
Teaching the Unifying Mathematics
of Software Design

EMIL SEKERINSKI

DECEMBER2007

SQRL REPORT49

MCMASTER UNIVERSITY



Abstract

We report on our experience on teaching the mathematics of software design as
a unifying force for various elements of software design, rather than as an addi-
tional element of software design. This is in line with the use of mathematics in
traditional engineering disciplines, but in contrast to teaching a “formal method”
optionally after an “informal” exposition to software design or teaching a formal
method only with specific applications in mind.

An earlier version appeared in R. T. Boute, J. N. Oliveira (Eds.),Formal Methods in the
Teaching Lab, Workshop at the Formal Methods 2006 Symposium, August 26, 2006, Hamilton,
Ontario, Canada. Workshop Preprint, pages 53–58.



1 Introduction

Whereas in the design of a mechanical device breaking design rules would quickly
lead to recognizable failure, one can very well break rules of software design and
still get a “sufficiently functional” and marketable product. Qualities of software
are not as evident or measurable as qualities of physical products;design qualities
are even harder to judge than the qualities that can be observed of a product. Stu-
dents follow the rules of software design because they are told so and not because
they would experience the consequences of not doing so. Students grow up with
unreliable software to the extent that they consider such poorly working software
to be normal or unavoidable. Job advertisements suggest that programming skills
are sufficient to write software and students take software design courses with the
expectation of preparing them for the job market. All this makes is difficult to
convince students that software can be better designed, that it is worth doing so,
and that it is worth learning the mathematics for doing so.

We report on our experience in teaching a sequence of two course in software
design in which mathematics is used as the unifying force of all core elements of
software design. This is in contrast to teaching a “formal method” optionally after
an “informal” exposition to software design: our students had only taken an in-
troductory first year course in programming and a course in discrete mathematics.
The approach is more in line with the use of mathematics in traditional engineer-
ing disciplines. The course covers all core topics in software design rather than a
specific topic for which a dedicated formalism or tool exist:

Uniform Design Notation A uniform textual design notation is used, in order to
emphasize the similarities among the concepts and help students intercon-
nect these concepts, rather than making students switch to a new mindset
due to the notational differences. Graphical notations like flowcharts, class
diagrams, and statecharts are presented as appropriate and defined as alter-
native representations of specific aspects in terms of the textual notation

Uniform Mathematical Basis A mathematical basis for all design constructs is
given. A typed logic using the same type system as a programming language
is used. Equational reasoning is used for all proofs because of the familiarity
from calculus. Weakest preconditions are used for statements.

Middle-out Sequencing of TopicsCourses on software design, or software en-
gineering as they are called elsewhere, are typically structured according to
the phases in which software is developed. However, students who have

1



Program Annotations

{x≥ 0}
z, u := 0, x ;
{invariant : (z+ u× y = x× y) ∧ (u≥ 0)}
while u > 0 do

z, u := z + y, u− 1
{z = x× y}

z := 0
u := x

u > 0

+

z := z + y
u := u− 1

−

x≥ 0

(z + u× y = x× y) ∧
(u≥ 0)

z = x× y

Figure 1: Excerpt fromElements of Programming

only written small programs so far, do not see the need for, say, elaborate
requirements. Instead, we start with writing and analyzing small programs
and gradually move to topics to which students become motivated, approx-
imately in middle-out order of a normal software development. This also
gives enough opportunities for students to catch up with their understand-
ing of programming techniques.

The material is distributed over Software Design 1, a one semester second year
course, and Software Design 2, a one semester third year course. Both are required
for Computer Science students at McMaster University. The courses were taught
repeatedly since 1999/2000 and had a peak enrollment of 190 students. Many
students perceive these two courses as the core courses for their career in software
development. The same material was presented in a condensed form in a graduate
course in 2005/06.

The next section elaborates on the topics covered in both courses, in the order of
presentation. We conclude with an evaluation of the courses and a discussion.

