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ABSTRACT
Exception handling allows a program to be structured such that the original design can be preserved in 
presence of possibly failing components, it allows for an unobtrusive treatment of rare or undesired cases, 
and can be used to address imperfections in programs. This chapter develops a theory of exception 
handling with try-catch statements and shows its use in the design of dependable systems by giving a 
formal account of the patterns of masking, propagating, flagging, rollback, degraded service, recovery 
block, repeated attempts, and conditional retry. The theory is based on weakest exceptional preconditions, 
which are used for both defining statements and for proofs. Proof outlines are introduced and used to 
establish the correctness of the patterns.

INTRODUCTION
A program may fail to perform its intended task for several reasons:
· The specification may be in error: the specification may not be according to the user's 

requirements or the requirements may have been inconsistent or incomplete.
· There may be errors in the design: there can errors in the correctness argument of the program, 

like overlooking a case; the design may be based on idealized hypotheses about the programming 
language and hardware, like a sufficiently large integer range and sufficiently available memory; 
the design may rely on incorrect assumptions about the run-time system and libraries.

· There can be failures of the underlying software or hardware, like an error in the operating 
system, disk errors, memory errors, and network failures.

Some failures are always detected at run-time by the underlying virtual machine, like indexing an array 
out of bounds, allocating memory when none is available, or reading a file beyond its end. Some failures 
can be detected by programmer-added checks, like checking the range of parameters of a procedure, while 
some failures would be too difficult to detect by any means.

Even with our best efforts to design error-free programs, in the design of any reasonably complex system, 
there always remains the possibility of a failure. The question then arises how programs should respond to 
detected failures. Suppose that a problem calls for the sequential composition of four statements,

S1 ; S2 ; S3 ; S4
and statements S1 and S3 may fail in a detectable way; in case they fail, the sequence should be abandoned 
and statement T should be executed instead. In the a priory scheme, we add a test before running S1 and 
S3. In the a posteriori scheme, we run S1 and S3 and test if they were successful:

if S1 possible then S1 ;
 S1 ;    if S1 successful then
 S2 ;     S2 ;
 if S3 possible then  S3 ;
  S3 ;  if S3 successful then
  S4   S4
 else     else

1 Preprint, to appear in Dependability and Computer Engineering: Concepts for Software-Intensive 
Systems—a Handbook on Dependability Research, L. Petre, K. Sere, and E. Troubitsyna, Eds. IGI 
Global, 2011.



  T   T
else   else
 T   T

Both schemes are unsatisfactory. Explicit tests clutter up the program with additional variables, 
parameters, and tests that have to be repeated at different levels of the program structure or complicate the 
structure, for example if the failing statements are nested inside repetitions and conditionals. The 
treatment of possible failures dominates the program structure: the original design is no longer visible. 
The solution is a control structure for exception handling:

try
 S1 ; S2 ; S3 ; S4
catch
 T

The meaning is that the body of the try-catch statement, here the sequential composition S1 ; S2 ; S3 ; S4, is 
attempted; if any of its components fails, the statement T, known as the exception handler, is executed 
immediately. If the body succeeds, the exception handler is ignored. The failing statement may be nested 
at any level inside the body, or may be syntactically outside the body in a procedure that is called from 
within the body: the exception handler is determined by the dynamic call chain rather than the static 
nesting structure. 

The second reason for exception handling is for an unobtrusive treatment of rare or undesired cases–cases 
that are known to happen but that would otherwise affect the program structure in the similar sense as 
possible failures, in that the structure for common or desired case is no longer visible. Thus, exception 
handling can be used to simplify the design process by separating the concerns of common and 
exceptional cases.

The third reason for exception handling is to allow for imperfections in implementations, like missing 
parts in a prototype or features that are planned for a future release. These imperfections are initially 
treated like a failure. Later on, when the implementation is completed, its structure does not need to 
change, or perhaps only a top-level handler informing the user that a feature is missing can be removed. 
Dually, obsolete features may be removed by replacing their implementation with one that fails. Thus, 
exception handling helps in evolutionary development and maintenance.

The purpose of this chapter is to develop a theory of exception handling with try-catch statements and to 
show its use in the design of dependable systems. To this end, we give a formal account of the patterns of 
masking, propagating, flagging, rollback, degraded service, recovery block, repeated attempts, and 
conditional retry. The theory is based on weakest exceptional preconditions, a generalization of Dijkstra's 
weakest precondition predicate transformers. To represent programming languages realistically, 
expressions may be partially defined and may evaluate conditionally. Proof outlines are introduced and 
used to establish the correctness of the patterns.

BACKGROUND
A treatment of exception handling with predicate transformers is given by (Cristian, 1984): statement 
have one entry and multiple exits (one of those being the normal one) and are defined by a set of predicate 
transformers, one for each exit. As (King & Morgan, 1995) point out, this disallows nondeterminism, 
which precludes the use of the language for specification and design; the solution is to use a single 
predicate transformer with one postcondition for each exit instead, and which we follow here.
  
A mechanical formalization of try-catch-finally statements is given by (Jacobs, 2001). However, that 
formalization includes all the other "abrupt termination" modes of Java, which we do not need here, and 
uses state transformers, which precludes nondeterminism, and thus is less suited for our needs.



While there is a general agreement that exception handling is needed if programs are to be correct and 
robust, there has been a lively debate how exactly exceptions should be used. One view, exemplified by 
(Liskov & Guttag, 2000), is that exceptions provide an alternative return of procedures (like "item not 
found"), and as such have their place in interface specifications, together with the condition when they are 
raised and what the outcome in that case is. The other view, argued by (Meyer, 1997), is that exceptions 
are only for recovery in case a contract–given by a precondition and a postcondition–is broken. As the 
interface of a procedure consist of a single pre- and postcondition, this defines at the same time the 
circumstances when an exception is raised. In this chapter, we focus on exceptions at the level of 
statements, where issues of interfaces do not occur, but note that the theory by itself does not preclude 
either view.

For the interested reader we mention that a classification of exception handling mechanisms is given by 
(Buhr & Mok, 2000), while (Garcia et al., 2001) compare mechanisms specifically in object-oriented 
languages. A discussion of exception handling vs. the use of return values in operating systems and of 
failures in common operating systems, is given by (Koopman & DeVale, 2000). The issues of the correct 
implementation of exception handling is studied by (Börger & Schulte, 2000) and (Wright, 2005), based 
on an operational semantics of programs; we will not go further into the issue of correct implementation.

The programming language and the treatment of partial expressions in this chapter are inspired by (Hoare 
et al., 1987). In (Back & Wright, 1998) algebraic properties of single-entry single-exit statements are 
studied in depth for loops and by considering both angelic and demonic nondeterminism; here we restrict 
to demonic nondeterminism. In (Leino & Snepscheut, 1994) weakest exceptional preconditions of 
statements are derived from a trace semantics. Here we start with weakest exceptional preconditions.

