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Preface

The Idea of Program Refinement

Programs are complex. They are typically so complex, that they ganbetye full
comprehension even of the programmer or team who designed them, witle all th
consequences this has. How can we cope with such complexity in a satisfactory
way?

An approach, advocated for a long time, is to separate a concise specification
of a program — the “what” — from a possibly involved implementation ke t
“how”. Once a specification is obtained from the set of requirements on tigeam,
there can still be a large gap to an efficient implementation. The developroent
specification to implementation can then proceed by a succession of layers,auch th
each layer is aefinemenbf the previous one. Design decisions can be introduced
in refinement steps one at a time. By this, the refinement steps can be kerstnall
manageable.

Still, the set of all requirements can be far too large to be taken complately i
account in the initial specification. Even if they could, they might obsdssues
more than clarify them. For example:

¢ An information system for stored goods needs to produce an error megsdge
legal input. Yet, the exact wording — and even the language — of thossages
is irrelevant for an understanding of the essence of the system.

¢ A banking application interacts with customers with a graphical interfacah¥et
specification of the graphical layout is secondary compared to the specification
of the possible transactions.

e For a mailing system the possible physical distribution of thersigss an essen-
tial requirement. Yet it can be ignored for an initial specification of théclod
message delivery.

Such requirements do not need to be reflected in the initial specification. Rather
they can better be taken into account in subsequent refinement steps. Hence, our
picture of program development is that the initial specification is @nlyartial
one, though, by slight abuse, we still refer to it as the specificatidns&uent re-
finement steps take further requirements into account or represent desigardecis
(Fig. 0.1).
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Fig. 0.1. Program Development by RefinemeRy, ..., Ry
are the requirementsy is the specification$, is the im-
plementation, and the oth& are intermediate refinements;
Solid arrows stand for the refinement relation

The B Method

The B Method is an approach for the industrial development of highlted soft-
ware. It is the outcome of two decades of academic research on program specifica-
tion and refinement:

It offers a rich collection of set-theoretic data types for an abstract speidficat
of the state of systems.

It allows the use of standard first-order predicate logic for the spatifin of
operations on the state.

It uses a relational semantics for statements and supports consistencyract co
ness proofs of operations by weakest precondition calculation.

It supports grouping of operations and encapsulation of state variabheed-
ules, callednachines

It supportsalgorithmic refinemendf operations andata refinemenf state vari-
ables in machines.

It allows the construction of new machines out of existing ones.

Currently there are two commercial tools supporting the B Methodo&Kit
from B Core, UK and Atelier B from Steria, France. Both tools address issues
documentation, project management, and prototyping which are necessargéor |
scale use, beside issues of verification and code generation. The toolseaghiev
remarkable degree of automation in checking refinements by proof, as well as in
project management. Even though the tools are still being further gmaidhe
B Method with its current tool support can be considered the most advasoeday
purpose environment for producing highly trustworthy software.
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Contents of the Book

This book is a collection of case studies in program refinement with thee@dd.
Each chapter shows a typical program development from problem analysis to i
plementation with a non-trivial example, using one of the tool® davelopments
include a discussion and justification of the chosen approach as well aseexasr
with the tools used. The developments are intended to be represenfaivenole
class of related problems.

The book is divided in two parts. Part | considers the developmemifofma-
tion systems and data structures. These examples demonstrate theuspichthe
B Method, in particular the development by a sequence of refinement stegsrth
sideration of further requirements in refinement steps, and the usesat-aijented
models with the B Method. For the benefit of readers who are not familiartive
B Method, the first chapter gives an introduction to it. The other chapteh® first
part can be read in any order.

Chapter 1: Introduction to the B Method. This chapter introduces thi loas-
cepts of the B Method, substitutions, statements, machines, invaniamide-

terminism, algorithmic and data refinement, layered development, and refine-
ment and implementation machines. The use of these is illustrated byea seri
of examples. Also, the impact of the finiteness of numbers and of the ngemo
is discussed and the use of the B-Toolkit library is illustrated.

Chapter 2: Container Station. The container station is an informatstarsywith a

rather complex structure of the state and an elaborate set of requirentaats. T
chapter exemplifies the use of various set-theoretic data types and opgratio
for describing and manipulating a complex state. Moreover, it showsthew
initial specification can be kept abstract and how requirements like fairnass of
scheduling strategy and error reporting can be incorporated in refinerapst st
This chapter also exemplifies the use of library machines provided wath th
B-Toolkit for the implementation.

Chapter 3: Minimum Spanning Tree. This chapter is about an algorithmemihgr

with a simple abstract specification but an intricate implementation.ovsh
how introducing further B machines during refinement leads to better rmoedul
isation for reuse and helps to keep the proof obligations simplerlagh@oint

is known agdesign for provability The B machines introduced in the develop-
ment for maintaining equivalence classes with union-find, priority gagand
heaps, are of interest on their own.

Chapter 4: The B Bank. This chapter develops a simple but complete ajuplicat

for banking over the Internet. An object-oriented model is used as an arydur
analysis, which is translated to a B machine which specifies the key function
ality. For the implementation, new base machines for persistent obpeagst
and for string handling are introduced. These are of general usefulndhss |
chapter, a robust interface with error reporting is built on top otthsic func-
tionality. Thus, this illustrates a combined top-down and bottgndevelop-
ment. Finally, for working over the Internet and for providing a driapl user
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interface, general-purpose B machines for interfacing with HTML and CGl are
developed.

Part Il illustrates refinement for the development of distributedesystand pro-
cess control systems. These systems are examplesdive systemdA reactive
system is a system which maintains an on-going interaction with its@amvient.
Although reactive systems are outside the original scope of the Bddgethe con-
nection can be established by the theory of action systems, as presentefirst the
chapter of Part Il. The remaining chapters illustrate this and can be read andety

Chapter 5: Parallel Programming with the B Method. By appealing to theryh
of action systems, this chapter shows how reactive systems and the parallel
composition of reactive systems can be expressed with the B Methodo It als
shows how the refinement of reactive systems leads to proof obligatiuink w
can be mapped to those of B machine refinement.

Chapter 6: Production Cell. This chapter illustrates an approach for gevgla
control program for a discrete control system by the example of auptimoh
cell consisting of several interacting machines. For such a system, ibvgnsh
how safety conditionsan be guaranteed. Refinement is used for decomposing
a system specification into a controller and a plant. This chapter presents acti
systems with a large number of actions but simple data structures aitd bas
action system refinement.

Chapter 7: Distributed Load Balancing. Load balancing in a network of pseses
can be conveniently specified by disregarding the distribution, assuthat
each process has direct access to the load of neighbouring processes. In an
implementation however, nodes must either communicate their load dyplici
or keep estimates of each other’s loads. This chapter illustrates the deeslopm
of such an implementation by a series of refinement steps ssipgrposition
refinementa special form of action system refinement.

Chapter 8: Distributed Electronic Mail System. The previous chaptaraaiion
systems have taken the view that only the global state of action sys&ehs
servable. By contrast, this chapter takes the alternative view that ordgnekt
events of action systems are observable. The refinement of event-based action
systems is illustrated by the development of a mailing system withnoomi
cation over a network of nodes with links between them. By disregardiag t
distribution, the specification can be kept concise. In this developraxtet-
sions of the B notation are proposed for supporting such develasmen

Smaller B machines are presented with separate explanations, larger B machines
are presented with explanations interleaved. For B machines which are thager
just a few pages thisterate stylerelates directly pieces of formal text with the cor-
responding explanation and thus improves readability. This intérigévsupported
by both tools which were used.

The appendix summarises the Abstract Machine Notation of the B Methed con
cisely for easy reference when reading the case studies.
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The readers are referred to the B-Book by J.-R. Abrial [2] for a defiitind
comprehensive reference, with an extensive discussion of the theoreticalafo
tions.

Readership

Firstly, the book is suitable as study material for advanced undergedndtgrad-
uate courses on program refinement. This is supported by fully explphogdam

developments, by suggestions for further extensions of the eratrgoid by mak-
ing the examples available on the World Wide Web. The book is altaldeias

additional material for self-study.

Secondly, the book aims to show potential users of the B Method whatslags
programs can be handled, what the typical size of specifications and refineneents ar
and what the effort for the examples is. Patterns of solutions are peelsevhich
can then be applied in similar situations in practice.

World Wide Web Page

The code of some examples and additional supporting material, e.g. BanB
application which can be run from any Web browser, can be accessed through the
book’s Web page at:

http://www.springer.co.uk/comp/support/
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Foreword
Some Perspective on Refinement

David Lorge Parnas

1 Three Decades of Software by Refinement

Nobody would claim that the subject of this book, designing prograynsefine-
ment, is a new idea. As soon as observers began to realise that softwelopdeant
was difficult, and what a mess we were making of it, they began to look fatter
way. All of the “better ways”, share two ideas:

e Writing code means making design decisions. Don’t make many decisions at
once; instead, write code in a step-by step process that results in maddig d
sions in a carefully chosen sequence.

o Verify or validate each decision as it is made. If incorrect decisions are made, and
subsequent decisions are based on them, those subsequent decisioaseavill h
to be reviewed, and may have to be revised. Verification/validation aggas
likely to save effortin the long run.

Program development by refinement adds a third point:

e Begin with a precise statement of what will be done adding details abeut t
implementation with each step. This distinguishes refinement from saénee o
proposals?

When people began to think about refinement, mathematical proof of software
correctness was in its infancy. Verification/validation had to be donehmr oneth-
ods. Two early papers that discussed languages in which models could bellyradu
refined into working code, while the performance and correctness of each new set
of decisions was verified by simulation, were [66] and [87]. Currenkworrefine-
ment assumes mathematical verification of the decisions.

Dijkstra’s early work on “structured programming” was certainly one s t
most widely discussed approaches to refinement, e.g. [24], but Wirthls weas
also very influential [84]. Another version by Mills [54], lives ortay as part of the
collection of methods known as “Cleanroom”. There have been many Ph.D. theses
(e.g. [4]) and books (e.qg. [52]). The work mentioned just “scratchesuiface” of
a vast body of literature. The reader of this book should be asking testipns:

1 Some incremental development methods propose an alignattbottom up” approach
that requires building a subset and adding functions dfeestibset is working.
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e Why isn't refinement more widely used in industry?
e Why do we need yet another book on the subject?

2 Refinement Remains a Buzzword

When the authors of [66] and [87] read the abstracts of the other paper, eaghth
that the other had the same idea. However, their ideas could be describedshyrh
abstract, when they met, they discovered that their approaches were deiterdif
This is true of many approaches to design by refinement. The general descoipti
refinement given above leaves three important questions unanswered:

e In what order should the decisions be made?
e How should decisions be documented?
e How should decisions be verified or validated?

In the sections below, | discuss possible answers to each of these gaestio

2.1 Decision Ordering in a Refinement Process

There is room for considerable discussion about the best order fongndécisions
in a software design process. Unfortunately, people have always beenvatue
about it. Below we present a number of incompatible ideas about the ardéich
decisions should be made.

Top Down Design. The phrase “top down design” has long been popular but its
meaning has never been clear. It is assumed that there is a hierarchical structure
and the higher levels in the hierarchy should be designed first, vatlother levels

being a refinement. Unfortunately, as was discussed many years ago, evetatiee ph
hierarchical structure is a “buzzword” in the software design field [6Huadlly

when someone uses the term “top down” they mean one of the forms of refihem
mentioned below.

Stepwise Refinement.Although the phrase “stepwise refinement” appears to have
been coined by Wirth [84], his approach was close to what Dijkstra had been pr
mulgating, first in technical reports and then in [24]. Programs weresgb iy writ-

ing the major control structures first, using suggestive names éptbgrams in
those structures, and then refining those programs later.

Outside In. Many early systems were developed at great expense, and at the end of
the development process it would be discovered that the services provededhe
wrong ones or that the user interface was difficult to use. In reaction to disag-

ters, some authors begin to propose that we should design thdeoafsa system

(the user interface) first and postpone implementation decisions to taggrss
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Module Structure First. With the publication of [60], many designers were re-
minded (a) that programs had to be divided into independent work assigarifi
developmentwas going to progress at reasonable speed and (b) that thegeadere
ways and bad ways to divide a program into modules. Thus, some pesgde ko
argue that the design should begin with decisions about the moalutgéuse with
later stages refining module specifications into code. One paper that madesuch p
posals explicitly was [65].

Refinement from Program Functions to Code.In a long series of papers (e.g.
[53]) Mills and others showed how mathematical functions could be usdekitribe
what a program did and recommended that design of a program always bdyin wit
its program function (a mathematical function mapping from its corsttate to its
final state), which would then be refined, in a sequence of small steps, ahwhi
program functions for components were written, until one had an imgi¢ation.

The same philosophy, but other notation, can be found in [68].

Data Refinement. Many authors questioned the stress on control structures found
in the papers mentioned above and suggested that refinement could be applied to
data as well. They proposed that software design begin with the spedoificdita

series of abstract data types (e.g. [32, 51, 39]).

Most Difficult First. E. W. Dijkstra once suggested that when designing a system
the first decisions to be made should be the most difficult onese thbere you are

not sure you can find a solution. In this way, you won't waste effasatisfactory
solutions can not be found [23].

Most Solid First. A very different rule was suggested in [62] where it was argued
that the first decisions should be those that were least likely to bheedkas this
would make it easier to build families of programs (product lines) withred char-
acteristics and design decisions.

2.2 Documentation of Decisions in a Refinement Process

Experienced developers know that design decisions have not been madbeayntil
are written down in a precise and binding way. Among those who havecatikd
refinement in the general sense there are many different ideas about howehose d
cisions can be documented.

Documentation by Writing Code One of the earliest, and most intuitively appeal-
ing, approaches to documenting decisions in the refinement process has beento s
ply write code. Each decision allows some code to be written and furthesidesi
lead to expansion of the code.

2.3 Documentation by Writing Mathematical Models

In some approaches, notably many examples using the Z notation, doetio®ent
of design decisions is in the form of a model, an abstract mechanism thaesetsa
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the system being designed is intended to behave [78]. These modelteareaifed
“specifications” but they rarely state requirements; instead they are mectsathist
exhibit desirable properties that satisfy unstated requirements. Mdtrels, it is
often difficult to distinguish the essential from the incidental.

Documentation by Writing Formal Specifications. In the refinement approaches
advocated by Dijkstra [25] and Mills [54] and others (e.g. [67, 63])hmaatatics
is used to write true specifications. In [67] it is suggested that thesefications
should be thought of as design documentation and represented in a reabalae t
format [42]. Of course, informal documents can serve in this role lrethre well-
known disadvantages of such imprecise notation.

2.4 Verification Methods in a Refinement Process

In most of the recent work on refinement it is assumed that verification means fo
mal mathematical proof. There are many design decisions that cannot be verified o
validated in that way. Performance characteristics are one example. In earlier wor
([66, 87]) simulation was proposed as a verification method. Infornsaléction has

also proven effective in some cases. When formal proof is considered theveoare
possible approaches: proof of correctness and proof of refinement. Withezteo

ness proof approach, the refined program is proven correct. In more togtieid
approaches a proof at each step proves only that the newly refined program is ac-
tually a refinement of the previous program thus taking advantage oéeadik.

There are obvious advantages to proving each refinement correct rather than prov-
ing the complete program correct. As is demonstrated by the examplés botik,

once we have an abstract statement of what is to be done, proving the cessaatn
each refinement is generally easier than proving correctness of the program.

3 Refinement in Practice

Although the general idea of designing by refinement was proposed nare3th
years ago, none of the industrial systems that | have examined wascprbty
such a process. In fact, discussions in the “software engineering” coitynauia
headed in very different directions. Fred Brooks adage, “Plan to throw oag, aw
you will anyway” [14] has been taken to heart as more and more practitioners ad-
vocating building a “quick and dirty” prototype and then starting olregremental
approaches such as that advocated by Barry Boehm [12] are considered more real-
istic than the refinement approaches mentioned here.

Refinement does not seem to have worked in practice. Among the reasons are:

¢ Impatience: Designers cannot wait to get down to “real” code. They think the
decisions made in the early stages of a refinement process are obvious and a
waste of time. Unless the “specification language” has “animation” features they
find the work uninteresting.
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e When people get to the later design stages, they ignore the earlier dscision

¢ Verification and validation (by any method) seem to take too much time in a
deadline-driven project.

e Many program developers believe that their real skill is the mastery efafn
today’s complex programming languages and are convinced that the (much sim
pler) formal languages advocated by the refinement community are too complex
and not worth learning.

¢ Designers find it very hard to express their real design decisions in a refitem
process.

4 Some Opinions

Having observed and participated in discussions of refinement for mare30
years, | am not without some personal opinions on the questions riseed.

4.1 Order of Design Decisions

Although the approaches to choosing a design process outlined in Sexeezrl
contradictory, | find all the arguments valid but oversimplified. Manysta@ints
prevent designers from following any of the simple proceduresrmadliand they
will not be able to produce systems by a pure refinement process. Hotmyecan
and should produce a system design and documentation that looks asribanefit
process had been applied [64].

4.2 Documenting Decisions

Refinement processes that only produce code might help in program deesippm
but will not help in the longer, and more expensive, “Maintenance” peRedine-
ment processes like that suggested by Wirth [84] produce a sequenceycdme
with increasing length and the structure becomes more and more difficsdiet
When changes are required, they are not restricted to a single sectiorcotihe

On the other hand, relying completely on specifications leads to unnecessary
concerns about the “composability” of specifications. The easiest way to lescri
the composition of separately specified components into something latgewiite
code that invokes the components that were specified.

It is a mistake to believe that a single notation, either code or speimfisat
should be used throughout the project. This is not the case in oth&s af engi-
neering where a philosophy of design through documentation has ke stan-
dard practice [36].
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5 The Role of this Book

The attractive feature of this book is its focus on case studies. Thosevwsh to do
further research on refinement need to give serious consideration to theiaged
above, particularly the reason that refinement is not used in more practigdtgro
If refinement is going to be practical for the majority of software systpnoduced,
the problems posed in this book should be simple. This book poseslenge.
Everyone interested in either applying or studying software devetopthrough
stepwise refinement should read this book and try to use the case stuldézsasi
tutorial examples or as a basis for further study. The extensiveftaut wery vague
work on programming methods must be combined with the careful mathmhati
study of refinement to yield a practical approach.
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1. Introduction to the B Method

Ken A. Robinson

1.1 Machines

In the B Method [2], subsequently referred toBaghe specification, design — here
calledrefinement- and implementation phases of software development are repre-
sented by sets dbstract MachinesA machine is an encapsulation of a state and a
set of operations; the state being determined by a set of variables. Tdt@ndor
describingAbstract Machiness known asAbstract Machine Notatioor AMN.

1.1.1 Machine Semantics and Generalised Substitutions

The constructs that determine and change the state of a machine arescélied
stitutions these correspond to what would be cal&dtementén a programming
language. The semantics of substitutions are defing@dmeralised Substitutions
The concept of a substitution arises as follows:

e in general, any construct that changes a machine can only do so by changing the
state, since the state is the only part of a machine that persists and geeabén

¢ the principal construct for changing the state of the machine is theleisabsti-
tution x := E, which changes the value of the variakléo the value of the ex-
pressiorE. This construction is recognizable as the assignment statement found
in all procedural programming languages. Ultimately all substitutadfect the
state through simple substitutions.

To define the meaning of a state changing construct we describe the reitggion
between thédeforeandafter states. This relation is defined by using predicates to
define sets of states. Suppose we have a substit8tibat is intended to cause a
machine to terminate in a state that satisfies the preditdten we specify the set
of states from which this can happen by the formalism

[SIR

The function[S is a predicate transformer that maps a predicate on the state after
Sto theweakespredicate that describes the set of posdildforestates. While the
notation is different, this concept is analogous to Dijkstra’s weakestqordition
concept [22].

For the simple substitution:= E we have
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Description Substitution] Semantics
Simple xx:=E | xx:=E]JR & R[E/xX
Skip skip [skipR< R
Choice from set XX:€ S [xx:€ SR < [@xX.
xX € S=> xx:=xX|R

Choice by predicate  xx: P [xx: PIR < [@xX.

[xx:=xX]P = xx:=xX]R
Multiple xxyy:=E,F|[xxyy:= E,FIR< RE,F/xx yy|
Sequential G;H [G;H]R < [G][HIR
Preconditioned P|G [P\G]R@ PA[GIR
Guarded P—G |[P=GR< P=[GR
Alternate G[|H [G[|H]R < [GIRAH]R
Unbounded choice @zz(G) |[@zz(G)|R < Vzz ([GIR)

wherexx, yy are variablesk, F are expressionsSis a setP, R are predicates; an@, H are
substitutions.

Table 1.1.Basic Substitutions

x:=EJR 2 RIE/X]
whereR[E /x| denotes the substitution Rof the expressiok for all free instances
of x. Hence the terminologgubstitution

Table 1.1 shows the basic substitutions. The table is dividedwm parts: the
first part shows the basic substitutions for assigning a valusgmomore variables;
and the second part shows the basic compositions of substitutions.

For the specification of large substitutionsparallel composition is available:
S1 || & is the parallel composition &; andS. The basic form of parallel compo-
sition is the composition of simple substitutions:

xx:=E||yy:=F =xxyy:=E,F

Parallel compositions of more complex substitutions can be exprassemmposi-
tions of the generalised substitutions shown in Table 1.1.

Extended Notation. The preceding substitutions are the basic substitutions, but an
extended notation is generally used when defining machines. This extertdédmo
has a morgrogrammaticappearance, looking similar to the constructs found in
programming languages, but these extended constructs are defined in fi¢hes o
basic substitutions. There is quite a large variety of the extermieasf and some
of them are given in Table 1.2 on the facing page.

The notation displayed in Tables 1.1 and 1.2 on the next page is thieatidn
form. Generally, when writing the source of machines an ASCII notasarsed.
Table 1.3 on the facing page shows the ASCII equivalences for sulmstgwhere
they are substantially different from the publication form.

The presentation of machines here will use the publication form.
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Extended form Definition

BEGIN G END G

IF P THEN G ELSE H END (P=G)[|(-P=H)

IF P THEN G END IF P THEN G ELSE skip END
CHOICE GORH END G|:|H

SELECT P THEN G WHEN ...
WHEN QTHENH END | P= G[]...[Q=H

VAR zIN G END @z(G)

ANY zWHERE P THEN GEND | @z(P=G)

LET xBEx=EINGEND @x.(x=E = G), wherex\ E
WHILE PDO G

VARIANT V INVARIANT | END | see 1.1.1

wherez denotes a list of variableg;denote single variable; amddenotes a list of integer
expressions.

Table 1.2.Extended Notation

Publication form| ASCII form

X:€S X S
P=G P ==>0G
G[H G []H

Table 1.3.ASCII Equivalent Notation

The While-Loop Substitution. The while-loop construct shown in Table 1.2 has
four components:

P: a controlling predicate on the machine state;

S asubstitution;

V: an arithmetiozariant expression, which is a function of the machine state;
I: aninvariantpredicate on the machine state.

The while-loop is not given a simple substitution semantics. Thisecause the
substitution semantics would involve a least fixed point computatitstead, an
approximation is used. Given the following loop:

WHILE P DO SVARIANT V INVARIANT | END
the following obligations must be proved for some predic¢te

IANP=[9I
I=>VeN
AP = [n:=V][F(V <n)
-PAl =R

wheren is anewvariable, that is a variable that is not one of the state variables.
If these obligations are discharged then

| = [WHILE P DO SVARIANT V INVARIANT | END] R
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1.1.2 Set Theory and Types

The basis for the mathematical models used in B is set theory. The mathematical
toolkit models relations — and subsequently functions and sequences s ad set
pairs. The following definitions of relations and partial functialigstrate the set-
theoretic modelling and the notation.

Construct Publication ASCII Definition
Relation ST S <>T S&T=P(SxT)
Partial function| ST S+>T [ SwT={r{reSeTAr LrCidT)}

A complete table is given in Sec. 1.7 on page 33 at the end of this chapter.

1.1.3 TypesinB

Variables inB are strongly typed. This is despite the superficial appearance of it
being typeless. Explicit types are not given at the point of declarativaridbles —
unlike most strongly typed programming languages. Instead, thareeguirement
that invariants, preconditions and quantifiers must contaonstrainingpredicate
for each variable or operation parameter. A constraining predicate for ttableti
has the formxe S xC S, xC S, orx= E, wherex\ S, x\ E.
The meta-predicatg\ E (“z not free inE”) means that none of the variables in
z occurfreein E. This meta-predicate is defined recursively on the structuig, of
but we won't do that here. The base cases akd¥z.P), z\ (3z.P), z\ {z| P},
z\ (Az.(P| E)), and—(z\ 2).
For the quantifiers:
Vz.(P=0Q)
3z.(PAQ)
{z|P}
Uz. (P|E)
ﬂz. (P|E)
>z.(P|E)
Nz.(P|E)
and the lambda expression:
Az.(P|E)

the predicat® must constrain the variablesanAdditionally, the predicat® in the
substitutionx: P must constrairx.

1.2 Specification

In B, specifications are presented as (top-level) machines. The machines present a
mathematical model of the required behaviour. There are some constngiatsad
on these machines:
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MACHINE  SquareRoot

OPERATIONS

sqrt«<— SquareRodtxx) =

PRE xxeN

THEN
ANY  yy
WHERE yye N A square(yy) < XxA xx < square(yy+ 1)
THEN  sgrt:=yy
END

END

DEFINITIONS
square(x) = XX X
END

Fig. 1.1.A Square Root Machine

o the WHILE substitution may not be used;
e sequential composition may not be used; only parallel compositioraitable.

To illustrate, we will present two machines.

1.2.1 The Square Root Machine

TheSquareRoamachine, Fig. 1.1, is a stateless machine (no variables) with a single
operation that computes the natural square root of a natural numbegsThinotice
about this machine are:

e The name of the machine &juareRoot

e The machine has a definition section defining a simple msguare

e There is a single operation nam8duareRootThis operation has a single pa-
rameterxx of type N (natural number), and returns a single ressdjit also of
typeN.

e The result of the operation is defined by the non-deterministic chéiteewari-
ableyy to satisfy a predicate, which says thatis the largest natural number
whose square does not exceed

Note carefully.For technical reasons machine variable names must contain at least
two characters. Variable names containing only one character, as for exanipe in t
definition ofsquare arejokersand represent an arbitrary expression.

1.2.2 The Unique Identifier Machine

As an example of a different machine, Fig. 1.2 on the following pagevsthbe
specification of a machine that can be used to allocate a unique identifier fem a
Things to notice about this machine are:
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MACHINE  UniquelD ( maxids)
CONSTRAINTS  maxidse Np

SETS IDS

PROPERTIES card (IDS) = maxids
VARIABLES usedIDS

INVARIANT  usedIDSC IDS
INITIALISATION usedIDS= {}

OPERATIONS

newid<— allocID =

PRE usedIDS# IDS

THEN
ANY  nid
WHERE nid € IDS — usedIDS
THEN

newid:= nid || usedIDS= usedIDSU { nid }

END

END,

nids«— FreelDS =
BEGIN
nids:= card ( IDS — usedIDS)
END

END

Fig. 1.2.A Unique Identifier Machine

e The machine has a parameter, which is a non-zero natural number representing
the maximum number of identifiers that may be allocated. The constraititéson
parameter are specified in the machir@@NSTRAINTSection.

e The machine has an abstract H86 specified in theSETSsection. Somewhere
between specification and implementation this set will have to be instahtiat
to some set of natural numbers. The constraints on this set are speciffesl in
PROPERTIESection.

e The machine has a state determined by a single vane#dIDS defined to be
a subset ofDS in the INVARIANT section. This variable models the identifiers
already allocated, and hence is initialised to the empty set.

e The machine has two operatiom#loclD which returns an unused identifier, pro-
vided that not all identifiers have been allocated; &mekIDSthat returns the
number of identifiers remaining to be allocated. This operation is reqtoreal
caller ofallocID to ensure that the precondition is satisfied.

¢ The specification adllocID uses non-deterministic choice from the set of unused
identifiers.
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1.3 Refinement

Refinement is the term given to the process of taking a specification theosgh
guence of design steps towards implementation. Very sinipily,refined byQ if
Q is a satisfactory replacement fBrin any situation in whichP is defined. Notice
that this does not mean th@tis equivalent td?; it may be that the behaviour &f
is non-deterministic, an@ discards some of the non-determinism.

In general, a distinction is frequently made betweerceduralor algorithmic
refinement, in which only the algorithmic component of an operation isedfiT his
is like changing the algorithm. The other form of refinemerdasarefinement, in
which the state of the machine is also changed, that is, we choose a nefv set o
variables to model the behaviour, and of course we have to change thigheifgas
well.

The formal definition of refinement iB does not distinguish between procedu-
ral and data refinement, but to illustrate these two aspects of refinementiwevi
examples that illustrate the distinction.