2 Middle-out Sequencing of Topics

Lecture 1: Elements of Programming

The course starts with an introduction to basic control structures, annotations,
and proofs of correctness usingwp. Equational logic is introduced by appeal-
ing to the analogy with calculus. A formal definition of the syntax of programs

2



Statements with Partial Expressions

Assignment Assumea: array N of T.

wp(x := E, P) = ∆E ∧ P[x \ E]
wp(a(E) := F, P) = ∆E ∧ ∆F ∧ (0≤ E < N) ∧ P[a \ (a ; E : F)]

Conditional
wp(if B then S, P) = ∆B ∧ ((B ∧ wp(S, P)) ∨ (¬B ∧ P))
wp(if B then SelseT, P) = ∆B ∧ ((B ∧ wp(S, P)) ∨ (¬B ∧ wp(T, P)))

Repetition If

B ∧ P ⇒ wp (S, P) (P is invariant ofS)
B ∧ P ∧ (T = v) ⇒ wp(S, T < v) (Sdecreases T)
B ∧ P ⇒ T > 0 (T < 0 causes termination)
P ⇒ ∆B (B is always defined)

then

P⇒ wp(while B do S, P ∧ ¬B)

Figure 2: Excerpt fromElements of Programming

and annotations and of typing is included (trying to skip this did lead to syntacti-
cally incorrect mixtures of programs and annotations). Flowcharts, like in Fig. 1,
are used for explaining annotations. Trying to use them in exercises did lead to
spaghetti charts; they are still retained as they are intuitive and as they are later
used for explaining exceptions. Limitations of machine arithmetic and partial ex-
pressions are discussed and formalized as in Fig. 2. Further control structures
(case, repeat, and for statements) and recursion complete the picture. Basic sort-
ing and searching techniques, as they are taught in introductory and high school
courses, illustrate the use of annotations. Quicksort and Boyer-Moore search are
used to demonstrate the need for correctness arguments of more complex algo-
rithms. Stepwise refinement is illustrated with the example of printing images [1].
Proper programming style (indentation, comments, naming) is discussed and from
that point on enforced. The assignments are with paper-and-pencil only and force
students to argue about programs without running and testing them. While this
comes as a surprise to students, it puts students with and without programming
experience on the same level. Verification is continued to be practiced throughout
both software design courses: our observation is that one semester is not sufficient
for students to feel comfortable with writing annotations.

3



Why Modularization

Modularzationserves three purposes:

Comprehensibility We cannot understand a sizeable
program unless we split it into manageable parts.

Maintainability We cannot make changes to a sizeable
program unless the changes are confined to some
parts.

Development We cannot develop a sizeable program in
a team unless each team member develops their
own part.

These goals necessitate the division of a program into
moduleswith interfacesandimplementations:

• Modules can beusedbased on their interface,
without the need of understanding their imple-
mentation.

• Modules can beimplementedbased on their in-
terface, without the need of knowing their use.

This way theclients(users) and the implementation of a
module can be designed separately and can evolve (more)
independently.

Module Invariants

A module invariantcharacterizes the possible states of a
module. It is a predicate that holds after the initialization
and after any subsequent call to the module. As the mod-
ule invariant is an essential design decision of a module,
we document the invariant as an annotation:

moduleBoxOffice
public constCAPACITY= 250
var seats: integer
{invariant : 0≤ seats≤ CAPACITY}
public procedure bookSeat

require seats< CAPACITYthen seats := seats+ 1
public procedure cancelSeat

require seats> 0 then seats := seats− 1
beginseats := 0
end

Figure 3: Excerpts fromModularization

Lecture 2: Program Modularization

The goals and principles of modularization are discussed and a notation for mod-
ules is introduced, see Fig. 3. The principles are supported by a discussion of the
consequences of local module invariants (cohesion) and global module invariants
(coupling). The KWIC example is used for illustrating the difference in qualities
that arise from different modularizations [5]. The key point is that students learn
that there is not the ideal modularization, but only one for—explicitly stated—
anticipated changes. The need for robustness of modules is discussed and defined
formally. Exercises continue to practice formally reasoning about programs, but
also show how to map modules to the constructs found in programming languages,
in particular how encapsulation is enforced in common languages.

Lecture 3: Abstract Programs

Four means of abstraction are presented: multiple assignments, guarded com-
mands, specification statements, and abstract data types. These are first illustrated

4



Two Nondeterministic Programs

Determining the maximal value in an array:

var i : integer
beginm, i := a(o), 1 ;

do i < n→
if a(i) ≤ m→ skip
[] a(i) ≥ m→ m := a(i)
fi ;
i := i + 1

od
end

Determining a location of the maximal value in an array:

var i : integer
begink, i := 0, 1 ;

do i < n→
if a(i) ≤ a(k) → skip
[] a(i) ≥ a(k) → k := i
fi

do ;
i := i + 1

end

Both programs are nondeterministic, but the outcome of
the first is unique.