UNDEFINEDNESS IN EXPRESSIONS
Expressions may not be defined for some values of its variables; for example, x div y is not defined for 
y = 0. Evaluating such an expression in a program does not return a result, but should–at least for robust 
programs–instead cause an exception. For expressions E that can appear in programs, we let ∆E be a 
predicate that is true when E is defined and false otherwise. We do not specify what the value of E is if it 
is undefined, that is we don't extend the range of integers with an "undefined value". Instead, we think of 
it as being any value, which just happens to be in the register that holds the result, but we have flagged 
that the result is in error. Likewise, we don't extend booleans or any other type with undefined values. As 
we define predicates to be boolean expressions, this avoids a "three-valued logic". We write F(E) for 
function application and F(E ← G) for modifying function F to be G at E. Functions can be partial and 
dom F stands for the domain of F; an array of length N is partial function with domain [0, N).

Definition (∆ for constants, variables, operators). Let c be a constant, x a variable, E, F, G be expressions 
of appropriate type:
 ∆c ≡  true ∆(E + F) ≡  ∆E ∧ ∆F
 ∆x ≡  true ∆(E – F) ≡  ∆E ∧ ∆F
 ∆F(E) ≡  ∆E ∧ ∆F ∧ E ∈ dom F ∆(E × F) ≡  ∆E ∧ ∆F
 ∆F(E ← G) ≡  ∆E ∧ ∆F ∧ ∆G ∧ E ∈ dom F ∆(E div F) ≡  ∆E ∧ ∆F ∧ (F ≠ 0)
 ∆–E ≡  ∆E ∆(E mod F) ≡  ∆E ∧ ∆F ∧ (F ≠ 0)
 ∆¬E ≡  ∆E ∆(E and F) ≡  ∆E ∧ (E ⇒ ∆F)
 ∆(E = F) ≡  ∆E ∧ ∆F ∆(E or F) ≡  ∆E ∧ (¬E ⇒ ∆F) 

In the definition of ∆ for arithmetic expression, we have assumed unbounded arithmetic; if needed, this 
can be strengthened by requiring that the result is between the maximal and minimal representable values, 
for example ∆(E + F) ≡ ∆E ∧ ∆F ∧ minint ≤ E + F ≤ maxint. Equality, written =, is interpreted as being 
strict, meaning that both operands need to be defined for the equality to be defined, like with the binary 



arithmetic operators. Equivalence, written ≡, is an operator that we use to reason about expressions, rather 
than an operator that appears in programs. An equivalence is always true or false. For example, E ≡ E is 
always true, e.g. 1/0 ≡ 1/0, but the truth of 1/0 = 1/0 is irrelevant, as it is not defined. The boolean 
operators and, or, also written as cand, cor and as and then, or else are being interpreted as conditional 
operators, meaning that their second operand does not need to be defined if the first one determines the 
result. We do not define ∆ for further operators, as we will not need them, but only state following 
properties for transforming conditional boolean operators to standard operators:
 
Property (deMorgan, eliminating and, eliminating or). Let P, Q be predicates.
  ¬(P and Q) ≡  ¬P or ¬Q ∆P  ⇒  (P and Q ≡ P ∧ Q)
  ¬(P or Q) ≡  ¬P and ¬Q ∆P  ⇒  (P or Q ≡ P ∨ Q)

Applying ∆ to a list of expressions denotes the conjunction of ∆ applied to each element of the list. For 
example, if E = E1, E2 then ∆E = ∆E1 ∧ ∆E2.

WEAKEST PRECONDITIONS
We briefly review standard weakest preconditions with undefined expressions. The statements that we 
consider are abort, which does not guarantee any particular outcome, stop, which blocks further 
execution, skip, which does nothing, multiple assignment x := E, which assigns the values of the list E of 
expressions to the variables of list x, nondeterministic multiple assignment x :∈ E, which assigns any 
values of the sets E to the variables x, sequential composition S ; T of statements S and T, 
nondeterministic choice S ⊓ T, conditional if B then S else T with condition B and branches S and T, and 
repetition while B do S with condition B and body S. Follwing Dijkstra, we introduce:

wp(S, Q)  ≡ weakest precondition such that S terminates with postcondition Q

Definition (wp for straight-line statements). Let B, Q be predicates, x a list of variables, E a list of 
expressions, and S, T statements:

wp(abort, Q) ≡  false
wp(stop, Q) ≡  true
wp(skip, Q) ≡  Q
wp(x := E, Q) ≡  ∆E ∧ Q[x \ E]
wp(x :∈ E, Q) ≡  ∆E ∧ (∀ x' ∈ E . Q[x \ x'])
wp(S ; T, Q) ≡  wp(S, wp(T, Q))
wp(S ⊓ T, Q) ≡  wp(S, Q) ∧ wp(T, Q)
wp(if B then S else T, Q) ≡  ∆B ∧ (B ⇒ wp(S, Q)) ∧ (¬B ⇒ wp(T, Q))

In general, F[x \ E] stands for expression F with variables x simultaneously replaced by expressions E. 
For the simple assignment x := E to terminate with Q, expression E must be defined and Q[x \ E] must 
hold initially. For if B then S else T to terminate with Q, predicate B must be defined and if B holds, S 
must terminate with Q, otherwise T must terminate with Q. We don't define the weakest precondition for 
repetitions, but instead give the fundamental rule for repetitions.

Rule for Repetition. Let P be a predicate, the invariant, V be an integer expression, the variant, and v be 
an auxiliary integer variable. If

∆B ∧ B ∧ P ∧ (V = v) ⇒  wp(S, ∆B ∧ P ∧ V < v) (S preserves P, decreases V)
∆B ∧ B ∧ P ⇒  V > 0 (V ≤ 0 leads to termination)

then
 ∆B ∧ P  ⇒  wp(while B do S, ∆B ∧ ¬B ∧ P)



An alternative formulation, which is methodologically stronger, is obtained if we add to the assumption 
that whenever the invariant holds, the condition of the repetition must be defined, formally P ⇒ ∆B. The 
alternative rule then follows immediately from above rule.

Alternative Rule for Repetition. Let P be a predicate, the invariant, V be an integer expression, the 
variant, and v be an auxiliary integer variable. If

B ∧ P ∧ (V = v) ⇒  wp(S, P ∧ V < v) (S preserves P, decreases V)
B ∧ P ⇒  V > 0 (V ≤ 0 leads to termination)
P ⇒  ∆B (B is defined)

then
 P  ⇒  wp(while B do S, ¬B ∧ P)

WEAKEST EXCEPTIONAL PRECONDITIONS
We consider now statements that can terminate normally, or succeed for short, and can terminate 
exceptionally, or fail for short. That is, statements have a single entry and two exits.The abort statement 
either succeeds in an arbitrary state, fails in an arbitrary state, or does not terminate at all. As previously, 
the stop statement blocks further execution. The skip statement does nothing and succeeds, while the raise 
statement does nothing and fails. The multiple assignment x := E succeeds by assigning the values of E to 
x if all expressions of E are defined, otherwise it fails and does not change the values of the variables. The 
nondeterministic multiple assignment x :∈ E is analogously. The sequential composition S ; T starts with S 
and fails if S fails, or continues with T if S succeeds, in which case it either fails if T fails, or succeeds if T 
succeeds. The statement try S catch T starts with the body S and succeeds if S succeeds, or continues with 
the handler T if S fails, in which case it either succeeds if T succeeds, or fails if T fails. For the 
nondeterministic choice S ⊓ T to succeeds for sure, both S and T must succeed, and for it to fail for sure, 
both S and T must fail. The conditional if B then S else T succeeds if B is defined and S succeeds if B is 
true or T succeeds if B is false, and fails in all other cases.

