn = (AstObj, ii, ss, gg, 1jf e stObj € stateObj Nii € NA
ss € seqTokens N gg € grammars A rif € states | closure (completer (stObj, i, ss, gg)) {{rif}}) 7

closePC = (\stObj, i, ss, gg, rif e stObj € stateObj Nii € NA ss € seqTokens N gg €
grammars N
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rif € stateSet | closure ( predictor (i, ss, gg) U completer (stObj, ii, ss, gg)) [{ rif}]) A

validEarley = (X gg, ss ® gg € grammars A ss € seq (gElements (gg)) |
{qq | qq € stateObj Asize (qq) = size (ss) +1 A
{extractSet (qq, 1)} = predictOn (1, ss, gg, {gRootRule (g9)} x {0} x {1}) A
(Vii e ii € 2..size (qq) =
(tempSet @ tempSet € stateSet A ({tempSet} = scanner (ii, ss, gg) [{extractSet (qq, iW—1)}]) A
{extractSet (qq, 1)} = closePC (qq, i, ss, gg, tempSet)))}) A

acceptEarley = (X gg, ss ® gg € grammars A ss € seq (gElements (gg)) |
{zz | zx € validEarley (gg, ss) A (gRootRule (gqg), size (rsRule (gRootRule (gg))), 1) €
za(size (ss) + 1)})

INVARIANT

(V gg, ss ®gg € grammars N ss € seq (gFElements (g9)) —
(card(acceptEarley (gg, ss)) > 1 <= (card (acceptObj (gg, ss)) > 1)))

OPERATIONS
ans «— isSentence (gg, sentence) =
PRE gg € grammars A sentence € seq (gElements (gg)) THEN
ans := bool (card (acceptFEarley (gg, sentence)) > 1)
END
END

14.9 Refinement 2 — Linking Invariant

The given refinement contains a linking invariant similar to the last one, this time relating
accepting Earley sets to accepting sets from the previous refinement. By transitivity (if this
was proven to be correct), accepting Earley sets should be equivalent to a sentence being
derivable from the root production. To verify this requires a proof that Earley’s algorithm
does indeed construct state sets according to the claim in the previous refinement.

14.10 Next Steps

It is still necessary to machine-prove my refinements, which will (hopefully) provide proof
that Jones’ [0] ideas, and my own, are correct. It is then necessary to perform the last step
of the B refinement process, to arrive at an implementation of Earley’s algorithm.



288 Dan Zingaro

14.11 Exam Questions

e In the complete proof of correctness, why would it be only necessary to show that
Earley’s recognizer computes state sets correctly, and not to prove that it can recognize
sentences belonging to any context-free grammar?

e Typical implementations of Earley’s algorithm use lists of Earley items belonging to
elements of an array of state sets. The lists are scanned linearly, and new Earley items
are produced at the end, if they did not already exist in the list. How could this
situation be represented in the B method (I.E. which data structures, control flow,
etc.)?

e Explain the purpose of the predictOn function. Why can’t predict be called directly?
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Chapter 15

Marwan Abdeen: Use Cases,
Scenarios, Sequence Diagrams and
Message Sequence Charts

Within the software life cycle, increasing attention has been paid to the stages of specification
and design since the quality of all following stages essentially depend on them. Hence, this
survey paper starts with the discussion of four significant design notations, describes their
evolution and concludes with a conceptual similarities,differences and description.

15.1 Use Cases

Starting with the Unified Modeling Language(UML) 1.1 in 1997, Use Cases, as behavioural
diagrams describing the system functionality went with the evolution of UML. Although
describing the system functionality from a high-level view continued to be the main objective
of Use Cases, some of the representations of key Use Case elements have changed. The
change in the stereotypes of the main two relationships in Use Case; <<include>> and
<<extend>> described in further detail next, can be considered as the main significant
evolution of Use Case during the last decade.

Use Case Definition: A Use Case organizes a cohesive set of requirements around a
single (named) system capability but does not imply anything about internal implementation.
It represents functionality or services provided by a system to its users.

A Use Case is considered as a description of the possible sequences of interactions between
the system and its external actors, related to a particular goal. The Use Case collects together
all the Scenarios related to that goal of that primary actor, including both those in which
the goal is achieved, and those in which the goal must be abandoned.

A Use Case model [15] describes:

e the system to be constructed,

289
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e the actors (described in more details later) - representing a role played by a person or
other entity which interacts with the system.

e the Use Cases - Families of usage Scenarios of the application, grouped into coherent
cases of functionality. Hence, it is a generalization of the Scenarios of use of the system.
In a more technical description, a Scenario is an instance of a Use Case.

The complete set of Use Cases specifies all possible ways in which the system can be
used, without revealing how this is to be implemented by the system. Since Use Cases do
not deal with technicalities inside the system but focus on how the system is viewed from
the outside, they are most useful in discussions with end-users to make sure that there is an
agreement on the requirements on the system, on its delimitation etc [§].

Actors: An actor can be defined as any object outside the scope of the system that
interacts with the system. It represents a user of the system; Actors represent roles. One
person could have the role of various actors. An actor could be anything having behaviour,
it might be a person, a company or an organization, a computer program or a computer
system, hardware or software or both. It doesn’t have to be a human in specific, other
systems or even partner applications could be considered as actors as well.

The word "Role” is more correct to describe the actor as the word ” Actor” seems to imply
a particular single entity, when it really means a group of entities. Ideally one would speak
of "Actor Type” or "Role”, to indicate a category of similar entities. However, ” Actor” is
the word the industry has accepted, and it works quite adequately.

Relationships:  The main two major relationships used in Use Cases are <<include>>
and <<extend>>. In UML 1.1 and as a response to the claim that 80% of the software
developers did not understand the difference between the <<uses>> and <<extends>>
relationships, researchers started attempting to explain the meaning of these relationships
but unfortunately, statements show to what extent even the experts disagree about Use
Cases.

In UML 1.3 and later, <<include>> and <<extend>> are the main two relationships
which have quietly replaced old relationships called <<uses>> and <<extends>> after
adoption by the Object Management Group(OMG) [1I]. In UML 2.0, the most immediately
noticeable change is that the new relationships are defined as stereotypes of dependency
instead of stereotypes of generalization. This is also indicated in the style of arrow used.
Where UML 1.1 adopted the generalization arrow for use-case relationships, nowadays UML
2.0 employs the dependency arrow. A dependency is defined abstractly as: any relationship
between a dependent entity and a master entity, such that changes to the master would have
consequential effects on the dependant [10].

There are also other kinds of relationships that are applicable to Use Cases, such as
Associations and Constraints.
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Figure 15.1: Online Shopping [16]

Description:  Figure 1.1 demonstrates the idea of system actors, as they represent entities
other than humans. Whereas, Figure 1.2 demonstrates the inheritance between two actors,
it shows the way <<extend>> relationship is used when a Use Case may be invoked across
several Use Case steps, also, the way <<include>> is used when invocation of a Use Case is
accurately known. A generalization of a Use Case takes place when a single condition results
significantly in new business logic, (Generalization is read as 'Is Like’) . The line connecting
the actors to the Use Case means that, that actor interacts in some interesting way with the
system as the system executes that Use Case. The directed line indicates the information
flow; single direction from the actor to the Use Case. Inheritance between actors is possible
in a Use Case as described; An international student is a student.

One can tell and from the above figures that Use Cases capture the functional require-
ments by describing the systems behaviour as a black border box and the reaction to the
stimulus environment. In more details, a Use Case defines the systems environment and how
the system reacts to input. Use Cases are suited to describing the behaviour of any system
which purposefully interacts with its external environment, and can be written at any time.
The in common property which Use Case has is that they show how the system responds to
the outside world, the responsibilities and behaviour of the system, without revealing how
the internal parts are constructed.

At the same time, we want to write as little as possible, as clearly as possible, showing
the ways in which the system reacts to various situations. Use Cases can have additional
textual descriptions. A complete textual description of a Use Case includes:

1. Use Case Name
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Student
A

<<extend>>
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<
udent

include>>
T Enroll St > Enroll in Seminar

Enroll
International Studen

Enroll Family
Member

Figure 15.2: University Student Enrollment [16]

2. Summary

3. Start of the Use Case ( trigger event)

4. End of the Use Case ( termination event)

5. Involved Actors

6. Interaction between the Use Case and the actors

7. Exchange of Information
8. Chronology and Origin of Information
9. Repetitions of Behaviour

10. Optional Situation

11. Capacity

12. Exceptions.

Marwan Abdeen

Including all/some of the additional textual description will be helpful depending on the

system and the Use Case simplicity.
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Types of Use Cases

In general and as a guideline for better Use Cases identification, Use Cases can be described
with different types[10], these are;

e Data Maintenance Use Cases
Typical Create, Read, Update, Delete Use Cases

e Request Approval Use Cases
Use Cases for routing requests through a series of approval stages.

e Data Analysis Use Cases
Uses Cases for analyzing transactions on entities that are manipulated by other Use
Cases.

e Payment Use Cases
Use Cases for making payments. The complexity comes when there are multiple pay-
ment methods. Some of them can be immediate, whereas other may take time to clear.
Also some may involve a number of business rules which have to be configurable.

e Loyalty Program Use Cases
Use Cases allow customers to accrue credits when using a service, and these credits
can be used as a payment method or as rewards for corporate gifts.

Evaluating Completeness and Details Level

When describing systems with Uses Cases, crucial questions are to be asked; "How can I tell
that the described Use Cases have covered my system? Is there any indication for that? To
what level of details should I go?

As there is no magic tool to test the system’s Use Cases against the system requirements,
the following points can be considered as good indicators [5]:

e Use Case Specifications.
The basic flow and the alternative flows are clear and are understandable

e Business Use Case Specifications.
The specifications are very clear when the Use Case is invoked within the business
process. Also, the flow of events in the Use Case has been verified against the business
processes.

e Business Entities.
All the business entities which will be manipulated by the Use Case have been detailed,
and their attributes and subcategorization have been defined.

e Business Rules.
The business rules required to support the Use Case are clear.
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e Supplementary Specifications.
It is clear how supplementary specifications affect the Use Case flow of events.

Use Cases and Testing

One significance of producing tests from specifications is that the tests can be created earlier
in the development process, and be ready for execution before the program is finished.
Additionally, when the tests are generated, the test engineer will often find inconsistencies
and ambiguities in the specifications, allowing the specifications to be improved before the
program is written [20)].

IBM Research has developed Use Case Based Testing (UCBT), which is a technique
for generating test cases and recommended configurations for system level testing. In this
approach, testers build a test model based on the standard UML notions of Use Cases, actors,
and the relationships between these elements. The Use Cases are enhanced with additional
information, including the inputs from actors, the outputs to the actors, and how the Use
Case affects the state of the system.

Moreover, newly developed algorithms use this model to generate a test suite which
provides a specified level of coverage of each Use Case. The generation algorithm also
performs minimization to reduce the number of test cases required to cover the system to
the specified level. These features form a powerful basis for model-based test case generation.

UCBT addresses phases where the tester starts with testing the Use Cases individually,
then he/she will be interested in looking at combinations of the Use Cases. 'System Test’
addresses the situation when all required functionality for the system is present, and the
tester seeks to ensure the proper functioning of the system as a whole. An important
component of System Test is also ensuring that the system can handle customer-like Scenarios
and workloads. After that, 'Solution Test’ addresses the situation in which several complete
systems are combined to provide complex functionality through some process which involves
the systems. These processes can be captured, modeled, and tested using UCBT. Finally,
the Use Cases can be connected using flows that describe a sequence of Use Case that are
performed to accomplish some goal.

