Tutorial on Exception Handling

Prepared for the NODES Winter School
and Seminar, 1 - 3 February 2012
Turku, Finland

"Preventing to fail
by preparing to fail”

Emil Sekerinski
with contributions by Tian Zhang
McMaster University, Canada

Why Programs Fail

e Specification is in error:
e does not capture the users intent
e incomplete, inconsistent

e Design is in error:
e |ogical error, e.g. forgotten case

e idealized hypotheses, e.g. about integer range, available memory,
processing speed

® incorrect assumptions about other components
e Underlying machine fails:

® incorrect compilation

e error in library implementation

e hardware failure

Design Error: Microsoft Zune Bug ..

from techcruch.com:

30GB Zunes all over the world fail
en masse

r MATT
. ' BURNS A ’Wednesday, December 31st, 2008 ‘ 0 Comments

It seems that a random bug is affecting a bunch, if not every, 30GB
Zunes. Real early this morning, a bunch of Zune 30s just stopped
working. No official word from Redmond on this one yet but we
might have a gadget Y2K going on here. Fan boards and support
forums all have the same mantra saying that at 2:00 AM this
morning, the Zune 30s reset on their own and doesn't fully reboot.
We're sure Microsoft will get flooded with angry Zune owners as
soon as the phone lines open up for the last time in 2008. More as
we get it.

Update 2: The solution is ... kind of weak: let your Zune run out
of battery and it'll be fixed when you wake up tomorrow and charge
it.

Zune.net, ZuneBoards, ZuneScene, Gizmodo

Update: Reddit adds:

... Design Error: Microsoft Zune Bug

Zune bug explained in detail

ES\L,[I)NEWEY A ‘ Wednesday, December 31st, 2008 ‘

Earlier today, the sound of thousands of Zune owners
crying out in terror made ripples across the
blogosphere. The response from Microsoft is to wait until
tomorrow and all will be well. You’re probably wondering,
what kind of bug fixes itself?

Well, I've got the code here and it’s very simple, really; if
you've taken an introductory programming class, you'll
see the error right away.

year = ORIGINYEAR; /* = 1980 */
while (days > 365)
if (IsLeapYear(year))

if (days > 366)

days -= 366;
year += 1;
}
}
else
{
days -= 365;
year += 1;
}

0 Comments

Detected Faults

e Some errors are always detected by the underlying machine:

e indexing an array out of bounds
e allocating memory when none is available

e reading a file beyond its end

e Some errors can be detected by instrumenting programs:

4)
class STACK

capacity: INTEGER

count: INTEGER
invariant

count <= capacity

push is ...
\. J

e Some faults are “unfeasible” to detect:
e only a single pointer to an object exists

e validity of precondition and invariant of binary search
e termination

Responding to Detected Faults

S1:S52;S53:;54 WwWhere S;, S3 may detect an error
in case of error, execute T instead

e Explicit testing a priori or a posteriori: . .
1/
if S1 possible then if S; successful then
S1:5,; Sy 5 S3
if S3 possible then if S3 successful then
S3 . S4 Sa4
else T else T
else T else T
e Dedicated try
exception handling: S, :S,:S::S,
catch
T
else T

Exception Handling

no additional variables and control
structures interspersed; original
program structure remains visible

useful for rare or undesired cases

allows for imperfections during
design process supporting
extension and contraction

4)
f = fopen(filename, "r");
if (f == NULL) {
... error
} else {
... read file (possibly failing)
fclose(f);

}

(

_'try {

f = fopen(filename, "r");
... read file (possibly failing)
fclose(f);
} catch {
. error
}

\

4)
static void FutureFeature()

{
// Not developed yet.

throw new NotImplementedException();

}

[MS Developer Documentation for .NET]
_ _J

Example: Monte Carlo Integration in Python

e Function f evaluated randomly: (4e area(f, a, b, 1, u, n):)
may lead to arithmetic exception c=9
1 for i in range(n):
y ~ x = random.uniform(a, b)
y = random.uniform(l, u)
if @ <=y <= f(x):
c=c+1
+ 21lif f(x) <=y <= 0:
a c=c¢c-1
= b
] return (u - 1) * (b -a) *c/n
. y

e "Rare and undesired”, but possible.

e Here exception handler does nothing, but quality of result affected.

