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Abstract

This paper addresses the issue of giving a formal semantics to an object-orien-
ted programming and specification language. Object-oriented constructs con-
sidered are objects with attributes and methods, encapsulation of attributes,
subtyping, bounded type parameters, classes, and inheritance. Classes are dis-
tinguished from object types. Besides usual imperative statements, specifica-
tion statements are included. Specification statements allow changes of vari-
ables to be described by a predicate. They are abstract in the sense that they
are non-executable. Specification statements may appear in method bodies of
classes, leading to abstract classes.

The motivation for this approach is that abstract classes can be used for pro-
blem-oriented specification in early stages and later refined to efficient imple-
mentations. Various refinement calculi provide laws for procedural and data
refinement, which can be used here for class refinement. This paper, however,
focuses on the semantics of object-oriented programs and specifications and
gives some examples of abstract and concrete classes.

The semantics is given by a translation of the constructs into the type system
, an extension of the simple typed -calculus by subtyping and parametric

polymorphism: The state of a program is represented by a record. A state pred-
icate is a Boolean valued function from states. Statements, both abstract and
concrete, are represented by predicate transformers, i. e. higher order functions
mapping state predicates (postconditions) to state predicates (preconditions).
Objects are represented by records of statements (the methods) operating on a
record of attributes, where the attributes are hidden by existential quantifica-
tion. Classes are understood as templates for the creation of objects. Classes
are represented by records. Inheritance amounts to record overwriting. Sub-
typing and parametric polymorphism, e. g. for the parameterization of classes
by types, are already present in . The advantage of this semantic by transla-
tion is that it builds on the features already provided by (which are all used).
Hence no direct reference to the model underlying needs to be made; a sum-
mary of the syntax and rules of is given.
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A characteristic feature of object-oriented program development is its uniform
way of structuring all stages of the development by : Classes describe
objects found during problem analysis, and classes emerge during design and
implementation. As classes serve different purposes during the development,
they have to be defined in appropriate notations: in a problem-oriented way
during analysis and in an efficiently implementable language for the imple-
mentation.

For covering the different stages of the development, we present an
. Besides imperative concepts, it features objects with

attributes and methods, encapsulation of attributes, subtype-polymorphism,
parametric polymorphism, classes, and inheritance. Furthermore it includes

. These are non-executable statements, standing for parts
which have to be to concrete (executable) statements [2, 12, 13] . State-
ments containing specification statements are called . Abstract state-
ments can appear in class definitions, resulting in .

By this extension of the programming language the same structuring prin-
ciples can be applied equally to programs and specifications. The benefit of
such a notation is that transitions between notations for differ-
ent stages can be avoided and that development steps can (hopefully) be more
easily verified.

The contribution of this paper is a novel way of giving a formal semantics
to such an object-oriented design notation, and to show its use. The semantics
is given by a definitional extension of the type system . The type system
itself is an extension of the simple typed -calculus with parametric polymor-
phism (functions parameterized by types) and subtype-polymorphism (func-
tions operating on values of a type as well as on values of all subtypes) [6, 5, 8].
It was developed to study flexible but decidable typing in simple, functional
setting. Here, it is used for an imperative setting: Statements are defined by
predicate transformers in by viewing predicates as Boolean valued func-
tions and predicate transformers as higher-order functions from predicates to
predicates.

A feature of the notation contributing to a flexible and decidable typing is
the distinction of object types from classes. The type of an object only deter-
mines its syntactic interface. The class of an object determines its behaviour,
which is given by its methods and its attributes. Subtyping is a structurally
defined relation on types. By contrast, inheritance is a means for construct-
ing classes from existing ones, and is completely independent of subtyping.
Classes serve as templates for the creation of objects. Objects of different classes
may have the same type.

The structure of the paper is as follows. The next section gives the seman-
tics of statements in a subset of . Section 3 introduces objects with attributes
and methods, encapsulation of attributes, subtype-polymorphism, parametric
polymorphism, classes and inheritance. Section 4 shows the use of the notation
by a couple of examples. Section 5 relates the approach to other approaches and
draws some conclusions. The appendix describes the type system .
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2 Statements as Predicate Transformers

:
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Values and Types.

States and State Predicates.