In this approach, testers build a test model based on the standard UML notions of Use
Cases, actors, and the relationships between these elements. The Use Cases are enhanced
with additional information, including the inputs from actors, the outputs to the actors, and
how the Use Case affects the state of the system

Use Cases in Real-Time Systems

A new trend has appeared as a trial to implement Use Cases in Real-Time and Embedded
Systems, known as Real-Time UML [7]. In this approach, Timeliness requirements may be
addressed by first determining the end-to-end performance requirement of an event-response
action sequence. These are normally determined during Use Cases. As an example, a
deadline might exist from an external perspective: e.g. "when an actor sends a command,
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the system shall respond within 10 ms ©2 ms.”

Use Cases view the system from a black-box perspective and serve as a means of capturing
external requirements, such as overall performance and response times. BUT, once the ”box
is opened” and classes are identified, a Sequence Diagram shows the objects (and operations)
involved in handling the request and controlling the output response. Each operation in the
sequence is given a portion of that budget such that the sum of all execution times for each
operation in the sequence, including potential blocking, is less than or equal to the overall
performance budget.

These budgets may be captured as constraints associated with the Use Cases or captured
graphically on Sequence Diagrams using timing constraint expressions. In Figure 1.3, what
does ”"Monitor System Health” for the elevator system exactly mean? This Use Case inter-
nally contains more details about what it means. Therefore, UML has two primary means
to provide ”detailing for the requirements”; namely, by example or by specification.
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Figure 15.3: Actors and Use Cases for Elevators System [7]

In the UML, a constraint is a user-defined well-formedness rule that applies to one or
more model elements. Development engineers have approached the problems of modeling the
real-time aspects through applying constraints to specify crucial and critical specifications.
The recently adopted UML Profile for Schedulability, Performance, and Time Specification
is an attempt to codify the standard ways that have been used now for several years of
applying the UML to the problems of real-time and embedded systems. The profile really
adds no new capabilities to the UML, but does standardize how certain aspects can be
represented.

Use Cases And Formalization Attempts

Use Cases are informal, why? UML description is ”semi-formal”, i.e. parts of it are specified
with well-defined languages, while others have been described informally in English.

The abstract syntax of the different language constructs in UML is specified with the
graphical notation of Class diagrams in UML itself, while the well-formedness rules of UML
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are given in OCL, an object-oriented constraint language. BUT, ordinary English is chosen
for describing the semantics of UML. This makes the structure of the language rigorous
whereas the semantics of the language is still quite informal!

Hence, a technique other than the OMG project worked for the specification of the
semantics of UML constructs. The operational semantics are given using an object-oriented
specification language named ODAL, which has been formalized using the 7 calculus. ODAL
is a simple, strongly typed language with a familiar syntax. It is used as the specification
language in a framework for formal specification of modelling languages.

The syntax of some of the ODAL constructs is described in figure 1.4.

ClassDef :: CLASS ClassName [ SUPERCLASS ClassName] [VARIABLES VarDef*] [ METHODS MethDef*]
VarDef " VarName : Type

Type = ClassName | BOOLEAN | Type*

MethDef i MethodName( [VarDef*]) : Type ( [VarDef*]) Expr

Expr = ExprSeq | AssignExpr | CondExpr | MsgExpr | IterExpr | FindEXpr | ...
ExprSeq :: Expr; Expr

AssignExpr " VarName := Expr

CondExpr :: IF Expr, THEN Expr, [ELSE Expr{]

MsgExpr B Expr MethodName ([Expr;*])

IterExpr i FOREACH VarName IN Exprs DO Expr,

FindExpr i FIND VarName IN Exprs SUCHTHAT Expry

Figure 15.4: Syntax of some of the ODAL constructs [11]

It is possible to describe a Use Case more formally by means of a set of Operations and
Methods. Since a Use Case is a kind of Classifier, it has a collection of Operations and a
collection of methods describing its behaviour.

X: Operation

x: Method
K.1 : ActionSequence

Figure 15.5: Use Case Description [17]

The Operations of a Use Case describe what message instances an instance of that Use
Case may receive, while the methods describe what sequences of actions are performed by
instances of the Use Case. A complete sequence of the Use Case consists of one or several
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Operations Methods, performed in a pre-defined order. As described in Figure 1.5, a simple
Use Case(A) is described with one Operation X and a Method with the same name which
realizes the Operation. The sequence of actions of the method consists of two actions: k
and 1. To specify the order between the methods of a Use Case, a technique with a state
variable is used. FEach method has a value representing the state in which the method may
be invoked, and each of the action sequences within a method is ended by giving the state
variable its new value, thus specifying which methods are the successors of that sequence.

CLASS UseCase
SUPERCLASS Classifier
METHODS
allowedAssociati ()
c :=TRUE;
FOREACH r IN relationships DO
IF r isKindOf (Association) THEN
FOREACH n IN r getAllOppositeNames (SELF) DO
¢ :=c AND SELF owner =r lookupType (n)
owner 0 ;
C

consistent ()
SUPER consistent () AND SELF allowedAssociations () AND
SELF contents () = NULL

Figure 15.6: Formal Use Case [17]

Drawbacks, Confusion and Deficiencies

Internal communication inside the system, conflicts between Use-Case instances and con-
currency between Use Cases can’t be modeled. Although Use Cases are supposed to be
independent of any formal design, the conceptual structures fostered by Use Case develop-
ment mislead developers about design [19]. Here are some problems which lead to missed
logical dependencies in systems analysis.

1. Arbitrary goto and comefrom jumps in the flow of control

There is no clear description about the transfer of the internal focus of control within
Use Cases. Through the <<extend>> relationship, an extension ultimately returns
control to using case, whether or not the extension eventually executes. (comefrom
and goto). These vague extraordinary flows of control speak for themselves. You may
compare the kind of jumping out of blocks and breaking into blocks required by the
UML Use Case model with the kinds of programming style that were judged ”harmful”
at the beginning of the block-structured programming era [6]. Use cases conceal an
extraordinary complexity in the flow of control, which programmers must completely
deconstruct, if they are to avoid disastrous logical program structures.

2. Semantics are inadequate to model insertion, exceptions and alternatives
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Use case diagrams are dangerously ambiguous; developers have to rely on intuitions
about the labeling of the cases to establish the intended logic, in disregarde of the official
semantics. Developers commonly use <<extend>> to indicate exceptions where the
dependency semantics of <<extend>> does not support exceptions. The extension
of ’Abort’ operation to "Withdrawal’ through ’Abort <<extends>> Withdrawal’, is
an example of that. Moreover, developers commonly use <<extend>> to indicate
alternative. The extension of "PayDirect” operation to ’Sign for Order’ is intended as
an alternative.

Modelling these control variants properly would require three different definitions of
<<extend>> altogether in terms of considering the flow graphs in the cases of depen-
dency, exception or alternative.

3. The missed long-range logical dependencies

In Use Cases, modelling promotes a highly localized perspective which obscures the
true business logic of a system. Even simple examples exhibit unpleasant mutual
interactions between extensions and base cases. Sometimes, nodes described in other
forms wouldn’t qualify as Use Cases, since they have a larger granularity than accepted
and may in general be quite abstract in nature.

Recall: The emphasis on a single observable result is a deliberate constraint which
seeks to ensure a minimum and maximum granularity for a Use Case, which can be
neither an incomplete sequence (offering no benefit), nor multiple sequences (achieving
several benefits) [13].

15.2 Scenarios

A Scenario is a common way to detail a Use Case by providing a set of examples about the
Use Case bahaviour. Each Scenario captures a specific interaction of the use case and details
it. By providing a set of these Scenarios, each Scenario provides typical or exceptional cases
of the use of the system capability.

Advantages in Brief

As Scenarios are primarily useful for adding detail to an outline requirements description, de-
veloping a set of Scenarios for end-users is in itself a useful exercise for elicitation. Scenarios
can be identified by initial discussions with stakeholders who interact with the system. More-
over and as experience shows, analysts think about Scenarios as a medium to understand
an already-built system, by asking how the system responds (component by component) to
a particular input or operational situation.

Considering the system through all the thought-off Scenarios and from different per-
spectives(viewpoints) can be considered as an implementation to concept of Separation of
Concerns for better maintainability at the requirement level, design level and development
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level. Moreover, the process of choosing Scenarios for analysis forces designers to consider
the future usage of the system and the changes to the system.

Scenarios capture three different kinds of requirements: messages or operations performed
by the system, protocols of interaction between the system and its actors; and constraints
on messages, operations, or protocols.

A good thing about Scenarios modeling is that it describes how the system interacts with
the actors in its environment in an implementation-free way.

Limitations

One downside of using Scenarios is that there is an infinite set of Scenarios; it may not
always be obvious which Scenarios ought to be modeled. Another downside which was
considered before UML 2.0, was that, Scenarios provide only a means to model positive
requirements, i.e. requirements that could be stated as ”The system shall” but no way to
model negative requirements, i.e. requirements that would be stated ” The system shall not”.
UML 2.0 and through Interactions(Sequence Diagrams)has this advantage over Message
Sequence Charts(MSC2000) as described in the last section of this paper.

15.3 Sequence Diagrams

A Sequence Diagram is a diagram which depicts the interactions between classes, instances
or even actors in the form of method calls and call returns. These diagrams are defined
by the Unified Modeling Language (UML) notation. It shows the processes that execute in
sequence among objects. Despite its first appearance in 1997, UML 1.0 did have some simple
sequence diagrams similar to those found in Message Sequence Charts (MSC-92). UML went
through small revisions leading to UML 1.5 in 2003. Still over the last three to four years
a major revision of UML has taken place leading to UML 2.0 which became an available
technology from OMG in 2004. In UML 2.0 also Sequence Diagrams (or Interactions) have
been thoroughly revisited and revised to overcome the problematic in UML 1.X because of
its lack to language support in terms of reusing and combining sequences which were offered

in MSC.

Key Language Elements

Boxes: The boxes across the top of Figure 1.7 represent classifiers or their instances,
they are typically Use Cases, objects, classes, or actors. Because messages can be sent
to both objects and classes, objects respond to messages through the invocation of an op-
eration and classes do so through the invocation of static operations, it makes sense to
include both on Sequence Diagrams. Objects have labels in the standard UML format,
objectName: ClassName. When not specifying the object name, then this object is consid-
ered and known as Anonymous. Object labels are underlined, classes and actors are not.
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aStudent: Student :Seminar :Course

& I

I

! enrollStudent(aStudent) | :
r »

|

isStudentEligible(aStudent)
«getSeminarHistory()
| seminarHistory
: [PR— eligibleStatus _._._...._.|
:<........e.n.rgl.l.m.e.m§1§u.1§ ........

Figure 15.7: Student Seminar enrolment Scenario [4]

Lines, Dashed Lines and Activation Boxes:  Forward Lines describe the direction
of the message (from/to). Dashed lines hanging from the boxes are called object lifelines,
representing the life span of the object during the Scenario being modeled. The long, thin
vertical boxes on the lifelines are activation boxes, also called method-invocation boxes,
which indicate processing is being performed by the target object/class to fulfill a message.

Object Creation and Destruction: For the instance creation and destruction, an (X)
at the bottom of an activation box, is a UML convention to indicate an object has been
removed from memory. As a response to garbage collection in programming languages, it’s
commonly not to worry about modeling destruction.