Further Examples for Exception Handling
.

e Some a priory tests cannot be performed efficiently, e.g. testing
arithmetic addition for possible overflow requires a subtraction, which
means doubling the number of operations, e.g. in a matrix
multiplication.

e A priory tests like for arithmetic overflow of floating point numbers
cannot be performed reliably at all due to rounding errors.

e Errors like stack overflow on a procedure call are difficult fo test for
because programming languages do not offer any means.

e Transient hardware failures may occur at any time, so there is no
place to test for them.

Overview
|

What should an exception handler do in general?
Where is an exception handler best placed?
» we give a theory based on weakest preconditions

» applicable to python, Java, C#, ..; supported in Eiffel

W h ere doeS 1' h |S ﬁ 1‘ | n? Dependability and Security

Qutline

>

>

Prelude: undefinedness of expressions
Review: weakest preconditions

Theory: weakest exceptional preconditions
Theory: domain properties

Discussion: “Java vs. Eiffel” style exceptions

Patterns: masking, propagating, flagging, rollback, degraded service,
recovery block, repeated attempts, conditional retry

Theory: total and “partial” correctness assertions
Application: Eiffel

(Theory: Algebraic Laws)

The Problem of Undefinedness

e IfE=Eis frue, thenis x divy = x div y also true, as in:
b :=(xdivy = xdivy)
e IfPAQ-=QAPis true, then are the following the same:

var a : array N of T ;

var n := 0 ;
while a(n) # key and n < N do while n < N and a(n) # key do
n:=n+1 n:=n+1

» Our solution is to distinguish

terms in the logic < expressions in programs

and in particular:

predicates (boolean terms) < boolean expressions

Terms vs Expressions
__|

e Terms in the logic, here higher-order logic:

e used to reason about programs

e all familiar laws hold: P=P P AQ=Q AP Pv P
e Expressions in programs:

e “look like terms”, but may be undefined

e AE: the definedness of E

e 'E": the value of E

e include conditional and, or as well as strict &, |

Definedness and Value of Expressions ...

Let ¢ be a constant, x a variable, and assume a : array N of T:

Ac = tfrue ‘¢’ = C

AX = tfrue '’ = X
Aa(E) = AEAO<'E'<N ‘a(E)’ = a(E)
A-E = AE ‘-E’ = -E
A-E = AE ‘SE’ = aE

AME -F) = AE A AF ‘E-F = E-F
AEdivVF) = AEAAFAF 20 ‘EdivF" = EdivF
AEmodF) = AEAAFAF #0 '‘Emod F' = Emod F
A(E + F) = AE A AF ‘E+F = E+F
AME - F) = AE A AF E-F = E-F
AME=F) = AE A AF ‘E=F = E=F

With bounded arithmetic:

A(E - F) = AE A AF A minint ¢ E + F ¢ maxint

... Definedness and Value of Expressions
.

Let ¢ be a constant, x a variable, and assume a : array N of T:

A(E and F) = AE A (E = AF) '‘Eand F* = EAF

A(E or F) = AE A (<E = AF) ‘EorF' = EVF

AE & F) = AE A AF ‘E&F = EAF

A(E | F) = AE A AF ‘E|F = EVF
Some laws:

-I(EMF) = -.Eg-F
H(EQF) = -IEM'IF

Weakest Preconditions

wp(S, Q) = weakest precondition such that S
terminates with postcondition Q

Let Q be a predicate, x a list of variables, E a list of expressions, and
S, T statements:

wp(abort, Q) = false

wp(stop, Q) = true

wp(skip, Q) = Q

wp(x :=E, Q) = AE A Q[x \ E]

wp(x :€ E, Q) = AE A (V X' € E e Q[x \ X
wp(S T, Q = wp(S, wp(T, Q))

wp(SnT, Q) = wp(S Q) A wp(T, Q)

Weakest Preconditions of Conditional and Iteration

Let B be boolean expression:

wp(if B then Selse T, Q) = AB A (B = wp(S, Q)) A (=B = wp(T, Q))

Let V be an integer term and v an auxiliary variable. If

BAPAV=v = wp(S,PAV<Y)

BAP = V>0
P = AB
then:

P = wp(while Bdo S, -B A P)

Example: Linear Search in Array

Assume a : array N of T and let:

0
0 ; whllen<Nanda(n)¢keydon-n+1
nNn<NA(VvilOsi<nea()#key) A(n<N = a(n) = key)

AWy

O wn o
]
o3> z

Then we can show

P = wp(S Q)

using

invariant: 0 sn <N A(VilO<i<nea()# key)
bound: N -n

Weakest Exceptional Preconditions ...

wp(S, Q, R) = weakest precondition such that S terminates and

- on normal termination Q holds finally,
- on exceptional termination R holds finally.