1.3.1 Procedural Refinement

To illustrate procedural refinement we will refine the operation inShaareRoot
machine. Any refinement of tfequareRoobperation is clearly procedural refine-
ment as this machine has no state. The specification abthumreRoobperation
is declarative in that it simply asserts the property that the resulilghreatisfy,
and does not give any hint as to how the result can be computed. Thedjstfst
refinement suggests an algorithm for computing the result. There aresuenyal-
gorithms of which we will suggest only one here, and we will also giome idea
of where the algorithm comes from.

In the specification machine we choose the value of the varjghitesatisfy the
predicate

squargyy) < XxAxx< squargyy+ 1)

This choice cannot be made simply, as the value chosen has to satisfy fwoatsn
Thus we need an implementation strategy. We can observe that is relativelpeasy
choose a value that satisfies either conjunct, so a possible stratamyse two
variables. We represent the two argumentsgoarein the above predicate by two
different variables, as in

squargyy) < XXAXx < square€z2)

then we can suggest an algorithm in which we choose arbitrary initial vidugyg
andzzthat satisfy the above predicate and then mogifand zz maintaining the
above predicate and moving the valuegpandzzcloser together untify+ 1= zz
At that pointyy will satisfy the specification.

The refinement is shown in Fig. 1.3 on the next page.
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REFINEMENT  SquareRootR
REFINES SquareRoot

OPERATIONS
sgrt«— SquareRodtxx) =
ANY  yy,zz
WHERE yye NAzze NA
sqinv( xx, yy, zz) A

zz=yy+1
THEN
sqrt:=yy
END
DEFINITIONS

square(x) = XX X,
sqinv(x,y,z) = y<zAsquare(y) < XA X< square( z)

END

Fig. 1.3.Square Root Refinement

1.3.2 Data Refinement

In contrast to the refinement ddquareRogtwe will present a refinement of
UniquelD in which we change the representation of the state. The refinement of
the state of a machine is determined by the operations that need to betedppe
distinct from the operations that might be supported. In many casexptrations

do not need the full capability of the abstract state and a concrete state cam-be ch
sen that discards some of the abstractions. In the case bhiln@elD machine we
make the following observations:

e The abstract sdDS could be replaced by the set of natural numbenmaxids
We then know that identifiers are actually natural numbers.

e We don't need to allocate identifiers non-deterministically, we couldcati®
them sequentially starting from 1.

¢ Since there is no operation by which identifiers can be returned, we caragémul
the set of used identifiers very simply: we simply need a natural numbiabler
that records the last allocated identifier. Then if that varialbesi$D theusedIDS
set is implicitly 1.lastID.

The refinement is shown in Fig. 1.4 on the facing page and the follofeatyres
should be noted:

e The abstract sefDS is instantiated to the set.lastID in the PROPERTIES
clause.

e The machine has a single varialdstID whose type i€, given in the INVARI-
ANT section.



REFINEMENT  UniquelDR

REFINES UniquelD

PROPERTIES IDS=1.. maxids

VARIABLES lastID

INVARIANT  lastlD € N A usedIDS=1.. lastiD
INITIALISATION lastiD:=0

OPERATIONS
newid<— alloclD =
BEGIN
newid:= lastID + 1 || lastID:=lastID + 1
END,
nids+— FreeIDS =
BEGIN
nids:= maxids— lastID
END

END

Fig. 1.4.Unique Identifier Refinement
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e The INVARIANT not only specifies an invariant on the state of the regnima-
chine, but it also expresses the refinement relation between the state mgthis
chine and the state of the refined machine. The refinement relation shows how
therefiningmachine models theefinedmachine. In this case, the setedIDSs

simulated by the set.1lastID.

e The INITIALISATION establishes the invariant.

e The operations are now expressed as simple deterministic computations

1.3.3 Refinement and Non-Determinism

While both specification machines use non-determinism in the defirofigheir

operations, the uses are quite different:

1. The result of theSquareRootperation is defined using non-deterministic
choice, but in that case there is only one possible value. In this case we are
using non-determinism to achieve an abstract expression of the regnitem
in order to avoid irrelevant details that would be introduced if a contve

definition were given.

2. The non-deterministic choice used in the specification of the opetariD
does result in a large number of different behaviours, all of which are accept

able.

In the case of 1) above, refinement consists of devising an algorithm thabm-
pute the required result. Any algorithm — ignoring possible penmce require-
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ments — will do. In this case the verification of refinement is concerned hitivisg
that the result is consistent with the specification.

In the case of 2) above, the situation is different. Not only do we neddgign
an algorithm, but we need to deal with the non-determinism.

We will deal briefly with the formal definition of refinement and how it deals
with non-determinism. We will take a very simple example in whichhage non-
determinism of the second kind, but in which only procedural refinemeint-is
volved.

Consider a coin flipping operation. We have a set

COIN = {HEAD, TAIL}
and an operation that flips the coin
y«+— flip=y:eCOIN

Notice that the result of thilip operation is specified as non-deterministic choice
from a set.

Now suppose that we refine tiig operation using exactly the same definition.
Is a coin flip refined by any other coin flip?

Let us do a very simple investigation of the formalisation of refinemafetwill
deal only with refinement between substitutions and we will restrict ibrudsion
to substitutions that are total, ie. preconditibRUE

Suppose we have two substituticBsandH and we wanH to be a refinement
of G. Suppose that each GfandH returns a resuly. In order to distinguish the two
results we will rename the result bfto y’ and hence also changkto H' in which
all instances ofy are replaced by'. We assume that is a new variable. Our first
guess, from the replacement argument above, might be to say that themofafiti
refinement is the condition under which b&handH’ achievey =y, that is

H(Clly=Y))
Let’s just try that withG =y :=2xxandH =y :=x+X.

Y i=x+xXy:=25(y=Y)
=y =x+xX(2xx=Y)
=2xX=xXx+x=TRUE
Now try it on the non-deterministic choice in oflip operation. Let us first
compute the substitution difp for any predicatdr.
[y:€ COINIR
=[@y.(Y eCOIN=y:=Y)|R)
=VY.([y e COIN=y:=¥Y]R)
=VY.(y eCOIN= [y:=Y]R)
= [y:=HEADRA[y:=TAILR

So the condition foflip to refineflip is



1.3 Refinement 13

[Hip')([fliply =)
— [y :€ COIN]([y:€ COIN|(y = y'))
= [y :€COIN](HEAD=Y ATAIL=Y)
=HEAD=HEADATAIL=HEADA
HEAD=TAILATAIL=TAIL
= FALSE

The problem we have here is due to the non-determinism. Our conddr re-
finement is insisting that the two machines produce the same resuissisTioo

strong for our notion of refinement. While we may be able to disisigbetween

two different coin flips, we normally would accept one coin flip as an acceptable
replacement for any other coin flip. If we were to compare the results of each we
would only want to insist that the result produced by the refinementcoave

been produced by the refined machine. The result for refinement is weakened to the
following

[H](=[C]~(y=Y))

Notice thafS R specifies the set of states in whiSis guaranteed to produce a state
satisfyingR. Thereford§—R specifies the set of states in whilis guaranteed to
produce a state satisfyingR. Hence,~[§-R specifies the set of states in which it
is not possible foSto produce a state satisfyingR, ie. the set of states for which
it is possible, but not guaranteed, f6to produce a state satisfyirig) That is the
precondition we are interested in for non-deterministic operations.

If you evaluate the new condition for thp machines you will find that the
condition reduces tdRUE

In conclusion, the notion of refinement tHatsupports is that for any state for
which an operation of the refined machine is defined, then the same operation in
the refining machine must do something that is consistent with thedcbfirachine.

In any state for which an operation in the refined machine is not definedathe s
operation in the refining machine can do anything. Behaviour includeksesud
also changes of states interpreted according to the invariant in the refinittgma.

If an operation of the refined machine could produce more than one resit, i
is non-deterministic, then the corresponding operation in the refimischine must
produce a result that the refined machine could possibly produce. Invetinds,
the result must not be one that the refined machine can never produce.

There are a number of refinement obligations defined wiBhife will give
just one case that will allow us to discuss the refinemerigifjuelD. Consider
a machineM with operations that are parameterless, but which return a result, as
characterised below:
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MACHINE M
VARIABLES V

INVARIANT |
OPERATIONS
R+— Op=
PRE P
THEN S
END
END

and that this is refined by:

REFINEMENT Mg
REFINES M
VARIABLES W
INVARIANT IR

OPERATIONS
R+— Op=
PRE Pr
THEN SR
END
END

then the refinement obligation for the refined operation is
INIRAP = PR/\[Sq](—![S](—!(lR/\R':R))) (1.2)

whereS; = [R:=R]S:.
Condition ( 1.1) splits into two requirements:

I AIRAP = Pr (1.2)

INRAP = [S](-[S/(~(IRAR =R))) (1.3)
If Sis a deterministic substitution, then condition ( 1.3) can be sfiaglto

INRAP = [SI([S(IRAR =R)) (1.4)
Informally:

e condition (1.2) requires that the precondition of the operationtistnengthened;

e condition ( 1.3) requires the new substituti§nto maintain the simulation dfig
under the refinement relation embeddetkinAs well, there is a requirement that
this condition holds only where the two result values are the same.

Since both machines contain the variaBlgt is necessary to rename one of them,
and we rename the result variable in the refining machiri.tdlotice that we are
using a substitution on a substitutidR,:= R]S; to change the name of a variable
— or more generally a number of variables — in a substitution.

A toolkit will, of course, generate all proof obligations automaticaike will
apply the above refinement condition to @idkoclD operation.



IMPLEMENTATION UniquelDRI
REFINES UniquelDR

IMPORTS  ID_Nvar ( maxids)
INVARIANT  lastID = ID_Nvar

OPERATIONS
newid<— alloclD =
BEGIN
ID_INC_NVAR;
newid+— ID_VALNVAR
END ;
nids<— FreeIDS =
VAR Il
IN

Il +— ID_VALNVAR;
nids := maxids— Il
END

END

Fig. 1.5.Implementation of the Unique Identifier Machine

1.4 Implementation

Implementation irB is a special refinement step. There can be as many refinement
steps as you wish, and then at any stage you can decide to implement. This step can
be done only once for each development, and the implementation machireias s

very strong constraints:

1.4 Implementation

¢ The implementation machine has no state of its own.
e To implement the operations, the implementation machine must imploetr o

(specification) machines.

e Any parameters of imported machines must be instantiated in the IMPORTS

statement.

15

e The operations of the machine may not directly modify, or reference aryeof t
variables of the imported machines. All interrogation or modificatiothefstate
must be achieved by using operations of the imported machines.

¢ Implementation machines cannot use abstract substitutions like neriieistic

choice and parallel composition.
The purpose of these constraints is

1. to ensure that the implementation is dependent only on the specifioatitrer

machines and not on their implementation.
2. to ensure that the implementation is concrete.

An example of a simple implementation is shown in Fig. 1.5. Thie¥ahg feature

of the implementation should be noted:
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7]

@ Reflne< Refines REF Implemen IMP

Fig. 1.6.Layered Development

e The imported machintD _Nvar is a renamed instance of a natural number vari-
able machine. The prefiXD_" identifies this instance of the machine. The ma-
chine encapsulates a single natural number variédl®&Jvar and a set of natural
number operations.

e The parameter of thBlvar machine sets the upper bound for values of the vari-
able.

¢ ID_INC_NVARIincrements the value ¢éD_Nvar.

¢ |ID_VALNVARreads the value dD_Nvar.

e Operations may have local temporary variables.

Note: the machineRenameNvar is a machine available in the standard
library of the B-Toolkit. If the reader has access to a toolkit, then that o
similar machine should be available. The standard library of thodkit®o
will contain a range of machines that are useful for the implementation of
various mathematical and programming constructs.

1.4.1 Layered Development

Machines that are imported into an implementation may be already implemented, as
is the case of thBlvar machine imported into theniquelDRImachine, or they may
be newly invented machines specified for the purpose of enabling thisrimepta-
tion. In the latter case the new machine will have to be refined and imptedhen
This process continues, layer by layer, until all the lowest level impléatiens de-
pend on machines that have been implemented. This leads to a development patter
that has become known ksyered developmenitayered development is illustrated
in Fig. 1.6.

The implementation of thBquareRoomachine illustrates this layering. The im-
plementation shown in Fig. 1.7 on page 18 illustrates an approach termepling
WHILE substitutions. The constraint from the refinement machine

SN XX, YY,z2 Azz=yy+1
is broken into two conjuncts:
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1. sqinxx,yy,z2 is satisfied by the initialisation of the local variablgsandzz
Itis also the main part of the loop INVARIANT.

2. The while-loop is used to satisfy the other conjurt yy+ 1, by modifying
the values offy andzzunder the constraint of the loop INVARIANT.

3. The modification of the variablgy andzzis assigned to an operation of a new
machine shown in Fig. 1.8 on the following page.

This strategy allows us to explore different approaches to “moyyrandzzcloser
together”, if we were interested.

Having introduced thé&quareRootUtilsnachine, we first refine it to the ba-
sic algorithm we wish to use, in Fig. 1.9 on page 19. The final impleatiom in
Fig. 1.10 on page 19 has only one small change: the refinement of the ®mpres
ww ww < xx to ww < xx/ww. The former expression is the one that most directly
expresses our requirement, and we could have refined directly to an impégioent
containing that expression, but if we did then the implementatiordvoa flawed.
Since this expression contains a multiplication it is possiblé toroverflow, and so
we replace the expression by another that meets our needs and, which wilenot
flow. In using the refined expression we need to be surenthvgt 0. This is assured
by the precondition of th€hooseNewApprosperation in the&squareRootUtilsna-
chine. How?

Note: we should take care with all arithmetic operations and there is a pair of
machinesScalarTYPEand Scalar TYPEOps that specifies the common natural
number operations. We should have used these machines in the impléomeoftat
our square root machines, but this would have involved introduttia @ CALAR
type early in the development.

1.4.2 Proof Obligations

There are proof obligations associated with each machine in a developrhesée T
address the following concerns:

e Context:proof that sets satisfying specified constraints and properties exist.

¢ Maintenance of invariantproof that the invariant is established by the initialisa-
tion and maintained by the operations.

e Satisfaction of refinement relatioproof that refinement and implementation ma-
chines satisfy the refinement constraints.

¢ Preconditions;proof that preconditions for any invoked machine operations are
satisfied.

The discharge of proof obligations is a vital part of the B Methodke Phoofs
document the case for your development. If proof obligations are isoharged
then, except for the added rigour in specifying machines, there isdiglgficant
difference between developing in AMN and in some other programming &geu
If a toolkit is used then the proof obligations will be generated aatorally, and
there will be substantial assistance given to the proof of thosgathiins. That as-
sistance will include automatic proof and various forms of interagtio®f, during
which you will be required to specify new proof rules.
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IMPLEMENTATION SquareRootRI
REFINES SquareRootR
IMPORTS  SquareRootUtils

OPERATIONS
sgrt«— SquareRodtxx) =

VAR vyy,zz

IN  yy:=0,;
zz2=(xx+1)/2+1,
WHILE  yy+1#2z
DO vy, zz+— ChooseNewApprokxx, Yy, zz)
INVARIANT  yye N A zze N A sqinv(xx, yy, zz)
VARIANT 2z—yy

END ;
sqrt:=yy
END
DEFINITIONS
square(x) = XX X,

sqinv(x,y,z) = y<zAsquare(y) < XA X< square( z)
END

Fig. 1.7.Implementation of the SquareRoot Machine

MACHINE  SquareRootUtils

OPERATIONS

yy, zz<— ChooseNewApprégxx, yy0, zz0) =
PRE xxe NAyyOe NAzz0e NA
sqinv( xx, yy0, zz0) AyyO+ 1< zz0 THEN
ANY  ww
WHERE wwe NAyy0<wwAww< zz0 THEN
SELECT

sqinv( xx, ww, zz0) THEN vy, zz:=ww, zz0

WHEN

sqinv( xx,yy0,ww) THEN vyy,zz:=yy0, ww

END
END
END

DEFINITIONS

square(X) = XX X,
sginv(x,y,z) = y<zAsquare(y) < XA X< square(z)

END

Fig. 1.8.Square Root Utility Machine



REFINEMENT  SquareRootUtilsR
REFINES SquareRootUtils

OPERATIONS

yy, zz+— ChooseNewApprgxx, yy0, zz0)

VAR ww IN

ww:= (yy0+ zz0) /2,
IF wwx ww < XX

THEN  yy:=ww, zz:=zz0
ELSE yy:=yy0, zz.=ww
END

END

END

Fig. 1.9.Square Root Utility Refinement

IMPLEMENTATION SquareRootUtilsRI
REFINES SquareRootUtilsR

OPERATIONS
Yy, zz<— ChooseNewApprdxx, yy0, zz0)

VAR ww IN
ww:= (yy0+ zz0)/ 2,
IF ww < xx/ww
THEN  yy:=ww, zz:=zz0
ELSE yy:=yy0, zz:=ww
END

END

END

Fig. 1.10.Square Root Utility Implementation

I

IR
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Using the B-Toolkit, the square-root development generated 17 jolaafa-

tions, of which 4 required interactive proof.

Figure 1.11 on the next page presents all the proof obligatiortséamiquelDR
machine shown in Fig. 1.4 on page 11. In each proof obligation thewoigy ab-

breviations are used for parts of the hypotheses:

cst(mch) constraints: the predicates of tS®NSTRAINT8lause of machinench
ctx(mch) context: predicates of ttRROPERTIE8lause of machinenchand sub-

ordinate machines;

inv(mch) invariant: predicatefNVARIANT clause of machinenchtogether with

abstract/concrete equalities of any algorithmically-refined variables;

asn(mch) ASSERTIONSf machinemch
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Initialisation . 1

cst( UniquelDR1 ) A ctx ( UniquelDR7 )
=
0eN

Initialisation . 2
cst( UniquelDR1 ) A ctx ( UniquelDR7 )

=
}=1..0

alloclD . 1

cst( UniquelDR1 ) A ctx ( UniquelDRy ) A
inv (UniquelDR; ) A asn( UniquelDR1 ) A
pre (alloclD )

=
lastID 1 + 1 € IDS — usedIDS

alloclD . 2

cst( UniquelDR1 ) A ctx ( UniquelDR1 ) A
inv (UniquelDR1 ) A asn( UniquelDR1 ) A
pre (allocIlD )

=
lastiD; +1e N

allocID . 3

cst( UniquelDR1 ) A ctx ( UniquelDRy ) A
inv (UniquelDR; ) A asn( UniquelDR1 ) A
pre (alloclD )

=
usediDSJ{lastiD;+1}=1..lastiD; + 1

FreelDS. 1

cst( UniquelDR1 ) A ctx ( UniquelDR1 ) A
inv (UniquelDR1 ) A asn( UniquelDR1 ) A
pre ( FreelDS)

=
maxids— lastID 1 = card (IDS — usedIDS)

Context. 1

cst( UniquelDR1)
=
card (1.. maxids) = maxids

Context. 2

cst( UniquelDR1)
=
card (1.. maxids) € Ny

Fig. 1.11.Proof Obligations for th&niquelDRMachine
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allociD . 1

1 cst(UniquelDR1) HYP

2 ctx(UniquelDRy) HYP

3 inv(UniquelDR1) HYP

4 asn(UniquelDR1) HYP

5 maxidse Np 1,HypExp.7

6 IDS=1.. maxids 2,Props.1

7 usedIDS=1.. lastID 1 3,HypEXxp.6

8 lastiD; € N 3,HypExp.5

9 inv (UniquelD) 3,HypExp.3
10 maxidsc N 5,Law.1

11  usedIDSC IDS 9,HypExp.1
12  pre(allociD) HYP

13 - (usedIDS= IDS) 12,HypExp.2
14 1<lastiD; +1 Law.2

15 usedIDSC IDS 11,13,UsersTheory.1
16 lastID 1 < maxids 7,6,15,UsersTheory.2
17 lastiD 1 + 1 < maxids 8,10,16,Law.3
18 lastiD; + 1€ 1.. maxids 14,17,Law.4
19 lastiD; + 1€ IDS 18,6

20 1eN Law.5

21 0<1 ARI

22 leN; 20,21,Law.6
23 lastiD1 < lastiD; + 1 22,8,Law.7
24 —(lastiD1+1e1..lastiDq) Law.8

25 - (lastlID 1 + 1 € usedIDS) 24,7

26 lastiD 1 + 1 € IDS — usedIDS 19,25,Law.9
27 QED DED

Fig. 1.12.Proof ofallocID.1 for the UniqguelDRMachine

UsersTheory 1

SCTA-(S=T)
=
SCT
UsersTheory 2

S=1.mAT=1..nASCT
=
m<n

Fig. 1.13.User Theaories for Proof afllocID.1

21
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pre(opn) precondition of operationpnin this machine.

For the machin&JniquelDR all of the above are empty except ttts, inv andpre
components.

It should also be noted that a subscripted name, &ssthD;, is a reference to
the value associated with that nabveforethe operation.

As an exercise, the reader should compute condition ( 1.3 on page 1#gfor t
operationAllocID and compare with the proof obligations labellgitbclID.1, al-
locID.2 and allocID.3. Substitution distributes through conjunction and in most
cases this allows a proof obligation to be separated into a number désiofgiga-
tions. It should be noted that

e allocID.1is generated from thR = R’ conjunct in condition ( 1.3 on page 14).
The result of the operation idniquelDis nid, andnid in that machine is spec-
ified by non-deterministic choiceid :€ IDS — usedIDS In the UniquelDRma-
chine the result isastID1 + 1. Thus this condition is a reflection through to the
refinement from the non-deterministic choice in the abstract mathimelD.

¢ allocID.2 is generated from thiastID € N conjunct of the invariant of the ab-
stract machin&niquelDR

¢ alloclD.3is generated from thesedIDS= 1..lastID conjunct ofUniquelDR

A proofofallocID.1lis shown in Fig. 1.12. This proof was produced interactively
under the B-Toolkit. The two user theories, shown in Fig. 1.13henpage before,
were required.

1.5 An Extended Example

A more extensive example will now be given that demonstrates a lorgyeiap-
ment sequence and more of the facilitiesBxf The example presented below is
adapted from an example in J.P. Hoare [40].

1.5.1 A Simple Data Queue Machine

The DataQueuenachine models the problem of retaining the chronological order
of registration of some customer data or information, given thabousts’ informa-

tion may be added to or deleted from the existing collection of data. Weshtloid

by having a set of tokeng OKEN) that represents the set of data objects. The data
attributes of each object are modelled by a partial function fi@¥KENto DATA

The sequencing is modelled by an injective sequence of tokensDateQueue
machine is parameterised by three itelDATA: a non-empty set representing the
data in the queugnydata:an element of that setnaxqueuea non-zero constant
representing the maximum number of elements in the queue. The parameters remai
uninstantiated until the machine is imported into some other machine.

MACHINE  DataQueug DATA, anydata, maxqueug
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CONSTRAINTS anydatac DATAA maxqueue> 0
SEES BoolLTYPE

SETS TOKEN

PROPERTIES card (TOKEN) = maxqueue
VARIABLES TokenSeqTokenMap

The state consists of two variableBokenSegrepresenting the (consecutive) sequence
of tokens or identifiers, antiokenMap which represents the relation between members
of the TokenSeaqnd data items associated with it. The precise meaning ektheo
variables is given in the machindBVARIANT The first conjunct constrainBokenSeq

to be an injective sequence to ensure that any token occaresitonce in the sequence.
The second and third conjuncts constrailkenMapto be a total function from all tokens

in the sequenc&okenSetp DATA As noted earlier, this allows each token to be uniquely
identified with a data item, but each data item may have mane time token associated
with it.

INVARIANT

TokenSeg iseq ( TOKEN) A
TokenMap= TOKEN -+ DATAA
dom ( TokenMap) = USED

INITIALISATION
TokenSeq TokenMap= [ ], {}

The operations of the machine follow. Some of these operativay succeed or fail, so
any specification and implementation might take this intocoaat. For example, adding
an item may fail because there can be no more tokens allocBitéslis a direct result
of the B-Method insisting on specifying finite sets. An atfgrto delete an item that is
not currently in the queue is regarded as benign and so waetillegard deletion as an
operation that can fail. Returning the oldest item can faiiére are no items to return.

OPERATIONS

success token<— Addltenf item) =
PRE iteme DATA THEN
CHOICE
ANY  newtoken WHERE  newtokenc TOKEN— USED
THEN
TokenSeg= TokenSeg— newtoken ||
TokenMap( newtoken) := item ||
success token:= TRUE, newtoken
END
OR
success= FALSE || token:c TOKEN
END
END,
Deleteltenjtoken) =
PRE tokene TOKEN THEN
IF tokenc USED THEN
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ANY  before, after
WHERE  beforec seq; (TOKEN) A after € seq; (TOKEN) A

TokenSeg- before™ [ token] ™ after
THEN

TokenSeg= before™ after ||
TokenMap = { token} < TokenMap
END
END
END,
success token+— Oldestltem =
IF USED#{} THEN
success token:= TRUE, first ( TokenSeq
ELSE
success= FALSE || token:e TOKEN
END,
item<+— ItemDatq token) =
PRE tokene USED THEN
item:= TokenMap( token)
END

DEFINITIONS
USED = ran ( TokenSeq
END

I

1.5.2 Refinement of the Data Queue

We will refine theDataQueuamachine to an implementation. As noted above, to do
this we will have to import one or more machines which provide opmrathat can

be used to simulate the operations of the refined machineDat@Queuanachine
could be refined to an implementation using standard machines in the lidfrary
toolkit, but we will take the development via a different, and somawfanciful,
route. Instead of refining the sequence using a sequence machine we wil refin
using a “doubly-linked list” machinedList) as shown in the following refinement.

IMPLEMENTATION DataQueuelmp
REFINES DataQueue

SEES BoolLTYPE

IMPORTS DList ( DATA, anydata, maxqueuetr 1)
PROPERTIES ITEM = TOKEN

INVARIANT

dom ( TokenMap) = dom ( Contents) — { Anchor} A
Vii . (ii € dom ( TokenSeq =

TokenSedqii ) = Next' (Anchor)) A
v token. (tokene ran ( TokenSeq =

TokenMap( token) = Contentq token) )

OPERATIONS
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success token<— Addltenf item) =
BEGIN
success token<— List Append( item)
END,
Deleteltenjtoken) =
BEGIN
List Delete( token)
END,
success token+— Oldestitem =
VAR  isempty
IN  isempty«— List.Isempty;
success— NEG.BOOL (isempty) ,
token<— List Head
END,
item<+— ItemDatq token) =
BEGIN
item<— List.Info ( token)
END

END

1.5.3 The Doubly-Linked List Machine

The importedDList machine specifies a doubly-linked list of items taken from a
setITEM. The start of the list is denoted by a variaBlechor, and items in the list
have forward and backward “pointer&lextandPrevious The content of each item
in the list is established by a function that maps items to values indhenpetric
setINFO. The refinement is based on the following relations extracted from the
DataQueuemplementation:

There are three important points to note:

¢ IntheIMPORT clause, the parameters of tB&ist machine are instantiated.

¢ In the PROPERTIESlause, the deferred s€TEM of the DList machine is
equated to the deferred SEDKEN of the DataQueuanachine.

e In the INVARIANT clause the state of tHeataQueuemachine is related to the
state of theDList machine.

The DList machine provides the abstract operations of appending, and deleting
an item from a doubly-linked list, as well as operations to allow checlorget if
the list is empty and returning the first item in the list. The machimparameterised
by INFO, a set of items that represents the information content of each list item.
These list entries are associated with three separate “pointer” functioe$oiothe
information content, one for the forward link to the next item ia list, and one for
the link to the previous item in the list. This may be done in adolevel machine
which is imported in the implementation BlList. Our specification deals only with
the operations allowed on the items in the list (as well as giving iawsiand
assertions about the list and associated entries). The modelling ajubéyeinked
list structure is discussed in the following specification.
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MACHINE  DList ( INFO, anyinfo, maxitemg
CONSTRAINTS anyinfoe INFO A maxitems> 0
SEES BoolLTYPE

SETS ITEM

PROPERTIES card (ITEM) = maxitems

The DList machine models a doubly-linked list. The list is formed frarset of ITEMS.
Each item in the set has the following attributes:

Contents the information associated with the item;
Next the successor item in the list;
Previous the predecessor item in the list.

The dummy itemAnchor has aNextvalue that points to the first item in the list, and a
Previousvalue that points to the lastitem in the list. The first itenthia list has @revious
link to Anchor and the last item in the list hasNextlink to Anchor. If the list is empty
then both théNextandPreviouslinks from Anchor point to itself.

The invariant expresses the following properties:

e every itemin the list has Wextand aPreviouslink, and each link points to a unique item,
henceNextandPreviousare bijective functions.

e if you follow a Nextlink and then immediately follow @reviouslink, you get back
to where you started; similarly foPreviousand Nextin the other order. Hence, both
(Next;Previoug and(Previous;Next) are the identity relation on the set UBEDitems.

e starting from theAnchor you can reach every item in the list by following ori¥{ext(or
Previoug links.

VARIABLES

Anchor,
Contents
Next,
Previous

INVARIANT

Anchore USEDA

Contentsc ITEM -+ INFO A
Nexte USED—» USEDA
Previouse USED—» USEDA

( Next; Previous) = id (USED) A
Next [ { Anchor} ] = USED

We can also express the doubly linked list properties byrasss.