Messages:  Messages are indicated on UML Sequence Diagrams as labeled arrows . In
UML, when the source and target of a message is an object or a class, the label is the
signature of that method invoked in response to the message. However, if either the source
or target is an actor, then the message is labeled with brief text describing the information
being communicated.

Return Values: Return values are optionally indicated using a dashed arrow with a
label indicating the return value. A good style is not to indicate the return values when it
is obvious what is being returned as Sequence Diagrams get complicated fairly quickly.

Notes: Notes are basically free-form text which can be placed on any UML diagram,
to provide a header for the diagram, indicating its title and identifier or even to provide
explanation. Notes are depicted as a piece of paper with the top-right corner folded over.
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Also, notes are used to indicate future work that needs to be done, either during analysis or
design.

Conditional Decision [ |:  When it comes to decisions, conditions can be expressed
in two bracket ’[ |, whereas the complement of the condition can be described using [else]
notation

Loops: Loops can be expressed in two ways. One way is to show a frame with the label
loop and a constraint indicating what is being looped through, such as (for each objectName).
Another approach is to simply precede a message that will be invoked several times with an
asterisk. It is quite useful to insert textual descriptions of what’s happening along the left
side of the Sequence Diagram. This involves lining up each text block with the appropriate
message within the diagram. This helps in understanding the diagram (at the cost of some
extra work).

Sequence Diagram and Concurrency

Sequence diagrams are also valuable for concurrent processes. As an example in Figure
1.8, when a transaction is created, it creates a Transaction Coordinator to coordinate the
checking of the transaction. This coordinator creates a number (in this case, two) of Trans-
action Checker objects, each of which is responsible for a particular check. This process
would make it easy to add different checking processes because each checker is called asyn-
chronously and proceeds in parallel. When a Transaction Checker completes, it notifies the
Transaction Coordinator. The coordinator looks to see if all the checkers called back. If not,
the coordinator does nothing. If they have, and all of them are successful, as in this case,
then the coordinator notifies the Transaction that all is well.

Figure 1.8 introduces a number of new elements to Sequence Diagrams. First, activations,
which appear explicitly when a method is active because it is either executing or waiting for
a subroutine to return. Many designers use activations especially in concurrent situations.
The half-arrowheads indicate an asynchronous message. An asynchronous message does not
block the caller, so it can carry on with its own processing.

Sequence Diagrams in Real-Time Systems

In Real-Time, Scenarios are modeled primarily with sequence diagrams. Sequence Diagrams
describe the Use Case, its preconditions and postconditions, and keeps a running dialog
explaining what’s going on as the Scenario unfolds. Unfortunately and for the lift passenger
system described in [9], one can easily imagine the many variants showing what happens
when passengers want to go up, when the same request occurs several times, when the
cable breaks, and so on. Each of these different Scenarios would be captured in a different
Sequence Diagram, resulting in probably a dozen or so Scenarios to elaborate what we mean
by ”Deliver Persons to Floor” Use Case!
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Figure 15.8: Concurrent Processes and Activations [18§]

Sequence Diagrams and Testing

Sequence Diagrams provide a picture of what testers must test and validate. A tester going
through a Use Case at the GUI level can see what is going on underneath the covers [3].
Because Sequence Diagrams are time-based, if the system generates an error at any point,
the tester can correlate that with the underlying code. He/She never sees the code as he/she
doesn’t have to. UML is handling that layer of abstraction between the low-level code and
the high-level GUI. This allows the tester to annotate the defect which he/she submits and
reference the Sequence Diagram for better communication at the team level.

On the other hand, consuming horizontal space, readability issues when it comes to large
Sequence Diagrams and dependency on the designer in case of badly expressed Sequence
Diagrams are of the major drawbacks of Sequence Diagrams.
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15.4 Message Sequence Charts

As a language for the description and specification of the interactions between system compo-
nents, Message Sequence Chart(MSC) has appeared in particular telecommunication switch-
ing systems. However, Message Sequence Charts may be used for requirement specification,
simulation and validation, test-case specification and documentation of real-time systems.
MSC can be viewed as a special trace language which mainly concentrates on message in-
terchange by communicating entities and their environment.

MSCs have been used for a long time within international standardization bodies and
within industry, following different conventions under various names such as Arrow Diagrams,
Extended Sequence Charts, Information Flow Diagrams and Message Flow Diagrams. These
MSC variants mainly differ with respect to syntax and terminology. There are only minor
semantic differences. The International Telecommunications Union (ITU), previously known
as CCITT, developed the MSC language definition Z.120, which was approved by the CCITT
members at that time in May 1992. In 1996, MSC-96 was introduced. MSC-96 was backward
compatible with MSC-92 and added a number of features which made MSC-96 more versatile
and powerful than MSC-92. The concepts of timers, instance creation and instance stop in
MSC-92 had not changed in MSC-96. MSC96 included two syntactical forms, MSC/GR as a
graphical and MSC/PR as a pure textual representation. Despite the concepts of condition
and submsc of MSC-92 had been slightly modified, the interpretation of old diagrams weren’t
drastically different when interpreted as MSC-96 diagrams. The new features included:
MSC references, gates and High-level Message Sequence Chart (HMSC). In 2000 [2], MSC-
2000 was introduced with improved structural concepts and object orientation, more time
observations and time constraints and better support for synchronizing communication than
MSC-96. MSC-2000 will be maintained for more on quality of service and improvements on
grammar and meta-grammar.

MSC-2000 and as MSC-96 also did, included two syntactical forms, MSC/PR as a pure
textual and MSC/GR as a graphical representation. An example of the MSC/GR and the
corresponding MSC /PR representation for a connection MSC is shown in Figure 1.9.

The MSC/PR contained in Z.120 lists message sending and receiving events in association
with an instance. A better readable notation was suggested; a new event oriented textual
representation was elaborated where events are listed in form of a possible execution trace
and not ordered with respect to instances. Figure 1.10 demonstrates the event oriented
textual syntax description.

MSC Language Elements

Basic Elements:

a. Instances and Messages

Instances and Messages describing the communication events, are the most fundamental
language constructs of MSCs. In the graphical representation, instances are shown by
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intiator

process
ISAP_Manager_lIni

ICONreq ;

ICONconf

Responder

process
ISAP_Manager_Res

ICON

ICONind

ICONresp
ICONF

(a) MSC in MSC/GR

msc connection;
inst Initiator, Responder;
Instance Initiator: process ISAP Manager_ Ini
in ICONreq from env;
out ICON to Responder;
in ICONF from Responder;
out ICONCconf to env;
endinstance;
Instance Responder: process ISAP Manager_
in ICON from Initiator;
out ICONind to env;
in ICONresp from env;
out ICONF to Initiator;
endinstance;
endmsc;

(b) The Corresponding MSC/PR

Figure 15.9: MSC in MSC/GR and in the Corresponding MSC/PR [I§]

msc connection;
inst Initiator, Responder;

Responder: in ICON from Initiator;
Responder: out ICONind to env;
Responder: in ICONresp from env;
Responder: out ICONF to Initiator;
Initiator: in ICONF from Responder;
Initiator: out ICONconf to env;
Initiator: endinstance;

Responder: endinstance;

endmsc;

Initiator: instancehead process ISAP Manager Ini;
Responder: instancehead process ISAP Manager Resp;
Initiator: in ICONreq from env;

Initiator: out ICON to Responder;

Figure 15.10: Event-Oriented textual description [18]

vertical lines whereas message flow is represented by arrows. The head of the message
arrow denotes the event message consumption, the opposite end denotes message sending.
In addition to the message name, message parameters in parentheses may be assigned to

a message.

System Environment

The system environment is graphically represented by the frame which forms the bound-

ary of an MSC diagram.

c. Actions

An action describes an internal activity of an instance is graphically represented by a

rectangle containing text.
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Figure 1.11 demonstrates instances, messages, system environment and actions of an MSC

Initiator Medium_service Responder

block block
Ini_Station Medium

CONreq N
Counter =

MDATreq(CR) >

block
Resp_Station

MDATind(CR] ;
ICONind

ICONresp

MDA ¢ MDATreq(cq)
ICONconf < MDATIndICO

Figure 15.11: Instances, Messages, System Environment and Actions [I§]

d. Timers

Timer handling in MSCs encloses the setting of a timer and a subsequent time-out (timer
expiration) or the setting of a timer and a subsequent timer reset (time supervision). The
setting of a timer is represented by an hour-glass. The reset symbol is presented by a
cross (X). Time-out is described by an arrow which is connected to the hour-glass symbol.
An optional timer description containing name and duration may be associated with each
timer symbol.

process process
ISAP_Manager_Ini ISAP_Manager_Res
ICONreq >
ICON >
ICONind
| ;
< IDISind
I |

Figure 15.12: Time-out [1§]

e. Instances Creation and Termination

Due to the fact that most communication systems are dynamic systems where instances
appear and disappear during system run-time, MSC supports such features. The create
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Initiator Responder
process process
ISAP_Manager_Ini ISAP_Manager_Res
ICONregq >
IDISreq
IDIS
ICON
T
ICONind >
g IDISind
| |

Figure 15.13: Timer Reset [I§]

symbol is a dashed arrow which may be associated with textual parameters. A create
arrow originates from a parent instance and points at the instance head of the child in-
stance. The termination of an instance is graphically represented by a stop symbol in
form of a cross at the end of the instance axis as described below

Control_Mgr

process
Controller

Call_Mgr
CONreq ;
process

,,,,,,,,,,, > Call_controller

ICONind

Failure(failure)

< ALERT(failure)
{ DISind(failure)

— >

Figure 15.14: Instance Creation and Termination [I§]

f. Conditions

A condition either describes a global system state referring to all instances contained
in the MSC(global condition), or a state referring to a subset of instances (non-global
condition). If it refers to one instance only, then it is a local condition.
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Structural Elements: Structural language elements of MSCs include all constructs
which can be used to specify more general MSCs or to refine MSCs

a. Coregion

Along an MSC instance, a total ordering of message events is assumed. To cope with
this, coregion is introduced. A coregion is graphically represented by a dashed section of
an MSC instance. Within a coregion, the specified communication events are not ordered
as described in Figure 1.15.

b. Submsc

Since MSCs can be rather complex, there is a need for a refinement of one instance
by a set of instances defined in another MSC. An MSC instance can be refined by another
MSC, which is then called submsc. By means of the keyword decomposed, a submsc with
the same name is attached to the refined instance. The submsc represents a decomposition
of this instance without affecting its observable behaviour.

Inres_service

decomposed

ICONreq >

‘
: ICONind N
i
|
IDISind ;
< ‘

=

Figure 15.15: msc Structural_Concepts with coregion [I§]

Composition of MSC

Since one MSC only describes a partial system behaviour, it is beneficial to be able to com-
bine a number of simple MSCs. To determine possible combinations, global and non-global
conditions may be used employing certain rules. An example of composition is described
through Figures 1.17, 1.18 and 1.19.