Let Q, R be predicates, x a list of variables, E a list of expressions, and
S, T statements:

wp(abort, Q, R) = false
wp(stop, Q, R) = true
ﬂp(s—kipl Q, R) = Q
wp(raise, Q, R) = R

wp(x :=E, Q, R)= (AE = Q[x \ E]) A (-AE = R)
wp(x :€ E, Q, R)= AE A (V x' € E e Q[x \ X']) A (-AE = R)
wp(SnT Q R) = wp(S, Q R) A wp(T, Q, R)

Weakest Exceptional Precondition of Sequential and Exceptional Compos.
__|

ST try S catch T
5 S | :
r | T [
b 7 ;
wp(S ; T, Q, R) = wp(S, wp(T, Q, R), R)

wp(try S catch T, Q, R) = wp(S, Q, wp(T, Q, R)) exceptional
composition

Weakest Exceptional Preconditions of Conditional and Iteration

wp(if B then SelseT, Q, R) = (AB A B = wp(S, Q, R)) A
(AB A =B = wp(T, Q, R)) A
(-IAB = R)

If
ABABAPAV=v = wp(S,PAV<yYR)
ABABAP = V>0
-AB AP = R

then:

P = wp(whileBdoS, -B A P, R)

Properties of Weakest Exceptional Preconditions

Reduction: If S contains neither raise nor try-catch statements, then:
wp(S, Q) = wp(S, Q, false)

Conjunctivity:

wp(S, Q, R) A wp(S, Q, R') = wp(S, Q@ A Q, R AR
Monotonicity:

if Q = Q" and R = R’ then wp(S, Q, R) = wp(S, Q, R)

Separation:

wp(S, true, R) A wp(S, Q, true) = wp(S, Q, R)

Derived Statements
|

a(E) := F = a:=a(E « F)
if B then S = if B then S else skip
assert B = if =B then raise

try S finally U = try S catch (U ; raise) ; U
try S catch T finally U try S catch try T catch (U ; raise) ; U

try (try S catch T) finally U

Domains

tr S = wp(S, true, true)
nr S = wp(S, true, false)
ex S= wp(S, false, true)
en S= -wp(S, false, false)

Properties:

tr abort =
nr abort =
ex abort =

en abort =

tr stop = true
nr stop = true
ex stop = true
en stop = false

tr(S;T)=1r S
nr(S;T)=nrsS
ex(S;T)<=exS
en(S;T)=enS

tr skip = true

nr skip = true

tr raise = true
nr raise = false

ex skip =

false

ex raise= true

en skip = true

en raise= true

tr(SnT)
nr(SnT)
ex(SnT)
en(SnT)

trSAtrT
nrSAanrT
ex SanexT
enSvenT

Total Correctness Assertion

{P} s {Q, R}
P} s {Q}

P = wp(S, Q, R)
P = wp(S, Q, false)

Example of annotation:

{P} = {P1} S1 {Q1, Rit A
try P2} Sz {Qa, Ra} A
{P1} (P = P1)A
Sq (Ry = Py) A
{Q1, R} (R, = R) A
catch Q= Q) A
{P.} Q2 = Q)
Sz
{Q2, Ry}

{Q, R}

Example: Saturating Vector Division
__|

{true}
i:=0
{i =0}

{invariant I:
ie[0,nN AV jel0i)e(b(j)#0 A c(j)=a(])div b(j)) v (b(j) =0 A c(j) = maxint)}
{variant V: n - i}
while i < n do
fi<nAaIAaV=v}
try
c(i) := a(i) div b(i)
fi<cnAIAb()#0Aac(i)=a(i)divb(i)aV=vi<cnaAaIab(i)=0AaAV=v}
catch
fi<cnAaIAabi)=0AV=yv}
c(i) := maxint
fi<nAIAb@)=0 A c(i)=maxint AV = v}
fi<nAIAa(b@)#0Ac(i)=a()dv b(i)) v (b(i) =0 A c(i) = maxint)) AV = v}

i
{I/\V<v}
{i2nal}

Method Specifications ...