ASSERTIONS

Vitem. (iteme USED=

Previous( Next( item) ) = item) A
Vitem. (iteme USED=

Next( Previous( item) ) = item) A
Vitem. (iteme USED=
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3ii . (ii €0..card (USED) A Nexti ( Anchor) = item))
INITIALISATION

ANY item,info WHERE iteme ITEM A info € INFO
THEN

Anchor:= item ||

Contents= { item— info } ||

Next:= { item— item} ||

Previous:= { item— item }
END

OPERATIONS

success newitemk— List Append info) =
PRE infoe INFO

THEN
IF  FREE# {}
THEN
ANY item WHERE iteme FREE
THEN
Contentq item) :=info ||
Next:= Next< { Previous( Anchor) — item,
item— Anchor} ||
Previous:= Previous< { Anchor— item,
item— Previous( Anchor) } ||
newiten= item ||
success= TRUE
END
ELSE
success= FALSE || newiteme ITEM
END
END ;

List Deletd item) =
PRE iteme ITEM A iteme USED— { Anchor}
THEN
Contents= { item} < Contents||
Next:= { item} < Next< { Previous(item) — Next(item) } ||
Previous:= { item} < Previous< { Next(item) — Previous( item) }
END ;
isempty«~— List.Isempty =
BEGIN
isempty.= bool ( Next( Anchor) = Anchor)
END ;
item+— ListHead =
PRE  Next( Anchor) # Anchor THEN
item:= Next( Anchor)
END ;
info +— ListInfo(item) =
PRE itemeITEM THEN
info := Contentq item)
END

DEFINITIONS
USED = dom ( Contents ,

27
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FREE = ITEM — USED
END

1.5.4 Implementing the DList Machine

When we implemented thBataQueuemachine by importing th@®List machine
we entered the layered development chain: we are required to impleméditigie
machine. As previously, we will choose to take the refinement a furtepr which
we will not complete here.

We will specify aNodemachine in Sec. 1.5.5 on the facing page, which is a
more general and less constrained machine thabtl&t machine. The refinement
relation between th®List machine and th&lodemachine is shown in invariant
below.

IMPLEMENTATION DListImp
REFINES DlList

SEES BoolLTYPE

IMPORTS

Node( INFO, maxitemg ,
AnchorVvar (NODE)

Notice that this machine also imports tiemameVvar machine from the standard library.
TherenameVvar machine provides a single variable of any type. In this daséristanti-
ation Anchor Vvar provides a variable that implements the variabiehor of the DList
machine.

PROPERTIES ITEM = NODE
INVARIANT

Anchor= AnchorVvar A

dom ( Contentg = AllocatedA

¥ node. ( nodee Allocated=- NodeContent§ node) = Contentg node) ) A
v node. ( nodee Allocated= NextNod€ node) = Next( node) ) A

¥ node. (nodee Allocated=- PreviousNodé node) = Previous( node) )

INITIALISATION

VAR  node

IN
node«+— SingleNodd anyinfo) ,
AnchorSTQVAR( node)

END

The refinement of the operationsBE.ist follow.

OPERATIONS

success newitemk— List Append info) =
VAR  anchor, newnode lastnode, ok
IN



1.5 An Extended Example 29

anchor<+— Anchor VAL VAR,
lastnode«— GetPreviouq anchor) ,
ok, newnode—— NewNod€ info, lastnode, anchor)
IF  ok=TRUE
THEN
SetNext lastnode, newnodse ;
SetPrevioug anchor, newnodé

END,

success= ok,

newitem= newnode
END,

~

List Deletd item) =
VAR prev, next
IN
prev«— GetPreviouq item) ;
next«— GetNex{( item) ;
SetNext prev, next) ;
SetPrevioug next, prev) ;
FreeNodd item)
END,
isempty«~— List.Isempty =
VAR  anchor, frst
IN
anchor<+— Anchor VAL VAR,
frst «+— GetPrevioug anchor) ;
isempty~— EqINode( frst, anchor)
END,
item+— ListHead =
VAR  anchor
IN
anchor<+— Anchor VAL VAR;
item<+— GetNext anchor)
END,
info +— ListInfo(item) =
BEGIN
info «— GetInfo( item)
END

END

1.5.5 The Node Machine

The Nodemachine specifies a low level construct that is more primitive than the
DList structure. TheNodemachine specifies a set of obje®N®DE, where each
object has three attributes:

NodeContents a value of typdNFO;
PreviousNode a reference to another node;
NextNode a reference to another node.

The attribute$reviousNodandNextNodéave been given names that will assist in
understanding how the node machine is used in the implementatior dbtibly-
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linked structure, but the attributes should have less specific namekdik and

Right A node is a quite general construct and the nodes are not constrained to be
connected in a linear sequence or in any other topology. The invariant dicitie
machine should be compared carefully with the invariant ofihist machine. The
nodes are constrained only so tRatviousNodandNextNodenust reference other
allocated items. The data model ldODE objects is specified through the variables
and the invariant of thélodemachine.

MACHINE  Node( INFO, maxnodée
CONSTRAINTS maxnode> 0

SEES BoolLTYPE

SETS NODE

PROPERTIES card (NODE) = maxnode
VARIABLES

Allocated,
NodeContents
PreviousNode
NextNode

INVARIANT

AllocatedC NODE A

NodeContents Allocated— INFO A
PreviousNode- Allocated— AllocatedA
NextNode= Allocated— Allocated

INITIALISATION
Allocated, NodeContentsPreviousNode NextNode= {} , {}, {} , {}

Implementation irB enforcedull hiding of imported machines, meaning that the refine-
ment is not allowed to reference directly any of the varialoithel MPORTEDmachines.
Hence, in many cases, machines must have operations fectirsg and modifying their
own variables. For th&lodemachine we have provided a reasonably complete comple-
ment of such operations:

SingleNodefor creating a singleton node
NewNodefor creating an extra node
FreeNodefor freeing a node

Getlinfa for retrieving the value of thinfo attribute
GetPreviousfor gettingPreviousNodettribute
GetNext for gettingNextNodeattribute
SetPreviousfor setting thePreviousNodattribute
SetNextfor setting theNextNodeattribute
EqINode for checking node equality

OPERATIONS
newnode— SingleNodginfo) =
PRE info € INFO A FREE# {}
THEN
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ANY node WHERE nodec FREE

THEN
Allocated:= AllocatedU { node} ||
NodeContent§ node) := info ||
PreviousNod€ node) := node ||
NextNodg node) := node ||
newnode= node

END

END ,

success newnode—— NewNodé€info, previous, next)
PRE info € INFO A previouse AllocatedA nexte Allocated
THEN
IF  FREE# {}
THEN
ANY node WHERE nodec FREE
THEN
Allocated:= AllocatedU { node} ||
NodeContent§ node) :=info ||
PreviousNod€ node) := previous ||
NextNodg node) := next ||
success newnode= TRUE, node
END
ELSE
success= FALSE ||
newnodec NODE
END
END ;
FreeNodé node) =
PRE nodec AllocatedA
node¢ ran ( { node} < PreviousNodg A
node¢ ran ( { node} < NextNodg
THEN
Allocated:= Allocated— { node} ||
NodeContents= { node} <1 NodeContents|
PreviousNode= { node} < PreviousNode||
NextNode= { node} <1 NextNode
END ;
info +— Getlnfd node) =
PRE nodec Allocated
THEN
info := NodeContent§ node)
END ;
previous<— GetPreviouénode) =
PRE nodec Allocated
THEN
previous:= PreviousNodg node)
END ;
next«— GetNextnode) =
PRE nodec Allocated
THEN
next:= NextNodg node)
END ;

31
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SetPreviousnode, previous) =
PRE nodec AllocatedA previouse Allocated
THEN
PreviousNodé€ node) := previous
END ;

SetNextnode, next) =
PRE nodec AllocatedA nexte Allocated
THEN
NextNoddg node) := next
END

eql+— EqINod€ nodel, node2) =
PRE nodele NODE A node2¢ NODE
THEN
egl:= bool ( nodel= node2)
END

DEFINITIONS
FREE = NODE — Allocated
END

1.6 Exercises

Exercise 1.1.Take theSquareRootlevelopment and discharge all proof obliga-
tions.

Exercise 1.2.Investigate alternative refinements f8guareRootUtiIsRThat is,
keep the specificatioBquareRootUtiland refine in different directions to that taken
here.

Exercise 1.3.To complete the layered developmentdtaQueuewe need to re-
fine theNodemachine to an implementation. Thisis left as an exercise for the reader.
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1.7 Logic and Set Theory Notation

In the following tabled® andQ denote predicatex;andy denote single variables;
denotes a list of variable§andT denote set expressiond;denotes a set of sets;
E andF denote an expressiom andn denote lists of integer expressiorfsandg
denote functions; denotes a relatiors andt denote sequence expressio@ss a
substitution.

Table 1.4: Predicate Notation

| Construct | Publication | ASCII
Conjunction PAQ P&Q
Disjunction PVQ P or Q
Implication P=Q P =0
Equivalence P~ Q P <=>0Q
=P=QAQ=P
Negation -P not P

Universal quantification | Vz.(P=Q) [ 1z . (P => Q)
Existential quantification 3z.(PAQ) | #z . (P & Q)

Substitution [GIP [G] P
Equality E=F E=F
Inequality E#AF E/=F

Table 1.5: Set Notation

| Construct | Publication | ASCII

Singleton set {E} {E}

Set enumeration {E,F} {E, F}

Empty set 1} {3}

Set comprehension {z|P} {z | P}

Union SUT SVT

Intersection SNT SANT

Difference S-T S-T
={X|XeSAX¢ T}

Ordered pair EnF JE[>F
E—F=EF

Cartesian product SxT [S*T
={X,y.xe SAyeT}

Powerset P(S | POW(S)
={s.sCS}

Non-empty subsets P, (9 | POWI(S)
=PS-{}

Finite subsets F(S) FIN(S)

Finite non-empty subsets [, (9 FIN1(S)

Cardinality card(9) card(S)

Generalised union UNION(U) | union(U)
= {x|xeSA(Is.scUAXE 9)}
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Table 1.5: Set Notation (continued)

| Construct | Publication | ASCII
Generalised intersection] _inter(U) [ inter(U)
={x|xeSA(Vs.secU =>xec9)}
Generalised union Uz (PIE) | UNION (2).(P | E)

Vz.(P=ECT)=
Uz (PIE)={x|xeTAVz. (P=x€cE)}

Generalised intersection ﬂz.(P|E) | INTER (2).(P | E)

Vz.(P=ECT)=>
()z-(P|E)={x|xe TAJz.(PAXCE)}

Set membership EeS E : S
Set non-membership E¢ZS E/S
Subset SCT S<T
Not a subset ST ST
Proper subset SCT S << T
Not a proper subset st S /< T

Table 1.6: Natural Number Notation

[ Construct | Publication | ASCII
The set of natural numbers N NAT
The set of positive natural numbefs N; NAT1
=N- {0}
Minimum min(S) min(S)
Maximum max(S) max(S)
Sum m-+n m + n
Difference m—n m - n
Product mx n m * n
Quotient m/n m/n
Remainder mmod n m mod n
Interval m..n m . n
={i[m<i<nJ
Set summation >z.(P|E) | SIGMA(2).(P | E)
Set product Nz.(PJE) | PI(z).(P | E)
Condition:{z| P} # {}
Greater m>n m > n
Less m<n m<n
Greater or equal m>n m >= n
Less or equal m<n m <= n

Table 1.7: Relation Notation

[ Construct | Publication | ASCII |
[ Relations | ST [S<>T |
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Table 1.7: Relation Notation (continued)

| Construct | Publication | ASCII
=P(SxT)
Domain dom(r) | dom(r)
Vr.reSeT=
dom(r) ={x| (3y.x—yer)}
Range ran(r) ran(r)

VrreSeT=
ran(r) ={y| (@x.x—yer)}

Forward composition

P q [pP;Q

Vp,g.peS<TAQeT < U =
pa={xyl(dz.x—ze pAz—yecq)}

Backward composition

poq [ p circ q

=qgp
Identity id(S) [ id(S)

= {x,y|x€ SAye SAx=Yy}
Domain restriction Sdar [S<r

Z{XYy|X—>yEraAxe S}

Domain subtraction

Sar [S <<

={xy|x—yerAx¢S}

Range restriction r>T [r [>T
={Xy|X—>yerAnyeT}

Range subtraction reT [r [>T
={xy[x—yerAy¢ T}

Inverse 1
={y|3Ix.xe SAX—yer}

Relational image r’g [ rS]
={y|3IX.Xe SAX—YyeETr}

Right overriding rp<rp [ rl<+1r2
=roU(dom(rp) <rq)

Left overriding ri»rp [l +>1r2

=r1U(dom(ry) drp)

Direct product

peq [ p><q

={x 2 [x—=yEpAXx—zEq)

Parallel product pllg [p 1l g
={(xy),(mn) | x—me pAy—neq}
Iteration rm | iterate(r,n)
re SS=
r0=id(SArntt=r;m
Closure re | closure(r)
=Jn.(neNM)
Projection pril(ST) [ prl(S,T)
={(x,y),z| X, yeSXTAz=x}
Projection pri2(ST) [ pri2(S,T)

={(xy),z[xyeSxTAz=y}
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Table 1.8: Function Notation

| Construct | Publication | ASCII |
Partial functions S+»T [S+>T
ZrreSeTAr LrCid(T)}
Total functions ST [S-->T
={f[feS+»TAdom(f)=8}
Partial injections ST [S>>T
S{flfeS»TAf1cT»g
Total injections S—T [S>>T
=S+=TNS—>T
Partial surjections S»T [S+>T
={f[feS+»TAran(f)=T}
Total surjections S»T [S->T
=S+»TNS—>T
Bijections S»T [S>>T

=S—TNS—=T

Lambda abstraction

Az (P[E) [ %z.(P[E)

={zyzc {7P} Ay =E}
where \ PAY\ E

Function application

fE) [#B)

EofE)ef

Table 1.9: Sequence Notation

[ Construct | Publication | ASCII

Empty sequence [] [ <>
={

Finite sequences seq(S) [seq S

={f|feNy +SA

dn.ne NAdom(f)=1..n}

Finite non-empty sequencgs seqq(S) seql(S)

- Zseq(S ([}

Injective sequences iseq(S) iseq(S)
=seq(9 N (N == 9

Permutations perm(S) [ perm(S)
=iseq(S)N(N;y = 9

Sequence concatenation st st

Prepend element E—s E > s
=[E]"s

Append element s«<E [s<E
=s"[E]

Singleton sequence [E] | [E]
={1—E}

Sequence construction [E,F] [ [EF]
=[E]«+F
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Table 1.9: Sequence Notation (continued)

[ Construct | Publication | ASCII
Size size(s) | size(s)
= card(s)
Reverse rev(s) [ rev(s)
Vi.i € dom(s) =
rev(s)(i) = s(size(s) +1—i)
Take stn [s/\n
=1..nds
Drop sln [s W/ n

=Mm.(me Nm+n));(1..n<s

First element

first(s) first(s)

Last element

Tall

last(s) last(s)
tail(s) tail(s)

first(s) — tail(s) = s

Front

front(s) | froni(s)

front(s) « last(s) = s

Generalised concatenation

conc(sg | conc(ss)

conc([]) =[]

conds <« E) = conc(s) " E

Strings

@ m | " "

Sequences of characters.
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2. Container Station

Elena Troubitsyna

2.1 Introduction

In this chapter we present a development of an information system faxinensta-
tion bookkeeping. Such an information system has to assist the oarap@rform-
ing routine operations of registration and loading of trucks arg\at the container
station. The introduction of the automated bookkeeping system hawgptove the
efficiency of the operator’s work and speed up the reloading procedures.

The information system to be designed is an example of a critical system,
the sense that incorrect or unpredictable behaviour of the system lesigrifacant
money and time losses. Because of that the correctness of the develapedesof
should be thoroughly verified.

We present a process of the software development from an informal task de-
scription to a specification close to program code. An elegant way to spéeify t
problem is to start from an abstract specification. A high level of abstraatiows
even complicated entities to be expressed succinctly. Performing a nufmbfne-
ment steps we obtain a final implementation which is translatable togrogode.

At each stage we carefully explain our design decisions and motivationcb#ten
steps.

The developed system is an example of a complicated information system. T
design a logically consistent and well-structured system we use thefidespwise
introduction of complexity. Namely, we consider each particular refineniepts a
way to encompass some requirements of task description left unspecifiedame a m
abstract level. With such an approach each refinement step becomes a goal oriented
activity to incorporate some particular design decisions rather thaniae@xercise
in a logical calculus.

The assistance of B-Toolkit allows a software developer to perfoewdole
cycle of software development, verification and documentation withimgesenvi-
ronment. This is a convenient way to organise a uniform basis foimgrpractical
projects. In our case the reader solving exercises can be considered a padrticipan
of the project developing some independent modules which will be assdrth
constitute the software of the entire extended system.

The rest of the chapter contains the stepwise development of the atform
system for container station bookkeeping. At first we present them#btask de-
scription. Then we explain our understanding of the task and showotinespond-
ing abstract specification. As the next step, we perform the refinemer ofitial
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specification. The development of the implementation is the resuledidktom-up
and the top-down design. The experience gained is summarised in thesioncl
Possible extensions to the considered task are suggested as exercises.

2.2 Task Description

The container station is a railway station for reloading freight trariegan con-
tainers. The containers are brought on trains during the night and reartying.
During the morning, empty trucks arrive to fetch the containers. Annthe empty
wagons are rearranged for further transport. In the afternoon, loadsd taorive
and the containers are reloaded on the trains. The scheme of the contaioriistat
presented in Fig.2.1. We consider the morning operations only.

When a truck arrives at the entry, the truck driver registers at the gategatie-
keeper notes the identification of the container and assigns the truck torapeapp
ate position in the loading zone. If no such position is free, the tisiglssigned a
place in the waiting zone. When an appropriate position for loading becireess
the gatekeeper informs the truck driver to move there. In the loadinghenteuck
will be loaded by means of a crane. When this is completed, the driver leaves th
container station without further notice.

The positions in the loading zone and on the railway tracks are measured-in
tiples of 10 meters called sectors. It is assumed that a truck occupies oneisector
the loading zone. The trucks are only allowed to drive forwards, fatgaéasons.

The gatekeeper bases his decisions on the list of the trains with theedoad
containers and their respective positions. The positions of the wsatgpend on the
order of arrival of the trains. The gatekeeper gets this list in the mgroéfore the
gate opens.

Using the positions of the containers and the arriving trucks, dtekgeper
compiles a list of reloads to be carried out. Each hour the crane operatargets
updated list of reloads. The crane operator selects reloads from thecisti®s
them out, and marks them as done. In order to minimise movement of the trane,
crane operator starts with reloads at sector one and moves to the upper end. Th
the crane moves quickly back to the lower end.

In a typical container station, 400 reloads are carried out each morning. The
manual operation mode is sometimes very inefficient, especially at peak times, caus
ing long waits or poor use of the crane. Our task is to design an automadée b
keeping system which minimises the average waiting time of the truckachieves
some degree of fairness among them, so that the truck drivers willetaingoyed.

For that purpose, both the gate and the crane will be equipped withpesoom-
puter terminal.

We concentrate on modelling the algorithmic part of the problem and keep t
user interface as simple as possible. The design should be reusabieifar con-
tainer stations.
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2.3 Design of Specification

When developing the specification we strive to solve two problems. fiFht is
to develop a data structure and a set of operations which are not redwitant
regards to the number of operations, variables and so on) and whichficeatifo
preserve the integrity of the task. The second goal, which is to estiadati optimal
discipline of truck service in order to minimise the average waitingetof the
trucks, is incorporated naturally in the first one.

We start the development by defining the necessary operations and the data
structure. While doing the system analysis we bear in mind that theteapera-
tors working at the container station, namely the gatekeeper and the craatoaper
Each of them is a user of the information system and we need to organisedhniei
in the most efficient way. Hence, the information system must provieleplerators
with a set of operations which is sufficient to obtain all data required talgct
their duties.

Considering a simple scenario, i.e. the arrival and the service of ketmngk,
we identify a set of required operations. Having arrived at the gateubklbecomes
a subject of an analysis for the gatekeeper. From the list of the trairgprator
extracts the number of the container to be loaded on the truck. Alsaécdessary
to find a proper position in the loading zone where the loading takeseplThe
operator can ask the information system about an available positiohddruck
or to check whether the truck is eligible for a certain position in theitmadone.
As soon as this sequence of operations is performed the truck movestaitimng
zone. When the required loading position becomes vacant the truck leavesithe w
ing zone and proceeds to that position. In the loading zone the truck wit the
crane operator chooses to load it.

Meanwhile the crane moves from the first position to the end of theiigad
zone. At each sector the crane operator checks the necessity to perform reloads (if
any). Naturally, there can be a different number of trucks parked in a ceetiors
in distinct loading lanes. This number varies form sector to sector andhlige
bounds from zero to the number of loading lanes. The crane operatos itiput
current crane position and obtains the number of reloads to be donelthbeze
are any trucks to be loaded the crane operator chooses one of them. Fampegfor
the reloads the operator must learn about the number of the loading ke thhe
truck is parked and the number of the storing lane where the containertated
is kept. Sending the corresponding requests to the system the craa®opétains
this information. As soon as the truck is loaded it leaves the contaiagors. If
no more trucks have to be loaded in the current sector the crane operatsrttie
crane to the next sector.

An analysis of the task description shows that we can identify two mais par
of the problem. The first is the management of events that change theftht
container station. For example, arrival of new trucks, departure of srudiange
of the crane position etc. The second part consists of manipulatiors whovide
information to the operators but do not change the current state obtitainer sta-
tion. This is information regarding the possibilities of sajtinucks in the loading
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zone, the necessity to perform the reloads etc. We denote the first gropeea-

tions asmodifiersand the second group of operationsakectorsFig. 2.2 presents
a list of operations which will be developed to specify the informaggstem for

the container station bookkeeping.

Now let us note that our specification should be reusable for similaaomrt
stations. Parameterisation makes the specification universal. By definingahe
ues for the parameters we can easily adapt our software to container statiions wi
similar structures. Thus, our specification should have parametersslatalyse
the scheme of the container station to determine the entities that can beedhang
without breaking the structure of the container station. It is clearttieabumber of
railway tracks, the width of the storing zone, the number of loadingdatihe num-
ber of sectors, and the capacity of the waiting zone differ from statiotatms.
Hence, we can define these entities as the parameters of our specification.

To introduce the necessary variables let us indicate the key entities t#ske
description. The first basic entity igicks They can be situated the waiting zone
or in the loading zonelLet us denote these two sets EsickinWaitingZoneand
TruckinLoadingZoneMoreover, the trucks in the loading zone allocated in the cur-
rent crane position form a set of the trucks to be loaded next. THigisdtreload-
ing-trucks The second entity is theontainersstored in the container station. We
denote them as the g8bntainersinStoreg\ll containers are separated into two cat-
egories: containers which have been assigned to trucks and containers a¥ech h
not yet been assigned. These assignments establish a relationship be®vern th
tities trucksandcontainers The relation betweetrucksandcontainersis denoted
asRequestedContainethe third key entity in the task descriptiondsane This
entity is characterised by its position. Thus the next variab@&&nePosition The
last entity of the investigated taskpssition in the loading zon€f his entity has di-
rect and indirect relations with all others. Let us mention the most oisvielations.
Any truckcan be situated in the loading zone only in a certain septusi{jor). The
set of all positions available for a certain truck is contained in the viarjadissi-
ble_positions On the other hand, not every truck can be put in a certain position.
The variablepossibletrucksis the set of all trucks which can be allocated to the
considered position. Now we have defined the basic structure of duifisption:
the list of parameters, the variables and the operations of the specificatatar
tailed explanation of the design is given in the text of the specificatianvever,
before presenting the whole specification we have to make a decision ciogcern
the optimisation of the service procedure.

A bottleneck of the container station is the loading zone. Indeed an average
service timd of the truck (a period of time from when the truck passes the entrance
gate till it leaves the container station) consists of two parts. Thegaurt,ty;, is
the waiting time until the proper position in the loading zone beesracant. The
second part,, is the time which the truck has to wait, once it has moved into the
loading zone. (Here we assume that the movement from the waiting zohe to t
loading zone and the loading process take a negligible amount of tine glear
thatty; of any truck consists of the sumf of its predecessors in a certain position
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OPERATIONS

MODIFIERS

Arrival of new truck at CS*
movelnWaitingZone**

Transfer of truck from waiting
zone to loading zone
movelnLoadingZone

Loading of truck by container

assigned and departure from
truckReloadAndDeparture

Move crane to the next
appropriate position
craneMovement

*

SELECTORS

Find all appropriate positions f
certain truck
possiblePos

Choose position for certain tru
nextPossiblePos

Find all appropriate trucks for
certain position
possibleTrucks

Choose truck for certain positi

nextPossibleTruck

Estimate the number of reload
in certain sector

requiredTruckReloads

Choose truck to reload
nextTruckToReload

Find location of reloading tru
reloadingTruckLocation

Find location of loading
container
reloadingContainerLocation

- CSis an abbreviation of "container station"

** - The names of the corresponding operations are giviealits

Fig. 2.2.Structure of Specification
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in the loading zone. Because of that we argue that the crucial point of isation
of the average service tinids to optimise the loading procedure, i.e. to minimise
12

Our solution is based on the assumption that the movement of the ctane f
sector to sector is much more time consuming than doing the reloads sthi}-
ing at the same sector. Because of that we introduce a certain parkingideséqpl
the trucks in the loading zone and a corresponding loading discifdirtbe crane
reloads. Namely, any truck must be parked in the loading zone in such a atay th
it occupies the same sector as the container to be loaded. (Consider tha@ontai
station as ay-plane. Let the positions formeaxis and the laneg-axis. Then the
discipline described means that the truck parked in the loading zone acdrihe
tainer must have the sanxecoordinates). The loading discipline forces the crane
operator to reload all the trucks in the current position before motgrtge next
sector. The introduced disciplines speed up the loading procedure, bevayisa-t
clude the slow crane movement between sectors while loading a truck. Mwoyeov
we come to the conjecture that the utilisation of the crane is signifjcemproved
in comparison to the manual operation.

Now let us make a short comment on specifying a problem within the Byt
All stages of program derivation - specification, refinement and implementatio
can be presented in the B-Method Alsstract MachinesTo specify the problem
we develop the Abstract Machift@ONTAINERSTATIONThe Abstract Machine
contains clauses giving global constraints, constants, abstract setheiithroper-
ties, a list of variables and operations on them. The presence of these daeses
not put any constraints on the structure of the specification which we &leeady
developed.

MACHINE = CONTAINERSTATION
(nofRailwayTracks nofStores nofLoadingLanes nofPositions, nofWaitingPosition3

nofRailwayTracksnumber of railway tracks where wagons with containers arkqd.

nofStores number of line in the area where containers unloaded frogows are kept.
We refer to the parameterefRailwayTrack@nd nofStoresndirectly. As it can be seen
from theDEFINITION clause we denote a sum of these two parameters as
nofStoringLanesBesides, for the shortage we extend the notion of storing by speak-
ing about the containers kept on the wagons and the consadiapt on the stores without
making difference between them.

nofLoadingLanesnumber of loading lanes for trucks reloads

nofWaitingPositionscapacity of the waiting zone. The waiting zone is the areareh
trucks are waiting for a permission to move at the loadingezon

There is an assumption that the loading zone, the storing aod the zone of wagons
parking have the same number of positions. The length ofgesposition is equal to the
length of one sector as can be seen in the task descripti@npdgitions with the same
numbers are opposite each other. The number of those pssitikept in the parameter
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nofPositions

CONSTRAINTS
nofPositionsc N; A
nofWaitingPositiong N; A
nofRailwayTrackg Ni A
nofStorese N; A
nofLoadingLanes N

SEES
BoolLTYPE
VARIABLES

TrucksInWaitingZone TrucksInLoadingZongContainersinStores
CranePosition RequestedContaineipossiblepositions, possibletrucks,
reloading trucks

TrucksInWaitingZoneepresents trucks which are parked in the waiting zone.

TrucksInLoadingZonelefines a correspondence between coordinates and trucke in t
loading zone. Each truck in the loading zone can be uniquefineld by the number of
the position and number of the lane in the loading zone.

ContainersinStoresontains the correspondence between coordinates andreostin
the container station. This variable is similarfiacksInLoadingZone

CranePositionss the set of all possible positions of the crane. Here is skime of an
artificial digitising of the crane’s movement. This is besaudhe crane cannot carry out
reloading operations during its movement.

RequestedContainastablishes the correspondence between the trucks andrttzen:
ers assigned to them.

possiblepositionscontains information about positions in the loading zoneaw for a
certain truck.

possibletrucksrepresents the trucks which can be parked in a certain positithe load-
ing zone.

reloading trucks defines the set of the trucks in the loading zone parked in tihesrat
crane position.