Object-Oriented MSC

In practice, a combination of pure composition techniques and object oriented techniques
has proven to be most powerful. As MSC documents define instance kinds, they are suited
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Initiator Responder
process process
ISAP_Manager_Ini ISAP_Manager_Res
ICONreq >
ICON >
ICONind >
T %
< IDISind

| |

Figure 15.16: submsc Inres_service: Refinement for Figure 1.15 [18]

Initiator Responder
process process
ISAP_Manager_Ini ISAP_Manager_Res
disconnected disconnected
ICONreq >
ICON >
ICONind ;
wait wait

Figure 15.17: request MSC [1§]

for object orientation. Inheritance of instance kinds means inheriting all contained instances
and MSCs. Virtual MSCs means that MSCs may be redefined in specialized instance kinds.
The idea behind virtuality is that virtual types enclosed in the general type may get a new
definition in the specialization. Virtual means that it is possible to adapt an MSC to special
configurations or situations by redefining virtual MSC parts as described in the Figure 1.21.
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process process
ISAP_Manager_Ini ISAP_Manager_Res

[

wait wait

< ICONresp

g ICONF
< ICONconf

connected

— —

Figure 15.18: confirm MSC [1§]

Initiator Responder
process process
ISAP_Manager_lIni ISAP_Manager_Res
disconnected disconnected
ICONreq
ICON ;
ICONind ~
E
wait wait
< ICONresp
g ICONF
ICONconf

connected

— -

Figure 15.19: Composition of 1.17 and 1.18 [18]

15.5 Sequence Diagrams Versus Message Sequence Charts

Messages, considered as the key language element in both MSC and UML for Scenarios
description, through the representation of their sequence.

In UML 2.0, Interactions come in several graphic forms. The most expressive form is the
Sequence Diagram and every concept of Interactions can be expressed in Sequence Diagrams.

Table 1.1 and as a comparison table, intended to give overview of the different central
concepts in the field of Interactions/MSC such that, those only familiar with one of the
languages can see what terms have been used in the other language.

As one of the main major diagrams in UML 2.0, communication diagram gives an
overview of how simple communication goes between the lifelines. It is overloaded on a
composite structure diagram where the messages are numbered and shown on the connec-
tors (communication lines). In UML 1.x, communication diagram was called a collaboration
diagram, but the term ”collaboration” was inadequately overloaded. Nowadays, UML 2.0
”collaboration” is a term for a special kind of classifier; a kind of generic class concept.
HMSC' in MSC2000 and in its graphical form focuses on showing the larger picture where
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Figure 15.20: msc MSCwithVirt [1§]

inst1 inst2
[ | [ |

S1

redefined msc

MSCvirt ©

Figure 15.21: msc MSCinheritance inherits MSCwithVirt with redefined MSCvirt [18§]

the general control flow is the most significant, has the interaction Quverview Diagram as a
counterpart in UML 2.0 and activity diagrams in UML 1.x. The concept of MSC reference
and interaction Occurrence of UML 2.0 are almost identical. In its basic form they can
both be understood by substituting the referred diagram into where the reference was. MSC
also features "reference expressions” where the text of the MSC reference can designate an
expression like an inline expression. Whereas, UML does not have a direct counterpart of
this feature.

For the messages and while UML has a tradition of using interactions to describe the
control flow of a sequential program, MSC considers a set of entirely concurrent instances.
However, in both cases the semantics is given by the traces of the events leading from the
initiation of the operation call (MSC: method call) to the reception of the reply. UML
2.0 has added a few notations. neg and assert are introduced to make Sequence Diagrams
more suitable to express requirements that are more absolute. The neg operator defines
those traces that should not occur, and the assert defines the traces that should (mandatory)
occur at a given point in the Scenario.

For the formality, UML concepts may even exist without syntax, which means that it
is up to the tool how to present the concept to the user and this will often result in values
given in a dialogue box. Whereas, In MSC on the other hand, every concept has concrete
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Table 15.1: MSC-2000 Versus UML 2 Terminologies [12]

MSC-2000 UML 2.0

Event EventOccurrence

MSC Document Class (or Collaboration)
HMSC Interaction Overview Diagram
Instance Lifeline

Message Message

Method call Operation call

Method (area) ExecutionOccurrence
Action ExecutionOccurrence
Suspension (area) No direct counterpart
Gate Gate

No direct counterpart Interaction fragment
Inline expression Combined Fragment
Coregion Coregion

MSC reference Interaction Occurrence
Decomposition PartDecomposition
General Ordering General Ordering
Condition (global state) Continuation

Condition (predicate) Interaction Constraint
Relative time Duration

Absolute time Time

Time measurement TimeObservationAction, DurationObservationAction
Timer No counterpart

syntax. The practical difference between UML and MSC regarding formality is not as big
as the SDL/MSC community likes to pretend [12]. The determining interpretations come
in both languages from reading the informal specification and adjusting it to the situation
where it is going to be applied. It is still the case that MSCs / Interactions are used more
for illustration and discussion than formal requirements specification and verification [12].

Historically, in the mid-1990s there was a lot of exploratory academic work on MSC, while
recently academics in general are turning more towards UML for the same opportunistic
reasons as does the industry. Even though the semantics of MSC may be slightly more
formally defined through the early work on MSC-96 and the precision of the Z.120 [I4]
standard, than the UML 2.0, the average user will not notice [12].

In conclusion, MSC-2000 and UML 2.0 Interactions are very similar, which is exactly
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what was expected and intended. Proper tool support and how those tools integrate with
SDL and UML 2.0 respectively, will determine which language will survive. There is also the
possibility that the languages will co-exist and cross-pollinate. From a pure market view, it
seems probable that the next couple of years will choose a winner. If the UML community
can reach real code generation and machine supported verification, their market position
will make them the winners. On the other hand if UML users are unable to reach the level
of automatic support that is commonplace in the SDL community, UML will vanish [12].

15.6 Exam Questions

1. What indicators can tell the Completeness/” Good Enough” level of details of System
Use Cases?

2. How could Scenarios be considered as an implementation of the concept of separation
of concerns?

3. Summarize the key milestones in the evolution of both UML and SDL/MSC.
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Chapter 16

Jie Gui: Models for Configuration
Management

Roger Pressman, in his book, Software Engineering: A Practitioner’s Approach, says that
software configuration management (SCM) is a ”set of activities designed to control change
by identifying the work products that are likely to change, establishing relationships among
them, defining mechanisms for managing different versions of these work products, control-
ling the changes imposed, and auditing and reporting on the changes made.” In a nutshell,
SCM is a methodology to control and manage a software development project. In this report,
B method [6] is used to illustrate the basic models inside SCM revision control and examples
of implementations from several typical softwares.

16.1 Introduction

SCM is the control of the evolution of complex systems [7]. More specifically, it is
the discipline that help the developers to keep evolving software projects under manageable
control, that contributes to improved software quality.

Most SCM tools are based on a tiny core of concepts and mechanisms. Among them, the
unaged key function is the Revision Control, which is the heart of any SCM system Without
this foundation [3], diffing, auditable version forking and multiple branching of development
and release bits would be unmanageable, let alone tracking any changes made among team
members. Because source code is such a key role in the software development, choosing the
wrong solution for the job can be a disastrous. This issue will be mainly talked about with
the models inside it later in this report. With each model given, specific implementations
from different SCM tools will be compared.

The whole implementation for an ideal SCM tool that fulfill the need of the practical
software development cannot be quite easily achieved due to its complexity, thus it is more
feasible for the users to choose a suitable tool rather than writing the tool himself [1]. In this

315



316 Jie Gui

report, following typical SCM tools will be mentioned, CVS (Concurrent Version System)[]
and SubversionE] are the most popular implementations among the choices of free licences
while ClearCasd’|, Perfored] and VOODOOP] are exchanging the high-end performance with
the outgoing cost for commercial licences.

e Concurrent Versions System(CVS) is also known as the Concurrent Versioning
System, implements a version control system: it keeps track of all work and all changes
in a set of files, typically the implementation of a software project, and allows several
(potentially widely separated) developers to collaborate. CVS has become popular in
the open-source world. CVS is released under the GNU General Public Licensd?]

e Subversion is an open source system for revision control, sometimes known as svn
from the name of its command line interface. Subversion is designed specifically to be
a modern replacement for CVS and shares a number of the same key developers.

e ClearCase is a commercial software tool for revision control of source code and other
software development assets. It originally derived from a product of Apollo Comput-
er{t DSEE (Domain Software Engineering Environment), which was ported to Unix
and further developed by Atria Software after Hewlett-Packardf| bought Apollo. Atria
later merged with Pure Software to form PureAtria. That firm merged with Ratio-
nal Software, which was purchased by IBM. IBM continues to develop and market
ClearCase. ClearCase forms the base of version control for many large and medium
sized businesses and can handle projects with hundreds or thousands of developers,
but the price is quite steep for smaller companies.

e Perforce is a commercial Revision Control (RC) system. It is developed by Perforce
Software, Ind’} and was founded in 1995 by Christopher Seiwald. The Perforce system
is based on a client/server model with the server managing the collection of source
versions in one or more depots. The server software runs on the Unix, Mac OS X[T_U], or
Microsoft Windowﬁ operating systems.

e VOODOQO is also commercial version control system for software developers. VOODOO
Server is uncompromisingly designed for Mac OS X. It provides main functions of a
SCM system plus an improved revision control mechanism.

thttp://www.nongnu.org/cvs/

Zhttp:/ /subversion.tigris.org/

3Trademark of IBM Inc. http://www-306.ibm.com/software/awdtools/clearcase/

4Trademark of Perforce Inc. http://www.perforce.com/

*Trademark of Uni Software Plus Inc.. http://www.unisoft.co.at/products/voodooserver/

Shttp://www.gnu.org/licenses/licenses.htm

"Apollo was acquired by Hewlett-Packard in 1989 for US $476 million, and gradually closed down over
the period 1990-1997.

8http://www.hp.com

9http://www.perforce.com

0Product of Apple Computers.(http://www.apple.com)

HProduct of Microsoft Corp.(http://www.microsoft.com)
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All the models given in this report will be in B-Method [6]. The B-Method is a collection
of mathematically based techniques for the specification, design and implementation of soft-
ware components. Systems are modeled as a collection of interdependent Abstract Machines,
for which an object-based approach is employed at all stages of development.

16.2 Models for SCM

In this section, models inside SCM system will be discussed within one abstract model
Basic WorkCycle, mainly focus on basic operations that implemented by most of the version
control systems.

Key Concepts of Revision Control

Among all the elements inside a SCM system, following basic concepts are considered most
fundamental [

Repository The repository is much like an ordinary file server, except that it keeps track-
ing of every single change ever made to the files and directories. This enables the users to
recover previous versions of data, or track back the history of how the data being changed.
In this regard, many people think of a version control system as a sort of time machine [10].

At some level, the ability for various people to modify and manage the same set of
data from their respective locations fosters collaboration. Progress can occur more quickly
without a single conduit through which all modifications must occur. Because the work is
versified, it need not to fear that quality is the trade-off for losing that conduit — if some
incorrect change is made to the data, just undo that change [2]. Figure illustrates a
simple example for repository.

Normally, no direct access to any of the files in the repository is permitted [5]. Instead,
specified commands is used to get the copy of the files into a working directory, and then
work on that copy. When a set of changes have been applied to the working copies, checkin
(or commit) operation is used to upload them back into the repository. The repository then
contains the changes which been just made, as well as recording exactly what is changed,
when it is changed, and other such information [2]. Note that the repository is not a subdi-
rectory of the working directory, or vice versa; they should be in separate locations. In this
report, the repository and local working directory are connected in a server-client model by
default.

The basic operation models used towards the repository mentioned in later chapters
discuss can be classified into the following categories:

12Gince this report is mainly focusing on the operation models of SCM system, readers are assumed to
have the professional knowledge of how the system functions. Therefore, the fundamentals of SCM will be
introduced briefly. The system discussed here are free of security concerns, such as user authentication, the
files element mentioned are by default referred to ASCII files.
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Figure 16.1: The simple repository model for a file system.
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Figure 16.2: The work flow chart of the three types of operations.

e Create repository initially.
checkout

e Update working copy.
update

e Make changes.
add
delete

e Commit changes from working copy to repository.
commit

e Import new project files to the repository.
import

In the following Figure[16.2] a brief work flow chart is given to illustrate the above operations
between the repository server and workstation client.
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Figure 16.3: Example of how the delta compression work in the revision control.