F

Int
Bool true false set of T

T S T S
T e T e T

l e l e l T l
T l l T T

l r r l

r R s S r s
s r R

S R S t R S
t S r S T R S

T S T S
e y f f

y e

val y x T e f x T e y f

T A f f
A T

type A T f T A f

Bool
Pred R R

Pred R R Bool

Following various refinement calculi, concrete (executable) statements are em-
bedded into a much richer space where statements may be demonically non-
deterministic, angelically nondeterministic and miraculous. (The exact distinc-
tion of abstract and concrete statements is left open, as the calculus does not
depend on it.)

Statements are typed such that the type of a statement determines the pro-
gram variables (and their types) on which the statement operates. The defi-
nitions in this section are given in the fragment of the type system which
corresponds to the simple typed -calculus (see also appendix).

Each value has a type. Types are simple types like or
(with values and ), or are composed types like , the type of

sets with values of type , or , the type of functions from values of type
to values of type . Value has type is written as . For the examples we
assume that for the types used the usual operations (and constants) are defined.

Of special relevance are record types. A record is a finite association of la-
bels to values, written . The record type

is the type of records with fields of types . The empty
record is written as . It is of the empty record type, also written as . The
value of field is selected from a record by .

For notational convenience, we use additional operations on records and
record types. If and are records, then the overwrite adds the
fields of to those of , replacing fields with same label. The result is of type
overwritten by , denoted by . If record is of type , then the restriction

, removes those fields from which are not in . Similarly, if ,
then removes those fields from which are not in .

The substitution stands for value expression in which every free oc-
currence of is replaced by value expression . The value declaration intro-
duces a shorthand for a parameterized value:

Similarly, the substitution stands for value expression with each free
occurrence of type variable replaced by type expression . The type declara-
tion introduces a shorthand for a type expression:

A state assigns values to program variables. A
state is given by a record. Program variables correspond to names of record
fields. A state space is a record type.

State predicates, or predicates for short, are functions from states to .
The type is the type of predicates over state space (record type) :

2
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Statements.
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x c y
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p p
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The Boolean operators on state predicates are defined by
pointwise extension of the corresponding operators on the Boolean values, e. g.
for predicates of type we have:

Universal implication and equivalence (equality) of predicates are denoted
by and , respectively. For predicates of type we define:

State predicates are conveniently written as Boolean expressions. For example,
is a Boolean expression which can be understood as a predicate. If

and are the program variables in the expression and is a constant (logical
variable), then the corresponding predicate is

where . Hence the interpretation of a Boolean expression
as a predicate depends on the , which determines the program variables
and constants.

If and are state spaces, then a statement with initial state
space and final state space is identified with a function (predicate trans-
former) mapping predicates (postconditions ) over to predicates (precondi-
tions) over . For a predicate over , the application is the weakest precon-
dition of such that, operationally, the execution of terminates and ends in a
state satisfying . In Dijkstra’s original notation this is written as [9].
The type is the type of statements with initial state space and final
state space . Note that the typing of statements allows the final state space to
differ from the initial state space.

Two statements and of type are equal, written , means that
their weakest preconditions for establishing a certain postcondition are equal.
Statement is refined by statement , written means that the weakest pre-
condition for to establish a certain postcondition is stronger that the weakest
precondition for to establish the same postcondition.

The refinement relation is reflexive ( ), transitive ( and implies
), and antisymmetric ( and implies ). Transitivity is

necessary for the stepwise refinement of statements.
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Composing Statements.

Primitive Statements.
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p
Tran R S q Tran S T

p q b Pred T p q b

p q
r p q r p q r

p p q q p q p q
q r q Tran S T r Tran S T

q r
q r

q r b Pred T q b r b
q r b Pred T q b r b

I
q i I

i I q b Pred T i I q b
i I q b Pred T i I q b

c Pred T c
c Tran T T

c b Pred T c b
c b Pred T c b

h S T h
h Tran S T

h b Pred T s S b h s

v e v
e

x y c
x y

x x y c s S x s x s y c y s y

S x Int y Int Tran S S
enter v V e

v e exit v V
v S x Int

enter x Int s x
exit x Int s S

enter x Int Tran S exit x Int Tran S

The sequential composition of two statements
and corresponds to their functional composition.

The sequential composition is associative, i. e. for appropriate statements , ,
and we have . Sequential composition is monotonic in
both operands, meaning that if and then .

The demonic choice of statements and establishes
a postcondition only if both statements do so. For the angelic choice to
establish a postcondition it suffices that either or does establish it.