Algorithmic Abstraction vs. Data Ab-
straction

Multiple assignments, guarded commands, and specifica-
tion statements providealgorithmic abstraction: they ab-
stract from possible algorithms implementing them, but
are expression in therms of the data structures of the pro-
gram.
Data abstractionabstract from possible data structures of
the implementation by using abstract data types.

Example. Counting the number of distinct elements of
arraya : array N of T:

var i : integer, s : set ofT
begin i, s := 0 , {} ;

do i < N→ s := s∪ {a(i)} ; i := i + 1 od ;
num := #s

end

Here we abstract from how elements of the sets are
stored: they can be stored in an array, liked list, or hash
table.

Figure 4: Excerpts fromAbstract Programs

with simple, abstract algorithms and then with examples as typically found in
books on algorithms and data structures. Exercises practice the use of abstract
data types for modeling information systems, as a preparation for object-oriented
modeling. The techniques are then used for the specification of modules: the pre-
vious notation of a syntactic interface of a module is extended by. Abstraction
continues to be repeated throughout both courses. While we tried starting the first
course with abstract programs instead of concrete programs, our experience was
that students didn’t have an understanding of what we are abstracting from; we
find that it takes students significant time to appreciate for example nondetermin-
ism.

Lecture 4: Testing

The role and need for testing is discussed. Testing is presented as complementing
verification. Testing the internal consistency of modules is illustrated with check-
ing module invariants. Specification based testing is used for both black box and
white box testing. Thewp calculus is used for deriving test cases to achieve vari-
ous types of coverage, as in Fig. 5. Test strategies are discussed. The assignments

5



Path Coverage

Alternatively, we can derive a set of test cases such that
all pathsare covered. This includes coverage of all state-
ments. In the example below, the paths are A-C, A-D,
B-C, B-D:

if a(0) < a(1) then
l := 1 – A

else
l := 0 ; – B

if a(l) < a(2) then
l := 2 – C

else
skip – D

Test cases are determined by calculating the weakest pre-
condition that excludes all alternative paths. For example,
for testing the path B-C we calculate:

¬(a(0) < a(1)) ∧ wp (if a(0) < a(1) then l := 1 elsel
:= 0, a(l) < a(2))

= ”wp of if, logic”
(a(0)≥ a(1)) ∧ wp(l := 0, a(l) < a(2))

= ”wp of := ”
(a(0)≥ a(1)) ∧ (a(0) < a(2))

From there, we pick arbitrary values that satisfy the pre-
condition, for examplea(0) = 5, a(1) = 4, a(2) = 7.

Testing Modules

Since modules may have private variables, we can neither
set nor inspect their values directly.

• In order to set their values to a desired state, we
have to call a sequence ofmodifiers(modifying
public procedures).

• In order to inspect their values, we have to call
one or moreobservers(observing public proce-
dures).

With testing in mind, we should include sufficiently many
modifies and observers in the interface. This leads to the
requirement of designing modules fortestability.

Figure 5: Excerpts fromTesting

practice writing both implementations of modules and test suites according to for-
mal specifications; in one assignment both implementations and test suites are
run against (faulty) ones from other students. From that point on students are
convinced of the need for precise specifications.

Lecture 5: Exception Handling

Failures, the need for exception handling despite verification and testing, and ways
of reacting to exceptions are discussed. The raise and the try-catch statements, as
the dominant exception mechanism, are introduced textually and graphically, and
then defined formally throughwp. Verification of exception handing is practiced
with small examples. The correct design of exception handlers in modular pro-
grams is discussed. Students should understand that, for example, an exception
handler is supposed to establish the module invariant. Programming exercises
later on are all required to include proper exception handling.