A

Delta compression Delta compression is a way of storing data in the form of differences
between sequential data rather than complete files. Delta compression frequently applied
particularly where archival histories of changes are required, thus the most typical example
is the SCM revision control. Almost every tool uses this technique to efficiently record the
modifications in different versions of a single ASCII file.

The differences are recorded in discrete files called deltas or diffs. Because changes are of-
ten small (only 2% total size on average), delta compression greatly reduces data redundancy.
Collections of unique deltas are substantially more space-efficient than their non-compressed
equivalents. From Figure [16.3] a possible example of the use of the compression is given.
In this way, the only file will be stored to server will be latest submitted file, together with
the set of generated delta files corresponding to the revisions in history, thus any previous
version of the same file can be reproduced with the sequential combination of the delta files
and the latest full-text file, as the formula below indicates.

Rl = ((R5@ D4) @ D3) @ D2) @ D1

The Basic Work Cycle

After the brief introduction to the concepts of revision control, a basic idea on how the
system works can be found from the following simple work cycle(Figure [16.4).

Consider the situation where a developer needs to make a change to one source file. The
following steps are of the most simple and common.

e Checkout the file
e Edit the working file as needed
e Checkin the file

All the abstract models mentioned in the following section are actually carried out in the
same type of work cycle in different cases. In the following section, these operation models
will be formalized with the models using B-Method.
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Figure 16.4: The basic checkout-edit-checkin cycle

The Uniform Models

Consider the above operations mentioned, they can be mainly modeled into two types, by
the different communication directions between client and server. The basic work cycle as
mentioned in last section illustrate the idea about what happens in real software development,
before the development can be carried out ont on the files of the project, the users have to
checkout the files needed from the remote repository, after the modification is finished, to
share the changes with other users in the whole development, they all will then synchronize
the changed file with the remote repository server, that is checkin. Then the same cycle
happens on other users consequently or even simultaneously.

The machine Basic WorkCycle models the checkout, checkin and some other methods in
different situations, including: add, delete, import, commit, branch, merge.

MACHINE
BasicWorkCycle
ABSTRACT_CONSTANTS
InitRev, InitBRev
PROPERTIES
InitRev € Z;
InitBRev € Z;
SETS
DirSet; TagSet; PathSet FileText
VARIABLES
RevFiles, WorkFiles, revTlag, revRev, revPath,
tagRev, Mazrev, Baserev, workRev PathSet
revtext, revname, workname, worktext
INVARIANT
Baserev € Z N Mazxrev € 7
ARevFiles C DirSet N WorkFiles C DirSet
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ArevTag € TagSet — DirSet
ArevPathSet C PathSet

ArevRev € Z — DirSet

ArevPath € revPathSet — DirSet
AtagRev € TagSet — 7
AworkRev € Z — DirSet

revtext € FileText — DirSet
Arevname € FileText — DirSet
Aworktext € FileText — DirSet
Aworkname € FileText — DirSet

Since the repository stores information in the form of a file system tree, the abstract set used
here to model this is DirSet, WrokFiles and RevFiles are defined as subsets of DirSet. TagSet
and PathSet are basically standing for the set of tag and path strings that are related with
specific files and directories in the repository. Mazrev gives the value of the latest revision
number, while Baserev stands for the revision number of local working copy.

The full injection relation revTag corresponds the specified tag string to certain files and
directories. revRev has the surjection relation on the domain of all the revision numbers,
the domain of surjection relation revPath contains all the information of legal paths in the
repository and tagRev maps the full injection relation from tag strings to revision numbers.
Relation revPathSet denotes the subset of TagSet, all available repository path information
are kept in this subset.

The abstract constant InitRev indicates the initial revision number which will be given
to the uploaded files. Besides those identical relations defined in checkOut, revtext, worktext,
workname and worktext are introduced, such that any single file can be found modified or
not on the local client side, when the commit procedure being carried out. All operations
with communications to server will all cause an increment on the number in the database of
the repository.

Imagine an array of revision numbers, starting at 0, stretching from left to right. Each
revision number has a filesystem tree hanging below it, and each tree is a snapshot of the
way the repository looked after a commit.

With these elements and relations, the system is able to carry out some basic operations.

INITTALISATION
RevFiles := & ||
WorkFiles .= & ||
revlag = @ |
revRev = @ ||
revPath == & ||
tagRev := & ||

Baserev := & ||
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revPathSet := & ||
workRev := & ||
Mazxrev := & ||
revname := & ||
revtert == & ||
workname := & ||
worktext == &

Jie Gui

In the INITTALISATION part, each element and relation is initialized with @, so that

they reflect the very initial state of the workplace in local system.

OPERATIONS

checkout Rev(revi) =

PRE
revi € Z \ RevFiles # &
THEN
Baserev := revi ||
WorkFiles := WorkFiles U {revRev(revi)} ||
workRev(Baserev) := revRev(revi)
END:;

checkout Path(path) =
PRE
path € revPathSet \ RevFiles # &
THEN
Baserev := Mazxrev ||
ANY z, y WHERE =z € RevFiles ANy € RevFiles
Az € (RevFiles N {revPath(Path)}) Ny = x
THEN WorkFiles := WorkFiles U {y}

END||
ANY 2z WHERE =z € revPath(path)
THEN
workRev(Baserev) := x
END
END:;

checkout All =
PRE

RevFiles # @ N Maxrev ¢ &
THEN

Baserev :== Mazxrev ||
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ANY x,y WHERE =z € RevFiles Ny € RevFiles
Az € (RevFiles N {revRev(Mazrev)}) ANy = x
THEN WorkFiles := WorkFiles U {y}

END||
ANY 2z WHERE =z € revRev(Mazxrev)
THEN
workRev(Baserev) := x
END
END:;

The above given operations are essentially of the same category with different parameters,
hence can be optimized into one complex operation. However, since the related parameter
types are not so suitable to be grouped together, the command checkout are modeled in
different specific situations with corresponding parameters, explicitly.

The operation checkoutRev(revi) carries out the checkout procedure with the given pa-
rameter. The input revision number is related with the files and directories inside the
repository with a full injection relation which is modeled as revRev in the given machine.
In this way, the selected files on the server can be transferred to the local filesystem at the
client side. Following the same routine, checkoutPath(path) are modeled according to the
different parameters given.

The checkoutAll operation models the checkout operation with default argument assumed,
that to check out the files with latest version from the repository server to user client. The
value for the latest repository side version is kept in the Maxver variable.

update =
PRE
RevFiles # @ N Baserev ¢ &
THEN
IF Baserev # Maxrev THEN
IF 3 (z, y).(z € RevFiles Ny € RevFiles
Az € (RevFiles N {revRev(Maxrev)}) Ny = )
THEN
IF 3(x).(z € DirSet Nz = workRev(Baserev))
THEN
WorkFiles :== (WorkFiles — (WorkFilesn
workRev(Baserev))) U {y}

ELSE

WorkFiles :== WorkFiles U{y}
END|
Baserev := Mazxrev ||

ANY x WHERE z € {revRev(Maxrev)}
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THEN
workRev(Baserev) := x

END
END|
IF 3 (z, y).(z € WorkFiles Ny € RevFiles

Ay € (RevFiles N {revRev(Maxrev)}) Ny = x)
THEN

WorkFiles :== WorkFiles U;{z} ||

WorkFiles :== WorkFiles — {workRev(Baserev)} ||

Baserev := Mazrev ||
workRev(Baserev) := x
END|

IF 3 (z, y).(z € WorkFiles Ny € RevFiles
Ny ¢ (RevFiles N {revRev(Mazrev)}) Ny = x
Nz € (WorkFiles N {workRev(Baserev)}))

THEN
WorkFiles :== WorkFiles — {z} |
Baserev :== Mazrev ||
END
END
END
END

The update operation models the situation that when files are updated at the repository with
a newer revision. This contains the three specific situations,

e new files are added to the repository;
e original files are modified and changes have been committed;
e the pervious version of file is removed from the repository;

For the first case, the whole procedure is executed to retrieve the new files to the client.
When the files in the previous version are existing in the local working directory, they will
be replaced with the new files. Otherwise, this will be more like a default checkout operation.
In the second case, the latest version of all files qualified files will be transferred to client;
and those have been removed permanently in the repository will be cleaned up from the
client working directory.

Import(newFiles, path) =
PRE
newFiles € WorkFiles N newFiles ¢ RevFiles N\ path ¢ PathSet
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THEN
RevFiles := RevFiles U {newFiles} ||
revPathSet := revPathSet U {path} ||
revRev(InitRev) := newF'iles ||
revPath(path) := newFiles ||
Baserev := InitRev ||

workRev(Baserev) := newkFiles
END;

Imports method modeled in this machine is slightly different from other operations men-
tioned below, since it provide the function that could DIRECTLY transfer the desired
files to the repository with an initial revision assigned, regardless where the files exist in
the local file system while other operations are basically based upon the prior modifica-
tions in the local working space that corresponds to the repository on the server. The
final transfer to the repository will be uniformly implemented by the commit operation.

Add(files) =

PRE

files € DirSet A files ¢ WorkFiles A\ files ¢ RevFiles
THEN

WorkFiles := WorkFiles U { files}
END:

Delete(files) =

PRE

files € WorkFiles
THEN

WorkFiles := WorkFiles — {files}
END:;

The operations above are the two of most typical local modification operations, which are
also called scheduled operations, indicating that they will not affect the structure of
the repository on the server unless combined with the commit command. When called, add
method will put any desired files into the working copy repository in the local system of client
side, once the commit operation is executed thereafter, the modification will be detected and
processed to the repository server. Similarly, delete try to remove the desired files from the
local repository accompanied by the server updated using commit command.

commitA(files, path) =
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PRE
WorkFiles ¢ @ N\ RevFiles # &
Afiles € DirSet A\ path € PathSet
THEN
IF 3(files).(files € WorkFiles A files ¢ RevFliles)
THEN
ANY y WHERE y € DirSet Ny = files
RevFiles := RevFilesN{y} ||
revRev(Mazrev) := y ||

END||
Mazxrev := Maxrev + 1|
Baserev :== Mazrev ||
IF 3(path).(path € PathSet A workPath(path) = files)
THEN
revPathSet := revPathSet U {path}
END
END

END:;
commitD(files, path) =
PRE
WorkFiles # @ N RevFliles # &
Afiles € DirSet N\ path € PathSet
THEN
IF 3(files).(files € RevFiles A files ¢ WorkFiles)
THEN
RevFiles := RevFiles — {files} ||
Mazxrev := Maxrev + 1 ||
Baserev := Mazrev ||
revRev := revRev > {files} ||
revlag := revTag> {files} ||
revPath := revPath > {files} ||
IF J(path).(path € PathSet A revPath(path) = files)
THEN
revPathSet := revPathSet — {path}
END
END
END:;

In the operations above, commitA and commitD models the two different operations that
could be combined with one or more add, delete command combination. Specific forms
may vary from one implementation to another, whether these two operation models will be
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implemented into single complex one.

commitM (files, rfiles, path) =
PRE
files € WorkFiles A path € PathSet A files # RevFiles
Arfiles € RevFiles Arfiles # WorkFiles
AMazrev = Baserev AN workRev(Baserev) = files
THEN
IF J(name, text revi).(name € FileText A files = workname(name)A
rfiles = revname(name) A text € FileText A revi € RevSet
Nfiles = worktext(text) Arfiles # revtext(text))

THEN
Mazxrev := Maxrev + 1 ||
Baserev := Mazrev ||
ANY » WHERE z € DirSet Nx = files
THEN
RevFiles := ( RevFiles — {rfiles})U{z} ||
revRev(Mazrev) := x
END||
ANY y WHERE y € TagSet ArevTag(y) = rfiles
THEN
revTag(y) := files
END||
IF revPath(path) = rfiles A files = workPath(path)
THEN
revPath(path) := files
END
END
END

The commitM gives the model of the operation can be applied to any other local repository
modification commands besides add and delete (especially the direct modification to the
contents of the file) updated to the server repository, increasing the corresponding latest
revision number by 1. The preconditions for this operation assumes consistency between
the target file in repository and the working copy on the client side. In the main process
of this operation, if result of the content difference comparison of the two files gives true
result(which indicates that difference exist), the file in the server repository will be replaced
by the newly modified file from the local working copy on the client side.