Both demonic and angelic choice are symmetric and associative and are mono-
tonic with respect to refinement. The binary demonic and angelic choice can
be generalized to a choice between an arbitrary number of alternatives. Let
be an arbitrary set and let be statements indexed by .

For a predicate , the guard and assertion
are of type .

Let be a function from states to states. The update operator lifts
the state transformer to a predicate transformer of type .

The multiple assignment , with a list of program variables and a list of
expressions , corresponds to an update statement with identical initial and fi-
nal state space. For example, if is an expression with program variables

and , then

where . The type of this assignment is .
The variable introduction extends the state space by pro-

gram variables with initial values . The variable elimination re-
moves the variables from the state space. For example, with we
have:

The type of is , the type of is . We
omit the types of the introduced or eliminated variables if they are clear from
the context.
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Embedding Statements.
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q Tran S T
R S T

q R Tran RS RT RS R S RT R T

q R
c Pred RT a RS q t T c a R t a S

x Tran x Int x Int
R y Int

x R x y y

x x y y

abort miracle skip
abort miracle

skip
Tran

abort b Pred false
miracle b Pred true
skip b Pred b

abort false miracle false skip true true id
id Id

id Id

skip
p Tran S T

skip p p skip p

skip S p p skip T p

abort miracle
p Tran S S miracle p

miracle abort p abort abort
miracle abort p p miracle

p Tran S S

The initial and final state space of a statement com-
prise only those program variables on which it operates. Frequently, it is con-
venient to view a statement as operating on an enlarged state space and leav-
ing the extra program variables unmodified. If is of type and the
program variables of state space are disjoint from those of and , the em-
bedding is of type , where and .

For example, consider the assignment of type . With
, we have:

Making the embedding implicitly, this allows us to write:

Without the implicit embedding, this expression would not be well-typed. Im-
plicit embedding is also useful for the composition with , , and .
The statement establishes no postcondition, the statement estab-
lishes any postcondition, and the statement does nothing. All three state-
ments are of type .

We have that , , and ,
where is the identity function on the empty record type. (With as defined
in the appendix, we have that .)

Implicit embedding makes it possible to compose these statements in a nat-
ural way. For example, we may state that is unit of sequential composition,
i. e. for statement we have:

Making the embedding explicit, this stands for:

Using implicit embedding, we have that both and are left zero of
sequential composition, i. e. for any statement we have

and . Furthermore, is the least element of the re-
finement ordering and is the greatest, i. e. and for
any statement .

5
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3 Objects as Packed Records

Derived Statements.

Objects and Object Types.

= (([ ] ; ) ([ ] ; ))

( ) = ( = )

( )

= ( ; )

( : := )
:

( : := ) = ( : := ; ; : )

: [ ]

: [ ] = ( [ ] ; := )

0

0

0 = ( 9 3)
0 = ( : : )

if b then q else r end b q b r

q r
F

r F r q r r F r q

F F
r F r

while b do q end r if b then q r else skip end

var v V e p
v V e p

v

var v V e p enter v V e p exit v V

v v b
v b v

miracle

v v b v T b v v

packing opening

coord
Coord

coord x y
Coord x Int y Int

The conditional is defined by a demonic choice with
guarded alternatives.

Because sequential composition and demonic choice are monotonic in both
operands, so is the above conditional monotonic in both and .

Let be a monotonic function from statements to statements (w. r. t. refine-
ment). Recursion is defined explicitly by a generalized demonic choice.

Because is monotonic, has by the Knaster-Tarski fixpoint theorem a fixpoint
in the lattice of statements, which is indeed . Iteration is defined as a
special case of recursion. It is well-defined because both sequential composi-
tion and conditional are monotonic with respect to refinement.

The multiple variable declaration introduces new variables
with initialization , executes the body of the declaration, and eliminates

the variables again.

The specification statement chooses nondeterministically (demoni-
cally) values such that predicate holds and assigns them to the variables .
If no such values exist, it behaves as .

In the view of objects as records, attributes and methods of an object correspond
to record fields [7]. Subtyping is a relation which is defined on the structure of
types. For record types, the subtype may have more fields than the supertype
and the types of the common fields are also in a subtype relation.