One precondition + en-'-ryl
one postcondition for each exit
[Cristian 84] S
normall
exit

- --» exceptional
=== % exits

(bublic static void int search(int[] a, int x)
throws NullPointerException, NotFoundException
/* requires: a is sorted
ensures: © <= result < a.length && a[result] == x
signals NullPointerException: a == null
signals NotFoundException: x not in a
*/
\ELiskov & Guttag 00, Leavens et al 06:IJML, Barnet et

al 05:Spect#
p]J

All possible failures would need to be anticipated: impractical

® tools do not verify “unchecked” exceptions (Jacobs & Miiller 2007)

® typical use as control structure for undesired

Oor rare cases

.. Method Specifications

In Eiffel methods have only one (hethod is A
exceptional exit (Meyer 1997) require
pre
e specified with a precondition do
and a single postcondition body
ensure
e exceptional exit taken if Pesza:t
postcondition not established handler
\. J

e ‘“valid” outcome even in presence
of unanticipated failures

We further elaborate on this view.

Pattern: Masking

try request next command
catch command := help

desired (but possibly weakened)
postcondition is always established

If

{P} s {Q, H}
HT{Q}

then:
{P} try S catch T {Q}

Pattern: Masking with Re-raising

try process file A and output file B
catch (delete file B ; raise)

in a modular design, each module
restores a consistent state before
passing on the exception

If

Pt S {Q, H}
H} U {R, R}

then:

{P} try S catch (T ; raise) {Q, R}

Pattern: Flagging

try (process file A and output file B ; done := true)
catch (delete file B ; done := false)

occurrence of exception is
recorded for further actions

If

P} S1Q, H}
H} T {R}

then:

{P}
try (S ; done := true) catch (T ; done := false)

{(done A Q) v (~done A R)}

Pattern: Rollback with Masking

uo, vO, w0 :=u, v, w ;
try display form for entering u, v, w
catch u, v, w := u0, vO, wO

If

{P} backup {P A B}
{B} restore {P}

{P A B} S {Q, B}
P} T {Q}

then:

prevents that an inconsistent
state, e.g. broken invariant,

or undesirable state, e.g. that
only allows termination, is left

B = backup available

T can “clean up”

{P} backup ; try S catch (restore ; T) {Q}

Pattern: Rollback with Propagation

like rollback with masking, but
backup is allowed fto fail

If
{P} backup {P A B, P} B = backup available
{B} restore {P, P}
{P A B} S {Q, B}
P T {Q} T can “clean up”
then:

{P} backup ; try S catch (restore ; raise) {Q, P}

Interlude: Partial Correctness
|

If {P} S {Q, P}, then S is partially correct with respect to P, Q.

Several patterns ensure partial correctness.

Eiffel method specifications can be understood)

. . . method is
as partial correctness specifications. require

pre
do
body
ensure
post
rescue
handler

Pattern: Degraded Service

try -- try the simplest formula, will work most of the time
z := J(X* + y9)
catch -- overflow or underflow has occurred
try
m := max(abs(x), abs(y)) ;
try -- try the formula with scaling

t=J((x / m? +(y / m)?)

catch -- underflow has occurred

ti=1;
z:=mXt
catch ;-fv+e;ﬂ.ow on unscaling has occurred several statements achieve the

raise same goal, but one some are
preferred over others; if the
first one fails, we fall back to
P s, {Q, Hyd a less desirable one

{H1} S {Q, H2}
{H.2} S; {Q, R}

then:

If

{P} try S; catch (try S, catch S3) {Q, R}

Pattern: Recovery Block ...