In practise, when the commit/ updatecommand is executed, the SCM system should be
able to tell which of the following four states a working file is in:

o Unchanged, and current
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The file is unchanged in the working directory, and no changes to that file have been
committed to the repository since its working revision. An commit of the file will do
nothing, and an update of the file will do nothing.

Locally changed, and current

The file has been changed in the working directory, and no changes to that file have
been committed to the repository since its base revision. There are local changes that
have not been committed to the repository, thus a commit of the file will succeed in
publishing changes, and a update of the file will do nothing.

Unchanged, and out-of-date

The file has not been changed in the working directory, but it has been changed in the
repository. The file should eventually be updated, to make it current with the public
revision. A commit of the file will do nothing, and a update of the file will fold the
latest changes into working copy.

Locally changed, and out-of-date

The file has been changed both in the working directory, and in the repository. A
commit of the file will fail with an out-of-date error. The file should be updated first;
a update command will attempt to merge the public changes with the local changes.
If the tool itself can’t complete the merge in a plausible way automatically, it leaves it
to the user to resolve the conflict.

makeTag(tag)

A

PRE

tag € TagSet N WorkFiles # @ N\ RevF'iles # &
THEN

IF revRev(Baserev) ¢ &

THEN

tagRev(tag) := Baserev

END

END

END

For the need of make a snapshot of the project that is still under development or make
milestone release, the programmers have to give some or all of the files in the repository in
the current revision a special tag, including a special message explains rationale of this very
revision number.

branch(files) =
PRE
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files € WorkFiles A\ files # RevFiles
AworkRev(revi) # files
THEN
IF J(name, text, revi).(name € FileText A\ files = workname(name)A
rfiles = revname(name) A text € FileText N\ revi € RevSet
Afiles = worktext(text) Arfiles # revtext(text))
THEN
Baserev := Baserev U InitBRev ||
RevFiles := ( RevFiles — {rfiles})U{z} ||
revRev(Baserev) := z ||
revTag(y) := files
END
END

In the process of software development, users will need to make branches [4] from the main
revision tree, especially to maintain the files used in release versions of the software, or
used as bug-fix purposes. A branch is a point often item from which on several revisions
can exist simultaneously [I5]. In the model above, when qualified, the revision related with
the selected files will be generated using the latest revision number from the main branch
concatenated with the initial revision number of a new branch. Thus the newly submitted
files will exist on a branch revision rather than the main, connected to its parent revision
number on the main branch.

A

merge(fromFile,toFile)
PRE
fromFile € WorkFiles A toFile € WorkF'iles
NfromFile ¢ RevFiles \toFiles ¢ RevFliles
AworkRev(Baserev) # fromFile N workRev(Baserev) # toFile
THEN
IF 3(deltaSetA, deltaSetB).(deltaSetA C DirSet A deltaSetB C DirSet
NtoFile} UdeltaSetB = {fromFile} UdeltaSetA A deltaSetB N deltaSetA = &)
THEN
toFile :== toF'ile U deltaSetA U deltaSetB
END
END

The merge operation described above models one of the cases when solving the conflicts
occur during parallel development in real projects. This is consider to be the ideal situation
that files can be merged without manual process, given that the conflicting files do not have
intersections in their delta files respectively. The following example decries how the conflict
could happen.
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Two users read the same file. i N ) They both begin to edit their copies.
Repository o Repository
N . N
A S A
Read Read -
N AN - N N
A A ;: A A
Harry Sally Harry Sally
Harry publishes his version first. . ) Sally accidentally overwrites Harry’s version. "
Repository - Repository

Figure 16.5: The problem to avoid

In the figure [16.5], suppose there exist two co-workers, Harry and Sally. They each decide
to edit the same repository file at the same time. If Harry saves his changes to the repository
first, then it’s possible that (a few moments later) Sally could accidentally overwrite them
with her own new version of the file. While Harry’s version of the file won’t be lost forever
(because the system remembers every change), any changes Harry made won’t be present
in Sally’s newer version of the file, because she never saw Harry’s changes to begin with.
Harry’s work is still effectively lost-or at least missing from the latest version of the file-and
probably by accident. This is definitely a situation must be avoided!

In the following section, these abstract models mentioned above will be discussed with
the implementation in real practice, coping with many detail questions.

16.3 Implementations of SCM Tools

With those modeled operations in last section, a brief look is given at several software
implementations, getting a more specific idea of how the models of software configuration
work in practice.
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The Checkout/Checkin Model

The first two tools touched, CVS and Subversion are actually belongs to the basic Check-
out/Checkin model in SCM. Such SCM systems consist of two relatively independent tools:
a repository tool, and a build tool. While the build tool usually is provided by the operating
system, the repository tool stores versions of files and provides mechanisms for controlling
the creation of new versions.

In this system, the user works with a repository and with the file system. Files are ver-
sioned and stored in the repository. Creation of new versions is controlled by the repository
tool. Files are, however, not directly accessible in the repository. Users have to retrieve, i.e.,
check out, a version of a file into the file system in order to access its content. Files can be
retrieved for read access, e.g., for the user to examine a design document or for the compiler
to access a file that has been included by another file. Files can also be retrieved for write
access. In that case, concurrency control mechanisms of the repository coordinate multiple
retrieval for modification. Modified files can be stored back into the repository, i.e., check
in, resulting in a new version of the file.

CVS (Concurrent Versioning System), as the most widely used software configuration tool
in industry, provides most the of of the basic operations that needed in project revision
control. CVS started out as a bunch of shell scripts written by Dick Grune, posted to the
newsgroup comp.sources.unix in the volume 6 release of July, 1986. While no actual code
from these shell scripts is present in the current version of CVS much of the CVS conflict
resolution algorithms come from them [9].

The repository in CVS is implemented to fit a typical server/client style. With the
directories are history files for each file under version control. The name of the history file is
the name of the corresponding file with ,v appended to the end. There are also several impor-
tant control files and directories stored in the working directory to keep important informa-
tion required by CVS, such as Root, Repository, Entries, Entries.log, Tag, Base,
Baserev, Entries.Backup, Entries.Static, Notify, Notify.tmp, Baserev.tmp. In-
formation saved in those special files provide all the necessary data for CVS itself to work
properly with its revision control function, therefore the operations talked in the models
section can be carried out.

Client /server CVS enables disparate developers to function as a single team. The version
history is stored on a single central server and the client machines have a copy of all the
files that the developers are working on. Therefore, the network between the client and the
server must be up to perform CVS operations (such as checkins or updates) but need not be
up to edit or manipulate the current versions of the files. Clients can perform all the same
operations which are available locally.

Since CVS’s built for basic version control functionality, it is one of the systems that
look closely to the original models given in last section, it simply but practically maintains a
history of all changes made to each directory tree it manages, operating on entire directory
trees, not just single files. It supports branching in the revision tree that allows several lines
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of development to occur in parallel and providing mechanisms for merging branches back
together when desired. CVS has Unreserved Checkouts allowing more than one developer
to work on the same files at the same time.

However, CVS is now showing its age through a number of awkward limitations: changes
are tracked per-file instead of per-change, commits aren’t atomic, renaming files and direc-
tories is awkward, and its branching limitations mean that either to better faithfully tag
things or there’ll be trouble later.

One of the obvious issues is that CVS offers no support for atomic submit neither change-
list, in this case, it will be some kind of disaster when transfer failures occur during multiple
changes are submitted together, making the half submitted changes unmanageable. Mean-
while, CVS do not has versioning control on directories, resulting impossibilities for refac-
toring operations such as rename, move, since the history of these file operations must be
trackable after they cannot be identified with the original filename or pathname. Moreover,
as none SCM tool permits permanent delete in repository, for each time files are /em deleted
for the sake of manual rename and move, the abandoned old files produced will pile inside
the repository, taking up much unnecessary disk space. These problems led the main CVS
developers to start over and create Subversion.

The following gives the list of basic commands that implements the checkoout/checkin
model.

e cvs checkout
Create or update a working directory containing copies of the source files specified by
modules. Checkout must be executed before using most of the other cvs commands,
since most of them operate on the local working directory.

e cvs update
After running checkout to create the private copy of source from the common repository,
other developers will continue changing the central source. From time to time, when
it is convenient in the development process, the update command can be used within
the working directory to reconcile the work with any revisions applied to the source
repository since the last checkout or update.

e cvs import
Use import to incorporate an entire source distribution from an outside source (e.g., a
source vendor) into the local source repository directory.

e cvs add
This commands adds new files to the existing working directory. Before any commands
which operate on sandbox files can be used, they must be added to the list of cvs
controlled files using this command.

e cvs remove
Remove a file from the working directory, marking the file as ’dead’ which comes into
effect after the next commit.
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e cvs commit
Use commit when it is necessary to incorporate changes from working source files into
the source repository.

There are also several common CVS operations that are frequently used in revision control,
such as rename, history browse, these are all well illustrated in CVS reference material
with detail examples. Though CVS has many short comings compared with other advanced
SCM tools and is being slowly replaced by Subversion, it is still one of the widely used
revision control system for software development.

Subversion In early 2000, CollabNet, Inc[”| began seeking developers to write a replace-
ment for CVS. CollabNet offers a collaboration software suite called CollabNet Enterprise
Edition (CEE) of which one component is version control. Although CEE used CVS as
its initial version control system, CVS’s limitations were obvious from the beginning, and
CollabNet knew it would eventually have to find something better. Unfortunately, CVS had
become the de facto standard in the open source world largely because there wasn’t anything
better, at least not under a free license. So CollabNet determined to write a new version
control system from scratch, retaining the basic ideas of CVS, but without the bugs and
misfeatures.

The original design team settled on some simple goals. They didn’t want to break new
ground in version control methodology, they just wanted to fix CVS. They decided that
Subversion would match CVS’s features, and preserve the same development model, but not
duplicate CVS’s most obvious flaws. Although it did not need to be a drop-in replacement
for CVS, it should be similar enough that any CVS user could make the switch with little
effort.

On one end is a Subversion repository that holds all of versioned data. On the other end
is Subversion client program, which manages local reflections of portions of that versioned
data (called working copies). Between these extremes are multiple routes through various
Repository Access(RA) layers. Some of these routes go across computer networks and through
network servers which then access the repository. Others bypass the network altogether and
access the repository directly.