The view of objects as records leads to a certain cyclic dependency because
methods operate on records of which they are part of. This dependency is usu-
ally resolved by recursive types. Here, we follow the alternative way of us-
ing existentially quantified types instead, as proposed in [16], which avoids the
complexity of recursive types, but makes and of records nec-
essary. A slight additional complication is introduced because in this encoding
scheme an object is represented by a pair of records (one for the attributes and
one for the methods), rather than a single record.

Consider points in a two-dimensional plane. For
example, the coordinates of a point can be given by a record of type

.
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0 = ( : ( 0 ( : : )) 0

: 0 ( 0 ( : : ))
: 0 0)

( 0 0)

0
0

= (� ( : : ))

= ( : ( ( : : ))

: ( ( : : ))
: )

=
( : : )

() : :
()

= ( : )
= (� : ( : : ))

set newx Int newy Int
get curx Int cury Int
mirror

set newx newy

get curx cury meth
Meth

meth set x y newx newy exit newx newy
get enter curx cury curx cury x y
mirror x y x y

Meth set Tran Coord newx Int newy Int Coord
get Tran Coord Coord curx Int cury Int
mirror Tran Coord Coord

attr coord meth meth

Point Coord
Meth Attr

Point Attr
Attr

Point Attr attr Attr meth PointMeth

PointMeth set Tran Attr newx Int newy Int Attr
get Tran Attr Attr curx Int cury Int
mirror Tran Attr Attr

Point

Point

Point object
set newx Int newx Int
get curx Int curx Int
mirror

end

Col color Int
ColPoint Attr Col attr Attr meth PointMeth

A point object encapsulates its coordinates and makes them accessible only
through the methods with values parameters , method

with result parameters , and parameterless method
. Parameter passing is done by enlarging and reducing the state space.

That is, the body of the method can access the variables from its
initial state space and has to remove them at the end. Dually, the body of the
method adds variables to the state space. For example, is a
record of type with such method bodies:

A point object is basically a pair with coordinates and methods, for example
represented by the record . However, the type of
a point shall only reveal its method interface, but not its representation by coor-
dinates. Hence, for defining the type of points, we replace the type
in above by a new type variable . Then, using existential quantifica-
tion, we express that objects of type consists of attributes of type and
methods operating on these attributes, for some type :

where

Types like are called object types. For object types we introduce a more
convenient notation, which does not mention the type of the private attributes
(it is a bound variable which can be given an arbitrary name anyway). For ex-
ample, an equivalent definition of is:

Now we consider colored points, where the color shall be a public attribute .
This is simply achieved by requiring that the private attribute type is a subtype
of the public part.

7
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;

;

;

=

:
( : : )
() : :

()

( : )

( 1 : ( ( 1 : 1)) ( ( 1 : 1))

: ( ( : )) ( ( : )))

1 1 1 1

: 1 ( 1 : 1) 1 : 1 ( : ) : =
(� : ( : : ))

0 0
0

0 = ( 0 0) 0

( 0 0)

0

0 = 0 0

0
0

1 = ( 0 ( ) 0)

0 ( : )

0

:

1 = 0 ( ) ; 0

ColPoint

ColPoint object
color Int
set newx Int newx Int
get curx Int curx Int
mirror

end

Pub pub P pub
P Attr Meth

m Tran Attr v V Attr r R

mi Tran Attr vi Vi Attr ri Ri

v vi r ri V Vi R Ri

object pub P m v V r R mi vi Vi ri Ri end
Attr Pub attr Attr meth Meth

coord Coord
meth

pt pack attr coord meth meth by Coord as Point

attr coord meth meth
Coord Point

pt coord meth

coord
meth

ColPoint

pt pack attr coord color green meth meth
by Coord color Int as ColPoint

meth
color Int

pt coord color green meth

In a more convenient notation, an equivalent definition of is:

For the rest of the paper, let stand for , where is a list of field
names and is a list of types. Let be a type variable. Let stand for

where are lists of labels and are lists of
types. Using this convention, the general encoding scheme for object types is:

A value of an existentially quantified type is created by
packing. For example, an object with attributes of type and meth-
ods is created by:

Here, the record is the contents of the object,
is the hidden type, and is the type of the resulting value. We can

introduce a shorthand for this construction, writing simply:

Here the dot separates the public from the private part. The types of the hidden
attributes and the resulting object are determined by the constituents
and .

An object of type with a public attribute is created by:

Note that in this example we make use of implicit embedding: the method bod-
ies in have to be embedded into a state space with additional program
variable . As a shorthand we write:

Here the semicolon is used for separating the public attributes from the meth-
ods.