6



Finally Clause

A try-catch block may have a finally clause that is exe-
cuted whether an exception occurred or not. SupposeS,
T, U are statements:

try ScatchT finally U

S

T

U

U

Either the catch or the finally clause is optional:

try ScatchT = try ScatchT finally skip
try Sfinally T = try Scatch raise finallyT

Weakest Exceptional Precondition

Recall thatwp(S,Q) is the weakest precondition such that
statementS terminates and conditionQ holds finally. We
define:

wp(S,Q,R) = weakest precondition such thatS
terminates and
– on normal termination Q holds finally
– on exceptional termination R holds finally

A

statement that never raises an exception can be equiva-
lently defined through weakest precondition or weakest
exceptional precondition:

wp(S, Q) = wp(S, Q, false)

The weakest preconditionwp(S,Q,R) is monotonic in
bothQ andR:

if Q⇒ Q’ and R⇒ R’ thenwp(S, Q, R) ⇒ wp(S, Q’,
R’)

Figure 6: Excerpts fromException Handling

Lecture 6: Functional Specifications

A formal model of programs in terms of relations is given and connected towp.
The use of predicative specifications is discussed. Tabular specifications are used
to discuss the concepts of completeness of consistency of specifications [6], see
Fig.7. Algorithmic refinement and data refinement are formalized with relations.
Previous examples of module specifications and implementations are revisited and
formally analyzed; the emphasis here is on understanding the concept of a refine-
ment relation, as a preparation for class refinement.

Lecture 7: Object-Oriented Programs

Classes and inheritance are introduced textually and graphically. The object-
oriented style is contrasted with the traditional style. A formal model of classes
and inheritance is given which makes the additional complexity of object-oriented
design explicit by translation into a model with variables and procedures only, see
Fig. 8. Class invariants and class refinement are studied in this model. Class
refinement is then used to justify “good” and “bad” used of inheritance. Small
exercises enforce the understanding of the formalism whereas programming as-
signments practice class design without formal proofs.

7



Completeness and Consistency with
Tabular Specifications

When specifying complex systems, two fundamental is-
sues arise:

Completeness: Does the specification cover all possible
cases, or did we forget some cases?

Consistency: Are there contradictions in our specifica-
tion, or is is consistent?

Both issues are addressed bytabular specifications: be-
sides making it easier to check specifications for com-
pleteness and consistency, they make large specifica-
tions more readable and more appealing by the two-
dimensional notation.

Properties of Tabular Specifications

Let a table with headerH = (p1, . . . , pn) be given.

p1 . . . pn

...
...

...
...

• H is disjoint if¬(pi ∧ p j ) for all i 6= j.

• H coversp if p1∧ . . .∧ pn = p.

• H partitionsp if H is disjoing andH coversp.

Figure 7: Excerpts fromFunctional Specifications

Lecture 8: Object-Oriented Modeling

Object-oriented models are presented as an alternative, graphical way of specify-
ing data structures. For this, class diagrams are extended with various forms of
associations that are given a textual definition. The use of object-oriented mod-
els for a partial (abstract) view and for guiding the modularization according to
data is practiced (repeating that lesson fromModularization). The transition from
an object-oriented model to an object-oriented implementation is explained as a
refinement step, in accordance with the earlier formalization of refinement, and
practiced informally.

Lecture 9: Requirements Analysis

The need for formulating requirements in the “user’s world” and the need for dis-
tinguishing (user) requirements from (program) specifications is discussed. The
step of delineating the context of a software system is discussed with use cases
and use case diagrams. The notion of the interaction of a software system with its
environment is motivated with sequence diagrams. Proving the consistency of a
specification with respect to sequence diagrams is discussed usingwp, see Fig. 10.
The derivation of test cases from sequence diagrams is discussed, thus connecting
the topic of requirements analysis with specification, verification, and testing.

8



Definition of Inheritance

Methods correspond to procedures that take an additional
parameter forthis; the body must not assign tothis. Self-
calls are resolved to the methods of the class itself:

classC
var a : A
methods

S
method t

T
end

=

var C : set ofObject
var a : map Objectto A
invariant

nil ∈ C ∧ dom a = C− {nil}
procedureC.s(this : C)

S[s, t \ C.s, C.t]
procedureC.t(this : C)

T[s, t \ C.s, C.t]

classD inherit C
var b : B
override method t

T ′

methodu
U

end

=

var D: set ofObject
var b: map Objectto B
invariant D ⊆ Y ∧

nil ∈ C ∧ dom a = C− {nil}
procedureC.s(this : C)

S[s, t, u \ D.s, D.t, D.u]
procedureC.t(this : C)

T ′[super.s, super.t \ C.s, C.t]
[s, t, u \ D.s, D.t, D.u]

procedureC.u(this : C)
U[s, t, u \ D.s, D.t, D.u]

Forms of Inheritance

Object-oriented languages own much of their popularity
due to the way in which inheritance can be used (or mis-
used). Good uses of inheritance are:

• Inheritance for modeling

• Inheritance for specification

• Inheritance for code sharing

Bad uses of inheritance are ... [omitted]
Inheritance for modeling is used to let the structure of the
program reflect the structure of the problem: the program
becomes easier to understand and to maintain. It applies
when the one class is ageneralization, or conversely a
specializationof another class.