INVARIANT

TrucksIinWaitingZon& TRUCKSA

card ( TrucksIinWaitingZong < nofWaitingPositiong\

TrucksInLoadingZone (1 .. nofPositiong x (1 .. nofLoadingLane3
TRUCKSA

TrucksInWaitingZone ran ( TrucksIinLoadingZong= {} A

ContainersiInStores ( 1.. nofPositions) x (1.. nofStoringLane$
CONTAINERS\

CranePositiorne 1 .. nofPositionsA
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RequestedContainer
TrucksInWaitingZone ran ( TrucksinLoadingZong —
ran ( ContainersinStore} A
possiblepositionsC ( 1.. nofPositiong x (1 .. nofLoadingLane$ A
possibletrucksC TRUCKSA
reloadingtrucksC ran ( TrucksIinLoadingZong

The invariant gives the real meaning of the introduced e&in terms of the sets and
reflects certain restrictions on the described task.

TrucksInWaitingZonés defined as a subset of all trucks.

The capacity of the waiting zone is restricted, meaning th@thumber of the trucks in
the waiting zone should not exceed it. To show this we put ditiom restricting the car-
dinality of the sefTrucksIinWaitingZonén the invariant.

The invariant defineSrucksinLoadingZonas a partial injection. The domain of this in-
jection consists of the coordinates of the trucks in theilmadone. The range contains
trucks in the loading zone. Using an injective function guees that any position in the
loading zone can be occupied by only one truck.

We assume that any truck in the container station can be oheiwaiting zone or in the

loading zone. In addition, no truck can be in both zones ganelously. The next predi-

cate in the invariant expresses this assumption. It defireemtersection of the sets of the
trucks in the waiting zone and trucks in the loading zone asnapty set.

Any container in the container station has a certain plateerein the storing zone or on
the railway tracks. The variabl@ontainersinStoremaps the coordinates of each stored
container (i.e. the number of the position and the numbehefstoring lane) to this
container. As in the previous case using an injection pewvid placement of only one
container in one position.

The position of the crane at any time is defined as a naturabeuin the range from 1 to
nofPositionswhich is the number of the last position.

The variableRequestedContainés defined as a partial injection. The domairRefquest-
edContainerconsists of the trucks parked in the waiting and loading gamkich have
already been assigned to containers. Correspondinglg ttedainers form the range of
RequestedContainem this case the injection shows that only one containerbzaas-
signed to a single truck.

In principle, the operator can choose one of several positior parking a truck in the
loading zone. All such possible positions for a certain krace represented in the set
possiblepositions This set is a subset of all positions in the loading zone.

Similarly, any position in the loading zone can be occupigdbe of several possible
trucks. The variabl@ossibletrucksis the set of candidates for a certain position in the
loading zone.

The variablereloading truckscontains information about the trucks parked in the loading
zone which have to be loaded with the assigned containeosebtife crane can move to
the next position.
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INITIALISATION

TrucksInWaitingZone= {} ||

TrucksInLoadingZone= {} ||

CranePosition=1 ||

RequestedContaines {} ||

possiblepositions:= {} ||

possibletrucks:= {} ||

reloadingtrucks:= {} ||

ContainersInStorese ( 1 .. nofPositiong) x (1 .. nofStoringLane$ »~ N;

The initialisation establishes the state of the contaitetics before the gate is opened
and sets the crane in its initial position.

OPERATIONS

movelnWaitingZonétruck, reqcontainer) =
PRE
truck € TRUCKSA
truck ¢ TrucksInWaitingZone\
truck & ran ( TrucksInLoadingZong A
card ( TrucksInWaitingZong < nofWaitingPositions\
reqcontainere ran ( ContainersinStorey A
reqcontainer¢ ran ( RequestedContaingrA
truck ¢ dom ( RequestedContaingr
THEN
TruckslnWaitingZone= TrucksInWaitingZoneJ { truck } ||
RequestedContainer RequestedContainér { truck — regcontainer}
END ;

The operatioomovelnWaitingZonenodels the arrival of a new truck at the container sta-
tion. In specifying this operation we assume that any arguruck should be set in the
waiting zone (probably, only notionally), regardless ofattter an appropriate position
in the loading zone might be vacant. This assumption allosvioureat all trucks in the
container station as two groups: the first is trucks in theingizone and the second is
trucks in the loading zone. We assume that there are no tamjwhere outside these
two zones. The following scenario is performed. The trirakk arrives at the gate of the
container station. On the basis of the ID of the arriving krtiee gatekeeper gives an ID
of containerreqgcontainerto the truck driver. Afterwards, the truck parks in the wagti
zone. In terms of sets this means adding a new element to tHeusksInWaitingZone
and a new mapplet to the deRequestedContainer

The precondition of this operation establishes that thisdeed a new truck. This means
that this truck has not already been situated either in thiéingazone or in the load-

ing zone. Parking of the truck in the waiting zone is possiblie cardinality of the

set TrucksInWaitingZonewith the new element added, does not exceed the number of
positions in the waiting zone. The last three conjuncts efitivariant establish that the
containerregcontainerassigned tdruck is in the storing zone and has not yet been as-
signed to any truck and that the truck is not assigned to antageer as well.

movelnLoadingZonétruck, pos,In) =
PRE
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truck € TrucksInWaitingZone\

pose 1.. nofPositionsA

In € 1.. nofLoadingLanes\

pos— In ¢ dom ( TrucksInLoadingZong
THEN

TruckslnLoadingZone=

TrucksinLoadingZone { pos— In — truck } ||

TrucksInWaitingZone= TrucksInWaitingZone- { truck }

END ;

The operatiormovelnLoadingZoneorresponds to the transfer of a truck from the wait-
ing zone to the loading zone. The operation has three pagasndthe first is the truck
which is going to be assigned to the loading zone. The secoddhe third ones define
the loading sector and lane which will be occupied by thiskru

The precondition checks that the trulkick can be allocated in the loading zone and the
coordinates of the targeting position do not extend beybadanges of the loading zone.
Next we check the vacancy of the position chosen.

The gatekeeper obtains the coordinates of the position twbeapied after an execution
of the operatiomextPossiblePoS he result parametg@osition returned by the operation
nextPossiblePos a pair of the form(sector, lane) To simplify the specification of the
operatiormovelnLoadingZonand its further refinement we treat that pair as two distinct
input parameters.

The selection of the available loading positions is donehenktasis of the parking dis-
cipline introduced before. Hence, the input of the coorgisesuggested by the system
guarantees that the trutkuck will be parked in a proper position (i.e. the number of the
position occupied by a truck in the loading zone will be thmsas the number of the
position occupied by a container in the storing zone).

truckReloadAndDeparturgtruck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksinLoadingZong A
truck ¢ reloading trucksA
3 pos. (pose 1.. nofPositionsh
pose dom ( { TrucksInLoadingZone! (truck) }) A
pos= CranePosition)
THEN
TrucksInLoadingZone= TrucksIinLoadingZone> { truck } ||
ContainersinStores=
ContainersinStores> { RequestedContainértruck) } ||
RequestedContainet { truck } < RequestedContainer
END ;

The execution of the operatidruckReloadAndDepartureorresponds to the reloading
of the trucktruck and its the departure from the container station. To modekétoad
we remove the container loaded from the set of containersame.sThe departure of
the truck which is loaded with the given container corresjsoto the extracting of the
relevant elements from the séfirucksIinLoadingZonand ContainersinStoresDeleting
elements from the seffrucksinLoadingZonand ContainersinStoregs done by means
of relational anti-range restrictionRemoving an element frolRequestedContainégs
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performed aselational anti-domain restriction

The precondition for the operatidrnuckReloadAndDeparturensures that the truck has
already been situated in the loading zone. According todhadihg discipline introduced

the truck can be reloaded only when it occupies the samersestbe crane does. Iden-
tifying the truck parking section (denoted psg we compare it with the current crane
position. Only if they coincide will the crane reload thedkuand the truck leave the con-
tainer station.

numbercandidates— possiblePog truck) =

PRE
truck € TRUCKSA
truck € TrucksIinWaitingZone
THEN
LET pp BE
pp=
dom ( { ContainersInStores? ( RequestedContaingitruck) ) } ) <
(1..nofPositiong x (1..nofLoadingLane$ —
dom ( TrucksInLoadingZong
IN
possiblepositions:= pp ||
numbercandidates= card ( pp)
END
END ;

The operatiorpossiblePosas the input parametétuck and the result parameteum-
ber_candidates The goal of this procedure is to give information about thenher of
the vacant positions which can be occupied by a certain triisican be seen from the
specification the result parameter is the cardinality ofgégpossiblepositions In this
operation we use the same idea of locating a truck in any hgaldine in line with an
assigned container. Let us consider a way of doing this.

The expressioRRequestedContainer(truckdsults in a container being assignedrteck
Using the relational inversontainersinStorewith the assigned container as the param-
eter and taking the domain of this expression we get a sedtmhwis occupied by the
considered container. Then we map the resulting sectoetedhof all possible positions
in the loading zone. We use the operatdational domain restrictionThis results in the
setresultedsectorx ( 1 .. nofLoadingLane$. We receive the targeting set after removing
all occupied positions.

position<— nextPossiblePos =
PRE
possiblepositions#£ {}
THEN
ANY  pos WHERE
pose possiblepositions
THEN
position:= pos ||
possiblepositions:= possiblepositions— { pos}
END
END,
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The operatiomextPossiblePogs a logical continuation of the operatigrossiblePos
When the number of positions available for a certain truck aaion-zero value, the
operator can choose one of these positions to park a truok thike operatiomextPossi-
blePoshaspositionas the result parameter. A position from the paessiblepositionsis
chosen non-deteministically by the operatimextPossiblePosAfterwards, this position
becomes occupied so we remove it from the set of all possidsiipns.

numbercandidates— possibleTruck¢lane, pos) =
PRE
lanee 1.. nofLoadingLanes\
pose 1.. nofPositionsa
pos— lane ¢ dom ( TrucksIinLoadingZong
THEN
LET pt BE
pt= { truck | trucke TRUCKSA
truck € TrucksInWaitingZone\
FIn. (In € 1.. nofStoringLanes\
ContainersinStore§é pos, In ) = RequestedContainértruck) ) }

IN
possibletrucks:= pt ||
numbercandidates= card ( pt)
END
END ;

In the previous two operations the operator tried to parkiretruck in the loading zone.
Now the operator’s task is to find an appropriate truck to pgaucertain position in the
loading zone. We use the same technique to solve this praidemas used in the previous
two operations. First, the operatiponssibleTruckenforms the operator about trucks suit-
able for the considered position. The parameters of theatipampossibleTruckslefine
the place in the loading zone which is going to be occupie@ fitecondition ensures
us that this place is in the range of the loading zone and iantad@ he result parameter
of this procedure is a number of trucks which have been asgigm containers stored
in the different storing lanes but in the same secpmrs This number is obtained as the
cardinality of the set of all trucks satisfying the mentidreondition.

truck +— nextPossibleTruck =
PRE
card ( possibletrucks) > 0
THEN
ANY tr WHERE
tr € possibletrucks

THEN
truck:=tr ||
possibletrucks:= possibletrucks— { tr }
END
END,

If the obtained number of the trucks which fit a certain posiiis not equal to zero, then
the operator can choose any of these trucks arbitrarily.opfeeationnextPossibleTruck
chooses non-deterministically a truck from the set of adiglole trucks. The chosen truck
is removed from the setossibletrucks
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numberreloads«<— requiredTruckReloadéposition) =
PRE
positione 1.. nofPositionsa
position= CranePosition
THEN
LET tr BE
tr = { truck | truck e ran ( TrucksinLoadingZongA
truck € dom ( RequestedContaingrA
JIn.(In€1.. nofLoadingLaneg\
TrucksInLoadingZonéposition, In') = truck) }
IN
reloadingtrucks:=tr ||
numberreloads:= card ( tr )
END
END,

The operatiomequiredTruckReloadgrovides the crane driver with information about the
necessity of performing any reloads in the current posigiosition The precondition
ensures that the position analysed is indeed the currené g@asition. The body of the
operation forms the setloading trucksof the trucks parked in the current crane position.
The result ofrequiredTruckReloadis the number of trucks which has to be loaded while
the crane is in the sectposition

nexttruck «+— nextTruckToReload =
PRE
reloading trucks# {}
THEN
ANY tr WHERE
tr € reloading trucks
THEN
nexttruck :=tr ||
reloadingtrucks:= reloading.trucks— { tr }
END
END ;

The operatiomextTruckToReloads similar to the operationextPossibleTruclf there
are any trucks in the current crane position one of them isehdo be loaded next.

trucklane<— reloadingTruckLocatiorf truck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksinLoadingZong
THEN
LET In BE
In={lane | lanee 1.. nofLoadingLanes\
3 pos. (pose 1.. nofPositionsa
TrucksInLoadingZonépos, lane) = truck) }
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trucklane:¢ In
END
END ;

To load a truck the crane driver has to learn

- the lane of the reloading truck

- the lane where a container assigned to that truck is kept.

The operationgeloadingTruckLocationand reloadingContainerLocatiorprovide the
crane driver with that information. Introducing the paraené¢ruck in the first operation
he obtains the lane in the loading zone where the truck to dgeld is parked. The ex-
ecution of the second operatiae]oadingContainerLocationgives the crane driver the
location (the storing lane) of the container which is assigto be loaded otruck. In
both operations only the lanes of the truck and the contaireeof interest. This is due to
the reloading discipline we introduced (i.e. the sectohefrieloading truck, the sector of
the loading container and the sector of the crane are alkime)

containerlane«— reloadingContainerLocatioftruck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksinLoadingZong
THEN
LET conin BE
conin= dom ( [ { ContainersInStores? (
RequestedContaingttruck) ) } ])
IN
containerlane e conin
END
END ;
craneMovement =
PRE
reloadingtrucks= {}
THEN
IF  CranePosition# nofPositions
THEN
CranePosition= CranePositiont 1
ELSE
CranePosition= 1
END
END

As soon as all trucks parked in the current crane positiomedoaded the crane proceeds
its movement to the next sector. If the end of the loading zenet reached (i.e. the num-
ber of the sector is less thefPosition$ the crane moves to the next sector. Otherwise
the crane moves at the beginning of the loading zone in therfade.

DEFINITIONS

nofStoringLanes= nofRailwayTrackst- nofStores
TRUCKS = N ;
CONTAINERS= N;
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nofStoringLaness the sum of two numbers: the number of railway tracks andthme-
ber of storing lanes. As previously mentioned, this simgdifion allows containers to be
treated uniformly on the trains and in the stores.

TRUCKS a set of positive natural numbers. It represents an alvsetof all trucks which
can appear in the container station at any time.

CONTAINERSthis set of positive natural numbers is the set of contaimgrich can be
put in the store in the container station.

END

2.4 Introducing Fairness in a Refinement Step

Solving our task we follow thetepwise mannesf program derivation. In the pre-
vious section we showed the first step of this process, i.e. the defsigrabstract
specificationof the considered task. Each step in this derivation should bring us
closer to the finalmplementationinstead of doing a big jump from the abstract
specification to the implementation we make an intermediate step. In épioat
goal is to fulfil the requirements of the task description which couldb®omet in

the abstract specification.

Let us note the following straightforward fact which points to thection of
therefinementlt is well known that a set as used to model the pool of trucks is an
unordered structure. Such a structure is appropriate at the abstracilesqirob-
lem arises when we recall that the designed system should achieve some degree
of fairness among the trucks, so that the truck drivers will not get yathoThe
requirement of fairness means that if two trucks request the same paaitiba
loading zone, then the truck which arrived in the waiting zone earlier msstted
parked in this position earlier. Thus the requirement of fairness @nlie pres-
ence of some order between the trucks. This point gives us a real direttioa o
refinement for our case: the introduction of ordered structures. Thetaskts to
select the most suitable ordered structure. Everyday experience leadsesdea
of a queue arrangement for the arriving trucks. We choose a sequence assthe m
natural representation of a queue.

To meet the requirement of fairness we perferdata refinementence, we are
going to refine the Abstract Machine specification by changing the dattsteu
Obviously, manipulations with the data structure demand the camnelépg changes
in the operations basically, to adapt the operations to the new dattus&ru

Now we have to consider the question to what extent we should béltairizake
this point clearer, let us imagine the following situation. Suppesdave absolute
fairness, i.e. we implement the disciplifiest in first outwithout any exceptions.
Moreover, we assume that several trucks arrive at the container statiorost éhe
same time. By chance they might all be parked in the same position ik |
ing zone. Then in spite of the fact that other positions are empty at thisent,
the trucks arriving later should wait in the common queue. This sirapénple
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demonstrates that we lose flexibility for the sake of absolute farngsus we do
not satisfy the requirement of minimising the average waiting timis. ¢clear that
we should find a compromise solution. We think that giving higlpe®rity to the

operator is the most reasonable solution in this conflicting prodiethis case, the
situation described above does not lead to a fast growing queue. The ogéraso
permission to move into the loading zone to trucks behind the traskigned to
the same position. Here we can speak about queues for certain positi@rgmath
about a common queue of trucks.

We implement these ideas by replacing the set of arriving trlioksksInWait-
ingZoneby the sequencé&ucksinWaitingZonseq Furthermore, so that the opera-
tor's decision when choosing which truck to assign to a certain posgiafair one,
we refine the segpossibletruck to the sequencpossibletrucks seq We refine the
specification by means of introducing the new data structure and theeswarit of
fairness.

REFINEMENT CONTAINERSTATIONR
REFINES CONTAINERSTATION
SEES

BoolLTYPE
VARIABLES

TrucksInWaitingZoneseq, TrucksinLoadingZoneContainersinStores
CranePosition RequestedContaineipossiblepositions, possibletrucks seq,
reloading trucks

In the refinement the changed variables receive ersiatp distinguish them from their
counterparts in the specification.

INVARIANT

TrucksIinWaitingZonsseqe iseq ( TRUCKS) A
possibletrucks seqge iseq ( TRUCKS) A
TrucksIinWaitingZone= ran ( TrucksinWaitingZonsseq) A
possibletrucks= ran ( possibletrucks seq)

The invariant indicates the changes in the data structune. variables which remain
unchanged in the refinement are not redefined in the invakiémintroduce the injective
sequenceTrucksinWaitingZoneeqinstead of the seTrucksinWaitingZonelndicating
that the sefTrucksIinWaitingZonés a range of the sequendeucksinWaitingZonsseq
we clarify the correspondence between the variable in tleeipation and one in the
refinement. Introduction of the sequermassibletrucks segis done in the same way.

INITIALISATION

TruckslnLoadingZone= {} ||
RequestedContaines {} ||
possiblepositions:= {} ||
reloadingtrucks:= {} ||
CranePosition=1 ||
TrucksInWaitingZonsseq:= [ ] ||
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possibletrucksseq:= [] ||
ContainersinStorese ( 1.. nofPositiong x ( 1.. nofStoringLane$ »~ Np

The initialisation here establishes the same state of theater station as in the spec-
ification. The only difference is that we initialise the aesponding variables as empty
sequences.

OPERATIONS

movelnWaitingZonétruck, reqcontainer) =
PRE
truck € TRUCKSA
truck & ran ( TrucksInWaitingZoneseq) A
truck ¢ ran ( TrucksInLoadingZong A
card (ran ( TrucksInWaitingZoneseq) ) < nofWaitingPositionsg\
reqcontainere ran ( ContainersinStorey A
reqcontainer¢ ran ( RequestedContaingrA
truck ¢ dom ( RequestedContaingr
THEN
TrucksInWaitingZoneseq:= TrucksInWaitingZoneseqg+— truck ||
RequestedContainer RequestedContainér { truck — regcontainer}
END ;

In the operatiormovelnWaitingZongve take into account the new data structure. A new
arriving truck is prepended to the queue of trucks in theimgizone. Even if we do not
work with the common queue of trucks in the waiting zone diyeave use the order of
the arriving truck when considering the truck’s line to atair position.

movelnLoadingZonétruck, pos,In) =
PRE
truck € ran ( TrucksInWaitingZonsseq) A
pose 1 .. nofPositionsa
In € 1.. nofLoadingLanes\
pos— In ¢ dom ( TrucksInLoadingZong

THEN
ANY oc WHERE
oce Nj A
oc = TrucksInWaitingZoneseq ! ( truck)
THEN

ANY  wirseq WHERE
wtrseqe iseq ( TRUCKS) A
Vii.(iiel..oc— 1=
wtrseq( ii ) = TrucksInWaitingZoneseq(ii ) ) A
Vii . (ii €oc+ 1..size ( TrucksinWaitingZonseq) =
wtrseq( ii — 1) = TrucksInWaitingZoneseq(ii ) ) A
size (wtrseq) = size ( TrucksInWaitingZoneseq) — 1
THEN
TruckslnLoadingZone=
TrucksinLoadingZone { pos— In — truck } ||
TruckslnWaitingZoneseq:= wtrseq
END
END
END ;
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To parktruck in the loading zone it is necessary to remove this truck fromline of
trucks in the waiting zone. The constructioAblY WHERE in the operatiormoveln-
LoadingZoneare used to introduce the local variablegseqand oc. The variableoc
contains the number of theuckin the queue of waiting trucks. The variaérseqrep-
resents the queue of trucks in the waiting zone wititk deleted. The expression with
guantifier must show that the order of the other trucks resmanthanged after deletion
of a certain truck from the queue.

truckReloadAndDeparturgtruck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksinLoadingZong A
truck ¢ reloading trucksA
3 pos. (pose 1.. nofPositions
posc dom ( { TrucksInLoadingZone! (truck) }) A
pos= CranePosition)
THEN
TrucksInLoadingZone= TrucksIinLoadingZone> { truck } ||
ContainersinStores=
ContainersinStores { RequestedContainéttruck) } ||
RequestedContainet { truck } < RequestedContainer
END ;
numbercandidates— possiblePog truck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksInWaitingZoneseq)
THEN
LET pp BE
pp=
dom ( { ContainersInStores? ( RequestedContaingitruck) ) } ) <
(1..nofPositiong x (1..nofLoadingLane$ —
dom ( TrucksInLoadingZong
IN
possiblepositions:= pp ||
numbercandidates= card ( pp)
END
END ;
position+— nextPossiblePos =
PRE
possiblepositions# {}
THEN
ANY pos WHERE
pose possiblepositions
THEN
position:= pos ||
possiblepositions:= possiblepositions— { pos}
END
END ;
numbercandidates— possibleTruckg§ lane, pos) =
PRE
lanee 1.. nofLoadingLanes\
pose 1 .. nofPositionsA
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pos— lane ¢ dom ( TrucksinLoadingZong
THEN
LET pt BE
pt={truck | trucke TRUCKSA
truck € ran ( TrucksInWaitingZoneseq) A
FIn. (In € 1.. nofStoringLanes\

ContainersinStoreépos, In ) = RequestedContainértruck) ) }
IN

ANY  wirseq WHERE
wtrseqe iseq (pt) A
ran (wtrseq) = pt A
size (wtrseq) = card (pt) A
Vii . (ii €1..size (wtrseq) — 1=
TrucksInWaitingZoneeq~! (wtrseq(ii )) <

TrucksInWaitingZonseq~—! (wtrseq(ii +1)))

THEN
possibletrucks seq:= wtrseq ||
numbercandidates= size ( wtrseq)

END

END
END,

The number of trucks waiting for permission to move to thesidered position is the out-
put result of the operatiopossibleTrucksBased on the queue of waiting trucksicksin-
WaitingZoneseqthis operation forms the queue of trucks for the considerasitipn.
Such a queue is formed in the local variablgseqand then stored in the variabpes-
sibletrucksseq The expression with the existential quantifier shows thatfevm the
sequence of the trucks which have been assigned to corgtgiagted in the sectgos
The next predicate indicates that the sequemizeeqis formed such that a truck which

arrived earlier at the container station is located in theugubefore trucks that arrived
later.

truck +— nextPossibleTruck =
PRE
card (ran ( possibletrucksseq) ) > 0
THEN
truck := first ( possibletrucksseq) ||
possibletrucks seq:= tail ( possibletrucks seq)
END

The operatiomextPossibleTruckerforms the fair choice of the next truck to be parked
in the loading zone. The design of the operati@xtPossibleTrucforces the operator to
choose the first truck in the queue for a certain positionéddading zone. This operation
implements the idea of fairness in the specification of tek.ta

numberreloads<— requiredTruckReloadéposition) =
PRE
positione 1.. nofPositionsa
position= CranePosition
THEN
LET tr BE
tr = { truck | truck e ran ( TrucksinLoadingZong
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A truck € dom ( RequestedContaingrA
FIn. (In € 1.. nofLoadingLanes\
TrucksInLoadingZonéposition, In’) = truck) }
IN
reloadingtrucks:= tr ||
numberreloads:= card (tr)
END
END ;
nexttruck «— nextTruckToReload =
PRE
reloadingtrucks# {}
THEN
ANY tr WHERE
tr € reloading trucks
THEN
nexttruck :=tr ||
reloadingtrucks:= reloadingtrucks— { tr }

END

END,
trucklane<— reloadingTruckLocatiorf truck) =

PRE

truck € TRUCKSA

truck € ran ( TrucksinLoadingZong
THEN

LET In BE

In={lane | lanec 1.. nofLoadingLanes\
3 pos. (pose 1.. nofPositionsA
TrucksInLoadingZonépos, lane) = truck) }
IN
trucklane:€ In
END
END,
containerlane«—— reloadingContainerLocatiofftruck) =
PRE
truck € TRUCKSA
truck € ran ( TrucksInLoadingZong
THEN
LET conin BE
conin= dom ( [ { ContainersinStores? (
RequestedContaingrtruck) ) } |)
IN
containerlane € conin
END
END,
craneMovement =
PRE
reloadingtrucks= {}
THEN
IF  CranePosition# nofPositions
THEN
CranePosition= CranePositiort+ 1
ELSE
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CranePosition= 1
END
END

DEFINITIONS

nofStoringLanes= nofRailwayTrackst- nofStores
TRUCKS = N ;
CONTAINERS= N

END

2.5 Implementation: Development of Robust Software

In this section, we present a final refinement step resulting in an implenoentat
Before giving the actual implementation with more specific comments wegsmal
the constraints put on implementing an Abstract Machine (mentionedapt€hl).

First, let us recall that Abstract Machine Implementation has no stateafits
It imports other machines and refers to the variables of the imported neschiia
the operations of these machines. In our case a main part of the importeshesach
is renamed instances of standard machines in the library of B-Toolkitpafsne-
ters of the imported machines are instantiated in the IMPORTS statemenasit
cases the representation of the data structure entities and the instantiithe
parameters of the imported machines is straightforward. There are twotiexcsep
which we discuss deeper, namely the injectibngeksinLoadingZonandContain-
ersinStores

A Function machine for the Natural Number Functidfr{c) encapsulates a
partial function over numbers. The machine has two paramateprsntandmaxfid
They restrict the range and the domain of the encapsulated partial injeltietype
of the encapsulated variable is the most appropriate one to represenjeitieon
TrucksinLoadingZoneBecause of this we select that machine to be imported and
instantiated in the implementation as the macfimd.oadingZoneNfnc Since the
number of trucks ranges over natural numbers we instantiate the first gtardoy
maxint

However, the domain ofrucksinLoadingZonés the Cartesian product of two
sets rather than a set of fields as is the domain of the encapsulated vahdliad-
ingZoneNfnc The domain offrucksinLoadingZondefined as ( 1. nofPositiong
x (1..nofLoadingLanesuniquely determines the maximal number of items in the
domain. Hence, we instantiate the parametaxkfldof the imported machine by the
value fofPositionsx nofLoadingLanes

To establish the correspondence between elements of the dohhalreading-
ZoneNfncandTrucksinLoadingZonwe notice the following regularity: each ele-
ment ofdom(TrucksInLoadingZon&)ith subscript (i + 1 ,jj + 1)) corresponds
to the element oflom(TInLoadingZon&lfnc)with subscript (i + nofPositionsx
jj + 1). With that relation we achieve the desired result so we include it ast@p
the refinement relation.
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The injectionContainersinStoress represented by the encapsulated variable
of the imported machin€ontinStoredNfnc The same calculations as above are
performed for that instance as well.

In principle, the operations of machines in the library of the B-Ta@lke suffi-
cient to implement the designed system. However, applying a slighthg sophis-
ticated approach, namely layered development as suggested in the previoas,chapt
we obtain a more elegant solution. The necessity of layered desigtifiejliby the
following observation. In several operations we need to verify whetipeeeondi-
tion is satisfied or not. This is done by looking for the presencecafrtain element
in the range of the function. There is no such operation in the Funotachine for
the Natural Number function. A possible solution to this problemhé direct intro-
duction of the corresponding loopd/HILE substitution) in the final implementa-
tion. It means that we would have several loops performing the sanatida and
changing slightly according to the context. To avoid repetitiongarfdard loops,
we extend the standard Function machine for the Natural Number furxyidime
operationlIR (which stands foitemIn Range) which will check whether a certain
item is in the range of the function. Here we present our solutiotamigted as
TinLoadZoneINfnc

MACHINE  TInLoadZonelNfnc( maxint, maxfld)
CONSTRAINTS

maxint< 2147483646/
maxfld< 2147483646

SEES
BoolLTYPE
EXTENDS TInLoadingZoneNfnc( maxint, maxfld)

OPERATIONS

res, ii «— TInLoadingZonelIR_NFNC(item) =
PRE
iteme 1.. maxint
THEN
LET tv BE
tv = bool (iteme ran ( TInLoadingZoneNfnc) )
IN
IF  tv=TRUE
THEN
res:= TRUE ||
ii := TInLoadingZoneNfnc—! (item)
ELSE
res:= FALSE ||
i :e 1.. maxfid
END
END
END

END
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The operatiomInLoadingZonellR_NFNC returns a Boolean value indicating the
occurrence of an item in the range of a function and the correspondingpposi
the item in a domain.