(Horning et al 1974, Randell 1975)

ensure A
by S,
else by S;
else by S3
else error

backup ;
try (S; ; assert A)
catch
restore ;
try (S; ; assert A)
catch
restore ;
try (Ss ; assert A)
catch (restore ; raise)

... Pattern: Recovery Block

If
{P} bGCkUP {p A B, p} {P A B} S]_ {Q]_ A B, B} Q]_ A A]_ = Q
{B} restore {P A B} {P AB}S, {Q, A B, B} QL A A = Q
{p/\B}S3{Q3/\B,B} Q3/\A3=>Q
then
P}
backup ;
try (S: ; assert A;)
catch
restore ;
try (S, ; assert A,)
catch
restore ;

try (Ss ; check A;)
catch (restore ; raise)

{Q, P}

Repeated Attempts

ra = whilen>0do

try (S ; n:= -1)
catch (T ;n:=n-1);
if n = 0 then raise

If

P} S 1Q, R}
R} T P}

then

{n >0 A P} ra {Q, P}

Repeated Attempts with Rollback

rr = backup ;
while n > 0 do
try (S n:=-1)
catch (restore ; n:=n - 1) ;
if n = 0 then raise

If

{P} backup {P A B, P}
{B} restore {P A B}
{P A B} S {Q, B}

then:

{n>0 A P}rriQ, P}

Conditional Retry

cr = done := false ;
while ~done and B do Mimics Eiffels rescue and
try (S ; done := true) retry statements
catch T ;

if ~done then raise

Assume that S preserves V = v. If

{AB A B A P} S{Q, R}
RAV=V}ITP AV <V}
ABABAP=V>O0

then:

P} cr {Q, P}

Eiffel Example: Approximate Square Root

letp=0<lcunl®<ncu’

sqr’r(n, [, u: INTEGER) : INTEGER
i}
local
m : INTEGER
{rescue invariant: p}
{rescue variant: u — | }
do
{loop invariant: p}
{loop variant: u — 1}
from until u — | =1 loop
m:=l+u-1/2
fpam=(l+u)// 2}
ifn<ms+mthenu:=melsel :=m end
fp.pAam=(l+u)// 2Arn<m?
end
Pru—-1=1}
Result := |
rescue
fpam=(+u //2Aan<m?}
u:=m

refry
{retry: p}

end
{Result® < n < (Result + 1)%}

Eiffel statements have 3 exits:
- normal exit

- raising exception

- retrying method body

The retry exit leads to a loop
structure, which necessitates
invariant and variant

Retry (3rd) postcondition

Eiffel Statements

wp(skip, Q, R, S)
wp(raise, Q, R, S)

wp(retry, Q, R, S)

Most statements are unaffected by third exit, except the rescue-loop.

Q
R
S

Let V be an expression over the naturals. If

PAV=VISIQ TAV=V,PAV<V}
STAV=Vv}T{R, R PAV<vV}

then:

{P} do S rescue T end {Q, R, S}

Conclusions

e Despite putting forth best effort in the design, possibility of faults
remains and programs need to respond fo faults.

e Exception handling with try-catch statements allows systematic
treatment of faults (c.f. resumption).

e Notion of partial correctness is methodological guide: either desired
postcondition is established or precondition re-established.

e Exception patterns: masking, flagging, propagating, rollback,
degraded service, recovery block, repeated attempts.

e Use of exception best reserved for truly exceptional situations
rather than as an extra control structure.

Outlook ...

e Some exceptions may be more severe than others, e.g. may make
further attempts in the repeated attempts pattern futile: different
exception types need to be distinguished.

e try-catch-finally, intuitively:

» catch statement ensures safety by establishing a consistent state,

» finally statement ensures liveness by freeing all resources
(freeing memory; closing files, windows, network connections).

e Concurrent programs: in case of a fault in one thread/process,
others may need to revert to a previous state as well. To prevent a
ping-pong leading to reverting all the way to the initial state,
certain checkpoints need fo be established.

... Outlook

e Data abstraction and classes: class invariant has to be re-
established, otherwise cascade of errors.

class BadStack

public const C = 100

private var a : array C of integer

private var n := O

public method push(x : integer)
an) :=x;n:=n+1

public method pop() : integer
n:=n-1;result := a(n)

public method empty : boolean
result :=n=20

public method full : boolean
result :=n=2C

Credit Questions
|

® Give three examples of programs (or fragments thereof) that you have been
involved with (not from textbooks) and argue in which of the following three
categories it falls. For each example, give a half-page argument why:

» Has an appropriate use of exception handling.
» Has an inappropriate use of exception handling.
» Does not use exception handling, but should.

e Assuming a : array N of integer and O ¢ N < maxint, give the weakest
precondition under which following program will not raise an exception, i.e. will
not print “"sum cannot be computed”; you do not have to give the proof:

m
var i : integer ;
i, sum :=0, O ;

while i < N do sum, i :=sum + a(i), i +1 ;
write(sum)
catch

write("sum cannot be computed")
Assume A(E + F) = AE A AF A minint £ E + F ¢ maxint and minint < O < maxint.