Shape

Rectangle OvalLine

The essence is that each subclass must be arefinementof
its superclass.

Figure 8: Excerpts fromObject-Oriented Programs

Lecture 10: Object-Oriented Design

Object-oriented techniques (like forwarding and delegation), design patterns, frame-
works, subsystems, and components are discussed. Class invariants and class re-
finement are used in explaining class structures, but without formal proofs. Ten
of the common 24 design patterns are selected. Assignments use the java.util
framework for illustrating the use of design patterns when extending frameworks.

Lecture 11: Reactive Programs

The characteristics of reactive programs are contrasted with those of transforma-
tional programs. Statecharts are introduced as a dedicated formalism for reactive
programs. The event-based approach to reactive systems is contrasted with the
state-based approach. The elements of statecharts are first illustrated and then
defined in terms of guarded commands, following [9, 10], see 11. Assignments
practice the use of statecharts withiState, a statechart compiler that follows that
definition and allows statecharts to be animated. In the fall of 2006, we are exper-
imenting with adding the invariants to statecharts, with automatic verification in

9



Constraints

Constraints allow to express additional restrictions which
are not captured by the diagrams on their own. Con-
straints can be attached to classes. Such constraints be-
come an additional part of the invariant [example omit-
ted]. Constraints can also be written next to associations.
Dashed lines are used to connect the involved associa-
tions:

Person Committee
memberOf

chairOf
subset

var Person: set ofObject
Committee: set ofObject
memberOf: rel Objectto Object
chairOf : rel Objectto Object

invariant
dom memberOf⊆ Person∧
ran memberOf⊆ Committee∧
ran chairOf = Committee∧
injective(chairOf) ∧
chairOf⊆ memberOf

Refining Class Diagrams

Class diagrams are a way of graphically expressing
object-oriented system models. Some concepts, like
classes with attributes and methods, can be readily im-
plemented in programming languages, while others, like
associations and qualification, cannot. In such cases, we
have to refine our model, perhaps in several steps, until
we arrive at a model that is sufficiently close to our pro-
gramming language. The refined models can be expressed
graphically as well.

Refining Associations by Pointers. Consider:

Person
name : string
salary : real

boss

worker

Suppose we decide to implement the association by
adding an attributebossto each person. That attribute
could benil or a pointer to the boss, reflecting the zero-
or-one multiplicity:

Figure 9: Excerpts fromObject-Oriented Modeling

iState following [4].

Lecture 12: Software Development Process

Different software development processes are mentioned, without going into de-
tail (for time).

Interlude: Software Tools

Additionally, the topic ofConfiguration Managementwas included at the begin-
ning of Software Design 2 and subversion was used from that point on for all
assignment submissions. The assignments used Pascal, Java, jUnit (for testing),
and iState (for statecharts); introduction to these was provided in optional tutori-
als.

10



Sequence Diagrams

Scenarios can be described bysequence diagrams(mes-
sage sequence charts) showing vertically an interaction
sequence among actors and the system over time:

• Solid horizontal arrows indicate a message (in-
teraction).

• Dashed horizontal arrows indicate a response to
a previous message.

For example, for part of the Set Extension use case fol-
lowed by the Query Extension use case:

Administrator Telephone Directory

add name ofp

set extension ofp

query extension ofp

extension ofp

Checking Specifications Against Sce-
narios

Consider the scenario:

Setting the extension of a specific per-
son and querying the extension of that
person will return the same extension
again.