As the next step we implement the designed machine. The implementation is
presented as the machifétnLoadZonelNfnc where the operatiofR is refined
by aWHILE substitution. According to the layered design method we import the
extended machines (the same extension is done for the machimeStoreNfno)
in the final implementation.

IMPLEMENTATION TInLoadZonelINfnc
REFINES
TInLoadZoneINfnc
SEES
BoolLTYPE
EXTENDS TInLoadingZoneNfnc( maxint, maxfld)

OPERATIONS
res, ii «— TInLoadingZonelIR_NFNC(item) =

VAR ind, domch
IN
ind:=1,
res.= FALSE,
i:=0,
WHILE ind < maxfldA res= FALSE
DO
domch«— TInLoadingZoneDEF_NFNC(ind) ,
IF domch= TRUE
THEN
res<+— TInLoadingZoneEQL NFNC (ind , item)
END,
ii:=ind;
ind:=ind + 1
INVARIANT
(res= FALSE= item¢ TInLoadingZoneNfnc|[1..ind —1]) A
(res= TRUE= iteme ran ( TInLoadingZoneNfnc) ) A
inde 1.. maxfld+ 1
VARIANT
maxfld— ind + 1
END
END

END

The last general comment on the implementation concerns error handling d&hen
veloping an implementation we assume that any error should invokeespomding
error message rather than initiate unpredictable system behaviour. Sajgpraach
guarantees the design of robust and user-friendly software. Hence, intaauyosi
the operator should have a meaningful message depicting the currenbfsthe
system.
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When presenting the abstract specification we tried to describe every marticul
design decision. However, some explanations were omitted with the that the
corresponding error messages would provide the reader with informrgiféicient
to reconstruct all the details.

IMPLEMENTATION CONTAINERSTATIONRI
REFINES CONTAINERSTATIONR
SEES

BooLTYPE, basicio, String TYPE, Scalat TYPE
IMPORTS

TInWaitingZoneNseq( maxint, nofWaitingPositiong ,
TInLoadZoneINfnc( maxint, nofPositionsx nofLoadingLane$,
ContInStoresINfnc ( maxint, nofPositionsx nofStoringLane$,
CranePositionset( 1 .. nofPositions 1),

RequeContNfnc( maxint, nofPositionsx nofStoringLanes,
PosPositionsset( N , nofPositionsx nofLoadingLane$,
PosTrucksNseq( maxint, nofWaitingPosition3 ,
ReloadTrucksset( N; , nofPositionsx nofLoadingLane$,
WaitingQueueNseq( nofWaitingPositions nofWaitingPositiong

In the implementation we introduce the auxiliary variaBlaitingQueueNseq

INVARIANT

TInWaitingZoneNseg= TrucksInWaitingZoneegA
Y (ii,jj). (ii €0..nofPositions— 1 Ajj € 0.. nofLoadingLanes- 1 =
TrucksInLoadingZongii +1,jj +1) =
TInLoadingZoneNfnc( ii 4+ nofPositionsx jj + 1)) A
YV (aa,bb).(aac 0..nofPositions— 1 A bbe 0.. nofStoringLanes- 1 =
ContainersinStoreéaa+ 1,bb+ 1) =
ContInStoresNfnc (. aa + nofPositionsx bb+ 1)) A
CranePositionsset= { CranePosition} A
RequeContaineNfnc= RequestedContainer
V(cc,dd).(cce0..nofPositions— 1 A dd € 0.. nofLoadingLanes- 1 A
cc+ 1+~ dd+ 1 € possiblepositions=-
cc + nofPositionsx dd + 1 € PosPositionssset) A
PosTrucksNseg= possibletruckssega
ReloadTrucksset= reloadingtrucks

OPERATIONS
movelnWaitingZonétruck, reqcontainer) =
VAR
len, pos, parked, poss, contcheck reqcontcheck tras, parklz
IN

len <— TInWaitingZoneLEN_NSEQ,

parked, pos«—
TInWaitingZoneSCHLO_EQL.NSEQ( 1, len, truck) ;
parklz, poss«— TInLoadingZonellIR_NFNC ( truck) ,
contcheck poss«+—

ContInStores1IR_NFNC( regcontainer) ;
reqcontcheck poss«—
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RequeContainerlR_NFNC ( reqcontainer) ,
tras «+— RequeContaineDEF_NFNC (truck) ;

At first, we check whether the precondition of the operat®agatisfied. Since there are
many conditions to be checked we USeELSIF END substitution for that. We could
have used the nestéfl THEN ELSE END constructs but decided not to do it since it
deteriorates the presentation.

The nested- THEN ELSE statements are used to establish whether a preconditidas hol
but in the operations where the preconditions are more compa

IF  truck < 1V truck > maxint

THEN
PUT.STR(“ The truck ") ;
PUT_STR("“ is badly defined "),
NWL(1)

ELSIF  len> nofWaitingPositions

THEN
PUT_STR("“ The waiting zone is full "),
NWL(1)

ELSIF  len= 0 A parked= TRUE

THEN

If the capacity of the waiting zone is not exceeded and thé&mgatone is not empty, then
we check for the presence of a truelick in the queue of waiting trucks. The value of
the variableparkedequalsFALSEif there is notruck in the waiting zone. It means that
after establishing that the capacity of the waiting zoneotsexceeded, we will verify the
following condition:truck ¢ TrucksIinWaitingZone

PUT.STR(“ The truck ") ;
PUT_NAT ( truck) ;
PUT_STR("is in the waiting zone "),
NWL(1)
ELSIF  parklz= TRUE
THEN

If the program fails to findruckin the waiting zone, it proceeds by searching for this truck
in the loading zone. The following statement must be veriftaatk ¢ ran ( TrucksIn-
LoadingZonsg.

PUT.STR(“ The truck ") ;

PUT_NAT (truck) ,
PUT_STR("is in the loading zone ")
NWL(1)

If the considered truck is not parked either in the waitingeor in the loading zone,
we continue verification of the precondition. Next, we chediether the input parameter
reqcontainerhas a proper value.
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ELSIF  regcontainer< 1V reqcontainer> maxint

THEN
PUT_STR("“ The requested container "),
PUT_STR("“ is badly defined ")
NWL(1)

ELSIF  contcheck= FALSE

THEN

The local variablecontcheckindicates whethereqcontaineris stored at the container
station or not.

PUT_STR( " Container "),
PUT_NAT ( reqcontainer) ,
PUTSTR(“is not "),

PUT_STR("“ in the storing zone ),
NWL(1)

ELSIF  reqcontcheck= TRUE

THEN

The next statement to be verifiedrexjcontainer¢ ran ( RequestedContaingy i.e. we
have to check whether the desired container has alreadyadsségned to any truck or
not.

PUT_STR(“ Container "),
PUT_NAT ( reqcontainer) ,

PUT_STR(" is already ")
PUT_STR("“ assigned to truck "),
NWL(1)

ELSIF tras=TRUE

THEN

Finally, we have to establish that the predidatiek ¢ dom (RequestedContaingholds.

PUT.STR(* Truck ") ;

PUT_NAT (truck) ,
PUT_STR(" is already assigned to container ")
NWL(1)

ELSE

At this point we have checked that all conditions of the prefition are satisfied. Thus
we now assign the container to the arrived truck and parkithik in the waiting zone.

RequeContaineBTQNFNC ( truck, reqcontainer) ,
TInWaitingZonePSHNSEQ( truck)
END
END,
movelnLoadingZonétruck, pos,In) =
VAR
len, parkedInWZ, pwz, plz, vacant, tras
IN
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len <— TInWaitingZoneLEN_NSEQ,
parkedInWZ, pwz<+—
TInWaitingZoneSCHLO_EQL.NSEQ( 1, len, truck) ;

The position(pos,In)in the domain ofTrucksinLoadingZoneorresponds to the position
plzin the domain offInLoadingZoneNfnc

plz := pos+ nofPositionsx (In — 1) ;

vacant«—

TInLoadingZoneDEF_NFNC( plz) ;

tras +— RequeContaineDEF_NFNC ( truck) ;

IF  truck < 1V truck > maxint

THEN
PUT_STR("“ The truck is badly defined "),
NWL(1)

If the input parametetruck has a correct value, we check whether this truck is parked
in the waiting zone or not. According to the developed speatifon a truck can move to
the loading zone only after being parked in the waiting zdhthe truck in question is
parked in the waiting zone, the varialgarkedInWzhas the valud RUEand we continue
checking the precondition.

ELSIF len=0V parkedInWZ= FALSE

THEN
PUT.STR(“ Truck ") ; PUT_NAT (truck) ;
PUT_STR("is not in the waiting zone ")
NWL(1)

ELSIF  pos< 1V pos> nofPositions

THEN
PUT_STR("“ The requested position ")
PUT_STR("“ is badly defined ),
NWL(1)

ELSIF  In <1V In > nofLoadingLanes

THEN
PUT_STR("“ The requested lane ),
PUT_STR("“ is badly defined ),
NWL(1)

Having established that the input parameprsandin are well defined we check whether
this position is vacant.

ELSIF  vacant= TRUE

THEN
PUT_STR("“ Requested place: "),
PUT_STR(“ position "),

PUT_NAT ( pos) ,
PUT.STR(“ lane ") ; PUT.NAT(In);
PUT_STR("“ is already occupied "),

NWL(1)
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ELSIF tras= FALSE

THEN
PUT_STR(“ No container "),
PUT_STR("“ is assigned to truck ")
PUT_NAT (truck) ,
NWL(1)

ELSE

If the desired position is not occupied by any truck the truiakk leaves the queue in the
waiting zone and parks in the loading zone.

TInLoadingZoneSTQNFNC( plz, truck) ,
TInWaitingZoneLFT_.NSEQ( pwz+ 1,len, 1)
END
END,
truckReloadAndDeparturetruck) =
VAR
parkedInLZ, poss, nchosen acpos, crpos, cont, contpos, tras
IN
parkedInLZ, poss«— TInLoadingZonellIR_NFNC( truck) ,
nchosern— ReloadTrucksVIBR.SET ( truck) ,

When calculating the value acposwe use the predicate of the invariant establishing the
relation between the elements of the domaimafcksinLoadingZonand TInLoading-
ZoneNfnc The relation is bijective. Hence, we can uniquely caleuthe values of both
the sector and the lane for any particular value of the fielflnE.oadingZoneNfnc

acpos.= ( poss— 1) mod nofPositions+ 1,

crpos<— CranePositionVALSET( 1),

tras +— RequeContaineDEF_NFNC ( truck) ;

IF truck < 1V truck > maxint

THEN
PUT_STR("“ The truck is badly defined "),
NWL(1)

ELSIF  parkedIinLZ= FALSE

THEN

If the input parametetruck has a proper value we check whether the triokk is allo-
cated in the loading zone and is chosen to be loaded next.

PUT.STR(“ Truck ") ; PUT_NAT ( truck) ;
PUT_STR("is not in the loading zone ")
NWL(1)

ELSIF  nchosen= TRUE

THEN
PUT.STR(“ Truck ") ; PUT_NAT ( truck) ;
PUT_STR("is not chosen ") ;
PUT_STR(" for reload "),
NWL(1)
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Next we have to establish that the truckck occupies the same sector as the crane does.
For that we compare the number of the truck seetoposand the current position of the
cranecrpos

ELSIF  acpos# crpos

THEN
PUT.STR(“ Truck ") ; PUT_NAT ( truck) ;
PUT_STR(" is not under the crane ")
NWL(1)

ELSIF  tras= FALSE

THEN
PUT_STR("“ No container ")
PUT_STR("“ is assigned to truck "),
PUT_NAT ( truck) ;
NWL(1)

ELSE

Because the truckruck is properly located it is loaded by the container assignkd (t
containercon®). So the truckruck leaves the container station, the contaicantis taken
from the storing zone and the record about the assignmeheaiintainecontto a truck
truckis erased.

TInLoadingZoneRMV_NFNC( poss) ;
cont+— RequeContaineWALNFNC ( truck) ;
contpos«— ContInStoresVALNFNC ( cont) ,
ContInStoresRMV_NFNC ( contpos) ,
RequeContaineRMV_NFNC ( truck)
END
END,
numbercandidates— possiblePog truck) =
VAR
len, cont, hh, pos, poss, acpos, nl, trpos, domch, parked, tras
IN
IF  truck> 1 A truck < maxint
THEN
len <— TInWaitingZoneLEN_NSEQ,
IF len>0
THEN
parked, pos«—
TInWaitingZoneSCHLO_EQL.NSEQ( 1, len, truck)

ELSE

parked:= FALSE
END ;
IF  parked= TRUE
THEN

The previous part of the operation verified the establisloiindpe precondition. Next we
identify the position of the contain@ontassigned to the truckuck. We obtain the po-
sition of the assigned container in the domairCaintinStoresNfncand then extract the
number of the sector from it.
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tras +— RequeContaineDEF_NFNC ( truck) ;

IF  tras=TRUE

THEN
cont+— RequeContaineWALNFNC( truck) ,
hh, poss«— ContInStoresIIR_NFNC( cont) ,

The containecontis kept in the sectoacpos According to the introduced loading disci-
pline the trucktiruck must be parked in the sectacposas well.

acpos.= ( poss— 1) mod nofPositions+ 1,

The sequence of the statements below is the initialisafitimeoloop.

n:=1,;
numbercandidates= 0,
PosPositionsCLR SET,

The following loop forms the set of all vacant and approgripositions fottruck in the
loading zone. Only positions in the secteposare taken into consideration. On each
iteration of the loop we check whether positiacposin the linenl is vacant or not. If the
considered position is vacant we insert it in the BesPositionsssetand increment the
counter of available positionsumbercandidatesThe loop variable is the number of the
currently considered line.

WHILE nl < nofLoadingLanes
DO
trpos:= acpos+ nofPositionsx (nl — 1)
domch«— TInLoadingZoneDEF_NFNC ( trpos) ,
IF domch= FALSE
THEN
PosPositionsENT_SET( trpos) ,
numbercandidates= numbercandidatest 1
END,
nl:=nl+1
INVARIANT
PosPositionssset=
{ xx | xx=acpos+ nofPositionsx (nl — 1) A
(xx—= 1)/ nofPositionsmod nofPositionst 1 €
1..nl—1A
xx ¢ dom ( TInLoadingZoneNfnc) } A
numbercandidates= card ( PosPositionssset) A
nl € 1.. nofLoadingLanes- 1 A
size ( TInWaitingZoneNseq) # 0 A
truck € 1.. maxintA
parked= TRUEA
pos= TInWaitingZoneNseq~! ( truck) A
cont= RequeContaineNfnc( truck) A
(hh=TRUE=> conte ran ( ContInStoresNfnc) ) A
(hh= FALSE=- cont¢ ran ( ContinStoresNfnc) ) A
poss= ContInStoresNfnc =7 ( cont) A
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acpos= ( poss— 1) mod nofPositions+ 1 A
len = size ( TInWaitingZoneNseq) A
tras = TRUE
VARIANT
nofLoadingLanes- nl + 1
END
ELSE
PUT_STR("“ No container ")
PUT_STR("“ is assigned to truck "),
PUT_NAT ( truck) ;
NWL(1)
END
ELSE
PUT.STR(“ Truck ") ; PUT_NAT ( truck) ,
PUT_STR("“ is not in the waiting zone ),
NWL(1)
END
ELSE
PUT.STR(“ The truck "),
PUT_STR("“ is badly defined ")
NWL(1)
END
END ;
position+— nextPossiblePos =
VAR
vacancy, pos
IN
vacancy<— PosPositionEEMP_SET,
IF  vacancy= FALSE
THEN

If some positions are available in the loading zone, theaipeican choose any of them.
The operator expects to get the coordinates of the chosétiopos the form (sector,
lane). However, these coordinates are represented by an itena éitmsector+ lane x

no f Positiondn the setPosPositionssset To provide the operator with meaningful infor-
mation we convert this item so that the operator gets thefasallt as a pair consisting of
the number of the position and the number of the line. Theemassition is considered
to be occupied and is therefore removed from the set of vauzagitions.

pos<— PosPositionsANY.SET,

position:=
(pos— 1) mod nofPositionst 1+ ( pos— 1)/ nofPositionst+ 1 ;
PosPositionsRMV_SET ( pos)
ELSE
PUT_STR("“ There are no vacant ")
PUT_STR("“ positions for the truck "),
NWL(1)
END
END ;
numbercandidates— possibleTruckg§ lane, pos) =
VAR

occupied, In, trpos, domch, cont, len, parked, assigned
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wpos, truck, ind , ptruck, tpos, lwq, tplz

tplz:= pos+ nofPositionsx (lane— 1) ;
occupied«— TInLoadingZoneDEF_NFNC( tplz) ,
IF  lane< 1V lane> nofLoadingLanes

THEN
PUT.STR(“ The lane "),
PUT_STR("“ is badly defined ")
NWL(1)

ELSIF  pos< 1V pos> nofPositions

THEN
PUT_STR("“ The position ")
PUT_STR("“ is badly defined "),
NWL(1)

ELSIF  occupied= TRUE

THEN

PUT_STR(“ Position "), PUT.NAT ( pos) ,
PUT.STR(“ Lane ") ; PUT.NAT(lane);
PUT_STR("“ is already occupied "),
NWL(1)

ELSE

If the input parameters are well-defined and they corresporadvacant position in the
loading zone, we can execute the body of the operation. We floe queue of the trucks
fitting the positionposin the landanein the loading zone in two steps.

At first, we form an auxiliary queue of the waiting trucKgaitingQueueNseq Every
element ofran(WaitingQueueNseq)is such an element of the domain DhWaiting-
ZoneNseqthat the corresponding truck fits the desired positionthe ordinal numbers
of truck arival are contained iran(WaitingQueueNseq)

In:=1,;
WaitingQueueCLR NSEQ;
len <— TInWaitingZoneLEN_NSEQ,

The following loop with initialisation forms the sequenbéaitingQueueNseqas de-
scribed above.

WHILE In < nofStoringLanes
DO
trpos:= pos-+ nofPositionsx (In — 1) ;
domch«— ContInStoresDEF_NFNC( trpos) ,
IF domch= TRUE
THEN
cont<+— ContInStoresVALNFNC ( trpos) ;
assigned truck +—
RequeContainerlR_NFNC( cont) ;
IF  assigned= TRUE
THEN
parked, wpos«—
TInWaitingZoneSCHLO_EQLNSEQ( 1, len, truck) ;
IF  parked= TRUE
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THEN
WaitingQueuePSHNSEQ( wpos)
END
END
END ;
In:=In+1
INVARIANT
In € 1.. nofRailwayTracks+ nofStorest+ 1 A
ran ( WaitingQueueNseq) =
{wp | wpe dom ( TInWaitingZoneNseq) A
Jii.(iel..ln—1A
ReqgueContaineNfnc( TInWaitingZoneNseq(wp) ) =
ContInStoresNfnc( pos+
nofPositionsx (ii —1)))} A
lane€ 1.. nofLoadingLanes\
pose 1 .. nofPositionsA
(occupied= FALSE=-
tplz¢ dom ( TInLoadingZoneNfnc) ) A
len = size ( TInWaitingZoneNseq) A
tplz = pos+ nofPositionsx (lane — 1)
VARIANT
nofRailwayTracks+ nofStores— In + 1
END ;
PosTrucksCLRINSEQ;,
numbercandidates= 0,
ind:=1;
Iwg +— WaitingQueud_LEN_NSEQ),
WaitingQueueSRTDSCNSEQ( 1, lwq) ,

To perform a fair choice of the truck which fits a certain pesitand has arrived before the
other trucks fitting that position, we sort the sequewagtingQueueNseq Now on top

of the stackVaitingQueueNsedis the ordinal number of the truck which arrived earliest.
Hence if we pop the top of the stag¥aitingQueueNsegand push it intd?osTrucksNseq
then we form the sequence of trucks fitting a certain positidhe loading zone in such
a way that the first element of this sequence is the truck \witretrliest arrival time.

WHILE ind < lwq
DO
tpos<+— WaitingQueueL STNSEQ;
WaitingQueuePOP_NSEQ,
ptruck <— TInWaitingZoneVAL NSEQ( tpos) ,
PosTrucksPSHNSEQ( ptruck) ;
numbercandidates= numbercandidatest+ 1,
ind:=ind + 1
INVARIANT
indel..lwg+1A
ran ( PosTrucksNseq) =
{tr | tr €ran( TInWaitingZoneNseq) A
Jii.(iiel..ind-1A
RequeContaineNfnc(tr) =
ContInStoresNfnc( pos+ nofPositionsx (ii —1))) } A
Vii.(jel..ind-1=
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TInWaitingZoneNseq~! ( PosTrucksNseq(jj )) <
TInWaitingZoneNseq ! ( PosTrucksNseq(jj +1)))
A
numbercandidates= size ( PosTrucksNseq) A
In € 1.. nofRailwayTracks+ nofStorest 1 A
size ( WaitingQueueNseq) + size ( PosTrucksNseq) =
lwg A
lane€ 1.. nofLoadingLanes\
pose 1.. nofPositionsA
(occupied= FALSE=-
tplz ¢ dom ( TInLoadingZoneNfnc) ) A
len = size ( TInWaitingZoneNseq) A
Ilwq = size ( WaitingQueueNseq) A
tplz = pos+ nofPositionsx (lane — 1)
VARIANT
lwg —ind + 1
END
END
END ;
truck +— nextPossibleTruck =
VAR
len
IN
len +— TInWaitingZoneLEN_NSEQ;,
IF len>0
THEN

The truck which was waiting longer than the other trucks igsem to be parked in the
loading zone.

truck <— TInWaitingZoneFST.NSEQ;
TInWaitingZoneTAL NSEQ

ELSE
PUT_STR("“ There are no trucks "),
PUT_STR(“ for this position "),
NWL(1)
END
END ;
numberreloads+— requiredTruckReloadéposition) =
VAR
crpos, trpos, posch, truck, assigned nl
IN

IF  position> 1 A position< nofPositions
THEN
crpos<+— CranePositionVAL SET(1),
IF  position= crpos
THEN

Currently we have established that the input paramgtsition has a proper type and
coincides with the current crane positiorpos The following initialisation and the loop
have to form the set of trucks parked in the segimsitionin the loading zone. The loop
variablenl shows the number of the lane which we consider. If there ik truck in
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the placeg(position, nl)then that truck is put in the set of trucks to be reloaded rfaxy.
occurrence of such truck increments the result paranmetetberreloads Initially nl is
set in unit, the formed set is empty and the number of occoe®is zero.

nl:=1,
numberreloads:= 0,
ReloadTrucks<CLR SET,
WHILE nl < nofLoadingLanes
DO
trpos:= position+ nofPositionsx (nl — 1) ;
posch«— TInLoadingZoneDEF_NFNC( trpos) ,
IF  posch= TRUE
THEN
truck «— TInLoadingZoneVAL NFNC( trpos)
assigneck—
RequeContaineDEF_NFNC ( truck) ;
IF  assigned= TRUE
THEN
ReloadTrucksEENT_SET( truck) ;
numberreloads:= numberreloads+ 1
END
END,
nl:=nl+1
INVARIANT
nl € 1.. nofLoadingLanes- 1 A
positione 1.. nofPositionsA
crpos= CranePosition\
position= crposA
ReloadTrucksset=
{tr | tr € ran(TInLoadingZoneNfnc) A
tr € dom ( RequeContaineNfnc) A
I xx. (xx= positionx nl A
xx mod nofPositionss 1..nl — 1 A
TInLoadingZoneNfnc ( xx) = truck) } A
numberreloads= card ( ReloadTrucksset)
VARIANT
nofRailwayTrackst nofStores— nl + 1
END
ELSE
PUT_STR("“ The position ")
PUT_NAT ( position) ,
PUT.STR("“ is not the "),
PUT_STR("“ current crane position "),
NWL(1)
END
ELSE
PUT_STR(“ Position "),
PUT_STR("“ is badly defined "),
NWL(1)
END
END,
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nexttruck «<— nextTruckToReload =
VAR
relds
IN
relds «— ReloadTruckEMP_SET;
IF  relds= FALSE
THEN
nexttruck +— ReloadTrucksANY_SET,
ReloadTruckRMV_SET ( nexttruck)
ELSE
PUT_STR("“ There is no unloaded trucks ")
PUT_STR("“ in the current position "),
NWL(1)
END
END ;
trucklane<— reloadingTruckLocatiorf truck) =
VAR
posch, pos
IN
posch, pos«— TInLoadingZonelIR_NFNC( truck) ,
IF  posch= TRUE
THEN

The coordinates of the trucfposition, lane)are represented byosin the domain of
TInLoadingZoneNfnc

trucklane:= ( pos— 1) / nofPositions+ 1

ELSE
PUT.STR(“ Truck ") ; PUT_NAT ( truck) ;
PUT_STR("“is not in loading zone ")
NWL(1)
END
END ;
containerlane«—— reloadingContainerLocatioftruck) =
VAR

parkedInLZ, poss, cont, contpos
IN
IF  truck > 1 A truck < maxint
THEN
parkedInLZ, poss«— TInLoadingZonellR_NFNC( truck) ,
IF  parkedinLZ= TRUE
THEN

If the input parametetruck has a proper value anduck is allocated in the loading zone,
we check whether any container is assigned to this truck.

cont+— RequeContaineWALNFNC ( truck) ;
contpos«<— ContInStoresVALNFNC ( cont) ;

The coordinates of a container in the storing zone are repted in the same manner
as the coordinates of a truck parked in the loading zone. Tairlthe number of the
lanecontainerlanewhere the containerontassigned to the trudkuck is kept we use the
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integer division (as in the previous operation).

containerlane= ( contpos— 1)/ nofPositionst 1

ELSE
PUT.STR(“ Truck ") ; PUT_.NAT (truck) ;
PUT.STR("“is not in the loading zone
NWL(1)
END
ELSE
PUT_STR(" The type of truck ")
PUT_STR("“ is badly defined ),
NWL(1)
END
END,
craneMovement =
VAR
relds, crpos, newpos
IN
relds «— ReloadTruckEMP_SET,
IF  relds= TRUE
THEN
crpos<«+— CranePositionVAL SET(1),
IF  crpos# nofPositions
THEN
newpos= crpos+ 1,
CranePositionRMV_SET( crpos) ,
CranePositionENT_SET( newpos
ELSE
newpos=1,
CranePositionRMV_SET ( crpos) ,
CranePositionENT_SET( newpos
END
ELSE
PUT_STR("“ There is some unloaded trucks
PUT_STR("“ in the current position "),
PUT_STR("“ Complete reloading ")
PUT_STR("“ in the current position "),
NWL(1)
END
END

DEFINITIONS

TRUCKS = N ;

CONTAINERS= N ;

maxint = 2147483646

nofStoringLanes= nofRailwayTracks- nofStores

END

DR

")
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2.6 Conclusions

We have shown that we can perform a whole cycle of software develotaeting
from the informal task description to specification close to implememntatiithin
the B-Method. The chosen task, the development of an informatioerayftr a
container station bookkeeping is not trivial and is solved withoutWkneecipes.
We started from an informal task description and showed that identitfi@dey
entities of that description a designer can easily develop a data structhen W
developing the specification we introduced certain service disciplines guedr
that these are vital restrictions in order to minimise the service ¢ifteucks and
optimise the crane utilisation.

We captured the requirements of the task description in a stepwise méfmer.
argued that an attempt to meet all requirements already by the specification step in-
creases the complexity of the task drastically and leads to weaker design ikecisio
Indeed, in the abstract specification we defined the general structure ofsteensy
and resolved questions concerning the crane utilisation and the paikaiglide.
However, the question of the introduction of fairness was postpanddesolved at
a refinement step. We discussed an optimal solution compromising aedtait:
ness with an optimal crane utilisation.

The implementation machine has some very strong constraints (an absence of
state of its own, importing of other machines and so on). When devejabie
implementation we analysed the influence of these constraints on thepleait
process in our particular case. First, we explained the most non-trigtahtiations
of the imported machines in full detail. Next, we demonstrated how tdyapp
layered design method. We argued that the use of that method allowed usito ob
a more elegant and succinct implementation.

At each stage of the development we pointed out the scope of phenomena that
had to be considered in making a certain design decision. We appealed to the stan
dard results in queuing theory when optimising the service diseipBome insights
from human-computer interaction theory were used to define the strudtacen-
munication of operators with the information system. We used a wellvik method
of analysing the possible scenarios to define the entire set of opexafeferring
to the layered method we showed that it is indeed an applicable and soliddnetho
for software development. For the readers who are inspired by the eatedrin
this chapter we suggest some further extensions of the task.

