Programming in the Multi-Core Era

Emil Sekerinski

Department of Computing and Software
McMaster University

June 2018

40+ Years of Microprocessor Trends

7
10 Transistors
thousands
108 ()
10° Single-Thread
Performance
10t (SpecINT x 10°%)
Frequency (MHz)
10°
Typical Power
10? & (Watts)
’ - Number of
10 Ui . Logical Cores
A g v v
10° _,;,A.,
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

We have reached instruction level parallelism wall and power wall
Still increasing number of transistors leads to more processor cores

Communication and Synchronization in Multi-Programs

Message Passing:
m Asynchronous: Unix pipes & filters, Erlang processes
m Synchronous: Go goroutines
Shared Variables:
m Semaphores: Linux, C, Python
m Monitors: Java, C#, Python
m Transactional memory: C++ Haskell
m Remote procedure call: Java, Python
m Distributed shared memory

Introduced for resource sharing, interactive programs, distribution

Suitable for multi-core processors?

Threads in Programs

Threads have to be explicitly created to make use of multiple cores:

m Too few threads: not all cores will be used
— turn independent tasks into threads

Dalvik VM

Main
Broadecast Thread Local

Service
Recelver \ / erv
Looper

Activity
Poll
ul Threads
Activity

Events
External
Service
Message Call
Queue \

System

Events

[Android Guides]

Threads in Programs

Threads have to be explicitly created to make use of multiple cores:

m Too few threads: not all cores will be used
— turn independent tasks into threads

m Too many threads: slowdown due to overhead of cores
switching between threads, e.g. multiplying n x n matrices
— use thread pools to reduce number of threads

Raquests queus

Thread pool

[Thread Pool in the .NET Framework]

Threads in Programs

Threads have to be explicitly created to make use of multiple cores:

m Too few threads: not all cores will be used
— turn independent tasks into threads

m Too many threads: slowdown due to overhead of cores
switching between threads, e.g. multiplying n x n matrices
— use thread pools to reduce number of threads

In addition to the static structure of modules, programs have
a dynamic structure of threads.

(State is distributed over global variables and thread-local
variables)

Inspiration: Simula-67 and Smalltalk-80

Simula-67
m objects in programs mimic
objects of the “real world"
m objects are cooperatively scheduled
— coroutines

[Birtwhistle, Dahl, Myhrhaug, Nygaard.

Simula Begin, 1979.]

Inspiration: Simula-67 and Smalltalk-80

Simula-67
m objects in programs mimic
objects of the “real world"
m objects are cooperatively scheduled

— coroutines “Part of the problem

Smalltalk-80 ‘ Java, C#, Python, ... description beco.mei
part of the solution

sender caller
receiver callee
message method

Inspiration: Simula-67 and Smalltalk-80

Simula-67
m objects in programs mimic
objects of the “real world"
m objects are cooperatively scheduled

— coroutines “Part of the problem

Smalltalk-80 ‘ Java, C#, Python, ... description beco.mei
part of the solution

sender caller
receiver callee
message method

Objects should be thought of as having “independent lives”,
even if the implementation is sequential

Inspiration: Simula-67 and Smalltalk-80

Simula-67
m objects in programs mimic
objects of the “real world"
m objects are cooperatively scheduled

— coroutines “Part of the problem

Smalltalk-80 ‘ Java, C#, Python, ... description beco.mei
part of the solution

sender caller
receiver callee
message method

Objects should be thought of as having “independent lives”,
even if the implementation is sequential

How to make objects “truly concurrent’?
Ada uses rendezvous, Erlang and Akka use actors

Guarded Commands: A Model for Concurrency

do if x; > x> then swap x; and x»,
X1 > xo — swap x1 and xo
Xo > X3 — swap xo and xg if both x; > x» and x3 > xg,
X3 > x4 — swap x3 and xg swap concurrently

Guarded Commands: A Model for Concurrency

do
X1 > xp — swap x; and x»
Xo > X3 — swap xo and x4
X3 > X4 — swap x3 and xg

Used for verification tools, TLA (Amazon), Event B (railways),
SPIN (NASA), Microsoft Device Driver Verifier, ..., for hardware
description languages, but not programming languages:

Widespread belief in the 80’s that guarded commands
cannot be implemented efficiently

Lime: a Concurrent Object-Oriented Language

class DelayedDoubler m Actions execute when enabled

Va:(); int; d: boolean m All objects are concurrent
ini

d ‘= true m Objects synchronize through
method store(u: int) method calls

y ;= u; d := false m Method blocks when guard is
method retrieve(): int false

d — returny m Execution is atomic up to
action double method calls

notd —y:=2%*y; d:= true m Guards only over local fields

Lime: a Concurrent Object-Oriented Language

class DelayedDoubler

var y: int; d: boolean

init()
d := true

method store(u: int)
y ;= u; d := false

method retrieve(): int
d — returny

action double
notd - y:=2%*y;d:=true

Representative for writing to a file,

A correct implementation of:

class Doubler
var x: int
method store(u: int)
x:=2%u
method retrieve(): int
return x

sending over network, ...