The weakest exceptional precondition wp(S, Q, R), sometimes written as wep(S, Q, R), specifies two 
postconditions Q and R, one for normal termination and one for exceptional termination.

wp(S, Q, R)  ≡  weakest precondition such that S terminates and
• on normal termination Q holds finally
• on exceptional termination R holds finally

Definition (wp for straight-line statements). Let B, Q, R be predicates, x a list of variables, E a list of 
expressions, and S, T statements:

wp(abort, Q, R) ≡  false
wp(stop, Q, R) ≡  true
wp(skip, Q, R) ≡  Q
wp(raise, Q, R) ≡  R
wp(x := E, Q, R) ≡  (∆E ⇒ Q[x \ E]) ∧ (¬∆E ⇒ R)
wp(x :∈ E, Q, R) ≡  (∆E ⇒ ∀ x' ∈ E . Q[x \ x']) ∧ (¬∆E ⇒ R)
wp(S ; T, Q, R) ≡  wp(S, wp(T, Q, R), R)
wp(try S catch T, Q, R) ≡  wp(S, Q, wp(T, Q, R))
wp(S ⊓ T, Q, R) ≡  wp(S, Q, R) ∧ wp(T, Q, R)
wp(if B then S else T, Q, R) ≡ (∆B ∧ B ⇒ wp(S, Q, R)) ∧ (∆B ∧ ¬B ⇒ wp(T, Q, R)) ∧ (¬∆B ⇒ R)

The definition shows a duality between skip and raise and between S ; T and try S catch T, which we will 
exploit in proofs. We may be tempted to introduce a notation that emphasizes this duality, but refrain from 
doing so because of familiarity with the used notation and, more importantly, because of methodological 
reasons, as the use of raise and try-catch is reserved for rare and undesired cases.



The fundamental rule for repetitions does not require that initially the condition is defined, as in case it 
isn't, the repetition terminates exceptionally.

Rule for Repetition. Let P be a predicate, the invariant, V be an integer expression, the variant, and v be 
an auxiliary integer variable. If

∆B ∧ B ∧ P ∧ (V = v) ⇒  wp(S, P ∧ V < v, R) (S preserves P, decreases V, or fails with R)
∆B ∧ B ∧ P ⇒  V > 0 (V ≤ 0 leads to termination)
¬∆B ∧ P ⇒  R (¬∆B leads to R)

then:
 P  ⇒  wp(while B do S, ∆B ∧ ¬B ∧ P, R)

As a note, if we require the repetition to terminate normally, i.e. take R to be false, then from the third 
assumption we get P ⇒ ∆B and a generalization of the alternative rule for repetition under "Weakest 
Preconditions" follows.

A statement that neither contains raise nor try-catch statements, can be equivalently verified through 
weakest preconditions or weakest exceptional preconditions. Thus we can switch to the simpler weakest 
precondition formalism.

Theorem (Reduction). Let S be a straight-line statement that neither contains raise nor try-catch statements 
and let Q be a predicate:

wp(S, Q)  ≡  wp(S, Q, false)

The proof of this theorem is straightforward by induction over the structure of statements. As it is rather 
long, it is left out, as are the proofs of the remaining theorems in this section. If a statement establishes 
normal postcondition Q and establishes normal postcondition Q', then we have that the statement 
establishes Q ∧ Q'. This is known as (finite) conjunctivity and holds for both normal and exceptional 
postconditions.

Theorem (Conjunctivity). Let S be a straight-line statement and let Q, Q', R, R' be predicates:
wp(S, Q, R) ∧ wp(S, Q', R')  =  wp(S, Q ∧ Q', R ∧ R')

The weakest precondition function is monotonic in both the normal and exceptional postcondition. That 
is, weakening either postcondition will weaken the precondition.

Theorem (Monotonicity). Let S be a straight-line statement S and let Q, Q', R, R' be predicates:
if Q ⇒ Q' and R ⇒ R' then  wp(S, Q, R) ⇒ wp(S, Q', R')

Reasoning about the normal and exceptional cases can be separated.

Theorem (Separation). Let S be a straight-line statement and let Q, R be predicates:
wp(S, true, R) ∧ wp(S, Q, true)  =  wp(S, Q, R)

We might be tempted to conclude from the separation theorem that we can equivalently develop the 
theory by considering a pair of predicate transformers, say, wpn(S, Q) for normal termination and wpe(S, 
R) for exceptional termination, as done by (Cristian, 1984). However, (King & Morgan, 1995) argue that 
having a set of predicate transformers does not allow for nondeterministic choice between different exits 
to be expressed. Furthermore, these functions are not independent. For example, if we defined wpn(X, Q) 
= true and wpe(X, R) = false, then X blocks, i.e. is stop, and is abort at the same time. While common 



language constructs do not exhibit this anomaly, we prefer to use a single predicate transformer to 
guarantee consistency. More precisely, the separation theorem states that normal and exceptional 
reasoning can be separated only when the statement terminates.

A statement S preserves a predicate I if, provided that I holds initially, after termination of S, I holds 
again, whether S terminates normally or exceptionally. If S does not terminate, S preserves I vacuously. 
We formalize this in the following way.

Definition (Preservation). Statement S preserves predicate I if for any predicates P, Q, R:
if P ⇒ wp(S, Q, R) then P ∧ I ⇒ wp(S, Q ∧ I, R ∧ I)

Theorem (Preservation by disjointness). Let S be a straight-line statement and let I be a predicate that does 
not contain any variables that are assigned in S. Then S preserves I.

As a note, if we were to add angelic choice to the core statements in addition to the demonic choice 
considered above, as elaborated in (Back & Wright, 1998), by

wp(S ⊔ T, Q, R)  ≡  wp(S, Q, R) ∨ wp(T, Q, R)
then conjunctivity would have to be weakened to sub-conjunctivity:

wp(S, Q, R) ∧ wp(S, Q', R')  ⇐  wp(S, Q ∧ Q', R ∧ R')
Separation would also have to be weakened, we would only have sub-separation, which follows 
immediately from sub-conjunctivity:

wp(S, true, R) ∧ wp(S, Q, true)  ⇐  wp(S, Q, R)
However, this invalidates reasoning separately about the normal and exceptional cases even if the 
statement terminates, why we do not consider angelic nondeterminism further.

DERIVED STATEMENTS
We extend the language of statements by statements that are defined in terms of the core language. The 
update a(E) := F modifies function a to be F at E, the conditional if B then S with a single branch does 
nothing if B does not hold, the statement assert B fails if B does not hold and otherwise does nothing, the 
statement try S finally U executes S and then U, whether S succeeds or fails, and the statement try S catch T 
finally U is like try S catch T but additionally executes U whether S succeeds, S fails and T succeeds, or S 
and T fail. Here, U is called the finalization of the try-catch-finally statement.
 