In the presented case the emphasis was on the design process rather than on the
proof of a logical consistency. However, when developing the syst@mgtiestion
was not omitted completely. For the developed specification we obtainerbst p
obligations and only a few of them were not proved automatically. Tet@u of
proof obligations for the refinement step increased slightly (34 pobtifations
had to be discarded) but the proportion of the automatically proveddewsased
significantly (24 proof obligations were proved automatically). Thaopof the cor-
rectness of the implementation demanded great efforts. About 400 pragdtdns
were generated and only half of them were proved automatically. Inspite tHripe
number of undiscarded proof obligations many of them are rather simg/eiaial.
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2.7 Exercises

Exercise 2.1 (Fairness of Reloads)When specifyingequiredTruckReloadse as-
sumed that the reloading procedure takes a negligible amount of timeeHgbre
order of the reloads does not influence fairness of truck service.

Specify the operation in such a way that the crane operator will chooseithke t
to be loaded in a fair manner, so that the truck with the earliest arrivalisnoaded
before the others. (Hint: it will require an introduction of a vatéatepresenting the
order of the truck arrivals.)

Exercise 2.2 (Add a Second Crane)The task is extended in such a way that the
second crane is added. The goal is to achieve better performance (to mittimise
further waiting time of the trucks). Suggest different loading gikees. Which is
the best? Specify the extended task.

Exercise 2.3 (Afternoon Operations).In this chapter the afternoon operations are
not considered. Try to extend the given specification to incorporate thgse
erations as well. (Note that the variabf®ntainersOnStoras initialised non-
deterministically and should obtain some value as a result of the ezraitithe
afternoon operations).

Exercise 2.4 (Different Types of Containers).Specify the following task exten-
sion: there are two different kinds of containers at the container stadiae con-
tainers and small ones. Every truck can take away either two small containees or o
large container. Make corresponding changes in the loading discipline.

Exercise 2.5 (Optimisation as Refinement)The presented abstract specification
contains a precise specification of the loading discipline. Develop a abmteact
specification at first and then, at a refinement step, introduce an optimisétioa
loading procedure.



3. Minimum Spanning Tree

Ranan Fraer

3.1 Introduction

The case studies usually found in the B literature present many of thactéias-
tics common to safety-critical software systems. The successful use nfsBiah
systems, as exemplified by several realistic large-size projects [2Ihadfreatly
contributed to increasing the interest of industrial practitioner@imél develop-
ment techniques.

However, safety-critical case studies drawn from industrial practice fitile
appeal for computer science researchers and students, as few of them have enough
time to invest in understanding the specific issues of a particular saii¢ital area.
For these reasons we feel that a chapter dedicated to a case study on an algorithmi
development would provide additional value for readers with a compeience
background.

While avoiding the trap of choosing one of the “over-verified” topgmams
(like the factorial, greatest common divisor or quicksort), we foarelon a widely-
studied problem arising in graph theory: the finding of a minimuemsyng tree in a
connected weighted graph. The best-known algorithms for solvingtbidem, due
to Kruskal [45], respectively Prim [71], are covered in most algorittemtbooks.

We have chosen to develop Kruskal's algorithm for its use of noratdata
structures such as priority queues, implemented as heaps [83], and treemépres
tions of disjoint sets [81]. This should be contrasted with thepéé data structures
(scalars and arrays) usually employed in safety-critical applications. Thplerm
ity there lies rather in the large number of variables and the size of tHeaimns
themselves.

The intrinsic difficulty of the algorithms employed (Kruskal's atighm, Tar-
jan’s Union-Find algorithm and the various heap algorithms) are anaburce
of complexity in our case study. This is rarely an issue in safetyeatitipplica-
tions where one can hardly find some simple loops. Neverthelessiténafpiheir
“algorithm-free” nature, such applications might exhibit non-tridahtrol struc-
tures in the form of involved state automata.

The structure of this chapter follows the structure of the layered/ldpment:
each section introduces the specification of a new layer that is used to beiild th
implementation of the layer above. In Sect. 3.2 we define the minimum sgann

1 Work performed at INRIA Sophia-Antipolis, France.
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tree problem, and propose an abstract specification of it in B. Sect. 3.3 fgrasen
informal description of Kruskal’s algorithm and its correctness prasefthe imple-
mentation of the algorithm becomes too complex to be manageable, we deeompos
it into two subsystems: one allows to manipulate disjoint setsladther provides

the facilities of a priority queue. The two subsystems are then indepéigdefined

to implementable code: Sect. 3.4 traces the stepwise refinement from tdégtsn
operations to Tarjan's Union-Find algorithm, while Sect. 3.5 deserihe imple-
mentation of priority queues as heaps. We conclude in Sect. 3.6 with assiisou

on the lessons to learn from this chapter.

3.2 The Minimum Spanning Tree Problem

Consider an undirected connected gr&phk (NodesEdges and a weight function
associating a positive integer cost to each edge. GverEdgesthe subgrapf =
(NodesE) is aspanning treef G if and only if T is a tree. The total cost associated
with such a tree is obtained by summing the weights of all edges belptgithe
tree. The minimum spanning tree problem requires a spanning tree isimgnthe
cost function to be found.

(b)

Fig. 3.1. A Sample Graph and its Two Minimum Spanning Trees

The solution of the problem need not necessarily be unique. Conselgrdaph
in Fig. 3.1(a), where

Nodes= {1,2,3,4,5}
Edges={(1,2),(1,3),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)}

This graph admits two minimum spanning trees of cost 9, as shown irBHi¢b)
and Fig. 3.1(c).

3.2.1 An Abstract View of a Graph

As the components of the graph will have to be accessed by several madules i
is worth encapsulating them into an abstract machine that should be shattesl by
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other modules. We prefer the sharing mechanism provided [§HEReSclause since

it is a full-hiding one, supporting independent refinement of the sedrnsaaing
machines. In our case, this means that the seeing components do not havenid dep
on a particular representation of the graph, like an adjacency matrix or adjacenc
lists. Instead of committing from this early stage to such a representate shall
postpone the choice of the most convenient data structure to thenmeptation
level.

At the specification level we simply model the graph as a finite non-empty
setNodes a relation on this se€Edgesc Nodes«~ Nodesand a weight function
weighte Edges— NAT. All three components should be declared as abstract con-
stantg since they belong to the static part of the specification and they aresegp
to be refined in a subsequent implementation. The graph being undireet@dl|lw
require thaEdges Edges?® = {}, such thaE dgescontains only one copy of each
undirected edge. On the other hand, paths in the graph are better exprassetsin
of the “directed” set of edgesl|_Edges= EdgesJ) Edges? and the transitive clo-
sure of relations. For instance, the connectedness assumption can bestatgad
asAll_Edges$ = Nodesx Nodes

In order to hide completely from the underlying implementation ofdhegph,
some abstract inquiry operations have to be provided. The interfatteeaia-
chine will thus contain a few primitives to iterate through the edgesoperation
all_unreaddeclares all edges as unreat,moreedgestests if there are still un-
read edges anckad edgereturns the next unread edge together with its weight.
All three operations make use of an auxiliary variaRladrepresenting the set of
already read edges.

The resulting abstract machinggightedGraphis presented below. Actually, a
complete interface of the graph specification should also include an irglaxic-
tion mappingNodesto the interval 1.n, wheren is the number of nodes of the
graph. However, for the sake of simplicity we will identijodeswith 1..n. This is
not necessarily a restriction, as for a non-trivial set of nodes, usé¢he specifica-
tion could provide their own indexing function.

MACHINE  WeightedGraph
CONSTANTS n, Edges, weight
DEFINITIONS

Nodes = 1..n,

All_Edges = EdgesU Edges? ;

cost = AE.(EeP(Edges) | Y edge. (edgec E | weight(edge)))
PROPERTIES

n € NAT1A Edgesce Nodes«+ Nodesh weighte Edges— NAT A
Edgesn Edges ! = {} A All_LEdges’ = Nodesx Nodes\
card ( Edges) € NAT A cost( Edges) € NAT

2 The ABSTRACT _CONSTANTS clause has been recently introduced in the AMN [2].
Although the B-Toolkit does not support this clause yetrivides an equivalent mecha-
nism of refining constants.
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VARIABLES Read
INVARIANT  Readc P ( Edges)
INITIALISATION Read:= {}

OPERATIONS
all_unread = Read:={},
b +— nomoreedges = b:=bool( Read= Edges),

u,v,w<«—readedge =
PRE Read# Edges THEN

ANY i,j WHERE
i € NodesA j € NodesA (i, j) € Edges— Read
THEN
u,v,w,Read=i,j,weight(i,j),Readu {(i,j)}
END
END

END

We will not provide an implementation of this machine here. One couldyeasi
imagine how an implementation based on adjacency lists or on an adjacency matrix
would look, and how it could be instantiated with the data of a padiagdaph, like
the one presented in Fig. 3.1(a). AlternativéleightedGraph might be consid-
ered as a basic abstract machine, whose implementation would not be cariiied out
B, but in a suitable programming language.

Note also that the various integer quantities are constrained to beldgTt
or NAT1 denoting the intervals 0 MAXINT, respectively 1. MAXINT, where
MAXINT stands for the largest integer representable on a given architecture. The
B-Method ensures that the machine arithmetic is taken into account ratheéhéhan
infinite set of integerdN in order to ensure that integer values are effectively im-
plementable. This proves to be extremely useful since subtle overflovs@an be
easily overlooked in large developments.

3.2.2 Specification of the Minimum Spanning Tree Problem

As a pre-requisite to the specification we have to formalise the mofithe span-

ning tree. Between the many equivalent definitions of trees, the most Isuiitaib

our problem is the one that requires the absence of cycles, and the prekerce o
edgesn being the number of nodes in the graph:

Spanning_Tree = {E | E € Forest Acard (E) =n—1}

whereForestis the set of subsets of edges that induce no cycles. A ¢dan

be characterised by the prope@y Nid(Node$ # {}. HereC is considered as
a “directed” set of edges, that is a subsetAdif Edges Furthermore, in order to
avoid fake cycles a$(u,v), (v,u)} we will requireC to contain at most one copy
of each undirected edge, thaGs1C~1 = {}. With these definitions, the minimum
spanning tree problem can be formally specified in B by the means of thaetbstr
machineMin_SpanningTree Note that we reuse below the definitionsbdes
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All_Edgesandcostintroduced in the machin&/eightedGraph A complete devel-
opment would require these definitions to be repeated in the current reachin

MACHINE  Min_SpanningTree
SEES WeightedGraph
VARIABLES  Min_Tree
DEFINITIONS
Cycle = {C | CcP(All_.Edges) A C T nid(Nodes) # {}
ACNC1={}1};
Forest = {E | EcP(Edges ACyclenP(EUE-1)={}};
SpanningTree = {E | Ec ForestAcard(E)=n—-1}
INVARIANT  Min_Treec [P ( Edges)
INITIALISATION Min_Tree:= {}

OPERATIONS

min_cost«— min_spanningtree =
ANY T WHERE
T € SpanningTreeA cost( T ) = min ( cost[ SpanningTree] )
THEN
Min_Tree:=T || mincost:= cost(T)
END

END

The unique operatiomin_spanningtree is just a simple transliteration of the
informal description of our problem: “find a spanning tree miningdime cost func-
tion”. It is precise enough in describing the “what” of the problemhwiit giving
any hint on the “how” of a possible implementation.

The style of this specification is a generous one: the connectedness assump-
tion guarantees that the graph admits at least a spanning tree. In turenthis
sures the feasibility omin_.spanningtree We will see later that the termination
proof of the implementation subtly relies on this property. A defenspecification
would omit the connectedness assumption, and require the test to bandumte the
min_spanningtree operation:

connectedmin.cost«— minspanningtree =

ANY ok tree WHERE
oke BOOLA T e IP (Edges A
(ok= TRUE=- T € SpanningTreeA cos{ T ) = min ( cost[ SpanningTree] )) A
(ok = FALSE=- All_Edges* # Nodesx Node3

THEN
Min_Tree:=T || mincost:=cost(T)

END

As argued in the B-Book [2], generous specifications are more withiadhe
structive spirit of the B-method than defensive ones. Howeverighise case where
a defensive specification might have been advantageous since connectedness is no
that simple to test on the “user’s side”. Additionally it turns ouwtttKruskal’s algo-
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rithm allows this test to be done “for free” internally, while consting the span-
ning tree.

When specifying just an algorithm with no meaningful notion of stat@rable-
less abstract machine should be preferred. Unfortunately, it is inipedsi have
both min_cost and Min_Tree as results returned bmin_.spanningtree, because
Min_Treeis a set of edges and not a scalar value. This is due to the definition of
refinement requiring refined operations to preserve the signature ofatbstiiact
counterparts. As at the implementation level operations can only accept armd retu
scalar values, this constraint is propagated up to the abstract machines.

3.3 Kruskal’s Algorithm

3.3.1 A Greedy Strategy

The best-known algorithms for solving the minimum spanning pexblem, due
to Kruskal [45] and Prim [71], are based on a greedy strategy. The tieeing
built edge by edge, the next edge to be included being chosen by somésagitin
criteria. The simplest such criteria would be to choose an edge thatsrésut
minimum increase in the sum of the costs of the edges included so far.

The two algorithms differ in the interpretation of this criteria.ri?s algorithm
requires that the s&of edges so far selected forms a tree. Thus, the next(@cge
to be included irE, is a minimum cost edge not B, such thaE U {(u,v)} is also
atree.

On the contrary, Kruskal's algorithm requires only that the set of edgss-
lected so far form a forest, that it is possiblecmmpleteinto a spanning tree. The
edges are considered in nondecreasing order of weight. Thus, the nextieddge
be included irE, is a minimum cost edge not B, such that no cycle is created by
adding(u,v) to E. It is Kruskal's algorithm that we have chosen, due to its manipu-
lation of non trivial data structures such as heaps and tree representadisjooft
sets.

At this point, we are in the position to write down some pseuddedor the loop
described above. This stage in the algorithmic design is closely r&tinthe B de-
velopment by an early implementation of the abstract madiineS panningT ree

min.cost«— minspanningtree =
VAR u,v IN
Unprocessed= Edges, E :={} ;
WHILE card(E)<n-1 DO
u,Vv:((u,v) e Unprocessed
A weight(u, v) = min (weight[ Unprocessed)) ,
Unprocessed= Unprocessed- { (u,v) } ,
IF EU{(u,v)}ecForest THEN
E:=EU{(uVv)}
END
INVARIANT
VARIANT
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END ;
min.cost:= cos(E)
END

As an example, consider again the graph from Fig. 3.1(a), and supposs that
edges are processed in nondecreasing weight order. In the case of edges of equal
weight suppose thdtl, 3) is processed befor@,3), and(3,5) is processed before
(3,4). Then, the sequence of diagrams in Fig. 3.2 illustrates the builditigedree
one edge at a time. Note that, in spite of weighing less tdab), the edgeg1,2)
has been rejected at step (c) because of the cycle formed with the already selected
edgeq1,3) and(2,3).

e
oo b

@ (b) (d)

Fig. 3.2. Successive Stages in Kruskal's Algorithm

3.3.2 Correctness Proof

As we still have to provide an invariant and a variant for the above,|det us
give some insight into the correctness proof of the algorithm.€Bsential invariant
property is that the set of edgEsselected so far can be completed into a spanning
tree of minimum cost:

1 =3T.(T € SpanningTreeAECT
A cosi(T) = min(cos{S panningTred))

The invariantl; is verified at the entry of the loop when we have tBat {} as
SpanningTree# {} (due to the fact that the graph is connected), so we can choose
a spanning tree of minimum cost that will necessarily inclede

Now supposé; to be true before an iteration of the loop and let us prove that it is
still true after executing that iteration. The case when the new gdggintroduces
a cycle inE is trivial, asE stays unchanged so it can still be completed into a
spanning tree of minimum cost. The difficult case is whew) is included inE. If
T is a spanning tree of minimum cost containiBgwe can again distinguish two
cases.
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First, if (u,v) € T thenly is again trivially satisfied. Let us consider the second
case, whetfu,v) € T. The inclusion ofu,v) in T creates a unique cyceC T. But
then,

I, = E € Forest

is a second invariant stating thatcontains no cycles, so there is at least one edge
(U,V) eC\E. ltis easy to see that’' =T \ {(U,V)} U{(u,v)} is still a spanning
tree. It would then be sufficient to prove thatight(u’,v') > weight(u,v) since this
would imply thatcost{T') < cost(T), soT' itself would be of minimum cost.

As (u,Vv) is the edge of minimum weight id nprocessedt would be enough to
prove that(u’,Vv') € Unprocessedor equivalently thafu’,v') ¢ Processedwhere
Processeds defined agdges\ UnprocessedA simple third invariant states that
only processed edges have been selected so far:

I3 = E C Processed

From above we already know th@at,Vv') ¢ E. Therefore it remains for us to prove
that(u',v) ¢ Processed E.

The proof can be completed by considering another invariant properipgstat
thatE is a maximal forest if?(Processet

l4 = Ve.(e€ Processed E = EU {e} ¢ Forest)

AsEU{(U,V)} C T andT is a spanning tree, we infer th&tJ { (u',V)} is neces-
sarily a forest, so fronly we obtain thatu’,v') ¢ Processed E.
Putting all the pieces together we obtain the complete loop invariant:

INVARIANT
E € ForestA Unprocessed: P ( Edges) A E C Processedh
3T.(T € SpanningTreeA E C T A cost( T ) = min ( cost] SpanningTree] )) A
Ve.(ee Processed- E= E U { e} ¢ Forest)

What about the termination proof? A good candidate for the variantsoloibp
seems to be the number of unprocessed edgd8Jnprocessef It is easy to show
that this quantity is strictly decreased at each iteration and that it alwaysisiys
tive.

A more subtle issue in the termination proof is the partial natdrdh@min
function. More exactly, we are required to prove tbatprocessegs {} whenever
the invariant and the test of the loogard(E) < n— 1, are true. The proof makes
use of the invariantk, andls: suppose that) nprocessed= {}, thenProcessed=
Edgesand froml, we infer thatE is a maximal forest with respect to inclusion.
But according td1, E can be completed into a spanning treefEsitself has to be a
spanning tree, which contradicts the fact thdtas less than — 1 edges.

It should be noted that indirectly this proof relies on the assumptiat the
graph is connected. Indeed, this assumption was used to establithishedtisfied
at the entry of the loop. If the graph was not connected, it would haveissible
to exhaustnproceesedbefore includingh— 1 edges irk. In this case, a defensive
specification should have been used.
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3.3.3 Decomposing the Development

This algorithmic refinement of our specification would not be accepted as d&-imp
mentation in B, because it still uses mathematical notions like sets aridmsland
abstract operations on them. Further refining of these elements at thiscstagds
executable code would lead to a much too complicated implementation and make
its verification highly expensive.

Thelayered developmempiaradigm proposed by the B method allows the solu-
tion of this problem, by breaking a possibly very difficult verificatistep into a
number of smaller and simpler steps. Various structuring mechanismsoside
to decompose a large system description into several subsystems that icale-b
pendently refined to implementable code. In our case we can split our devaribpm
into modules by encapsulating the set variablegprocesse@éndE and the corre-
sponding operations in some abstract machines, and have these machomsdmp
in the implementation.

Further analysis reveals that the varialleandU nprocessedan be isolated
in two different abstract machines. The first oiin_ WeightEdge will encap-
sulate the variabl&)nprocessedogether with two operations: one for initialising
Unprocessedo the whole set of edges, and a second for retrieving the minimum
weight edge:

MACHINE  Min_WeightEdge

SEES WeightedGraph

VARIABLES  Unprocessed

INVARIANT  Unprocessedt: [P ( Edges)
INITIALISATION Unprocessed= Edges

OPERATIONS
all_unprocessed = Unprocessed= Edges,
u,Vv,w<«— minweightedge =
ANY i,j WHERE
i € NodesA j € NodesA (i, j) € Unprocessed\
weight(i , j ) = min (weight[ Unprocessed )
THEN
Unprocessedu, v, w:= Unprocessed- { (i ,)) },i,j,weight(i,j)
END

END

The second abstract machingeightedForest, will encapsulate the variable
E together with an operation initialising to the empty set, and a “test-and-set”
operation that adds an edggv to E if no cycle is introduced by this edge. On the
other hand, as there is no valid reason to encapsulate the remaining scaldesariab
u,v andw we can keep them as local variables at the implementation level. The
resulting machine will also have to provide two inquiry operatitmsetrieve the
cardinal and the cost of the det



88 3. Minimum Spanning Tree

MACHINE  WeightedForest
SEES WeightedGraph
VARIABLES E
INVARIANT  E € Forest
INITIALISATION E:={}

OPERATIONS
noneselected = E:={},
add edgeif_nocycl{ u,v,w) =
PRE

u e NodesA v e Nodesh w e N A
(u, V) € Edges— E A w = weight(u, v)
THEN
IF EU{(u,v)}cForest THEN
E:=EU{(uVv)}

END
END ;
cnt+—nr.edges = cnt:=card(E),
total «+— costedges = total := cos{(E)

END

The main reason for using a “test-and-set” operation instead of two eirapt
erations, a “test” one and a “set” one, is that in their implementation, Tseiti
and “test” would have to call the same “lookup” operation of an imported imach
Merging “set” and “test” into a single operation allows a redundant calladkup”
to be avoided, which itself is a time-costly operation. Also, not the “test-and-
set” operation is specified in a defensive style by usingfFasubstitution, while a
“test” operation would have been specified in a generous style usitigkasub-
stitution. This is one of the rare cases where implementation detalefiiciency
concerns influence the style of the abstract specification.

Now we are able to write a proper implementation of Mim_SpanningTree
machine based on the services provided for us by the two abstract machines
Min_Weight EdgeandWeightedForest

IMPLEMENTATION Min_SpanningTreel
REFINES Min_SpanningTree

SEES WeightedGraph

IMPORTS  Min_WeightEdge, WeightedForest
DEFINITIONS Processed= Edges— Unprocessed
INVARIANT  Min_Tree=E

OPERATIONS
min.cost«— minspanningtree =
VAR u,v,w,c IN
all_unprocessed noneselected c:=0;
WHILE c¢c<n—-1 DO
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u,Vv,w<«— minweightedge,
add edgeif_no_cycle(u,v,w),
c < nr_edges
INVARIANT
E C Processed\ c = card (E) A
3T.(T e SpanningTreeAECT
A cost( T ) = min ( cost] SpanningTree] )) A
Ve.(ee Processed- E= EU { e} ¢ Forest)
VARIANT card ( Unprocessed
END,
min_cost«— costedges
END

END

One might wonder why the operatioas$l _unprocessedand noneselected
whose role is to initialise the variablésnproceesedind E, are called here and
not in the initialisation of the machine. This is due to the fact tha¢ oannot
rely on the initialisation to be executed just before callmigLspanningtree In-
deed, as an operation of an abstract machine, nothing fonbilds panningtree
from being called several times in a row in states satisfying the machiagi-in
antMin_Treee P(Edges. A rather embarrassing consequence is that subsequent
machines in the design would have to provide operations redundmtheiinitial-
isations of the respective machines, as it was already the caaH famnprocessed
andnoneselected

The correctness proof of this implementation has already been presented in the
previous section. Now, that we have split the initial code intcesgvpieces, we
have to make sure that the preconditions of the called operations astesiatis
well. We can regard this as part of the termination proof, and actually we ha
already established the preconditiomprocessed# {} of minweightedgeas a
termination argument. A second non trivial precondifjoyv) € Edges- E protects
the operatioradd_edgeif _no_cycleand it can be proved from the invariaBtC
Processeand the fact thafu,v) € Unprocessed

Note that some of the invariants of the initial loop, likec Forest, have now
been moved to the invariants of the imported machines where they areesitopl
prove. This is part of a general strategy in B, caliiesign for provability establish
complex invariants by putting together simple invariants of sevealutes of the
development. The successful application of this strategy is conddibg a careful
design of the architecture of the application, trying to group in #maes module
variables tightly linked by an invariant, and to separate unrelated variabtf$er-
ent modules, as was the case EoandU nprocessed

The structure of the development so far is pictured in Fig. 3.3, wiikmg
indicates refinement and solid and dashed lines are used to distinguish between
IMPORTS andSEESIinks. The development will be completed in the next two
sections by independently refining the abstract machifegghtedForest and
Min_WeightEdgeto the implementable code.
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-~ Min_Spanning_Tree
SEES:

Min_Spanning_Tree_|

IMPORTS ~"-----------+ SEES NPORTS

Weighted_Forest ‘< ————— Weighted_G rapljy ————— = Min_Weight_Edge

Fig. 3.3. Structure of the Upper Layer of the Development

3.4 The UNION-FIND Algorithm

In this section we propose an implementation of the machir@ghted _Forest
based on Tarjan’s Union-Find algorithm [81]. The various decisionslved in the
algorithm will be introduced progressively through a series of steprefinements,
ensuring in this way a smooth transition from the abstract specificadian exe-
cutable implementation.

3.4.1 Equivalence Relations

In order to implement the operati@ad edgeif _no_cycleefficiently, the nodes of
the graph should be grouped together in such a way that one may easilyideterm
if the vertices and| are already connected by the set of edgesslected so far. If
they are not, thefi, j) is added tcE.

One possible grouping is to place all vertices in the same connected centpon
of E into a set (that would also be a tree, due to the absence of cycles). Tlen, tw
vertices are connected if and only if they are in the same set. Mathematicilly, th
can be formalised by defining a partition, or alternatively, an equivaleregmelon
the set of nodes. While a partition allows the union of two connecteghooents to
be expressed easily, an equivalence relaonill be preferred due to the simplicity
of the refinement invariant relating it to the set of ed§e® = (EUE1)*.

We can then encapsuld®nto another abstract machirtequivalencetogether
with two operations: one setting to the identity relation, and another “test-and-
set” operation that connects two elements if they are not already connected by the
relationR. Itis still too early to decompose this operation into a “test” openrediod
a “set” one, for the same efficiency reasons exposed in the previous section

MACHINE  Equivalence n)
CONSTRAINTS ne NATL
SEES BoolLTYPE
DEFINITIONS A = 1..n
VARIABLES R
INVARIANT

ReA+ AA
id(A)CRA
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RCR~1 A
(RoR)CR

INITIALISATION R:=id (A)

OPERATIONS
makesingletons = R:=id(A),
b +— join_if_notequivalenfi,j) =
PRE ie€AAjeA THEN
IF (,)¢R THEN
b:=TRUE || R:i=RU{({.)).G.)}H*
ELSE
b:= FALSE
END
END

END

The invariant of the machine states the three defining properties of avaequi
lence relation: reflexivity, symmetry and transitivity. The consisygproof of this
specification requires it to be shown that after each oper&giays an equivalence
relation. This comes down to manipulating some algebraic identitieglatians.
For instance, the proof th&RU {(i, j), (j,i)})* is still a symmetric relation goes as
follows:

(RU{(i,1),(J,HH) € (RU{(, ), (1,DH " € (RU{(G, 1), (1,D )"

Now we can base the implementationWgightedForeston theEquivalence
machine that we have just introduced. To implement the operatioesigesand
costedgeswe introduce two implementation variablesount andsumrelated to
the set of edgeE by the refinement invariambunt= card(E) A sum= cos{E):

IMPLEMENTATION WeightedForest|
REFINES WeightedForest

SEES WeightedGraph

IMPORTS Equivalencg n)
CONCRETE_VARIABLES count, sum
INVARIANT

R=(EUE~1)*A
counte 0.. card ( Edges) A count=card (E) A
sume 0.. cost( Edges) A sum= cost( E)

INITIALISATION
BEGIN  makesingletons, count:=0; sum:=0 END

OPERATIONS

3 The CONCRETE_VARIABLES clause introduced recently in the B-method [2] avoids
the tedium of encapsulating implementation variablesliatsic abstract machines.
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noneselected =
BEGIN  makesingletons, count:=0, sum:=0 END;

~

add edgeif_nocycld{ u,v,w) =
VAR b IN
b +— join_if_not.equivalent( u, v),
IF b=TRUE THEN
count:= count+ 1 ; sum:= sum+ w

END
END,
cnt<— nredges = cnt:= count,
total +— valuesum = total := sum

END

The refinement proof associated to this implementation will show thatrass
ing the refinement invariam® = (E U E~1)*, the tests of the two conditionals
EuU{(u,v)} € Forestand (u,v) ¢ R are equivalent, and also that the new values
of E andR are still related by the refinement invariant:

(RU{(uv), (wu)})* = (EU{(uv)}UEU{(uv)}) )"

When we want to prove thagum and count are correctly updated inside the
join_if _not_equivalentwe rely on the precondition of the abstract operation which
ensures thafu,v) € Edges-E.