8
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Attribute Selection.

Method Calls.

0

0

1

1
1

1 : : ( : : )

1

: :

= ( : : ( : : )

)

: :

( : : ) =
( : ( : ( : : ( ) )))

()

() = ( : : ( : : )
; ; )

= : ( : )
= :

( ( )
)

pt
Point pt x

Point
Point

pt mirror

color pt
pt

open pt as Attr Col by cont attr Attr meth PointMeth
in cont attr color

Attr
by cont pt

in
green Int open

open e as A S by x T in f

p
e e p p pub

e p open e as Attr Pub by cont attr Attr meth Meth
in cont attr p

access v as A S by x T in p
v p p

Tran Q R

access v as A S by x T in p
b Pred R s Q open s v as A S by x T in p b s

v Obj v m
v

m

v

v m access v as Attr Pub by cont attr Attr meth Meth
in pushattr cont meth m popattr

pushattr oldobj v Obj cont attr
popattr newattr Attr

v pack attr newatt meth cont meth
by Attr as Obj

For an object like above, a private attribute cannot be selected because
the type hides them. Hence the expression is not well-typed. How-
ever, neither can the methods be selected this way. Although the names of the
methods are known by the type , the type of the methods depends on
the type of the attributes, which is hidden in . Hence an expression like

cannot be assigned a type. The only possible operation with a packed
value is opening it, as shown in the next paragraphs.

A public attribute like of above can be selected
by first opening . In the expression

the type variable is introduced for the hidden type that can be used in the
scope following . The name is introduced for the contents of that can
be used in the scope following . Then the public attribute is selected, yielding

of type as result. The general form of is:

Overloading the dot notation, we write the selection of a public attribute of
an object by . If is in (see above), the general definition is:

The definition of method calls is complicated because a
method call does not yield a simple result, but changes the value of the object
and the values of the result parameters. As an intermediate step, we define the
construct . It selects the value of program variable

from the initial state space and opens it with the scope of statement . Let
be of type .

For a program variable of type , the parameterless method call se-
lects the value of from the initial state space, opens it, extends the state space
by its attributes, executes the method in the enlarged state space, and re-
moves the modified attributes from the state space, packing them into the new
value of :

where

9
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:= 1

pushattr Tran v Obj Attr
v v popattr
Tran Attr v Obj

v

pt
Point

pt set enter newx newy pt set
a b pt get pt get a b curx cury exit curx cury

F

E S S E T T
E Tran S T Tran S T

Tran
sub-function

S T S T

E Q P E V W E Vi Wi
E S R E Si Ri

E object pub Q pub Q m v W r S
mi vi Wi ri Si mj vj Wj rj Sj end

object pub P m v V r R mi vi Vi ri Ri end

ColPoint Point
subsumption

pt ColPoint
Point pt Point

pt pt

color pt
pt

Statement of type removes the program variable
from and adds the attributes of to the state space. Dually, of type

removes the attributes from the state space and adds the
program variable again.

A parameterized method call is reduced to a parameterless method call by
adding the value parameters to the state space before the call and removing
the result parameters from the state space after the call. For example, if is a
program variable of type , then:

The subtyping relation of (see also
appendix) leads to a subtyping of statements and objects. Subtyping of state-
ments is, similarly to subtyping of functions, contravariant in the first argu-
ment and covariant in the second argument.

This rule follows from the definition of and the repeated application of
.

Two object types are in a subtype relation, if (1) all public attributes of the
supertype are also public attributes of the subtype, (2) the types of the common
attributes are in a subtype relation, (3) all methods of the supertype are meth-
ods of the subtype with same parameters, (4) the corresponding value param-
eters are in supertype relation, and (5) the corresponding result parameters are
in subtype relation.

For lists and of types, we write if the corresponding elements of
the lists are in a subtype relation. Using this convention, the subtyping rule for
objects types reads as follows:

For example, we have .
The rule states that every value of a type is also a value of a su-

pertype of that type. Therefore, is a value of type as well as of type
. This implies that, for a program variable of type , the assignment

is indeed well-typed. However, selecting the attribute from after the
assignment is a type error, as does not change its type by this assignment.