Definition (update, if-then, assert, finally). Let S, T, U be statements, E, F expressions, B a predicate, and 
a a partial function variable.

a(E) := F =  a := a(E ← F)
if B then S  =  if B then S else skip
assert B =  if ¬B then raise
try S finally U =  try S catch (U ; raise) ; U
try S catch T finally U =  try S catch try T catch (U ; raise) ; U

Theorem (wp of update, if-then, assert, finally). Let S, T, U be statements, E, F expressions, B a predicate, 
and a a partial function variable:

 wp(a(E) := F, Q, R) ≡  (∆E ∧ ∆F ∧ E ∈ dom a ⇒ Q[a \ a(E ← F)]) ∧
   (¬∆E ⇒ R) ∧ (¬∆F ⇒ R) ∧ (E ∉ dom a ⇒ R)
 wp(if B then S, Q, R) ≡  (∆B ∧ B ⇒ wp(S, Q, R)) ∧ (∆B ∧ ¬B ⇒ Q) ∧ (¬∆B ⇒ R)
 wp(assert B, Q, R) ≡  (∆B ∧ B ⇒ Q) ∧ (¬∆B ⇒ R) ∧ (¬B ⇒ R)
 wp(try S finally U, Q, R) ≡  wp(S, wp(U, Q, R), wp(U, R, R))
 wp(try S catch T finally U, Q, R) ≡  wp(S, wp(U, Q, R), wp(T, wp(U, Q, R), wp(U, R, R)))



CORRECTNESS ASSERTIONS
Hoare's correctness assertion {P} S {Q} for total correctness means that under precondition P, statement 
S terminates with postcondition Q. This is now generalized to two postconditions, the normal and 
exceptional postcondition. Correctness assertions are closely related to weakest preconditions and we will 
switch between them: we use correctness assertions for outlining the program and proof structure and use 
weakest preconditions for "mechanical" proofs. We introduce:

{P} S {Q, R}  ≡  under precondition P, statement S terminates and
• on normal termination Q holds finally
• on exceptional termination R holds finally

Definition (Correctness assertion). Let S be a statement and P, Q, R predicates:
{P} S {Q, R} ≡  P ⇒ wp(S, Q, R)
{P} S {Q} ≡  P ⇒ wp(S, Q, false)

Theorem (Fundamental rules of correctness for straight-line statements). Let B, Q, R be predicates, x a 
list of variables, E a list of expressions, and S, T statements:

 {P} skip {Q, R} ≡ P ⇒ Q
 {P} raise {Q, R} ≡ P ⇒ R
 {P} x := E {Q, R} ≡ (∆E ∧ P ⇒ Q[x \ E]) ∧ (¬∆E ∧ P ⇒ R)
 {P} x :∈ E {Q, R} ≡ (∆E ∧ P ⇒ ∀ x' ∈ E . Q[x \ x']) ∧ (¬∆E ∧ P ⇒ R)
 {P} S ; T {Q, R} ≡ ∃ H . {P} S {H, R} ∧ {H} T {Q, R}
 {P} try S catch T {Q, R} ≡ ∃ H .{P} S {Q, H} ∧ {H} T {Q, R}
 {P} S ⊓ T {Q, R} ≡ {P} S {Q, R} ∧ {P} T {Q, R}
 {P} if B then S else T {Q, R} ≡ {∆B ∧ B ∧ P} S {Q, R} ∧ {∆B ∧ ¬B ∧ P} T {Q, R} ∧
   (¬∆B ∧ P ⇒ R)  

Theorem (Fundamental rule of correctness for repetition). Let B, P, Q, R be predicates, with P the 
invariant, let V be an integer expression, the variant, and let v be an auxiliary integer variable:

 {P} while B do S {Q, R} ⇐ {∆B ∧ B ∧ P ∧ (V = v)} S {P ∧ V < v, R} ∧
   (∆B ∧ B ∧ P  ⇒  V > 0) ∧
   (∆B ∧ ¬B ∧ P  ⇒ Q) ∧
   (¬∆B ∧ P  ⇒  R)

Theorem (Fundamental rules of correctness for update, if-then, assert). Let B, P, Q, R be predicates, a a 
partial function variable, E, F expressions, and S, T statements:

 {P} a(E) := F {Q, R} ≡ (∆E ∧ ∆F ∧ E ∈ dom a ∧ P ⇒ Q[a \ a(E ← F)]) ∧
   (¬∆E ∧ P ⇒ R) ∧ (¬∆F ∧ P ⇒ R) ∧ (E ∉ dom a ∧ P ⇒ R)
 {P} if B then S {Q, R} ≡ {∆B ∧ B ∧ P} S {Q, R} ∧ (∆B ∧ ¬B ∧ P ⇒ Q) ∧
   (¬∆B ∧ P ⇒ R)
 {P} assert B {Q, R} ≡ (∆B ∧ B ∧ P ⇒ Q) ∧ (¬∆B ∧ P ⇒ R) ∧ (¬B ∧ P ⇒ R)

  
A proof outline is a program in which correctness assertions are interspersed in a systematic way. The 
rules for ; and for try-catch call for the "invention" of an intermediate assertion, the existentially 
quantified predicate H in the fundamental rule. A proof outline explicitly states that assertion; we may add 
further intermediate assertions, typically simplified by weakening, which is allowed by monotonicity of 
wp. Indentation is used to indicate the "scope" of assertions. The most general form of a proof outline–one 
which can be matched against any annotated program–for a sequential composition of three statements, 
together with the required conditions, is:



 {P}  ⇐ {P1} S1 {Q1, R1} ∧
  {P1}  {P2} S2 {Q2, R2} ∧
  S1   {P3} S3 {Q3, R3} ∧
  {Q1, R1}  (P ⇒ P1) ∧
  ;   (Q1 ⇒ P2) ∧
  {P2}  (Q2 ⇒ P3) ∧
  S2  (R1 ⇒ R) ∧
  {Q2, R2}  (R2 ⇒ R) ∧
  ;  (R3 ⇒ R)
  {P3}
  S3
  {Q3, R3}
 {Q, R}
Thus, the conclusion of this proof outline is {P} S1 ; S2 ; S3 {Q, R}. To avoid "over-annotation", we may 
leave out intermediate assertions. For example, if P1 ≡ P, then we leave out the line {P1} and if Q1 ≡ P2, 
we leave out the line {P2}. The most general proof outline for a try-catch statement, together with the 
required conditions, is:
 {P}  ⇐ {P1} S1 {Q1, R1} ∧
 try    {P2} S2 {Q2, R2} ∧
  {P1}  (P ⇒ P1) ∧
  S1  (R1 ⇒ P2) ∧
  {Q1, R1}  (R2 ⇒ R) ∧
 catch   (Q1 ⇒ Q) ∧
  {P2}  (Q2 ⇒ Q)
  S2
  {Q2, R2}
 {Q, R}
The rule for the conditional does not call for inventing intermediate assertions, but still can be easier to 
follow in a proof outline. The most general proof outline, together with the required conditions, is:
 {P}  ⇐ {P1} S1 {Q1, R1} ∧
 if B then   {P2} S2 {Q2, R2} ∧
  {P1}  (∆B ∧ B ∧ P ⇒ P1) ∧
  S1  (∆B ∧ ¬B ∧ P ⇒ P2) ∧
  {Q1, R1}  (¬∆B ∧ P ⇒ R) ∧
 else   (Q1 ⇒ Q) ∧
  {P2}  (Q2 ⇒ Q) ∧
  S2  (R1 ⇒ R) ∧
  {Q2, R2}  (R2 ⇒ R)
 {Q, R}
If the line {P1} is left out, P1 is assumed to be ∆B ∧ B ∧ P. If the line {P2} is left out, P2 is assumed to be 
∆B ∧ ¬B ∧ P. The proof outline for the if-then conditional is similar:
 {P}  ⇐ {P1} S1 {Q1, R1} ∧
 if B then   (∆B ∧ B ∧ P ⇒ P1) ∧
  {P1}  (∆B ∧ ¬B ∧ P ⇒ Q) ∧
  S1  (¬∆B ∧ P ⇒ R) ∧
  {Q1, R1}  (Q1 ⇒ Q) ∧
 {Q, R}  (R1 ⇒ R)
The rule for the repetition calls for the invention of an invariant and variant; the most general proof 
outline for a loop, together with the required conditions, is:



 {P}   ⇐ {P0} S {Q0, R0} 
 {invariant: I}  (∆B ∧ B ∧ I ∧ (V = v) ⇒ P0)
 {variant: V}  (Q0 ⇒ I ∧ V < v)
 while B do  (∆B ∧ B ∧ I ⇒ V > 0) ∧
  {P0}  (P ⇒ I) ∧
  S   (∆B ∧ ¬B ∧ I ⇒ Q) ∧
  {Q0, R0}  (¬∆B ∧ I ⇒ R) ∧
 {Q, R}   (R0 ⇒ R)
If the line {P0} is left out, P0 is assumed to be ∆B ∧ B ∧ I ∧ (V = v). If the line {Q0, R0} is left out, Q0 is 
assumed to be I ∧ V < v and R0 is assumed to be false.

If in a postcondition {Q, R} the exceptional postcondition R is false, we write the postcondition simply 
as{Q}; the normal postcondition is always stated. The application of proof outlines is illustrated by two 
examples.

Example (Linear Search). Let a be an array of integers of length n and let x be an integer. The task is to 
assign to boolean variable found if x occurs in a, and if it occurs, to integer variable i the index of the first 
occurrence. In the proof outline below, each assertion is labelled:
1 {A: true}
2 try
3  {B: true}
4   i := 0
5   {C: i = 0}
6   ;
7   {invariant D: 0 ≤ i ≤ n ∧ ∀ j ∈ [0, i) . a(j) ≠ x}
9   {variant V: n – i}
10   while i < N do
11    {E: 0 ≤ i < n ∧ ∀ j ∈ [0, i) . a(j) ≠ x}
12     if a(i) = x then
13      {F: 0 ≤ i < n ∧ a(i) = x}
14      raise
15     {G: 0 ≤ i < n ∧ ∀ j ∈ [0, i] . a(j) ≠ x, H: 0 ≤ i < n ∧ a(i) = x}
16     ;
17     i := i + 1
18    {I: 0 ≤ i ≤ n ∧ ∀ j ∈ [0, i) . a(j) ≠ x, J: 0 ≤ i < N ∧ a(i) = x}
19   {K: ∀ j ∈ [0, n) . a(j) ≠ x, L: 0 ≤ i < n ∧ a(i) = x}
20   ;
21   found := false
22  {M: ¬found ∧ ∀ j ∈ [0, n) . a(j) ≠ x, N: 0 ≤ i < n ∧ a(i) = x}
23 catch
24  {O: 0 ≤ i < n ∧ a(i) = x} 
25  found := true
26  {P: found ∧ 0 ≤ i < n ∧ a(i) = x}
27 {Q: (found ∧ 0 ≤ i < n ∧ a(i) = x) ∨ (¬found ∧ ∀ j ∈ [0, n) . a(j) ≠ x)}
The condition for the whole statement is:
 {A} (lines 2-26) {Q}
For this, the required conditions by the rule for try-catch are:
 {B} (lines 4-21) {M, N}
 {O} (line 25) {P}



 A ⇒ B
 N ⇒ O
 M ⇒ Q
 P ⇒ Q
This process continues as long as rules for proof outlines can be applied. The remaining conditions are 
either plain boolean expressions, as the last four implications above, or are correctness assertions about 
primitive statements, as {O} (line 25) {P} above. For these, the fundamental rule of correctness is 
applied, for example:
  {O} found := true {P}
 ≡ {O} found := true {P, false}
 ≡ (∆true ∧ O ⇒ P[found \ true]) ∧ (¬∆true ∧ O ⇒ false)
 ≡ O ⇒ P[found \ true]
 ≡ (0 ≤ i < n ∧ a(i) = x) ⇒ (found ∧ 0 ≤ i < n ∧ a(i) = x)[found \ true]
 ≡ (0 ≤ i < n ∧ a(i) = x) ⇒ (true ∧ 0 ≤ i < n ∧ a(i) = x)
 ≡ true
The proof leads to numerous, but simple conditions, which we leave out, except for one condition that 
arises at line 12. According to the rule for if-then, a condition is ¬∆(a(i) = x) ∧ E ⇒ H, that is, if a(i) = x is 
not defined then the exceptional postcondition has to hold. However, we know from E that i is in the 
range for a(i) to be defined, so this holds vacuously:
  ¬∆(a(i) = x) ∧ E
 ≡ ¬(∆a(i) ∧ ∆x) ∧ E
 ≡ ¬∆a(i) ∧ E
 ≡ ¬(0 ≤ i < n) ∧ 0 ≤ i < n ∧ ∀ j ∈ [0, i) . a(j) ≠ x
 ≡ false

Example (Dividing Vectors). Let a, b, c be arrays of integers of length n. The task is to assign to c vector a 
divided by b, where division by zero should result in maxint being assigned instead. The invariant and 
variant are named, so they can be referred to in the assertions.
 {true}
  i := 0
  {i = 0}
  ;
  {invariant I:
   i ∈ [0, n] ∧ ∀ j ∈ [0, i) . (b(j) ≠ 0 ∧ c(j) = a(j) div b(j)) ∨ (b(j) = 0 ∧ c(j) = maxint)}
  {variant V: n – i}
  while i < n do
   {i < n ∧ I ∧ V = v}
    try
     c(i) := a(i) div b(i)
     {i < n ∧ I ∧ b(j) ≠ 0 ∧ c(i) = a(i) div b(i) ∧ V = v, i < n ∧ I ∧ b(i) = 0 ∧ V = v}
    catch
     {i < n ∧ I ∧ b(i) = 0 ∧ V = v}
     c(i) := maxint
     {i < n ∧ I ∧ b(i) = 0 ∧ c(i) = maxint ∧ V = v}
    {i < n ∧ I ∧ ((b(i) ≠ 0 ∧ c(i) = a(i) div b(i)) ∨ (b(i) = 0 ∧ c(i) = maxint)) ∧ V = v}
    ;
    i := i + 1
   {I ∧ V < v}
  {i ≥ n ∧ I}
 {∀ j ∈ [0, n) . (b(j) ≠ 0 ∧ c(j) = a(j) div b(j)) ∨ (b(j) = 0 ∧ c(j) = maxint)}



PATTERNS OF EXCEPTION USE
We motivate and then present several patterns and their combinations for using exception handling to 
increase dependability.