3.4.2 Representatives of Equivalence Classes

Now we can proceed further with the refinementEajuivalence The next step
in the direction of Tarjan’'s Union-Find algorithm is to consider arespntative of
each connected set, by introducing a total functiepr € A — A. The refinement
invariant will state that two elements are equivalent if and only if thexelthe same
representative:

R={xy|xeAAye€ AArepr(x) =repr(y)}

Let alsoclasgr) = repr—1[{r}] denote the class of equivalencerofWhen im-
plementing the operatiojoin_if _not_.equivalentone would have to make a non-
deterministic choice between mapping all the elements of the classaofj or the
other way around. At this stage we do not want to be more specific orsthie
but, as we will see later, a choice based on efficiency concerns will be made at the
implementation level.

A new abstract machinBepresentativeis introduced in order to encapsulate
therepr function and its abstract operations, as shown below. Besides thesaitial
tion of all sets as singletons, we need one operation for retrievingghresentative
of an element and another one for computing the union of two classes whemkno
their representatives:

MACHINE  Representativen)
CONSTRAINTS ne NATL
VARIABLES repr
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DEFINITIONS

A= 1..n,

Representatives= ran (repr) ,

clas{r) = repr 1 [{r}]
INVARIANT

repr € A — A A Representatives] repr = id ( Representativek,
INITIALISATION repr:=id (A)

OPERATIONS

makesingletons = repr:=id(A),

ri < findrepr(i) =
PRE i€A THEN ri:=repr(i) END;

unionsetgri ,rj) =
PRE ri € Representatives rj € Representatives ri £r1j THEN

repr:=repr< class(ri) x {rj} [| repr:=repr< class(rj) x {ri}

END

END

The invariantRe presentatives re pr = id(Representativesensures that each
representative is mapped to itself by tie@r function. When proving thatnion.sets
preserves this invariant, we distinguish two cases corresponding tav¢hbranches
in the non-deterministic choice. As the two proofs are similar wépvésent only
the case where the new valuereprisrepr =repr < clasgrj) x {ri }. In this case,
ran(repr’) =ran(repr) — {rj} sorj is not a representative anymore. The proof is
completed by remarking that all the other representatives are still mappeehte t
selves.

The precondition of the operatiamion.sets stating that its arguments should
be two different representatives, eliminates the need for an intdfrtabt. So it is
only at this stage that we are able to split the “test-and-set” operatiorai“test”
one and a “set” one. An implementation Bfuivalenceimporting the previously
introducedRe presentativamachine, follows below:

IMPLEMENTATION Equivalencel

REFINES Equivalence

SEES BoolLTYPE

IMPORTS Representativegn)

PROMOTES makesingletons

INVARIANT  R={x,y | xe AANycAArepr(x)=repr(y)}

OPERATIONS
b +— join_if_notequivalentii ,jj) =
VAR ri,rj IN
ri «— find_repr (i ) ; rj +— findL.repr (jj ),
IFri#r THEN
unionsets(ri ,rj); b:=TRUE
ELSE
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b:= FALSE
END
END

END

When proving the refinement we need to show that the two fegts¢ R and
repr(i) # repr(j) are equivalent, which is just a reformulation of the refinement
invariant. Another proof obligation is

(RU{(i,1),(,D})" ={(xy) | repr'(x) = repr'(y)}

whererepr denotesepr < clasgrj) x {ri}. The proof of this property relies on the
fact that only two cases are possible. Firsk #hdy were in the same class induced
by R, then they are still mapped to the same representative . In the second
casex may be in the class éfandy in the class of or vice versa, so both will share
ri as a common representative.

3.4.3 Tree Representation of Disjoint Sets

The essential idea behind Tarjan’s Union-Find algorithm is that mgpaiinthe
members of the class af to rj might be too costly, so instead one could map
only ri to rj and let all the elements from the classrofimplicitly inherit rj as
representative.

This leads us naturally to a tree representation of each connected set, such that
the representative of an element is given by the root of the tree to whieloihgs.
More precisely, we introduce parentfunction mapping every non-root element to
its parent in the tree. To avoid mapping the roots to some error elementan
declareparentas a partial function.

The refinement invariant relating pr and parent needs to state thaepr is
obtained by iteratingparentuntil reaching a root element. If

roots= A— dom(parent)
ancestor§) = parent[{i}]

whererootsdenotes the set of elements wheegentis undefined andncestor§i)
denotes the set of nodes that can be reachediffollowing parentlinks, thenrepr
maps each nodeo anri such thati € rootsnancestor§).

Two more optimisationgath compressioandweight balancindhave been pro-
posed by Tarjan in order to obtain an almost linear time complexity. istdavel-
opment layer we shall consider only path compression as it requires ooljthig
mic refinement. Weight balancing deals with data refinement, as it requiresanoth
change of variable, and will be introduced in the final implementation.

The idea behind the first optimisation is to compress systematicalpaths
to the root of the elements examined at edafd_repr operation. More exactly,
after performingfind_repr(i), for every node on the path fromi to its rootri, ri
should be set as the direct parentjoFormally, this can be expressedaent:=
parent< (ancestor§) — {ri}) x {ri}.
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When encapsulatingarentinto a new abstract machirgnion.Find one might
choose to include the optimisation above as part offihe_root operation, or to
make it available in the interface as an operation on its own. The secautibgol
proves to be more flexible, since it lets the user decide whether it iwbile to
perform path compression, depending on the ratio between the numbeonfsets
and find_repr operations. The resulting abstract machine is:

MACHINE  Union.Find (n)
CONSTRAINTS ne1l.. MaxScalar
VARIABLES parent
DEFINITIONS

A= 1..n,

~

roots = A — dom ( parent) ,
ancestorqi ) = parent* [{i}];
descendant§ ) = (parent=%)*[{i}]

INVARIANT
parente A + A A parentt Nid (A) = {}
INITIALISATION parent:= {}

OPERATIONS
makesingletons = parent:= {} ;
r «— findroot(i) =
PRE ieA THEN ri:€ancestor{i)Nnroots END,
compresgath(i,ri) =
PRE i€ AAri € ancestorgi)nroots THEN
parent:= parent< (ancestorgi) —{ri }) x {ri }
END ;
unionsetgri ,rj) =
PRE ri erootsArj erootsAri #r1j  THEN
parent(ri):=rj [ parent(rj):=ri
END

END

The invariantparent' Nid(A) = {} states thaparentis really a tree represen-
tation as it induces no cycle. As we shall see later, this property ensurasithe
feasibility of thefind_root operation, since from every node one can follow upwards
only a finite number oparentlinks.

The invariant is trivially preserved by the operatidimd_root as it does not
modify the parentfunction. In the case afompresspath let

parentl = parent< (ancestor§) — {ri}) x {ri}

denote the new parent function. Frqancestor§) — {ri}) x {ri} C parentt, we

can infer thatparentl™ C parent™, which implies thatparentl™ Nid(A) = {}. To
prove thaunionsetspreserves the invariant of the machine, note that makjiriige
parent ofri cannot induce a cycle. Otherwise this cycle would necessarily include
the linkri — rj, but could not go further becausgitself has no parent.
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Now we can base the implementation of the abstract madd@pmresentatives
on the machindJnion.Find, by promoting the operationsakesingletonsand
unionsetsand refining find_repr as a call tofind_root followed by a call to
compresspath

IMPLEMENTATION Representativeb
REFINES Representatives

IMPORTS  Union.Find (n)

PROMOTES makesingletons union.sets

INVARIANT
repr={i,ri | i€ AAri € AATi € ancestorgi) N roots}
OPERATIONS
ri «— findrepr(i) =
BEGIN
ri «— find_root (ri ) ; compresspath(i,ri)
END
END

The refinement invariant makes it obvious ttiatd_root returns the correai.

On the other hand the modification parent performed bycompresspath keeps
therepr function unchanged as all the nodes on the path frtori remain in the
same tree of roat.

The refinement proof for thanionsetsoperation consists of two parts. First,
the refinement weakens the precondition of the abstract operation, sincaveve h
that Representative§ roots (in fact the two sets are equal, as follows from the
refinement invariant). Secondasgri) is equal tadescendantsi ), the set of nodes
in the tree of rootri, so makingrj the parent ofri is equivalent to moving the
elements irclasgri) to clasgrj), and this is exactly the meaningm@fpr :=repr <
+clasgri) x {rj}.

3.4.4 Weight Balancing

The algorithm described above has bad worst-case performance because the trees
formed could be degenerate. In order to avoid this, a second optinmigags to
balance the trees created lnyion.setsoperations. When a tree rootedrats to be
merged with a tree rooted gt it makes sense to choose as a new root the node with
more descendants.

To illustrate the way this optimisation is applied, we present in Big the
successive stages in the Union-Find algorithm, when applyimgn.setsfor each
of the edges introduced in Fig. 3.2. Weight balancing is applied here atctepd
e), while at steps b) and d) the merged trees have the same number of descendant
Note as well that due to the reduced size of the example, path compressismpl
role here, as itis only after the last step that we have a tree of depth 2.
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Fig. 3.4. Intermediate Stages in the Union-Find Algorithm

Weight balancing is easily implemented by maintaining the size of each tree
(number of descendants of the root) as ffa@ent of a root. This value should be
encoded as a negative number so that the root node can be detected whengravelli
up the tree.

Calling fatherthe new function, let us define its positive part as

pos= father> 1..n

the function obtained by restrictintathers range to positive values. In the same
way, define the negative part of father as

neg= father> —n..—1
Let also
descendan(s) = (parent) [{i}]

denote the set of elements in the subtree of ipas defined in thé& nionFind
machine. Then the refinement invariant will state thas= parentand moreover,
thatneg= Ai.(i € roots| — card(descendant$))).

IMPLEMENTATION Union_Find_I
REFINES UnionFind
CONCRETE_VARIABLES father

DEFINITIONS
pos = father>1..n,
neg = father>>-n.. 1,
singletontrees =
VAR i |IN

i:=0,
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WHILE i<n DO
i:=i+1, father(i):=-1
INVARIANT
ic0.nAl.ifather=(1..i)x{—-1}
VARIANT  n—i
END
END

INVARIANT

fathere 1..n— —n..nA
pos= parentA
neg=Ai.(i€roots | — card (descendant§i)))

INITIALISATION singletontrees

OPERATIONS
makesingletons = singletontrees;
r «— findroot(i) =
BEGIN
rii=i,
WHILE  father(ri) >0 DO
ri :=father(ri)
INVARIANT
ri € ancestorg i ) A pos= parentA
neg=Ai.(i€roots | — card(descendantéi)))
VARIANT card (ancestorgri ))
END
END ;
compresgath(i,ri) =
VAR j,dad IN
j:=1, dad:=father(j),
WHILE dad>0 DO
father(j):=ri ; j :=dad; dad:= father(j)
INVARIANT
j € ancestorq i ) A dad = father(j) A
pos= parent< (ancestorgi)— ancestorgj)) x {ri } A

neg=Ai.(i€roots | — card(descendantéi)))
VARIANT card (ancestorgj))
END

END ;
unionsetgri ,rj) =
VAR  sum IN
sum:= father(ri ) + father(rj ) ;
IF  father(ri )< father(rj) THEN
father(rj ) :=ri ; father(ri ) :=sum
ELSE
father(ri ) :=rj ; father(rj ) :=sum
END
END

END
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The initialisation consists of a bounded loop which sets each array eleent o
fatherto —1. This corresponds to having each element forming a tree on its own.
The invariant and variant of the loop are trivial ones.

The implementation of thé&ind_root operation computes by going up from
following the fatherlinks. As this pass does not modifiatherthe corresponding
loop invariant includes the still valid refinement invariant togethehwie fact that
the current node is an ancestoriofFrom this property and the fact that at the
exit of the loopri € roots (since father(ri) < 0) we infer that the final value of
ri is in ancestoré) Nroots We conclude that the computation 0fis correctly
implemented by this loop.

The operatiorcompresspath performs a second pass on the path ficmri,
settingri as a direct father of all the nodes encountered on the way. The invariant
of the loop states that the negative partfatheris unchanged and that the nodes
fromi to j examined so far have been already adopted as direct sansWwhen
entering the loopancestorsj) = ancestor§i), so the invariant is trivially true. At
the exit of the loop] = ri soancestor§j) = {ri }, which proves that this is a valid
implementation of the abstract operation.

The termination proof of both loops uses as variant the number of aneedto
the current node. This quantity is strictly decreased when followigidner links
becausefatherinduces no cyclefathert nid(1..n) = {}. This property follows
easily from the refinement invariant parentitself induces no cycle.

Finally, weight balancing is implemented in the operatigmonsetsby com-
paring father(ri) with father(rj) (considering that both are negative numbers) and
setting father(ri) + father(rj) as the count field of the “winning” root. One can
easily verify that bothposandnegare correctly updated, according to the refine-
ment invariant.

A global overview of this section is given in Fig. 3.5, picturing d&létsteps in
the refinement frorVeightedForestto Union_Find_I.

3.5 Heap Algorithms

At this point, we still have to complete a last branch in the refinenreat (see
Fig. 3.3): the implementation of the machiiien_WeightEdge We are looking
here for a data structure allowing the insertion of elements into a sealan the
finding and deletion of the smallest element of the set. A data structavédprg

for these two operations is calledpaiority queue In this section we show how

to implementMin_ WeightEdgeas a priority queue and also use heaps [83] as an
efficient implementation of priority queues.

3.5.1 Priority Queues

Actually, theminweightedgeoperation is required to return not only the minimum
weight but also the edge for which this minimum is reached. For this nedise
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Fig. 3.5. The Refinement Path Leading to the Union-Find Algorithm

specification of priority queues will consider a functivalq: Queue— NAT instead
of a set. This constraint will also be reflected at the implementation lagebne
would have to move around the indexes in the @aktuerather than the values
themselves.

The indexes in the s&ueuewill be drawn from the interval 1. m wherem
is a parameter of the specification representing the maximal size of thétyprior
gueue. Actually, this makaslqga partial function on 1. m. The insertion and dele-
tion of elements in the queue will extend, respectively resivil and its domain
Queue thus preserving the invariantlqg: Queue— NAT. These operations can
be elegantly expressed with primitives like domain overridigg) (@nd codomain
restriction E):

MACHINE  Priority_Queug( m)

CONSTRAINTS me NAT1

VARIABLES Queue, valq

INVARIANT  Queuec P (1..m) A valg € Queue— NAT
INITIALISATION Queue={} || valg:={}

OPERATIONS
emptyqueue = Queue={} || valg:={};

insertqueuék ,w) =
PRE ke (1..m)— QueueAwe NAT THEN
Queue= QueueU { k} || valq(k):=w
END,
k,w<+— removequeue =
PRE Queue# {} THEN
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ANY i WHERE i€ QueueAvalgq(i)=min(ran(valq)) THEN
k:=i | w:=valq(i) ||
Queue= Queue— { k} || valq:={i } <« valq
END
END

END

We have preferred to introdud@ueueas a variable instead of a definition
Queue= dom(valqg). This makes the specification more readabl®asuehas an
interesting meaning on its own. Although it might seem inconveniestdte ex-
plicitly how Queueis updated by each operation, one should note that in the case
of a definition both the “specifier” and the “prover” would have to reds thork
anyway.

In order to reduce the problem of finding a minimum weight edge to theem
general one of implementing a priority queue, we have to abstract frempattic-
ular nature of the set of edges. This can be achieved by decomposing tHerfunct
weighte Edges— NAT into the three functionsnodel,node€ € 1..m — Nodes
andvalg € 1..m — NAT, wherem = card(Edge$, such that the direct product
nodes= nodel ® node is a bijectionnodese 1..m—» Edges andvalq “mirrors”
weighton 1.m: valq= weighto nodes

An implementation oMin_WeightEdgebased on this representation is given
below. The iteration primitives provided in the interface of the azttmachine
WeightedGraphare used irall _unprocessetb read the edges one by one. Adding
a new edge requires the insertion of a new value in each of the threediusictihe
operatiormin_weightedgereturns the edgéodel(k),node&(k)) and its weightw,
wherek andw are the results returned by the callrefmnovequeue

IMPLEMENTATION Min_WeightEdgel
REFINES Min_WeightEdge

IMPORTS WeightedGraph, Priority_Queug( m)
CONCRETE_VARIABLES nodel node2
DEFINITIONS

~

m = card ( Edges) ,
nodes = nodel® node2,
read edges =
VAR k,b,u,v,w IN
all_unread, emptyqueue; k := 0; b +— no_moreedges,
WHILE b=FALSE DO
k:=k+1; u,v,w+«— readedge, b +— no_moreedges,
insertqueue( k, w) ; nodel( k) :=u; node2(k) :=v
INVARIANT
ke0..mAQueue=1..kA
Queue< nodesc Queue—» ReadA
valg = Queue< ( weighto nodes) A
(b = TRUE< Read= Edge3
VARIANT m-—k
END
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END
INVARIANT

nodele 1.. m— NodesA node2¢ 1.. m— NodesA
nodesc 1.. m—» Edgesh

valg = Queue< ( weighto nodes) A

Unprocessed-= nodes| Queue]

INITIALISATION read edges

OPERATIONS
all_unprocessed = readedges,
u,Vv,w<«— minweightedge =
VAR k IN
k , w «<— removequeue; u:= nodel(k) ; v:=node2( k)
END
END

Note thatWeightedGraph is imported here and not seen, as we need more
than read-only access to its components. However, this is the only plare tiiis
machine is imported, such that we satisfy the constraint required fachime that
is seen to be imported at most once somewhere in the development.

3.5.2 Indirect Heaps

Several approaches could be taken to implement a priority queue. We mght fir
consider using an unordered list since inserting new elements woulddalstant
time. But finding the smallest element would necessitate a scan of the lesttife
second suggestion would be to use a sorted list which is stored sidiyemtis
would allow the retrieval the smallest element in constant time, but artion
could require moving all the elements in the list.

What we want is a data structure allowing both operations to be pesfbefii-
ciently. A heap[83] is a tree with the property that the value at each node is guar-
anteed to be smaller than the values of the nodes below it. In this représeittat
is possible to perform insertions and deletions in logarithmiefin the size of the
heap).

The definition of the heap implies that the smallest value is at the ifotbieo
tree. After removing this value, the others have to be moved aroundier t re-
establish the heap property. In the same way, inserting a new valuaniralveady
existing heap, can be performed by moving this value until it reachesitopos
satisfying the heap property.

As we have anticipated in the previous section, we will not move atdhe
values ofvalq but the indexes oQueue which means that we will actually use
an indirect heap. The idea of arranging the node®ureueto form a tree can be
formalised by requiring an one-to-one correspondence bet@eeneand a finite
setHeapof positions in the tree.

We will then refineQueueandvalq by two new variablesndexandvalh with
the trivial refinement invariarueue= IndexA valq = valh. We will also introduce
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two other refinement variabléseapandindh such thaHeape P(1..m) andindh
is a bijective functionindh € Heap—» Index

As taking into account the tree structure will even further complicaespec-
ification, we encapsulate the four variables above into a machine on its own
HeapData, and later include this machine in the complete heap specification. We
have here again another exampledesign for provabilityas the invariants relat-
ing the four variables will be proved locally iHeapDataand reused at the global
level.

MACHINE  HeapData(m)
CONSTRAINTS me NAT1
DEFINITIONS A = 1..m
VARIABLES Heap, Index, valh, indh
INVARIANT

Heape IP (A) A Indexe P (A) A
indh € Heap—» IndexA valh € Index— NAT

INITIALISATION Heap, Index, valh, indh:={} ,{} . {} . {}

OPERATIONS
emptyh = Heap, Index, valh,indh:={},{},{},{},

swagdi,j) =
PRE i€ HeapAjeHeap THEN
indh:=indh< {i~indh(j),j—indh(i)}
END,
inserti( k, w, node)
PRE ke A—IndexA we& NATA nodec A—Heap THEN
Heap:= HeapuU { node} || indh(node):=k ||
Index:=IndexU { k} || valh(k) :=w
END ;
copyand.remové root , leaf) =
PRE root € HeapA leaf € Heap THEN
Heap:= Heap— { leaf } ||
indh:= { leaf } < (indh < { root— indh(leaf)}) ||
Index:= Index— { indh(root) } || valh:= {indh(root) } < valh
END

END

As suggested by its nameleapData contains the data manipulated by the
heap, together with the various operations on this data. Unlike tlee ofierations,
copyand.removemight look out of place in this interface. However, a simpbey
operation would have violated the invariantdh € Heap—» Index Also, a simple
removeoperation with an arbitrary argument would have been too difficult to im-
plement. As it will turn out later, removal is simple only for a partarueaf. The
consistency proof of theleapDatamachine being similar in many respects to that
of Priority_Queug we will not further insist on it.

Note that the value ofalh that occurs at a tree positidiis valh(indh(i)). This
composition of functions will be used so often that it is useful to @echn ab-
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breviationkey= valhoindh. Sinceswapexchangesndh(i) andindh(j) without
modifying valh, it has the indirect effect of exchangitkgy(i) andkey(j). We can
think of swapas an exchange operation for the abstract akegpas in the case of
an usual heap and not an indirect one.

Now we can move to the complete heap specification by introducing the un-
derlying tree structure in the form of a distinguished nant#t € A and a function
fathere A— {root} — A mapping each other node to its parent in the tree. Both
father androot will be declared as constants since they are not supposed to be
modified by the heap operations. A convenient formulation of the tregeptyis
descendantsoot) = A, wheredescendant$) = (father)*[{i}] since it implies
that there is one path from each node to the root. Together with the heperiyr
which states that the valueskdydecrease on each ascending path, this guarantees
that the minimum value will be reached in the root of the tree.

The heap property on a sebf positions in the heap can be expressed as:

headS) = V(i, j).(i € SAj € SA(i, ]) € fathert = key(i) <key(j))

This formalisation relates arbitrarily distant positionsSnAn alternative is to fo-
cus on the relationship between a node and its immediate neighboupnseupe
define:

upgoodi) = i # root = key( father(i)) > key(i)
downgoodi) = songi) # {} = key(i) > min(keysongi)])
wheresongi) stands forfather-1[{i}]. Then, the following properties hold:

heapgA) & Vi.(i € A= upgoodi) Adowngoodi))
heapgA— {hole}) Aupgoodhole) Adowngoodhole) =~ heaA)

The second property, whefestands for 1. m, gives a sufficient condition for fixing
a “hole” violating the heap property. Such a hole can appear when insertitedatr
ing a node from the tree, and can be removed by swapping it with a neighgou
position, as explained below.

A hole in the heap, would necessarily satigfygoodor downgood

heapgA— {hole}) = upgoodhole) v downgoodghole)

Suppose that it satisfiedowngood If upgoodis also satisfied, then the hole van-
ishes. Otherwise we can move the hole upwards by swapping it wittltsr. Then
one can prove that the new hole obtainedhwnje := father(hole) still satisfies
heagA— {hole}) Adowngoodhole). Thus we can repeatedly move the hole along
an upward path until it vanishes.

Now, suppose we have a hole that satistipgood If downgoodis also sat-
isfied, then the hole vanishes. Otherwise we can move the hole dowsgrd
swapping it with one of its childreson e songhole) such that the condition
key(son = min(keysonghole)]) holds. The new hole obtained byle:= sonstill
satisfies the conditiohea{A — {hole}) A upgoodhole). Thus we can repeatedly
move the hole along an downward path until it vanishes.

This reasoning leads to the following heap specification:
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MACHINE  IndirectHeap(m)
CONSTRAINTS me NAT1

SEES BoolLTYPE

INCLUDES HeapData(m)
ABSTRACT _CONSTANTS root, father
PROPERTIES

root € AA fathere A— {root } — AA
descendantffathern) = A

VARIABLES  hole

DEFINITIONS
sons(i) = father—! [{i}];
descendantgi) = (father—1)* [{i}];
ancestor{i) = father* [{i}];
key = valhoindh),
upgood(i) = i # root = key( father(i)) > key(i),

downgood(i) = sons(i)# {} = key(i) > min (key[sons(i)]);
heap(§ = V(i,j).(ieSAjeSA(i,]j)cfather™ = key(i) <key(j))

INVARIANT

holec A A (Heap# {} = holec Heap) A
heag{Heap— { hole })

INITIALISATION hole:= root

OPERATIONS

~

emptyheap = BEGIN emptyh|| hole:=root END,

~

insertheagf k,w) =
PRE ke A-— IndexA w e NATA heagHeap THEN
ANY new WHERE
newe A — HeapA
(Heap# {} = father( new) € Heap) A
(Heap= {} = new= root)

THEN
inserth(k, w, new) || hole:= new
END
END ;
bb <— higher = bb:=bool ( — upgood(hole) ) ,
up.heap =

PRE - upgood(hole THEN
swap( hole, father( hole) ) || hole:= father( hole)
END ;
k,w<+— removeheap =
PRE Heap+# {} A heagHeap THEN
k:=indh(root) || w:=key(root) || hole:=root ||

ANY leaf WHERE leaf € Heap— ran ( father)

copy.and.remove( root , leaf )
END
END ;

THEN

105
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b, son+— lower =
ANY  minson WHERE
minsone NAT A

(songhole) # {} =
min_sone songhole) A key( min.son) = min ( key[ songhole) |))

THEN

b :=bool ( = downgoodholg) ) || son:= min_.son
END ;

downheaf son) =
PRE - downgoodhole) A sone songhole)
A key('son) = min ( key[ songhole)]) THEN

swap( son, hole) || hole:=son

END

END

The interface ofindirect Heap provides operations for moving up and down
the tree gp_heapanddownheap and for testing the opportunity to movieigher
and lower). Additionally we have two other operations allowing the insertio
(insertheap or removal (emoveheap of elements from the heap.

Inserting a new element in the heap comes down to hooking it as a son of an
already existing node, or placing it in the root if the heap is empty.theeicase,
the new element is a potential hole that satislesvngoodsince it has no sons.
However, to make sure that it is the only hole we require as a precomtliiat the
heap property holds everywheteap(Heap), before performingnsertheap

Removing the minimum element, situated in the root of the tree, leaveglus
two subtrees that are both heaps. To preserve the tree shape we proceedén a mo
roundabout manner by choosing a leaf, copying its value in the rooteandving
the leaf. Now the root is a potential hole that satistipgood since it has no parent.
Again, to make sure that there were no previous holes, we relygg@rgHeap) as a
precondition ofemoveheap

The invariant of the machine states that ohbjle might possibly violate the
heap property. Proving that the invariant is preserved pheapanddownheap
relies subtly on the fact that the heap property, although violatdubley still holds
in the “grandfather” relationship betwesaonghole) and father(hole).

Other potential invariants likdowngoodheap or upgoodheap are not valid
here, since at this level we ignore the current moving direction and whtté hole
has already vanished or not. They would appear as loop invariants in tieestih
operations where a given moving direction is fixed.

Inserting an element into an already existing heap can proceed by adding the
element as a leaf, thus creating a potential hole, and then swapping it Withis,
grandfather, and so on, until it is greater or equal to one of these values.

Fig. 3.6 illustrate$ the building of a heap from the weights of the edges
of the graph in Fig. 3.1(a). We suppose that the edges are read in the ord
(1,2),(1,3),(1,4),(2,3).(2,5),(3,4),(3,5),(4,5) which gives the following order for

4 The use of complete binary trees in this example anticiphiesast refinement decision,
to be introduced in the next section.
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their weights: 21,6,1,5,4,4,3. For the sake of simplicity, each nodés labeled

only with its valuekey(i) = valh(indh(i)). At each stage, the node emphasised by

a bold circle contains the value inserted at that stage, value that has been moved
upwards until satisfying the heap property.

& O © @)
& & ® @@/ “®
(@) (b) (€) (d)

©

(1) A
PN (@)
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(e) ()
(1)
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Fig. 3.6. Building a Heap by Successive Insertions

To delete the minimum element of a heap we start by callergoveheap
thus creating a hole in the root of the tree, as explained above. Then wethwv
hole downwards by successive callsdafwnheapas long as one of the sons has a
smaller value than the hole.
As an example, the heap constructed above can be emptied by repeated deletions
of the minimum element, as shown in Fig. 3.7. At each stage, the node esgzhas
by a bold circle contains the value of the leaf that has been copied intodhand
moved down all the way until satisfying the heap property.
The actual loops performing the traversals of the tree on insertiahdedations
of heap elements occur in the implementatioPabrity_Queue

IMPLEMENTATION Priority_Queuel
REFINES  Priority_Queue
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Fig. 3.7. Removing the Elements of the Heap

IMPORTS  Indirect Heap(m)
INVARIANT
Queue= IndexA valg = valh A heap(Heap

OPERATIONS
emptyqueue = emptyheap;
insertqueud kk, ww) =
VAR bb IN

insertheap( kk, ww) ; bb<+— higher,
WHILE bb=TRUE DO
up_heap; bb<«— higher
INVARIANT
downgoodhole) A (bb= TRUE <« — upgood(hole) A
Index= Indexu { kk } Avalh=valg< {kk— ww}
VARIANT card (ancestorg hole) )
END
END ;
kk, ww <— removequeue =
VAR bb,son IN
kk, ww +— removeheap; bb, son«+— lower,

(h)
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WHILE  bb=TRUE DO
downheap( son) ; bb, son+— lower
INVARIANT
upgood(hole) A (bb= TRUE <« — downgoodhole)) A
(bb=TRUE=
sone songhole) A val ( son) = min (val [ songhole) | ) ) A
kk = indh (root) A ww = valq (kk) A
Index= Index— { kk} A valh= { indh(root) } < valh
VARIANT card ( descendantéhole) )
END
END

END

The refinement invariant relat€3ueueand valq to Index and valh. It also
states that the heap property holds everywhere between two priority qQpeua-
tions, which in turn guarantees that the vakkeeturned byremovequeuesatisfies
valq(kk) = min(valgQueug)).