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

[head)7

o (o3

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

m:5

[head)7 P

a:true

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

o
o o3

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

m:5

(head }——| p:6

a:true

o o3

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

a a:true

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

o
o (o3

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p

a := false
m:5 m:6 m
(head }——| p:4 P
a:true a a

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

m:4 m:6

o

°

(3]
o (o3

a .
a:true

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

m:4 m:5 m:6
P P P

a a a:true

Priority Queue

class PriorityQueue

m Add an integer to the queue var | - PriorityQueue
m Remove the smallest integer _
method add(e: int)
m Remove executes in O(1) time when not a and not r do
L if | = nil then
m Initialize; add 5,6,4 . .. m :=e; | := new PriorityQueue

else p :=e; a := true
action doAdd
when a do
if m < p then l.add(p)
else l.add(m); m := p
a := false

°
o|o|3

Results of Priority Queue

3500

Erlang %
3000 _ Java E
Pthread — -~
Haskell --€9-

2500 - N

2000 - b

Time (ms)

1500 - £ .

L A AR A A B
1000 -

+

500 /
O

h O D_,@

0 20 30 40 50 60 70 80
Number of Objects

Leaf-oriented Tree

m Internal nodes contain only guides

m The elements are stored in the leaves

Leaf

Node

Leaf

N
—

Root k— input

Leaf

Leaf

N\

Results of Leaf-oriented Tree

9000 U L — 1800 ——
Lime —&—
Eray
- riang --- L i
8000 v E M 1600 o
Pthread — -~ o
Haskell --¢9- 5
7000 4 1400 n |
0 s
et
6000 - 1 1200 f |
@ 5000 4 1000)
E 0)
g /
£ 4000 e 800 - |
o
3000 + 1 eo0f i
2000 U 4 i
1000‘2'"V"ﬁj¢~~vrrv——va
¥

0 20 30 40 50 60 70 80
Number of Objects

MapReduce

m MapReduce computes the sum of squares from 1 to n
m The mapper: map(x) = x?
m The reducer: reduce(x,y) =x+y.

input —| Mapper

Reducer

input —3 Mapper

N\

Reducer —> output

input —3 Mapper

Reducer

N\

input —3 Mapper

Results of MapReduce

Time (ms)

8000

7000

6000

5000

4000

3000

2000

1000

Pthread — -~
Haskell --€9-

Number of Objects

4500

4000
3500
3000
2500
2000
1500
N\
1000

500

MapReduce with Varying Number of Threads

Time (ms)

MapReduce Example (8192)

7000
1
6000
5000
4000
3000
2000

1000

Go —o—

Thread number

Santa Claus Problem

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by
either all nine reindeer being back from their year long vacation on a tropical island, or
by some elves who are having some difficulties making the toys. One elf’s problem is
never serious enough to wake up Santa (otherwise, he may never get any sleep), so,
the elves visit Santa in a group of three. When three elves are having their problems
solved, any other elves wishing to visit Santa must wait for those elves to return. If
Santa wakes up to find three elves waiting at his shop's door, along with the last
reindeer having come back from the tropics, Santa has decided that the elves can wait
until after Christmas, because it is more important to get his sleigh ready as soon as
possible. (It is assumed that the reindeer don’t want to leave the tropics, and
therefore they stay there until the last possible moment.) The penalty for the last
reindeer to arrive is that it must get Santa while the others wait in a warming hut
before being harnessed to the sleigh. [Trono, 1994]

Includes priority, multi-party synchronization, barriers, and batch processing.

A number of flawed solutions have been published.

Results of Santa Claus

Repetitions
of Santa

Lime (guards)

C (semaphores)

Go (channels)

Java (monitors)

10,000
100,000
1,000,000

0.03/0.03/0.00
0.21/0.21/0.00
2.03 /2.03 /0.01

087/026/1.18
8.82/2.50 / 12.0
03.0 /248 /123

0.08/0.12/0.01
0.77 /1.18 / 0.06
7.51 /11.6 / 0.55

6.38 /2.48 /530
60.3 /21.6 / 52.0
~534 / 159 / 509

Execution time in sec on AMD 16 core (32 threads) processor: real / user / system

GO and Lime

m GO threads (goroutines) use synchronous communication
(CSP)

m Object-oriented structure deemphasized, thread structure
emphasized

GO and Lime make use of goroutines resp. actions so cheap that
concurrency can be used whenever natural;

The runtime will make use of all available cores.

How is that achieved?

Lime Runtime System

head tall
5
Threadll lock |obj|obj| . |0b]| ‘
Thread 2| lock | l(1» L I ‘ head i
dequeue ‘L ‘L
| lock |obj|obj| . |ob1|ob1+ S obi | obi | obi | ob
Thread nl lock |0bj|obj| . |0bj| ‘ S I
enqumete —-—-— ="~ -
Local Queues Global Queue

m Number of worker threads with local queue ~ number of cores

Local queue is full / empty: enqueue / dequeue to / from global queue

Local and global queues are empty: steal from the other threads.

m Lock-free implementation of queues

Each action is a coroutine: compiler inserts transfers in code, i.e. schedules
cooperatively — lightweight threads

Conclusions

Efficient implementation of concurrency with guarded commands is
possible, when local to objects

Based on the Ph.D. thesis of Shucai Yao (2018) and
m Joshua Moore-Oliva, M.Sc, (2010)
m Xiao-lei Cui, M.Sc. (2009)
m Upasana Pujari, M.Sc. (2009)
m Kevin Lou, M.Sc. (2004)
m Jie Liang, M.Sc. (2004)

Ongoing work on inheritance, ownership, exceptions

http://www.software-pioneers.com (2001)

	Introduction