The basic means of responding to an exception are masking, propagating, and flagging. When an 
exception is masked, it is not visible to the outside. That is, the handler has to establish the desired 
postcondition if the body fails to do so and the handler must not fail. As an example, the body may 
request the next command from a user in an interactive program; one of the valid commands is help for 
displaying instructions. If the user does not enter a valid command, instructions should be displayed:
 try request next command
 catch command := help
The normal postcondition of request next command is that command is a valid command. If that 
postcondition cannot be established, an exception has to be raised and the handler command := help 
establishes the desired postcondition. From the outside, the occurrence of an exception is not visible. In 
the following theorem, Q is the desired normal postcondition of the body, H the exceptional postcondition 
in which the body terminates if it fails and from which the handler has to establish Q.

Theorem (Masking). Let H, P, Q be predicates and S, T statements. If
 {P} S {Q, H}
 {H} T {Q}
then:
 {P} try S catch T {Q}

Proof. The proof outline is:
  {P}
  try
   S
   {Q, H}
  catch
   {H}
   T 
   {Q}
  {Q}

When masking an exception, it may be necessary to weaken the desired postcondition such that the 
handler may always establish it. If that is not possible, the exception can be "passed" to the caller by 
propagating it. In that case the handler may "do some repair", like establishing a local invariant, but must 
terminate exceptionally.  

Theorem (Propagating). Let H, P, Q, R be predicates and S, T statements. If
 {P} S {Q, H}
 {H} T {false, R}
then:
 {P} try S catch T {Q, R}

Proof. The proof outline is:
  {P}
  try
   S
   {Q, H}



  catch
   {H}
   T 
   {false, R}
  {Q, R}

A direct way for making the handler T always fail is to put it in the form U ; raise. In this case, U may 
either terminate normally or exceptionally. As an example, the body may process file A and output file B. 
Writing a file may fail. If a failure occurs, the handler deletes file B, and re-raises the exception:
 try process file A and output B
 catch (delete file B ; raise)

Thus the normal postcondition of the body and the whole statement is that file B is successfully output, 
the exceptional postcondition of the body is that file B is partially output, and the exceptional 
postcondition of the whole statement is that file B is not output.

Corollary (Propagating with re-raising). Let H, P, Q, R be predicates and S, T statements. If
 {P} S {Q, H}
 {H} U {R, R}
then:
 {P} try S catch (U ; raise) {Q, R}

The corollary is an example of the technique of re-raising an exception: this allows a local, partial 
treatment of an exception that is then passed to the caller, where the exception can be further treated. In a 
modular or layered design, this allows each module or layer to restore a consistent state before passing on 
the exception. 

When an exception is flagged, it is masked, but its occurrence is recorded in a boolean variable. This way, 
further actions of the program may depend on whether that exception occurred or not. The above example 
of processing file A and outputting file B may be rephrased with flagging:
 try (process file A and output B ; done := true)
 catch (delete file B ; done := false)

Theorem (Flagging). Let H, P, Q, R be predicates, S, T statements, and done a boolean variable. If
 {P} S {Q, H}
 {H} T {R}
then
 {P} try (S ; done := true) catch (T ; done := false) {(done ∧ Q) ∨ (¬done ∧ R)}

Proof. The proof outline is:
  {P}
  try
   {P}
    S
    {Q, H}
    ;
    {Q} 
    done := true
   {done ∧ Q, H}
  catch
   {H}



    T 
    {R}
    ;
    done := false
   {¬done ∧ R}
  {(done ∧ Q) ∨ (¬done ∧ R)}

We note that masking, propagating, and flagging can be combined within one try-catch statement. For 
example, a handler may in some cases mask the exception and in some cases propagate it.

When a statement fails, it may leave the program in an inconsistent state, for example one in which an 
invariant does not hold and from which another failure is likely, or an undesirable state, for example one 
in which the only course of action is termination of the program. We give patterns for rolling back to the 
original state. In the first pattern failure is masked. As an example, consider an interactive program that 
displays a form for the entry of values u, v, w. If invalid values are entered, the form is cancelled, or some 
other kind of failure occurs, the original values of u, v, w are restored:
 u0, v0, w0 := u, v, w ;
 try display form for entering u, v, w
 catch u, v, w := u0, v0, w0
Here, the precondition of the whole statement is that u, v, w are valid values and the postcondition of the 
whole statement is again that u, v, w are valid values. If the body cannot establish that postcondition, an 
exception is raised and the hander will establish it.

In general, suppose statement S operates on some variables; statement backup makes a copy of those and 
statement restore copies those back. We formalize this by requiring that backup establishes a predicate B, 
which restore requires to roll back and which S has to preserve in case of failure. The backup may consist 
of a copy of all variables in main memory or secondary storage, or a partial or compressed copy, as long 
as a state satisfying P can be established. Statement S does not need to preserve B in case of success, e.g. 
can overwrite the backup of the variables. In the formulation of rollback with masking below, we let a 
statement T (which can be empty) do some "clean up" after restoring to achieve the desired postcondition.

Theorem (Rollback with masking). Let B, P, Q be predicates and let backup, restore, S be statements. If
 {P} backup {P ∧ B}
 {B} restore {P}
 {P ∧ B} S {Q, B}
 {P} T {Q}
then:
 {P} backup ; try S catch (restore ; T){Q, P}

Proof. We give the proof outline:
  {P}
   backup
   {P ∧ B}
   ; 
   try
    S
    {Q, B}
   catch
    {B}
    restore 
    {P}



    ;
    T
    {Q}
  {Q}

The formulation of rollback with propagation below simply restores the original state without cleaning up 
and then "passes" the exception to the caller.

Theorem (Rollback with propagation). Let B, P, Q be predicates and let backup, restore, S be statements. 
If
 {P} backup {P ∧ B, P}
 {B} restore {P, P}
 {P ∧ B} S {Q, B}
then:
 {P} backup ; try S catch (restore ; raise) {Q, P}

Proof. We give the proof outline:
  {P}
  backup
  {P ∧ B, P}
  ; 
  try
   S
   {Q, B}
  catch
   {B}
   restore 
   {P, P}
   ;
   raise
   {false, P}
  {Q, P}

Alternatively to re-raising an exception, failure may be indicated by flagging.