10
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7! 7! 7!
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<

< < � =

< ;

: :

:

;

; ;

;

; ; ; ;

; ; ; ;

; ;

;

;

;

;

; ;

;

; ; ;

; ;

; ;

: : ; :

(� : )

( [ : ]( : ) = ) = [(� : ( : )) ]

= :
[ : ] ( 0 : 1 : ) =

0 1 0 1

2 2 =

( 1 2) = 2

= ( ( 0 0)
( )

( := ;

; :=
:= ))

=
: := 0

: := 0
: :=

( : : ) =
:=

() : : =

:=
() =

:=

: ( : : : )

=

( )

A S e
S A

S

val y A S x T e f A S x T e y f

type Colored object color Int end
val Darker C Colored cl C cl C

if cl color cl color then cl else cl end

pt ColPoint pt color black

Darker ColPoint pt pt pt

GreenPoint private x y
public color green
methods

set x y newx newy exit x y
get enter curx cury curx cury x y
mirror x y x y

GreenPoint class
private x Int
private y Int
color Int green
set newx Int newy Int

x y newx newy
get curx Int cury Int

curx cury x y
mirror

x y x y
end

C private CPriv public CPub methods CMeth Obj
C create C Obj

create C
pack attr C private C public methods C methods
by CPriv CPub as Obj

The type abstraction denotes a function
which takes a subtype of as parameter and binds it to . The result is a value
of a type which may depend on . The value declaration is extended appropri-
ately:

An example of its use is (omitting the scope of the declaration):

If is an object of type such that , then we have that:

A class describes objects with same behavior, i. e. with same method
bodies and attribute types. Classes are used as templates for creating objects
and classes can be constructed from existing classes by inheritance. The first
role implies that a class determines the initial value of objects created from that
class, and the second role implies that a class must not hide the private at-
tributes. Hence a class is given by a record of initial privates attributes, a record
of initial public attributes and a record of methods. For example, the class of
green points at the origin may be defined by:

A more conventional notation for this class is:

If is a class and is the
type of objects of class , the function creates an object of type :

11
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;

: : ;

: : ;

: :

;

;

;

; ;

;

; ; ;

; ;

4 Using Abstract and Concrete Classes

:=

(

)

=

: := 0
: := 0

( : : ) =
:=

() : : =

:=
() =

:=

= ( )
: :=

create C C

gp create GreenPoint

ColPoint gp

C M C
M

private C private M private
public C public M public
methods C methods M methods

GreenPoint

ColorlessPoint class
private x Int
private y Int
set newx Int newy Int

x y newx newy
get curx Int cury Int

curx cury x y
mirror

x y x y
end

GreenPoint class ColorlessPoint
color Int green

end

ColorlessPoint GreenPoint

When applying , we assume that the type of the objects of class can
be inferred from the context. For example,

assigns an object of type to .
Inheritance on classes is, in its simplest form, expressed by record overwrit-

ing. If are classes then the result of inheriting from and modifying by
is

In a more conventional notation, an equivalent definition of is:

Note that here we make use of implicit embedding: The methods inherited
from operate in an enlarged state space in .

As classes are values (of a certain structure), classes can be parameterized by
both values and types. By contrast, programming languages like Eiffel treat
classes as types, allowing only parameterization by types in order to make
type-checking decidable. By separating classes and object types, more flexi-
bility is gained. The following examples show the use of type and value pa-
rameters in class definitions. They also show the use of abstract statements for
method definitions.

12
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;

;

;

<

: :

<

<

��

� �
�
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� �

6 �� � � �
��

6 ��
^ 8 �

� � �

f g � �

+
#

[ ] =

: :=
( : ) = := +
() : =

= :[ ] ; :=
() : = := ( = )

= :

[ : ] =

( )
() : =

=
:[ ( ) ( )] ;
:=

[ : ] ( : ) =

( )
( : ) = # ; := +

bag
e e b c b c

b c e in b e b b
b

error

val Buffer Item
class

private q bag of Item
put i Item q q i
get i Item

if q then i i i in q q q i else error end
empty e Bool e q

end

Int

type OrderedItem object key Int end

val PriorityQueue Item OrderedItem
class Buffer Item

get i Item
if q then

i i i in q x in q x key i key
q q i

else error end
end

key Int
key

val BoundedPriorityQueue Item OrderedItem max Int
class PriorityQueue Item

put i Item q max q q i
end

We make use of the type . An empty bag is written as , a bag contain-
ing only by . The addition of bags , is written as , the subtraction as

. The test determines if is contained in the bag and determines
the number of elements in .