Further Reading

e Buhr, P. A. and Mok, W. Y. R. (2000). Advanced Exception Handling Mechanisms.
IEEE Transactions on Software Engineering, 26(9), 820-836.
Overview paper.

® Garcia, A. F, Rubira, C. M. F, Romanovsky, A., and Xu, J. (2001). A comparative
study of exception handling mechanisms for building dependable object-
oriented software. Journal of Systems and Software, 59(2), 197-222.
Overview paper.

e Koopman, P. and DeVale, J. (2000). The Exception Handling Effectiveness of
POSIX Operating Systems. IEEE Transactions on Software Engineering, 26(9),
837-848.

Evaluates exception handling by refturn values.

e Liskov, B. and Guttag, J. (2000). Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Introduction to “Java-style” exception.

Further Reading

e Kiniry, J. (2006). Exceptions in Java and Eiffel: Two extremes in exception
design and application. In Advanced Topics in Exception Handling Techniques,
LNCS 4119, pages 288-300. Springer.

Compares the two philosophies.

e Meyer, B. (1997). Object-Oriented Software Construction. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc.
Rationale for Eiffel-style exceptions.

e Sekerinski, E. and Zhang, T. (2011). Partial correctness for exception handling.
In B. Bonakdarpour and T. Maibaum, editors, Proceedings of the 2nd
International Workshop on Logical Aspects of Fault-Tolerance, pages 116-132.
Applies the notion of partial correctness to some exception patterns.

e Sekerinski, E and Zhang, T. (2011). A normal form for multi-exit statements.
Gives algebraic laws of general multi-exit statements.

e Sekerinski, E. and Zhang, T. (2012). Verification rules for exception handling in
Eiffel.
Formalizes 3-exit statements and derives verification rules.

Statement Equality ...

S=T = VQ,R‘M(S,Q,R)EM(T,Q,R)

Unit, left zero, associativity of ; and try-catch:

skip ; T =T try raise catchT =T
S;skip =S try S catch raise = S
raise ; T = raise try skip catch T = sKkip
abort ; T = abort try abort catch T = abort
stop ; T = stop try stop catch T = stop

(S:;T);U = S;(T;U) try (try S catch T) catch U
try S catch (try T catch U)

Left and right distributivity of ; and try-catch over n:

S;(TnU) = (S;T)n(s; V)
try S catch (T n U)

(try S catch T) n (try S catch U)

(SnT);U = (S:;U)n(T;U)
try (SN T)catch U = (try S catch U) n (try T catch U)

... Statement Equality ...

Left distributivity of ; and try-catch over if-then-else:

(if Bthen SelseT) ;U = if B then (S ; U) else (T ; U)

try (if B then S else T) catch U
if B then (try S catch U) else (try T catch U) if AB

Merging :=, right distributivity of := over if-then-else:
;y:=F(x) = x,y:=E F(E) if AF(E)

; if B(x) then S else T =
if B(E) then (x :=E ; S) else (x :=E ; T) if AB(E)

X
0

... Statement Equality ...

Left distributivity of ; over try-catch and of try-catch over ;:

(fry S catch U) ; T = try (S:T) catch (U ; T) if nr T

try (S; U) catch T = (try S catch T) ; (try U catch T) if ex T
Shunting:

try (S ;T) catch U = S ; (try T catch U) if nr S

try S catch (T ; U) = (try S catchT) ; U if ex S

try (S;T)catch U = (try Scatch U) ; T if nr T and ex U

Merging of assert:

assert B ; assert C = assert Band C = assert C and B

.. Statement Equality

Unit and zero of finally:

try S catch T finally skip

try S catch T

try S catch raise finally U = try S finally U
try raise catch T finally U = try T finally U

Eliminating finally:
try S finally U = try (S ; U) catch (U ; raise)
try S catch T finally U = (try Scatch T) ; U

try S catch (T ; raise) finally U =
try (S ; U) catch (T ; U ; raise)

if nr U

if nrT

if nr T and nr U