Theorem (Rollback with flagging). Let B, P, Q be predicates, let backup, restore, S be statements, and let 
done be a boolean variable that is not assigned in any of the statements. If
 {P} backup {P ∧ B, P}
 {B} restore {P, P}
 {P ∧ B} S {Q, B}
then
 {P} backup ; done := false ; try (S ; done := true) catch restore {(done ∧ Q) ∨ (¬done ∧ P), P}

In the formulation of the last two rollback theorems we have allowed that backup and restore fail. 
Statement backup may either establish the backup predicate B or may fail, but in any case must preserve 
P. Statement restore may succeed or fail, but in any case must establish the original predicate P given 
only B initially. In what follows, for simplicity we will assume that backup and restore always succeed, 
but note that this may be relaxed. 

Suppose that two or more statements are supposed to achieve the same goal, but some statements are 
preferred over others–the preferred one may be more efficient, may achieve a higher precision of numeric 



results, may transmit faster over the network, may achieve a higher sound quality. If the most preferred 
one fails, we may fall back to one that is less desirable, but more likely to succeed, and if that fails, fall 
back to a third one, and so forth. The least preferred one may simply inform the user of the failure. We 
call this the pattern of degraded service; it is the basis for further patterns. For example, assume we want 
to evaluate the function √(x2 + y2) with arguments x and y in a robust way (Hull et al., 1994). In most 
cases, the evaluating that formula directly will work, but if there is an overflow or underflow, then the 
arguments are first scaled, the same formula is attempted, and the result unscaled. If scaling fails, then 
that is because of an underflow, and the result can be determined from the larger argument. If unscaling 
fails, the whole pattern fails. In the formulation below, the occurrence of underflow is masked but the 
occurrence of an overflow is propagated:
 try  -- try the simplest formula, will work most of the time
  z := √(x2 + y2)
 catch -- overflow or underflow has occurred
  try
   m := max(abs(x), abs(y)) ;
   try  -- try the formula with scaling
    t := √((x / m)2 + (y / m)2)
   catch -- underflow has occurred
    t := 1 ;
   z := m × t
  catch -- overflow on unscaling has occurred
   z := +∞ ;
   raise
In the simplest form, there is one main alternative and one degraded alternative. Following theorem 
formalizes degraded service for three alternatives; it generalizes to more than three in a natural way. We 
require that all alternatives try to establish the same normal postcondition Q and statement Sn + 1 starts in a 
state in which Sn has failed. 

Theorem (Degraded service). Let H1, H2, P, Q, R be predicates and S1, S2, S3 statements. If
 {P} S1 {Q, H1}
 {H1} S2 {Q, H2}
 {H2} S3 {Q, R}
then
 {P} try S1 catch (try S2 catch S3) {Q, R}

Proof. The proof outline is:
  {P}
  try
   S1
   {Q, H1}
  catch
   {H1}
   try
    S2
    {Q, H2}
   catch
    {H2}
    S3 
    {Q, R}
   {Q, R}
  {Q, R}



Degraded service may be used with masking, propagating, and flagging the exception. When masking, the 
condition for the last alternative specializes to {H2} S3 {Q}. When propagating, the condition for the last 
alternative specializes to {H2} S3 {false, R}. For flagging, the boolean variable has to be generalized to an 
enumeration variable that indicates which alternative was taken.

Degraded service can be combined with rollback such that each attempt starts in the original state, rather 
than in the state that was left from the previous attempt. Hence, all alternatives have to adhere to the same 
specification, but try to satisfy that by different means. We give a formulation with partial propagation, 
causing failure in case that the last alternative fails, and leave a formulation with complete masking as an 
exercise to the reader. Here, restore has to preserve the backup predicate B to allow subsequent restores.
  
Theorem (Degraded service with rollback). Let P0, P1, P2, Q be predicates and S1, S2 statements. If
 {P} backup {P ∧ B}
 {B} restore {P ∧ B}
 {P ∧ B} S1 {Q, B}
 {P ∧ B} S2 {Q, B}
then
 {P} backup ; try S1 catch (restore ; try S2 catch (restore ; raise)) {Q, P}

The recovery block structure specifies N alternatives together with an acceptance test (Horning et al., 
1974). The alternatives are executed in the specified order. If the acceptance test at the end of an 
alternative fails or an exception is raised within an alternative, the original state is restored and the next 
alternative attempted. If an acceptance test passes, the recovery block terminates. If the acceptance test 
fails for all alternatives, the recovery block fails, possibly leading to alternatives taken at an outer level. 
Here is the originally suggested syntax of  (Randell, 1975) and our formulation with try-catch statements; 
predicate A is the acceptance test:
 ensure A backup ;
 by S1 try (S1 ; assert A)
 else by S2 catch 
 else by S3  restore ;
 else error  try (S2 ; assert A)
    catch
     restore ;
     try (S3 ; assert A)
     catch (restore ; raise)
The reason for having acceptance tests is that we may not sure that the alternatives establish the desired 
postcondition. This may be because the alternatives use approximate algorithms that are known 
sometimes to fail, are based on unreliable hardware or software components, we don't have confidence in 
their design, or because we want to have a redundant check in a highly trusted program. The acceptance 
test does not have to be the complete postcondition–that would be rather impractical in general. However, 
suppose that we know that alternative Si establishes normal postcondition Qi. If we can devise a predicate 
Ai such that Qi ∧ Ai implies the desired postcondition Q, then Ai is an adequate acceptance test for Si; 
hence each alternative has to have its own acceptance test, a possibility already mentioned in (Randell, 
1975):

Theorem (Recovery block). Let B, P0, P1, P2, P3, Q be predicates, S1, S2, S3 statements that preserve B, and 
let rb be defined by:
 rb  = backup ;
  try (S1 ; assert A1)
  catch



   restore ;
   try (S2 ; assert A2)
   catch
    restore ;
    try (S3 ; assert A3)
    catch (restore ; raise)
If
 {P} backup {P ∧ B} {B} restore {P ∧ B}
 {P ∧ B} S1 {Q1, B} Q1 ∧ A1 ⇒ Q
 {P ∧ B} S2 {Q2, B} Q2 ∧ A2 ⇒ Q
 {P ∧ B} S3 {Q3, B} Q3 ∧ A3 ⇒ Q
then
 {P} rb {Q, P}

More generally, partial acceptance tests in form of additional assert-statements to be carried out 
anywhere within an alternative, rather than only at the end; failure should be detected early such that 
resources are not wasted. The acceptance tests may need to refer to the initial values of the variables. If 
the alternatives preserve the predicate B, the acceptance test may refer to the backup. We do not elaborate 
on these issues further.

Failures may be transient, e.g. because environmental influences, unreliable hardware, or temporary usage 
of resources by other programs. In such cases, a strategy is to repeat the failing statement, perhaps after a 
delay. In the pattern of repeated attempts, statement S is attempted at most n times, n ≥ 0. When S 
succeeds, the whole statement succeeds, if S fails n times, the whole pattern fails.

Theorem (Repeated attempts). Let P, Q be predicates in which integer variable n does not occur, S, T be 
statements that do not assign to n, and let ra be defined by:

ra  = while n > 0 do
  try (S ; n := –1)
  catch (T ; n := n – 1) ;
 if n = 0 then raise

If
{P} S {Q, R}
{R} T {P}

then
{n ≥ 0 ∧ P} ra {Q, P}

Statement S may terminate exceptionally in an intermediate state satisfying R, from which T has to repair 
by re-establishing P, the precondition that S requires. Of course, if S does not modify the state when 
failing, then R ≡ P and T can be reduced to skip.