Like CVS is control schema, Subversion also keeps important repository information and
temp files in each folder of the repository, using a hidden directory with name .svn [14].
With the control information, the basic operation commands can be carried out.

CVS only tracks the history of individual files, but Subversion implements a wvirtual ver-
sioned filesystem that tracks changes to whole directory trees over time. Files and directories
are both versioned with a unique single number generated each time a set of changes submit-
ted to the server. That allows the user to simply change the name of desire file as they wish
as well as the location in repository, without having such embarrassing problem mention
above for CVS. The total repository tree shares only one revision number, which is quite
different from other SCM tools. After getting used to it, users will find it much helpful

Bhttp://www.collab.net
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to determine and identify any tiny change to the whole project with such a related unique
revision number. This has been proved to has much more advantages than the traditional
revision style, especially the whole develop process is carried out with a number of developers
rather than one or two people.

A collection of modifications either goes into the repository completely, or not at all.
This allows developers to construct and commit changes as logical chunks, and prevents
problems that can occur when only a portion of a set of changes is successfully sent to
the repository.The cost of branching and tagging need not be proportional to the project
size. Subversion creates branches and tags by simply copying the project, using a mechanism
similar to a hard-link. Thus these operations take only a very small, constant amount of time.
This great and unique technique gives much more improvement on the advanced operation,
yielding quick response, high performance for large software systems, even much easier in
maintainable in the long run.

Besides those commands mentioned above, Subversion also provides many advanced op-
eration commands offering useful services. In the future of software development, Subversion
will gradually replace the role of CVS with its improved performance.

Summary The checkout/checkin model focuses on versioning of product components.
The operational concepts of checkout, checkin, branch, and merge are low-level primitives
for which users have to develop usage conventions to better address their SCM support
needs. Examples are conventions for the use of branches, for maintenance of configuration
information, and for supporting scopes of visibility of changes. SCM systems primarily
supporting this model focus on managing the repository. Support of users in their work
areas is limited to component branch locking in the repository as a means of coordinating
modifications. In practice, users of such SCM systems have evolved conventions whose
patterns emulate some of the concepts found in the other SCM systems.

The Composition Model

The composition model, a natural outgrowth of the checkout/checkin model, relies on the
notions of repository and work area, as well as concurrency control through component
locking, while it builds on the properties of a component version graph.

A configuration in this model consists of a system model and version selection rules.
A system model lists all the components that make up a system. Version selection rules
indicate which version is to be chosen for each component to make up a configuration. The
selection rules are applied to a system model, selecting a component version, i.e., binding a
component to a version. The tools introduced below are typical examples of this model.

ClearCase is the market leader and provides change management functionality in addition
to the standard version control. ClearCase is part of a suite of products from Rational"]

14 Commercial product of IBM Corp.
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that implement Rationals’ best practices software development methodology, Unified Change
Management.

Unlike the previous two mainly focus on the basic functions on revision control, ClearCase
is designed to provided complete solution for the whole process of software development. It
manages multiple variants of evolving software systems, tracks which versions were used in
software builds, performs builds of individual programs or entire releases according to user-
defined version specifications, and enforces site-specific development policies, hence fulfills
the criteria of a comprehensive SCM system. Therefore, the architecture implementation of
ClearCase is far more sophisticated than the simple repository structure.

In the heart of ClearCase is a permanent, secure data repository. It contains data that
is shared by all users: this includes current and historical versions of source files, along with
derived objects built from the sources by compilers, linkers, and so on. In addition, the
repository stores detailed accounting data on the development process itself: who created
a particular version (and when, and why), what versions of sources went into a particular
build, and other relevant information.

ClearCase manages all software development objects: any kind of file, and directories
and links, as well. Versions of text files are stored efficiently as deltas, much like CVS or
Subversion versions.

ClearCase development data is organized into any number of versioned object bases
(VOBs) [13]. Each VOB provides permanent storage for all the historical versions of all the
source objects in a particular directory tree. As seen through a ClearCase view, a VOB
seems to be a standard directory tree — the right versions of the development objects appear,
and all other versions are hidden. A version-controlled object in a VOB is called an element;
its versions are organized into a version tree structure, with branches and subbranches.Users
access the ClearCase data repository through wviews. A view is a software development
work environment that is similar to - but greatly improves on - a traditional development
sandbox. FEach view can easily be configured to access just the right source data from
the central repository. A view is an isolated wvirtual workspace, which provides dynamic
access to the entire data repository.The view accesses the appropriate data automatically
and transparently.

The magic functions of the views brings a significant difference to the repository manage-
ment of ClearCase. There is no need to copy the versions required for a particular project to
a view; instead, the correct versions are accessed dynamically. A particular version of each
element is selected according to user-specified rules in the view’s config spec (configuration
specification): a file element appears to be an ordinary file; a directory element appears to
be an ordinary directory.

The overall effect of automatic version selection is transparency: the version-control
system becomes invisible, so that a VOB appears to be a standard directory tree. The
following figure gives a vivid illustration of all the concepts mentioned above.

Since the operation commands towards the working views are essentially the same with
those mentioned and explained in CVS and Subversion, significant differences with the check-
out /checkin commands will be introduced. The first will be the ordinary sequence of checkout
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Figure 16.6: Version Selection by a View

and checkin [12].
e In the steady-state, an element is read-only — users can neither modify it or remove it.

e To modify an element, a user establishes a view context, then enters a checkout com-
mand. This seems simply to change the element from read-only to read-write; in
actuality, it makes an editable copy — a checked-out version.

e The user revises the checked-out version using any available system-supplied or third-
party tools.

e The user enters a checkin command. This creates a new, permanent version of the
element, which then reverts to the steady-state of being read-only.

ClearCase also has a mechanism called reserved/unreserved checkout to solve the potential
conflicts caused by multi-users modifying the same file with identical base revision number.
Performing a checkout of a branch does not necessarily guarantee the user the right to
perform a subsequent checkin. Many users can checkout the same branch, as long as the
users are in different views. At most one of these can be a reserved checkout, which guarantees
the user’s right to checkin a new version. An unreserved checkout affords no such guarantee.
If several users have unreserved checkouts on the same branch in different views, the first
user to perform a checkin wins — another user must perform a merge if he wishes to save his
checked-out version.

ClearCase as a comprehensive SCM system with quite a history, covers almost many
important aspects inside SCM applications, which is far more than what CVS and Subversion
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in the simple model can give. Especially its rule-based file control and reserved checkout
with a true physical distributed server architecture. However, it is not a free licence tool,
hence a very important disadvantage of ClearCase is the price, it is too expensive.

Perforce is a popular tool in the academic community, perhaps because the company
provides the tool for free to open source efforts Perforce is known for its simple architecture
and unique branching model that promotes outwards instead of inwards towards the trees’
trunk.

Perforce is based on a client /server architecture. The Perforce server manages the master
file repository, or depot. There can be more than one depot per server. The depots contain
every revision of every file under Perforce control. Perforce organizes files in depots into
directory trees, like a large hard drive. Files in a depot are referred to as depot files or
versioned files. The server maintains a database to track change logs, user permissions, and
which users have which files checked out at any time. The information stored in this database
is referred to as metadata.

Similar with ClearCase’s view concept, to control where the depot files appear under client
workspace root, mapping [16] the files and directories on the Perforce server to corresponding
areas of the local hard drive is a must. These mappings constitute the client workspace view.
Client workspace views:

e Determine which files in the depot can appear in a client workspace.

e Map files in the depot to files in the client workspace.

Client workspace views consist of one or more lines, or mappings. Each line in the workspace
view has two sides: a depot side that designates a subset of files within the depot and a
client side that controls where the files specified on the depot side are located under the
client workspace root.

Another specific feature provides by Perforce that yielding faster performance is the
concept of changelist. Before a file in the workspace can be edited, it must be firstly opened
in a changelist. A changelist consists of a list of files, their revision numbers, the changes
have been made to the files, and a description.

Changelists serve two purposes:

e to organize work into logical units by grouping related changes to files together

e to guarantee the integrity of work by ensuring that related changes to files are checked
in together

Like mentioned in previous tools, Perforce also gives strong support in atomic commit and
grouped changes. If the user is working on a change to some software that requires changes
to three files, open all three files in one changelist. Perforce changelists are atomic change
transactions; if a changelist affects three files, then the changes for all three files are com-
mitted to the depot, or none of the changes are. Even if the network connection between
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Perforce client program and the Perforce server is interrupted during changelist submission,
the entire submit fails.

The three-way merge process for resolving file conflicts helps the user to resolve conflicting
changes to text files. Because changelists are atomic, the user must resolve every file in a
changelist before the submit can succeed. These situations can be resolved in one of three
ways:

e Automatically: In many cases, whether to accept the changes that are the current(that
is, the target revisions in out current user’s client workspace) or others(that is, the
source revisions in the depot).

e Accept merged: Sometimes, there are changes made to the files that are others and
ours do not conflict. In these cases, Perforce merges the two files and provides the
user with an option to accept the merged result. Such a resolve is referred to as a safe
automatic resolve with merging.

e Manual merge: Finally, there may be cases where the same lines in others and ours
have been changed. Such lines are said to conflict. When changes conflict, Perforce
resolves as many differences as possible and produces a merged file containing conflict
markers for manual resolution. The user must either edit the merged file manually
before submitting it, or accept the merged file with the conflict markers included, and
fix the conflict in a subsequent changelist.

There some special features brought in Perforce that enables the whole system gives more
efficient performance, such as the mapping mechanism, changelist and three-way merge.
Perforce also has a ClearCase like distributed server architecture. However, it still has
certain obvious defects that make its position located between CVS, Subversion towards
ClearCase, especially not providing directory versioning which is used quite often in daily
work. Besides, as a commercial software, the expensive licence is another significant factor
to be considered.

Summary The composition model operates on configurations by composing aggregates
from components and selecting appropriate versions of each. The system structure is cap-
tured in a system model. The system model provides the link between configuration support,
system build tools, and language systems. This link permits the SCM system supporting
the composition model to include management of derived objects and checking of interfaces
between components as well as between aggregates, i.e., subsystems. Selection rules provides
guidelines for the SCM system to perform version selections. This allows the developer to
express selection of alternatives in a natural way. Support for evolution must be expressed
in terms of composition with changing selection rules. Support for change migration is lim-
ited to the capabilities of change merging at the component level and record keeping by the
developer.
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The Object-Oriented Model

After focusing the last two major model that have been widely used in the major tools

in SCM, another new interesting type is the Object-Oriented version model, particularly
brought by VOODOO.

VOODOO

VOODOO Server is a version control system for software developers using Metrowerks Code-
Warriode under Mac OS 9 or Mac OS X. VOODOO Server and the corresponding VOODOO
clients (e.g., the CodeWarrior VCS plugin and the VOODOO Admin application) are de-
signed to offer reliable and robust version control features while minimizing the administra-
tive overhead that usually accompanies version control.

VOODOO Server is recommended for individual programmers and large developer groups
using the Metrowerks CodeWarrior IDE.

Unlike most other version control systems available for Macintosh computers, VOODOO
Server and the corresponding clients offer a state-of-the- art client/server architecture [I1].

In contrast to most existing approaches, object-oriented version management emphasizes
the entire project over individual files. It organizes versions of the whole project, rather
than versions of individual files. Variants and revisions are considered orthogonal to each
other and an inheritance relationship between variants facilitates project-wide branches and
instant access to the required versions without the need for a complicated version access
mechanism like multi-digit version numbers or tags.