For a buffer, the basic operations are storing an element in the buffer and
taking an element from the buffer. A buffer does not guarantee any order of
incoming and outgoing elements. Let be a suitable error handling proce-
dure:

A priority queue is a buffer in which the elements are removed according to
their priority. The priority of an element is given by a public attribute of type

.

In this example, a public attribute of type is selected in a Boolean expres-
sion. This could not have been expressed if were a method, because method
calls are statements and not simple values.

A bounded priority queue is a priority queue which has a limit for the num-
ber of elements stored in it. Hence it is parameterized by the type of the ele-
ments and their number.

A bounded priority queue can be simply implemented by storing the elements

13
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;

;

;

; ;
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;

5 Related Work and Conclusions

[ : ] ( : ) =

:

: := 0
( : ) = [ ] := ; := + 1

() : =
= 0

:= 0 1
[ ] [ ] := ;

:= [ ] ; := 1 ; [ ] := [ ]

() : = := ( = 0)

val ArrayPriorityQueue Item OrderedItem max Int
class

private a array max of Item
private n Int
put i Item a n i n n
get i Item

if n then
var p i
while i n do if a p key a i key then p i end end
i a p n n a p a n

else error end
empty e Bool e n

end

Item OrderedItem max

Buffer Item

PriorityQueue Item

BoundedPriorityQueue Item max

ArrayPriorityQueue Item max

PriorityQueue Item Queue Item ArrayPriorityQueue Item max
BoundedPriorityQueue Item max

in an array. We omit the initialization of the array because it is irrelevant.

For a type and integer , objects of classes

,

,

,

all have the same type. This is independent of the use of inheritance for defin-
ing the classes.

If classes are viewed as abstract data types, the technique of data refinement
can be used to establish refinement relationships between classes . In this ex-
ample, refines and
refines [17]. This is related to the approaches of
[1, 10, 11].

This work started as an approach to formalize the idea of abstract and con-
crete classes in an analogy to the amalgamation of abstract and concrete state-
ments in the refinement calculus. The motivation is to overcome the limita-
tions when specifying classes by pre- and postconditions: in this approach, a
method call cannot appear in a pre- or postconditions (because method calls in
general change program variables). Hence, objects and classes cannot be used
for specifying other classes (only for implementing them), which means that
the approach does not scale up.

Another approach in the same direction is presented in [18]. Statements are
defined by predicate transformers e. g. as in [12], rather than in a typed ap-
proach as here. This leads to a simpler semantics without the need for type-
theory, but disallows for technical reasons specification statements in meth-
ods. Another typed approach is reported in [14], also defining statements by

14
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predicate transformer and subtyping on record types. The semantics is rich
enough to model the features of Oberon, but it does not include encapsulation
and parametric polymorphism.

The approach taken here has mostly been influenced by the development of
the refinement calculus in higher order logic (a variant of the simple typed -
calculus) in [3]. The difference is that states are encoded here by records rather
than tuples. The motivation for this is that inheritance is more naturally de-
fined by records, which are used for modeling the state of objects. This has a
number of minor consequences, e. g. a different treatment of variable decla-
rations, of expressions (in guards, assertions and assignments), and of embed-
ding. However, nested declarations of the same program variables cannot be
considered in this model.

Our encoding of object types by existential types is inspired by that of [16] in
, an extension of by higher-order polymorphism (functions from types to

types). Here, we restrict ourselves to , at the cost of treating some definitions
less elegantly.

Correct typing of expressions in is known to be decidable, with some mi-
nor restrictions as reported in [15]. This implies that the correct typing of ex-
pressions constructed by operators of this paper is also decidable, although we
did not derive (efficient) type-checking algorithms. Such type-checking algo-
rithms could be used as part of a compiler or for type-checking specifications.

The idea of distinguishing classes from object types has already been given
a type-theoretic account in [4, 16]. The motivation for this distinction is that de-
cidable properties should be separated from undecidable properties. For exam-
ple, the equivalence of two types, the subtyping of two types and the contain-
ment of a value in a type is decidable. By contrast, it is undecidable whether
two classes are equivalent (which would involve comparing the method bod-
ies for equivalence), and it is undecidable whether an object belongs to a class
(in the sense that is belongs to the set of reachable values of the class).