Proof. The proof outline is:
  {n ≥ 0 ∧ P}
   {invariant I: (n = –1 ∧ Q) ∨ (n ≥ 0 ∧ P)}
   {variant: n}
   while n > 0 do
    {n > 0 ∧ P ∧ n = v}
    try 
     S
     {Q, n > 0 ∧ R ∧ n = v}



     ;
     n := –1
     {n = –1 ∧ n < v ∧ Q}
    catch
     {n > 0 ∧ R ∧ n = v}
     T
     {n > 0 ∧ P ∧ n = v};
     n := n – 1
     {n ≥ 0 ∧ P ∧ n + 1 = v}
    {I ∧ n < v}
   {I ∧ n ≤ 0}
   ;
   if n = 0 then
    {P} 
    raise
    {false, P}
   {Q, P}
  {Q, P}

The theorem assumes that if S fails, T can re-establish the original state. This can be achieved by rolling 
back, provided that an initial backup is made.

Theorem (Repeated attempts with rollback). Let P, Q be predicates in which integer variable n does not 
occur and let S, backup, restore be statements that do not assign to n, and let rr be defined by:

rr  = backup ;
 while n > 0 do
  try (S ; n := –1)
  catch (restore ; n := n – 1) ;
 if n = 0 then raise

If
{P} backup {P ∧ B, P}
{B} restore {P ∧ B}
{P ∧ B} S {Q, B}

then
{n ≥ 0 ∧ P} rr {Q, P}

The requirement on S is now weakened, as in case of failure S has only to preserve the backup B; S does 
not have to preserve B in case of successful termination.

Proof. The proof outline is:
  {n ≥ 0 ∧ P}
   backup
   {n ≥ 0 ∧ P ∧ B, P}
   ;
   {invariant I: (n = –1 ∧ Q) ∨ (n ≥ 0 ∧ P ∧ B)}
   {variant: n}
   while n > 0 do
    {n > 0 ∧ P ∧ B ∧ n = v}
    try 
     S



     {Q, n > 0 ∧ B ∧ n = v}
     ;
     n := –1
     {n = –1 ∧ n < v ∧ Q}
    catch
     {n > 0 ∧ B ∧ n = v}
     restore
     {n > 0 ∧ P ∧ B ∧ n = v}
     ;
     n := n – 1
     {n ≥ 0 ∧ P ∧ B ∧ n + 1 = v}
    {I ∧ n < v}
   {I ∧ n ≤ 0}
   ;
   if n = 0 then
    {P} 
    raise
    {false, P}
   {Q, P}
  {Q, P}

Instead of attempting a statement a fixed number of times, we may need to make attempts dependent on a 
condition. However, that condition has eventually to be become false. In the pattern of conditional retry, 
we ensure termination of attempts by requiring that the handler decreases a variant. This pattern mimics 
the rescue and retry statements of Eiffel (Meyer, 1997).

Theorem (Conditional retry). Let P, Q be predicates in which boolean variable done does not occur, let S, 
T be statements that do not assign to done, let V be an integer expression and let cr be defined by:

cr  = done := false ;
 while ¬done and B do
  try (S ; done := true)
  catch T ;
 if ¬done then raise

Assume that S preserves V = v. If
{∆B ∧ B ∧ P} S {Q, R}
{R ∧ V = v} T {P ∧ V < v}
∆B ∧ B ∧ P ⇒ V > 0

then
{P} cr {Q, P}

Proof: For the purpose of this proof, we allow booleans to be implicitly converted to integers, with false 
being 0 and true being 1. Thus V – done becomes a valid arithmetic expression, to be used as the variant 
of the repetition. The proof outline is:
  {P}
   done := false ;
   {invariant: (¬done ∧ P) ∨ (done ∧ Q)}
   {variant: V – done}
   while ¬done and B do
    try



     {∆B ∧ B ∧ P ∧ V = v}
     S
     {Q, R ∧ V = v}
     ;
     {Q}
     done := true
     {Q ∧ done}
    catch
     {R ∧ V = v}
     T
     {P ∧ V < v}
    {(Q ∧ done) ∨ (P ∧ V < v)}
   {∆B ∧ (done ∨ ¬B) ∧ ((¬done ∧ P) ∨ (done ∧ Q))}
   if ¬done then
    {¬done ∧ ∆B ∧ ¬B ∧ P}
    raise
    {false, P}
   {done ∧ ∆B ∧ Q}
  {Q}

FUTURE RESEARCH DIRECTIONS
Several issues have not been touched in this chapter. Not all exceptions can be handled uniformly. For 
example, the pattern of repeated attempts continues a fixed number of times, but some failures may be 
fatal and should cause immediate exit. For this, different exception types can be introduced, such that 
each type has its own handler, thus generalizing statements to having one entry and N exits, as in (Jacobs, 
2001). Programming languages offer different exception types or allow values to be passed with 
exceptions. Extending the theory accordingly remains future work.

While we have postulated a rule for the repetition, a formal derivation of that rule is missing. The 
standard definition of the repetition in terms of least fixpoints (Back & Wright, 1998), from which the 
rule for repetition can be derived, requires a refinement order, which is outside the scope of this chapter. 
A definition of recursion in terms of ordinals for a language with exists in given by (King & Morgan, 
1995). 

An omission in the rules for correctness is rule for the try-catch-finally statement, the difficulty being that 
the finalization has three possible entries–after the body succeeds, the body fails and the handler 
succeeds, the body fails and the handler fails–raising the question what the correctness condition for the 
finalizer is. This is left as future work.

We have only mentioned issues of layered and modular design in passing and not touched object-oriented 
design in particular. The recommendation of  (Parnas & Würges, 1976) is based on the structure of a 
program by a layer of abstraction; each layer has the responsibility of dealing with "undesired events" at 
that level of abstraction, such that the abstraction hierarchy is preserved. The programming language 
Eiffel ties classes with exception handling (Meyer, 1997), the point being that an exception handler 
should re-establish the class invariant. For concurrent object-oriented programs, conversations have been 
suggested as a mechanism for coordinated distributed error recovery (Xu et al., 1995). Extending the 
theory to object-oriented and to concurrent designs remains future work.



In real-time systems, a further source of failure is a time-out, i.e. an implicitly raised exception after a 
specified time has elapsed. The original suggestion for recovery blocks also includes detecting time-outs 
for each alternative (Randell, 1975). Extending the theory to include time-outs also remains future work.

CONCLUSION
The contributions of this chapter are a theoretical explorations of statements with normal and exceptional 
exits and a formalization of the patterns of masking, propagating, flagging, rollback, degraded service, 
recovery block, repeated attempts, and conditional retry. An observations is that procedural abstraction in 
form of pre- and postconditions was used, there was no need for data abstraction. Following Dijkstra, the 
use of weakest exceptional preconditions on one hand provides the semantics of statements and at the 
same time proof conditions for their correctness, thus keeping the "formal overhead" minimal.
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