To check if our specification allows this scenario, we an-
alyze the sequence of calls

S = setExtension(p, e1) ; queryExtension(p, e2,
found)

by determining its weakest precondition with respect to
postconditionfound ∧ (e1 = e2):

wp(S, found ∧ (e1 = e2))

In general, the goal is to check:

inv ∧ pre⇒ wp(scenario, post)

Note that if every procedure called by the scenario pre-
servedinv, we also have:

inv⇒ wlp(scenario, post)
inv ∧ pre⇒ wp(scenario, post ∧ inv)

Figure 10: Excerpts fromRequirements Analysis

3 Evaluation

Except for the topics of Configuration Management and Software Development
Process, all other topics used a coherent notation and coherent mathematical ba-
sis. We did not observe that students are in any sense math-phobic: they are
sceptic towards the use of logic in software design as much as they are sceptic
toward design patterns and configuration management systems; they haven’t seen
the need for any of these. In a series of assignments, the use of each concept of
the course is practiced. At the end of the second course, students take the use of
logic for granted. The topic that caused the most difficulties was object-oriented
modeling: while the concepts are mathematically easy to explain, acquiring profi-
ciency in practice would have taken more time than was available. The topic was
dropped in later editions of Software Design 2.

Requiring students to take a course in logic and discrete math before Software
Design 1 had only a moderate effect on their ability to use logic and abstract data
types for the description of problems. Our explanation is that logic and discrete

11



Implementing Statecharts

We now present a translation scheme for all elements of
statecharts, except timing. A statechart is implemented by
a module:

• States are represented by variables;

• Events are represented by procedures.

This way “generating an event” means ”calling a proce-
dure”. (We note that a completely different implementa-
tion is possible in which events are treated as data.)

S1 ... Sn var s : (S1, ...,Sn) := S1

Si
E(p)[c]/a Sj

procedureE(p)
if s = Si ∧ c then

begina ; s := Sj end

For brevity, we leave out parameters, conditions, and
actions in subsequent rules. They have to be added
according to above scheme.

Suppose there are several transitions on eventE. Here
Si , . . . ,Sj are not necessarily distinct states, with an over-
lap leading to nondeterminism:

Si
E S′i

... ...

Sj
E S′j

procedureE
if s = Si → s := Ei ’
[] ...
[] s = Sj → s := Sj ’
[] s 6= Si ∧ ...∧ s 6= Sj

→ skip
fi

Hierarchy

Sj

R1 ... Rm

var s : (S1, ...,Sn)
var r : (R1, ...,Rm)

Figure 11: Excerpts fromReactive Program

math courses traditionally teach a body of knowledge, and do not practice the use
for description and do not practice proving. Additionally, the difference in nota-
tion, as for implication and for quantification, prevents students from seeing the
connection even if there is an obvious one (one can easily find a dozen different
notations for quantification; we doubt that calculus would have the same influence
if that many different notations for addition or integration would be used). Op-
erators that are useful in software design, like relational overwrite, are not taught
in discrete math courses; usually (untyped) first-order logic is taught, rarely equa-
tional proofs. A good portion of Software Design 1 is spent—or rather wasted—
with introducing notation for typed logic, data types, and equational proofs. One
would wish that the field would have matured by now to standardize them.

Students are required to complete a two-semester design project in their fourth
year. Software Design 2 was consistently ranked as the most useful course in a
questionnaire at the end of the project, and Software Design 1 as the third most
useful course. While that may sound encouraging, the projects rarely show a
sufficiently systematic application of the techniques. That may be partly due to
the explorative nature of these projects. However, the author believes that this
is mainly due to these concepts not being repeated and practiced elsewhere. In
courses on databases, operating systems, compilers, user interfaces, networks,

12



real-time and algorithms terms like invariants and robustness are not used, giving
the impression that these notions are not universally relevant. To give evidence to
this claim, we refer to the analysis of the five most popular algorithm textbooks in
[11]: four books, with 550 to 770 pages, devote zero pages on correctness and one
book with 790 pages devotes eight on correctness. One would wish that textbooks
and instructors would acknowledge the usefulness of these notions more widely.

Over the years, in the course evaluations 30%–65% of the students report that
81%–100% of the course material seems valuable and 35%–50% report that 61%–
80% seems valuable. The numbers were on the higher end in later years and for
Software Design 2 (not all students continue with Software Design 2). The use
of independent critical judgement was rated high, particularly in later years. The
overall delivery of the course received mixed evaluations, because the material
was not fully developed in earlier years, the material was not motivated well in
earlier years, most teaching assistants were of little help to the students, and be-
cause students felt overloaded. Except in the first year, there were no complaints
that the contents is overly mathematical.