This small example(figure shows that the number and order of branching influences
the naming of the different versions of the project’s files. The shapes of the trees of file A
and B are different. Since the tree structure is used for naming individual software objects,
the developer must know different structures in order to retrieve a certain revision of a given
variant. E.g., if the user wants to retrieve the most recent versions of files A and B for
building the English/Windows variant of the local system, he would have to look for version
1.3.1.2 of file A and version 2.4 of file B. This means that even he’s looking for the same
variant of the files, the user has to use differently structured version numbers. Since each
new branch adds two more digits to the version number, he’s faced with version numbers
like 1.2.4.2.3.6.2.5.3.4 if there are only four distinctive marks within project.

It be much nicer if the developer would not have to care about all these weird long
numbers and just ask the version control tool to retrieve the ”latest versions of files A and B
for the English/Windows variant”. The remainder of this report will demonstrate how the
user can do that.

Instead of managing branches of single files only and mixing up variants and revisions,
orthogonal version organization emphasizes the whole project and considers variants to be
orthogonal to revisions. As a result, all files’ versions can be imagined as a three-dimensional

15Product of FreeScale SemiConductors Inc.
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeld=012726
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space whose three dimensions are file, variant, and revision (see Figure .

It is obvious that this leads to a clear and uniform version organization and every single
version can be accessed by just specifying a particular value for each of the three attributes,
e.g., file path, variant name and revision id. It is no longer necessary to use long and
confusing version numbers to uniquely identify a particular version.

The concept can be explained by means of a small example. First, start a new project
with two files and only one variant named main. Suppose the repository contains four
versions of FileA and two versions of FileB in the meanwhile. The black circles denote the
most recent revisions; historic revisions are shown in gray.

Consider the following simple and concrete example, if define a variant bugfix that
branches from main right after t2, bugfix ”inherits” the complete history of its base variant
from the base date t2 back to the beginning of main. This means that as soon as the variant
bugfix defined - even if a version is never checked in into it - particular versions of FileA and
FileB can be retrieved from the new variant. Actually, when track back the bugfix variant
path to find out which versions are available in variant bugfix, it is obvious to find that
versions 1 and 2 of FileA can be retrieved (with v2 being the most recent version available in
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variant bugfix) as well as version 1 of FileB. The more recent versions (3 and 4 of FileA and
version 2 of FileB) do not belong to bugfix; they can be accessed only via the main variant.
Now, if a new revision is checked into variant bugfix, this will overwrite the inherited main
version, and from now on newer versions of the files will be kept in the separate branch.
Assume that to check in new revisions of FileA for each variant and a new version of FileB
for variant main only. For variant main, versions 1 to 5 of FileA and versions 1 to 3 of FileB
are accessible (with version 5 of FileA and version 3 of FileB being the most recent versions).
For variant bugfix versions 1, 2, and 6 of FileA and version 1 of FileB are accessible (with
version 6 of FileA and version 1 of FileB being the most recent versions).

Summary As in the mentioned example of VOODOO, the user don’t have to remember
multi-digit version numbers in order to distinguish between variants. To retrieve a particular
version from the repository, the user can simplely specify three attributes: the file name
(e.g., FileA), the variant name (e.g., bugfix) and the revision date (e.g., t4 or the special
date "now”). Object selection works the same way for all files within the project, and all
three attributes are intuitive and therefore easy to manage. This example illustrates the key
idea of object-oriented versioning model.

16.4 Concluding Remarks

The discussions in this report on the use of the SCM model in different software process
scenarios have shown that the SCM support of a particular system matches certain scenarios
well, while others can be supported with limitations by following certain usage conventions.
A single SCM system may have difficulties meeting all needs throughout the software process.
Besides these tools mentioned in this report, there obviously exist many other requirement-
related SCM tools, like [§].

Much of the current research in support for configuration management tends to focus on a
particular model and the refinement of its concepts. Given this state of support for software
configuration management, two concluding observations can be made. First, Selection on
SCM tool for practical use is not only based on the performance of the SCM tool itself,
the specific requirements should also be considered. There is not a perfect solution for
every software project. Second, there is a need for a unified SCM model that provides a
framework for configuration management support. This unified model should be a multi-
paradigm model that supports several SCM concepts cooperating in harmony.

16.5 Exam Question

1. Explain why the branching operation in Subversion is cheap and fast.
2. What is the mechanism helps the user using ClearCase to selct files from VOB database?

3. Explain why object-oriented model gives more efficient revision control?



342 Jie Gui

Bibliography

[1] Wayne A. Babich. Software Configuration Management- Coordination for Team Pro-
ductivity. Addison-Wesley Publishing Company, 1st edition, 1986.

[2] C. Michael Pilato Ben Collins-Sussman, Brian W. Fitzpatrick. Version Control with
Subversion. O’Reilly Media., Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA., 1st edition, June 2004.

[3] NATIONAL COMPUTERSECURITY CENTER. A guide to understanding configura-
tion management in trusted systems. NCSC-TG-006-88, S-228,590, March 1988.

[4] Darrel Strom Chuck Walrad. The importance of branching models in scm. IEEE
Computer, 2002.

[5] Stanley G. Siegel Edward H. Bersoff, Vilas D. Henderson. Software Configuration Man-
agement: An Investment in Product Integrity. Prentice Hall, Inc., Englewood Cliffs,
N.J 07632, 1st edition, 1980.

[6] Kaisa Sere Emil Sekerenski. Program Development by Refinement -Case Studies Us-
ing the B Method. Springer-Verlag London Limited, Department of Mathematical and
Computing Science, University of Surrey, Guildford, Surry GU2 5 XH, UK, 1st edition,
1999.

[7] Jacky Estublier. Software Configuration Management:A Roadmap. Dassault Systemes
/ LSR, Grenoble University, Bat C, BP 53, 38041 Grenoble 9 France.

[8] Juliana Silva da Cunha Fabio Q. B. da Silva. An nfs configuration management system
and its underlying object-oriented model. Proceedings of the Twelfth Systems Adminis-
tration Conference (LISA’98), December 1998.

[9] http://www.cvshome.org. Concurrent versions system 2.5.03.2260(cvsnt). March 2006.

[10] Alexis Leon. Software Configuration Handbook. ARTECH HOUSE INC., 685 Canton
Street Norwood, MA 02062, 2nd edition, 2005.

[11] Uni Software Plus. Voodoo server tutorial and command reference. 2005.
[12] John Posner. Casevision./clearcase user’s guide. 1994.
[13] John Posner and Jeffery Block. Casevision./clearcase concepts guide. 1994.

[14] Garrett Rooney. Practical Subversion. APRESS, 233 Spring Street 6th Floor New York,
NY 10013, United States., 1st edition, 2005.

[15] Emil Sekerenski. Computer Science 703 Software Design: Custom Courseware, volume 2
of Custom Courseware. McMaster Titles BookStore, 1280 Main Street West, Hamilton,
Ontario, Canada., 1st edition, January 2006.



Models for Configuration Management 343

[16] Perforce Software. Introducing perforce. December 2005.



	Introduction
	Lei Hu: Design Recovery of Specifications
	Introduction
	Reverse Engineering Review
	Foundation of Design Recovery
	Classification of Design Recovery Techniques
	Constructing Formal Specifications from Source Code
	Conclusion
	Problems
	Bibliography

	Jiacong Zhang (Kevin): Theories of Refactoring
	Introduction
	Background
	Refactoring Tools
	Refactoring Theories
	Concluding Remarks
	Exam Question
	Bibliography

	Saba Aamir: Memory Management Strategies In Programming Languages
	Introduction
	Explicit Memory Management Strategies
	Semi-Automatic Memory Management Strategies
	Automatic Memory Management Strategies
	Programmers Point Of View
	Conclusion
	Exam Questions
	Bibliography

	Andi Huang: Fault Tolerance
	Techniques For Achieving Software Fault Tolerance
	Techniques For Measuring Software Fault Tolerance
	Conclusion
	Questions
	Bibliography

	Jay Parlar: Dynamic Languages
	Introduction
	History of Dynamic Languages
	Type Systems
	Disadvantages of Dynamic Languages
	Advantages of Dynamic Languages
	Interactive Interpreter
	Conclusion
	Exam Questions
	Bibliography

	Yu Wang: A Survey of Software Distribution Formats
	Fat Binary
	Application Oriented Virtualization
	Platform Oriented Virtualization
	Distribution In Source Code
	Other Distribution Formats
	Concluding Remarks
	Exam Question
	Bibliography

	Ayesha Kashif: History of Statecharts
	Introduction
	STATEMATE
	ECSAM
	UML Statecharts
	Modecharts
	Plug and Play
	Hypercharts
	Concluding Remarks
	Exam Question
	Bibliography

	Salvador Garcia: Misuse Cases
	Introduction
	Basic Concepts
	Misuse Case Diagrams
	Method Guidelines
	Methodology
	Template
	Eliciting Exceptions and Test Cases
	Example
	Conclusions
	Exam Questions
	Bibliography

	Software Design Teaching Methods
	Introduction
	Integrating Testing and Design Methods for Undergraduates: Teaching Software Testing in the Context of Software Design
	Advantages of the Method

	Teaching Software Design with Open Source Software
	Teaching Undergraduate Software Design in a Liberal Arts Environment Using RoboCup
	Teaching Software Engineering Using Lightweight Analysis
	Teaching Software Engineering Through Simulation
	Conclusion and Discussion
	Exam Questions
	Bibliography

	Lutfi Azhari: Software Documentation Environments
	Javadoc
	Doxygen
	DOC++
	SODOS
	SLEUTH
	Variorum: A multimedia-Based Program Documentation System
	Literate Programming
	Design and Architecture Documentation
	How much documentation is enough?
	Summary
	Exam Questions
	Bibliography

	Ming Yu Zhao: Object-Oriented Literate Programming
	Introduction
	Object-Oriented Design
	Literate Programming
	Complement and Conflict
	An Example: A Banking System
	Conclusion
	Exam Questions
	Bibliography

	Hongqing Sun: History of Tabular Expressions
	Introduction
	History and Real Word Tables
	Decision Tables from 1950s
	First Large Application of Tables: A-7E Aircraft Program Requirements
	Why Tabular Expressions?
	A Milestone of Tabular Expressions
	Theoretical Ripeness in SERG
	TTS: Table Tool System of SERG
	Other Table Notations Projects
	Tabular Expressions Today
	Exam Questions
	Bibliography

	Jorge Santos: Architecture Description Languages
	Introduction
	Characteristics of ADLs
	Differences Between ADLs and Other Languages
	Some Sample ADLs
	Concluding Remarks
	Exam Questions
	Bibliography

	Dan Zingaro: On the Practice of B-ing Earley
	Languages and Recognizers
	General Context-Free Recognizer Machine
	State Sets
	Refinement 1 -- Intuition Behind State Sets
	Refinement 1 -- Refinement Machine
	Refinement 1 -- Linking Invariant
	Refinement 2 -- Earley's Algorithm Revisited
	Refinement 2 -- Refinement Machine
	Refinement 2 -- Linking Invariant
	Next Steps
	Exam Questions
	Bibliography

	Marwan Abdeen: Use Cases, Scenarios, Sequence Diagrams and Message Sequence Charts
	Use Cases
	Scenarios
	Sequence Diagrams
	Message Sequence Charts
	Sequence Diagrams Versus Message Sequence Charts
	Exam Questions
	Bibliography

	Jie Gui: Models for Configuration Management
	Introduction
	Models for SCM
	Implementations of SCM Tools
	Concluding Remarks
	Exam Question
	Bibliography