A number of object-oriented concepts have not been treated, for example re-
cursive types (like points with method ) and object names
as values. Also, the treatment of inheritance is simplified by not considering
mutually dependent methods. These concepts remain the subject of further
work.
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The type system was developed to study the problems of sound, decidable
typing of object-oriented languages in a simple, functional setting. It provides
a basis for flexible typing but still guarantees the absence of ”message not un-
derstood” errors of untyped languages.

is an extension of the simple typed -calculus by type parameters and
subtyping. Type parameters allow to express parametric polymorphism, i. e.
functions operating on values of different types. Subtyping between two types
leads to the idea that a value of a type is also a value of a supertype of that
type. This allows to express subtype polymorphism, i. e. functions operating
on values of a type and, consequently, on values of all its subtypes.

In this appendix, we present with record types and existential types,
which corresponds to the language in [6]. Existential types allow to ex-
press encapsulation. Furthermore we use in the examples basic types like
and as well products and sets , arrays and bags

. For these types we assume that suitable operations (and constants)
are available. Both record types and existential types, as well as other types,
can also be encoded in pure (see for example [8]). The reader is referred to
[6] and [16] for tutorial introductions.

The syntactic categories are that of values ( ), types ( ), variables ( ),
type variables ( ), and labels ( ).

basic types
type variable

top type
record type

function type
universally quantified type

existentially quantified type

constants

17
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Examples of Quantified Types.

( )

( : )

(� : )

( : : )

:

:

(� ) = (� : )

(� ) = (� : )
(� ) = (� : )

( : ) = ( : : )

= (� ( : ))

(� )

= ( : )

(� )

= (� ( ))

= (5 ( : ))

5 ( : )

= ( : ( ) ( )( ))

=

x
l e l e

e l
x T e

e e
A T e

e T
pack e by T as T
open e as A T by x T in e

e T e T S T S T
Top S S

Top e Top e Top

Top

A T A Top T
A T A Top T
A e A Top e

open e as A by x T in e open e as A Top by x T in e

Id A x A x

A A A
Int

Int

Id Int x Int x

Id Int Int Int

R S R
S S R

T R R R Bool

R
Bool

o pack x Int odd x by Int as T

T x Int odd x
Int o T

b open o as A by cont A A Bool in snd cont fst cont

b true

variable
record construction

field selection
abstraction
application

type abstraction
type application

packing
opening

Value has type is written as . Type is a subtype of is written as .
For example, the type is the supertype of all types, i. e. for any type ,

. Furthermore we have that any values is (also) of type , . When
the type bound in an universally quantified type, in an existentially quantified
type, in a type abstraction or in an opening is omitted, it is taken to be :

Universally quantified types are functions
with a type parameter and a value result. For example

is the polymorphic identity function. Its type is . It can be ap-
plied to any type. For example, applying it to yields the identity function
on :

The type of is .
Existentially quantified types express encapsulation. Intuitively, a value of

the type can be thought of as a pair with first component a type and
the second component a value of type , where depends on . For example,
the type

is the type of “objects” which consist of an “attribute” of the hidden type and
a “method” from the attribute type to . By

an object of type is created with attribute , method and
hidden attribute type . As the type of the object is , its attribute type is
not visible, we only know that one exists. By

the object is opened, meaning that a name is given to the hidden type and the
content. Then the method is extracted from the content and applied to the at-
tribute, resulting in .
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Typing Rules.
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E e T E T
e

E e S E S T
E e T

E x T F x T

E e T E e T
E l e l e l T l T

E e l T l T
E e l T

E x S e T
E x S e S T

The inference rules given below allow to decide whether
the subtype relation between to types holds. However, this depends on the en-
vironment, i. e. the enclosing declarations of the types and values. More for-
mally, an environment is a list whose individual components have the form

or , where is a variable, is a type variable, and is a type
expression. Each variable and type variable must occur at most once on the
left hand side of or . A subtyping judgment of the form
means that from the environment it follows that is a subtype of .

sub-reflexive

sub-transitive

sub-var

sub-top

sub-record

sub-function

sub-universal

sub-existential

The inference rules given next allow to infer the minimal type
of a value expression. (Every well-formed value expression is of type , so
inferring an arbitrary type for a value expression is trivial.) A typing judgment
of the form means that from the environment the type for the
expression can be inferred.

subsumption

var-type

record-cons-type

field-selection-type

abstraction-type
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