4 Discussion

We believe that we have successfully used mathematics as the unifying force for
elements of software design into a two-semester courses in software design. The
material is covered in 710 pages of lectures notes by the author plus a couple of
original articles and book chapters (a course pack with the material is printed for
students on demand). The mixture of mathematical and less mathematical topics
gives students confidence that the use of mathematics is justified. We could not
have done this with a single one-semester course.

If teaching the mathematics of software design is to be useful, it has to be
taught as early as possible, before students acquire “bad habits,” a point that has
been repeatedly made, e.g. [7]; we wish we could have started even earlier in the
curriculum. We have deliberately not used a specific formal tool; we find those
more appropriate for upper level courses. Gordon [3] also offers a two-semester
course, also using higher order logic as a unifying framework, but covers the
logical aspects in more detail, and includes hardware verification. We have not
tried to use any “light” method that makes formal techniques “invisible”; in our
experience students appreciate being taught the theory in an isolated, minimal
way, before seeing it applied with constraints.

Compared to the inverted curriculum, or outside-in order by Pedroni and Meyer

13



[8], we do not teach class design before control structures, but we do teach pro-
gramming before requirements analysis. Our way of introducing formal tech-
niques is less gentle than theirs, but our reason is the same as for their outside-in
order: to put all students on the same level and keep them motivated. We have
succeeded with the first one, even if it comes by shocking the students in the first
classes with mathematics, for which they were not prepared; we were less suc-
cessful in keeping them motivated during Software Design 1.

While we believe that the courses influenced the way how students think about
programs, the main obstacle for having a profound influence on their practice
of programming is that concepts are not being repeated and practiced in other
courses. We agree with Dijkstra’s observation on computing science [2]:

... providing symbolic calculation as an alternative to human rea-
soning ... is sometimes met with opposition from all sorts of direc-
tions: ... 6. the educational business that feels that if it has to teach
formal mathematics to CS students, it may as well close its schools.

If anything, with low enrollment numbers after the dot-com bubble burst, the pres-
sure to eliminate mathematics has increased.

Acknowledgement. The author would like to thank David Parnas, Michael Soltys,
and the two reviewers for their careful reading and thoughtful suggestions.

References

[1] Edsger W. Dijkstra. Notes on structured programming. In O.-J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, editors,Structured Programming. Academic
Press, 1972.

[2] Edsger W. Dijkstra. On the cruelty of really teaching computing science.
Communications of the ACM, 32(12):1398–1404, 1989.

[3] Mike Gordon. Specification and Verification, Parts I and II.
http://www.cl.cam.ac.uk/~mjcg/, 2006.

[4] Dai Tri Man Le, Emil Sekerinski, and Scott West. Statechart ver-
ification with iState. In Marsha Chechik, editor,Formal Meth-
ods 2006—Posters and Research Tools, Hamilton, Ontario, 2006.
http://fm06.mcmaster.ca/istate.pdf.

14



[5] David L. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, 15(12):1053–1058, 1972.

[6] David L. Parnas. Tabular representation of relations. CRL Report 260, Mc-
Master University, October 1992.

[7] David L. Parnas. “Formal Methods” technology transfer will fail.Journal
of Systems and Software, 40(3):195–198, 1998.

[8] Michela Pedroni and Bertrand Meyer. The inverted curriculum in practice.
In SIGCSE Technical Symposium on Computer Science Education, Houston,
Texas, USA, 2006. ACM Press.

[9] Emil Sekerinski and Rafik Zurob. iState: A statechart translator. In
M. Gogolla and C. Kobryn, editors,UML 2001 – The Unified Modeling
Language, 4th International Conference, Lecture Notes in Computer Sci-
ence 2185, Toronto, Canada, 2001. Springer-Verlag.

[10] Emil Sekerinski and Rafik Zurob. Translating statecharts to B. In Michael
Butler, Luigia Petre, and Kaisa Sere, editors,Third International Conference
on Integrated Formal Methods, Lecture Notes in Computer Science 2335,
Turku, Finland, 2002. Springer-Verlag.

[11] Allen B. Tucker, Charles F. Kelemen, and Kim B. Bruce. Our curriculum
has become math-phobic! InSIGCSE Technical Symposium on Computer
Science Education, Charlotte, North Carolina, USA, 2001. ACM Press.

15