We already know from the invariant ohdirect Heapthat the heap property
might be violated only in one nodeeagHeap— {hole}). This is another instance
of the “design for provability” paradigm, as we have proven locally ashmas we
could. The only thing left to prove now is that the heap property $ioldhole as
well at the exit of each loop. For this it is sufficient to prove thale satisfies both
upgoodanddowngoodhat the exit of the loop.

When performing an insertiodpowngoods initially established bynsert heap
since a leaf has no sons, and then it is preserved as a loop invariant by each call
of up_heap Similarly, when deleting an elementpgoodis established initially by
removeheapsince the root has no parent, and then it is preserved as a loop invariant
by each call odownheap In both cases the invariant of the loop and the negation
of the loop test, that ispgoodhole) anddowngoodhole), hold at the exit of the
loop.

3.5.3 Complete Binary Trees

In the specification of heaps we did notimpose any particular constraihesthape
of the tree. One is free to choose whatever shape seems most desirablg as lon
the heap property is satisfied. A key decision in the implementation ofshisap
consider complete binary trees, as explained below.

The binary tree of deptti which has exactly®— 1 nodes is called &ull binary
tree of depthd. A very elegant sequential representation for full binary trees results
from sequentially numbering the nodes, starting with the root wel lene, then
going to the nodes on level two and so on. Nodes on any level are numbened f
left to right. A binary tree witlr nodes and deptt is completeif and only if its
nodes correspond to the nodes which are numberedr lirtahe full binary tree
of depthd. In a complete tree leaf nodes occur on at most two adjacent levels.
As a consequence, the worst case performance of insertions and deletioms wil
logarithmic in the size of the heap.
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The nodes of a complete tree may be compactly stored in a one dimensional ar-
ray. Navigating in the tree is easy due to the regular numbering cdsdlle father
of the node numberedis given byi/2 (where/ stands for the integer division),
while its left and the right children afare given by 2i, respectively 2i+ 1. Ac-
tually, root and father(i), that have been previously declared as abstract constants,
will be tacitly replaced by 1 and/2 and thus refined away. The rigid structure of
complete binary trees represented as arrays does limit their utility as datasts,
but there is just enough flexibility to allow the implementation dio&nt priority
queue algorithms.

In this representation, the sdieapcan be identified with the interval.1sizeh
wheresizehis an implementation variable denoting the size of the heap. This way,
inserting or removing heap elements comes down to incrementing or decregnentin
sizeh

The functionsndhandvalhwill be refined by two arraymdexandvalue equal
toindhandvalhon the interval 1. sizeh

indh = Heap<index
valh = Heap<value

Another implementation variableurrent is introduced to refindole with the
trivial refinement invarianiole= current One can remark thatdex current) and
valug(indexcurrent)) stay the same wheneveuarrentis swapped with one of its
neighbours. In order to save some array accesses it is worth introdw@rather
variablesjnd_currentandval_current, to denote the two quantities above. This re-
sults in the following implementation éhdirect Heap

IMPLEMENTATION Indirect Heap.l
REFINES Indirect Heap
VARIABLES
sizeh, index, value, current, val_current, ind_current
INVARIANT

sizehe 0.. mmA Heap=1.. sizehA

indexe 1.. mm— 1.. mA indh= Heap< indexA

valuee 1.. mm— NAT A valh = Heap < valueA

currente 1.. mmA hole= current A

ind_currente 1.. mmA val_currente NAT A

('sizeh> 0 = ind_current= index( current) A val_current= value( ind_current) )

INITIALISATION sizeh:=0

OPERATIONS
emptyheap = sizeh:=0,

insertheaf kk, ww) =
BEGIN
sizeh:= sizeh+ 1 index( sizeh) := kk; value(kk) :=ww;
current:= sizeh; ind_current:= kk ; val_current:= ww
END ;
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bb «— higher =
BEGIN
bb:= FALSE;
IF current>1 THEN
IF  value(current/2) > val.current THEN
bb:= TRUE
END
END
END,
up_heap =
VAR dad IN
dad:= current/ 2, index( current) := index( dad) ,
index(dad) := ind_current; current:= dad
END,
kk, ww +— removeheap =
BEGIN
kk:=index(1) ; ww:= value(kk)
index( 1) := index( sizeh) , sizeh:= sizeh— 1,
current:= 1 ind_current:= index( 1) ; val_current:= value( ind_current)
END
bb, son+— lower =
VAR  minwval, rightval IN
son:= 2 x current, bb:= FALSE,
IF  son<sizeh THEN
min.val ;= value( index(son)) ;
IF  son<sizeh THEN
right_val := value(index(son+ 1)) ;
IF  right.val < minval THEN
son:= son+ 1; minval := right_val
END
END
IF minval < valcurrent THEN
bb:= TRUE
END
END
END
downheaf son) =
BEGIN
index( current) := index( son) ; index( son) := ind_current, current:= son
END

END

Note that the structure of the implementation does not necessaribfdtie
structure of the specification. In our case the specification was decompdsed in
HeapDataandindirect_ Heap while the implementatiomdirect Heapl imports
no other machine.

The initialisation setsizehto 0 and leaves all other variables uninitialided
since their values are not constrained by the invariant in this case.

5 However, the B-Toolkit raises a warning about uninitialisariables.
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The non-determinism in the choice of a leaf in the operatinssrt heapand
removeheapis eliminated by choosing systematically the last leaf numbsizsh
This decision, together with the incrementing, respectively decremenfirsizeh
allows to preserve the invariadteap=1..sizeh

The operationsigher andlower are implemented by rather complex control
structures formed of several nested conditionals. Isolating theseotetrtictures
as operations on their own, instead of embedding them direciyiarity _Queuel,
proves to be another exampled#sign for provabilityindeed, the control complex-
ity induced by the two calls of bothigherandlower in the traversal loops and by
the loops themselves would have led to a combinatorial explosidreinamber of
proof obligations to discharge.

Fig. 3.8 gives an overview of the refinement steps performed in this sectio

T~ "™ Min_Weight_Edge
! Min_Weight_Edge_|

I
I
IMPORP/ NPORTS

‘ Weighted_Grapd Priority_Queue
Priority_Queue_|

NPORTS
Heap_Data - INCLUDES _ Indirect_Heap

Indirect_Heap_|

Fig. 3.8. The Refinement Path Leading to the Implementation of Heaps

3.6 Discussion

In this chapter we have presented a complete formal development of Keualkal-
rithm for solving the minimum spanning tree problem. The abstetification of
the problem was first refined by an informal implementation of Kruskatjergthm.
We have then proposed a decomposition of this implementation irdasinvpler
subsystems, each one providing its own functionality. In turs, éifiows indepen-
dent designs of the two subsystems to be built: disjoint sets aoieimented by the
Union-Find algorithm, and priority queues are implemented as heapsvéimiew
of the complete development, regrouping Figs. 3.3,3.5 and 38;és in Fig. 3.9.
In spite of its relative small size (1127 lines of B and 360 proofgdtions) this
case study manages to exhibit some of the problems encountered wherpigyelo
industrial applications in B. A significant difference between our caseysind
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Fig. 3.9. Overview of the Complete Development

safety-critical applications is that the complexity lies rather in the datectures
and the algorithms than in the size and the control structure of tHeafpn.

We have exemplified how the well-understood set-theoretical notatiBrcan
be used to model the various data structures. In particular, note thatihsitive
closure operator on relations (and in particular functions) has been melgnsed
in formalising paths in graphs (respectively trees). The large basicts bn set
theory available in the prover makes it easier to reason on the properties ddita
structures employed. One has the choice of taking a more or less rigapproach
to proof. For instance, to prove the consistency offlgaivalenceanachine, we can
just assume a lemma stating that the transitive closure of a synemad#iion is still
symmetric, instead of proving this lemma from basic principles byatidn on the
number of iterations on the relation.

The algorithmic complexity is dealt with by breaking difficult verificat steps
into a number of smaller and more manageable ones. Several instancegeasitre
for provability paradigm have been exemplified during the development, where by
making careful use of the structuring mechanisms of B, one can limitutheoer of
proof obligations associated to each verification step.

In this respect, one of the most interesting lessons is that an explosthe
number of proof obligations might be due to performing both atgoric and data
refinement in one refinement step. In this case, one should introducetfatgiori
refinement before data refinement and not the other way around. This sthategy
been applied in the implementationin_SpanningTreel andPriority_Queuel
where the algorithmic refinement introduced by IMHILE loops is simpler to
verify in terms of an abstract data representation than a concrete one.
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We conclude by analysing the interest that computer scientists in gengtal mi
have in formal methods. The firm mathematical foundations of formal adgstand
the toolkits supporting them might justify their use as an effedtiein algorithm
design. One would then benefit not only from a rich specification language-t
press various problems, but also a machine-checked notation for the egey sif
the design. These stages usually captured in algorithms textbooksrgyksnd of
informal pseudo-code can be written formally by exploiting the tjp@ef mixing
non-executable abstract constructs with executable concrete ones.

Going through the formalisation of the pseudo-code might reguinsiderably
more effort on the part of the algorithm designer, especially whengrioncope
with the various visibility constraints of the encapsulation carits. However, this
effort might pay off in enforcing a certain discipline of design.

As an option, one might consider carrying out informal proofs ofddgerithms
in the way that these proofs are presented in textbooks. One wotultigus to
formalise the various invariants and try the automatic proof faeditExamining
the unproved proof obligations might then reveal possible flawisardesign of the
algorithm.



4. The B Bank

Martin Buchi

4.1 Introduction

In this chapter we develop a simple banking application with cashier anchated

teller machine (ATM) functionality. The cashier can register new custgroszate
accounts for them, and accept deposits. At the ATM, the customer can withdraw
money, query the balance, and change her secret personal identification number
(PIN).

We illustrate the combination of structured and formal methods mgustject-
oriented modelling techniques in the analysis. The communication frevittBthe
environment is exemplified through the development of base machinegfsis-
tent storage of objects, string handling, and for interfacing withwhed through
HTML and the common gateway interface. The latter permits us to buildfaromi
graphical interface for both the cashier station and the ATM (Fig. 4.1).
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Fig. 4.1.Screenshot of the Final Application
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Our aim is to carefully explain design decisions as they come up and teateti
our choices. We stress differences to classical imperative languages and develop
ment methods for them.

The sources for both Atelier B and the B-Toolkit can be fetched from tlo&’so
Web site. The final application being Web-based, it can also be run over éradnt
from the book’s Web page without the need for installation.

We start out by rewriting the informal requirements in structureghpEnglish,
as is commonly done in practice. This first design document helps to elieninis-
understandings between the customer and the designer and is often partef a co
tract. We then proceed to a semi-formal object model using the Unified Magdeli
Language (UML) [31]. In this step we make the first design decisionisl&mtify-
ing objects, relations, and attributes. This intermediate step britlgegp between
requirement specification and B machine.

Our initial B specificatiorBankencompasses the basic functionality on an ab-
stract level. This is the machine which we animate to find design errarso
we build a robust graphical user interface. Underneath, we build a faondat
objects and persistent storage. This combination of top-down anchbafialevel-
opment, where we start with a machine describing the functionality aabatract
level, is very common in B.

On top of the central machinBank we construct a robust interfad@obust-
Bankwith trivial preconditions and error reporting. Using this robastrface and a
base machine wrapping a common-gateway interface library, we build eh¥sds
graphical user interface for our development.

A program consists of an algorithm and communication with the enviemim
Only the algorithm can be directly implemented in B. Communication ifopeed
using base machines which give a B representation of a resource. A base nigchine
a machine which is specified in B, but hand coded in C, or another classical languag
for which a compiler exists. We illustrate the development of a basehime for
interfacing with the Web in Sect. 4.7.

The implementation dRobustBankhows the principle of structural refinement.
An implementation is based on a number of more basic machines, which are in
turn based on either more basic or base machines. We discuss the diffeeence b
tween specification and implementation structure. Using a library machimede
dimensional arrays and a base machine for file access we develop a framework fo
persistent objects. Another base machine provides persistent strings.

Fig. 4.2 gives an overview of the development process, including setim-
bers for quick reference. An overview of the implementatioBahkwill be given
in Fig. 4.12.

In the discussion we address the question of proofs in B. What tyjpeeper-
ties about our system can we prove within B?

Steria’s Atelier B in version 3.2 [79] has been used in this case study.&gtt.
explains the differences in the implementation for B-Core’s B-Td8l4.2 [59]. We
briefly discuss a number of interesting differences in the language irepltions
and provided library constructs.
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MACHINE
MainBank

Main machine
(4.8.1)

IMPLEMENTATION
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END
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of main (4.8.2)
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4.2 Rewriting the Requirements

We start out by making the requirements of the initial application mpogeise. Such

a complete rewrite by the developer of the customer’s requirementgsdamanon
language provides for a common understanding. It can also eliminate nrany er
typically introduced by going directly from a mental picture to a specificator
even worse an implementation. Requirements state only what must be eahiev
but not how it must be done. Fig. 4.3, an excerpt of Fig. 4.2, shoheravin the
development process we are.

p ;
e manual translation, no exact rules,|
B no proof
mental rewritten
picture requirements

Fig. 4.3.Requirement Analysis

The system should provide for:

Customers with their name and date of birth can be stored in the system
No two customers can have both the same name and date of birth.
Customers can have any number of accounts.

All accounts have a unique number.

Each account has a unique owner who is in the database.

Accounts have a non-negative balance.

Accounts have a secret PIN.

NouswdhpE

The cashier can perform the following transactions:

8. The cashier can enter new customers into the system by providing #me& n
and year of birth.
9. The cashier can create new accounts with a zero balance providing a customer
identification and an initial PIN. The latter can be entered by the customer.
10. The cashier can accept deposits knowing only the number of the accoant. Th
secret PIN is not needed for deposits.

The customer can perform the following operation at the ATM, which alliireqg
the account number — entered manually rather than read from a chip or magnetic
card in our simulation — and the matching secret PIN:

11. The customer can make a withdrawal of at most the current balance.
12. The customer can query the current balance.
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13. The customer can change the secret PIN by providing both the oléntyrr
valid, and the new pin. The latter becomes immediately valid and the old PIN
can no longer be used.

The user interface should be Web-based and provide access to all the above
listed functions of the system. For brevity, we refrain from tigtthe user interface
requirements here. We return to the topic in Sect. 4.8. A more detailéahation of
requirement analysis can be found in software engineering books, sudh &3T7

4.3 Structured Models

In the next step, analysis, we produce structured models from thdepnostate-
ment. The structured notations help to produce specifications which aestwith
respect to the user requirements. This step is performed manually, iftjeeme
heuristics. However, it lacks formal rules and, therefore, also a prbaf step could
be skipped, going directly to a B specification. However, this would bather big
step and, hence, also a source of errors. The benefits of integrating fordstruc-
tured methods are becoming recognised by many researchers [35, 37]. THRAEC 6
122 standard for safety-critical software also recommends the use dftbatkured
and formal methods for software of the highest integrity level [@ffen customers
can be taught to read structured diagrammatic notations, but not formisil gidc-
ifications. This intermediate step provides a more concise foundatiatiscussion
than the natural language requirements.

The desire to capture all aspects of a problem using graphical models has led
to a proliferation of different diagram types. We abstain from usinghedbe —
often not very useful — diagrams and do not attempt to capture everythiag i
graphical notation. We regard graphical models as complimentary to theatex
specifications. Not opting for an automatic translation from the gcaptmodel,
we can give true abstractions, which quickly convey the main aspects, thgrer
cluttering the models with implementation details.

For our case study only static structure diagrams are relevant. Tieedargunt
of information captured in static structure diagrams is widely acknayddd43].
Dynamic models are not applicable, because all operations are modelessnor ex
ple, the customer enters the account number, the PIN, and the desired athatint
once before asking the system to perform the withdrawal. A functiooalel would
not provide much insight, as all transactions are made against a satgleade.

We have chosen the Unified Modeling Language (UML) [31]. Fig. 4.4 neisi
us again, where in the development process we are.

4.3.1 Class Diagrams

The class diagram shows the static data structure of the real-wotk&hsynd or-
ganises it into workable pieces. It describes real-world object classes anckthei
tionships to each other.
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1. Customers with their name and
date of birth can be stored in the

an have both
of birth

4. Allaccounts have a unique

s o nacons | M@nual translation, no exact rules,| IB===
o e e e no proof

rewr[tten structured
requirements notation

Fig. 4.4.Structured Notation

In our case we identifCustomer andAccount as object classes (Fig. 4.5). Our
simple data dictionary defines them as followsCAstomer is the holder of zero
or more accounts. AAccount is an entity in our bank against which transactions
can be made.

Customer Account
name: STRING number: NAT
yob: NAT pin: NAT
has balance: NAT =0
«class-scope» 1 0.x
customers: set of Customer «class-scope»
accounts: set of Account
«constructor»
NewCustomer(name: STRING, yob: NAT) «constructor»
NewAccount(cid: Customer, pin: NAT)
<<query>>
CustomerData(): STRINGXNAT «query»
Balance(pin): NAT
«class-scope» Authorized(pin): BOOL
CustomerDBFull(): BOOL AccountOwner(): Customer
ThisCustomer(name: STRING. yob: NAT): BOOL xCustomer
InitFindCustomer(name: STRING): NAT «update»
EindNextCustomer(): BOOLXNAT Deposit(amount: NAT): BOOL

Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

«class-scope»
AccountDBFull(): BOOL

ThisAccound(number): Account

Fig. 4.5.0bject Model

Next, we enumerate the attributes, that is, the properties, and thatiopsr
of the individual classes. Eadbustomer has aname and a year of birthyob).
In addition to the instance-scope attributes, of which each instance hawrits
copy, classCustomer has the class-scope attributestomers, the set of all cus-
tomers in the system. Class-scope members are underlined in the didpeachass
Customer has a single constructor and a single query function. The produet typ
STRING xNAT indicates tha€CustomerData returns both the name and the year of
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birth of a customer. It also has class-scope operations to inquire artbthdatabase
is full, to retrieve a customer, and to find all customers with a certairenam
EachAccount has anumber, apin, and abalance, which is initially 0. Re-
member that requirement 4 states thamber is an identifier. In entity-relationship
models, this would typically be expressed by underlining the atiib— a notation
which is used for class-scope attributes in UML. Entity relationshiulets repre-
senting sets, each class must have an identifier. However, in object-osgateths
we can have several objects with the same values for all their attributext®©bave
a system-generated unique identifier. Hence, unlike in multisets, oljghtglen-
tical attribute values can actually be distinguished. In our example, watdoave
multiple objects with identical values for their attributes. A notationindicating
identifiers in class diagrams would add information.
ClassAccount also has a class-scope attribateounts, the set of all accounts
in the systemAccount has a single constructor. The query functions permit the user
to query the balance, check whether a pin is valid, and get the owner of an account.
The update operations provide functionality to make a deposit ¢rdvatval and
to change the PIN. The class-scope operations allow the user to check whether
database is full and to retrieve an account by its number.
Finally we catalogue the associations, that is, the dependencies betwees.object
A customer may have any number of accounts; each account has exactly one owner.
This association is expressed by the line between the two classes in3=igh¢
multiplicity is expressed using intervals. The ‘1’ nextGaistomer says that each
accountis owned by exactly one customer. The ‘0..* neXt¢oount expresses that
a customer may have any number of accounts. The fasehames the association.

4.4 System Design

From the analysis of the system we progress to system design. Syss@mn & the
high-level strategy for solving the problem and building a solutDuring system
design, we partition the system into subsystems, decide on whahakiterd- and
software components we use, and establish a conceptual policy.

We start with the middle layer capturing the desired functionality.(#i6). On
top of the basic functionality layer we build a robust abstractionctvigerforms
error checking and returns error codes, rather than relying on non-trigiedbpdi-
tions. The top layer gives us the desired system in the form of a Weldaoe as
defined by the problem statement. Its second foundation is the commomagate
interface (CGl) subsystem, which consists of an off-the-shelf CGafijband a B
wrapper. The CGI subsystem interfaces to the Web server. The latter conatami
via TCP/IP with the Web browsers running on the ATM and the cashigmsinal.

In order to implement the core data, we build a subsystem which sgpErdis-
tent objects and strings. The former in turn is based on two more hassgstems,
one giving us objects and a second one providing access to the file sydiem.
two bottom layers represent the available resources, namely the hardwateand
operating system.
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Web interface =
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operating system, including file system and networki P | OS
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Fig. 4.6.System Design

An alternative would have been to rely on a database management system for
persistent storage, giving us such standard features as transaction manadesment
tribution, and crash recovery. We have chosen not to do so in order tonmazaxhe
ratio of formally verified software and limit the external dependenciekisfdase

study.

4.5 B Specification

Having outlined the system architecture, we continue by translatagttiactured
model to a B specification, giving the middle layer of basic functiondfirst we
translate our object model according to fixed rules which gives the state gpace
the machine and the signature of the operations. Then we add thasatt@h and
the specification of the operations with help of the rewritten requirésn&ig. 4.7
points again to our current position in the development process.

manual translation, no exact rules, no proof

1
1 1
! — L= MACHINE
f E— — Bank
- Lo e
== manual translation,
partly follows rules,
- no proof -
rewritten structured B specification
requirements notation of core function

Fig. 4.7. Transformation to B Specification
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45.1 State

For each object class we introduce a set containing all possible instandss. Th
gives us the set€USTOMERand ACCOUNT For technical reasons, detailed in
Sect. 4.11, we define them as subsetdAT rather than aSETS The cardinalities

of the sets, delimiting the maximal number of customers and accounts siystem,

are given by the machine parameteraxCustomerandmaxAccounts

MACHINE
BankKmaxCustomersnaxAccounis

CONSTRAINTS
maxCustomers 1 .. 100000A maxAccounts 1 .. 200000

SEES
StrTokenType

DEFINITIONS
CUSTOMER==0.. maxCustomerd; ACCOUNT==0.. maxAccountd

Furthermore we introduce the two class-scope variables of Figcustomers
(C CUSTOMERandaccount§C ACCOUNT), which denote the sets of customers
and accounts in the system.

Mandatory attributes are modelled as total functions from the set of actsral cu
tomers, respectively accounts, to the value of the attribute. This gé/ganables
customerNamecustomerYopaccountNumberaccountPin and accountBalance
Identifiers, for exampleaccountNumbeand the product cfustomerNamandcus-
tomerYobare injections, capturing the fact that no two objects with the same values
for these attributes can exist.

The seen machin@trTokenTypédefines the seeTRTOKENepresenting strings
and the empty string constaBmptyStringTokelte STRTOKEN The rationale
behind string tokens will be explained in Sect. 4.7.1.

The relationhas can be translated to the total functiaccountOwnefrom ac-
countsto customerlt is a function, rather than a general relation, because the max-
imum multiplicity of Customer is 1; furthermore, it is total because the minimum
multiplicity is also 1. The variabléoundCustomeris used for the implementation
of the search-by-name operations for customers as described below.

The last state component is the concrete (also called visible) vafikidpen
It indicates whether the database has been successfully internalised froamdjsk
thus, whether the machine can actually be used. The difference between a normal
(also called abstract or hidden) variable and a concrete variable is that #rddatt
implemented unchanged and can, therefore, be directly accessed by implementa-
tions that imporBank

VARIABLES
customerscustomerNameustomerYop
accountsaccountNumberaccountPin accountBalanceaccountOwner
foundCustomers
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CONCRETE_VARIABLES
fileOpen

INVARIANT
customersC CUSTOMERA
customerName customers— STRTOKENM\ customerYolg customers— NAT A
customerName customerYoke customers— (STRTOKEN« NAT) A
accountsC ACCOUNTA
accountNumbege accounts— NAT A accountPine accounts— NAT A
accountBalance accounts— NAT A accountOwnek accounts— customers\
fileOpene BOOL A foundCustomers. customers

4.5.2 Functionality

In the beginning, there are no customers or accounts in the database. Hience, t
initialisation assigns the empty set to the setstomersindaccountsand, therefore,
also to the functions representing the attributes and relations. Adatlabase has
not yet been read from digkeOpenis FALSE We could have designed the system
so that internalisation from disk is part of initialisation. Becauserimalisation can

fail, if, for example, the file has been corrupted, a variable indicatmgutcess
would have to be set during initialisation and checked by the highel&bstraction.
Hence, we would not gain anything. We introduce the abbrevi®iBSETas the
same code occurs again later.

DEFINITIONS
RESET==
customers= {} || customerName= {} || customerYob= {} ||
accounts= {} || accountNumber= {} || accountPin={} ||
accountBalance= {} || accountOwner= {} ||
fileOpen:= FALSE || foundCustomers= {}

INITIALISATION
RESET

The first operatiorNewCustomercreates a new customer object and sets its
nameandyob attributes. In order to concentrate on the actual functionality, rather
than error checking and reporting, the precondition not only givesattythe pa-
rameters, but also states that there must not be any customer with batantiee
name and year of birth present in the database, that the database must ript be fu
and that internalisation (see below) must have succeeded. If these cosdit®
met, an arbitrary new customer object is selected usind\Méclause. This object
is added tacustomersand itsnameandyob attributes are set. Note thatistomer-
Name(newCustomery nameis an abbreviation focustomerName= customer-
NameJ {newCustome#s> name.

NewCustomelname yob) =
PRE
namec STRTOKEN\ yob e NAT A
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(name yob) ¢ ran(customerName customerYopA
customers# CUSTOMERA fileOpen= TRUE
THEN
ANY newCustomeWHERE
newCustomee CUSTOMER customers
THEN
customers= customersJ {newCustome ||
customerNam@ewCustomgr.= name|| customerYofmewCustomgr= yob
END
END;

Any client of NewCustomemust be able to verify the precondition. For this
purpose we introduce operatioffisCustomerand CustomerDBFull Operation
ThisCustomechecks whether a customer denoted byreneandyobis present.

If this is the case, the operation returns result cBREJEand the ID of the customer.
Otherwise, the result code is setRALSE The result code alone would suffice to
check the existence; the operation is more general for purposes we shaltesee |
on.

found cid + ThisCustomer(name yoh) =
PRE namee STRTOKEM yob e NAT A fileOpen= TRUE THEN
IF (name yob) € ran(customerName customerYopTHEN
cid := (customerName customerYap~1 (nameyob) || found:= TRUE
ELSE
cid :¢ CUSTOMER]| found:= FALSE
END
END;

In practice, databases are assumed to have infinite capacity and their adminis-
trators are supposed to add secondary storage as the available stordigkedets
However, the number of incidents of database and buffer overflow prolclesrsy
shows that we should not trust this assumption in a safety-crifistgm. Operation
CustomerDBFulkllows us to check whether the database is full and, herewith, ver-
ify the preconditiorcustomersz CUSTOMER NewCustomemote that we could
prove the invariant of machinBankto be preserved without this precondition. In
the case it would not hold, th&NY-statement would have to choose an element
from the empty set and would therefore be magic. Hence, we could not find any
implementation using a finite s&USTOMERwhich would either always find an
unused member or execute magic.

is «<— CustomerDBFull =
PRE fileOpen= TRUE THEN
is := bool(customerss CUSTOMER
END;

OperationNewCustomercan only be performed if the internalisation of the
database from disk has succeeded. This condition is expressed by the Jastton
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of the preconditionfileOpen= TRUE A more pragmatic solution would be to as-
sume that any client dankwill terminate with an error message if internalisation
fails and not make any calls tdewCustomerHowever, replacing the formal pre-
condition with this informal assumption would lead to unprovalilkgations.
OperationCustomerDatas an instance-scope operation which returns the name
and year of birth of a customer. Self, the identity of the object, is niedels a
normal parametegid. The identity of a customer object can be retrieved u3inig-
CustomerAtelier B requires the additional typingd € CUSTOMER

name yob < CustomerData(cid) =
PRE cid € customers\ cid € CUSTOMERA fileOpen= TRUE THEN
name:= customerNareid) || yob:= customerYofzid)
END;

The find operations give the set of all customers with a certain name, First
operationinitFindCustomemust be called. It returns the number of matches and
assigns the matching customergaondCustomerOperationFindNextCustomer
then returns the matching customers one by one.

nof < InitFindCustomer (namg =
PRE namee STRTOKEM fileOpen= TRUE THEN
nof, foundCustomers (foundCustomers customerName? [{namé] A
nof = card(foundCustomej}
END;

found yob «— FindNextCustomer =
PRE fileOpen= TRUE THEN
IF foundCustomerg: {} THEN
ANY custWHERE custe foundCustomer$HEN
found:= TRUE || yob:= customerYofzus)||
foundCustomers= foundCustomergcust
END
ELSE found:= FALSE || yob:e NAT
END
END;

The tripleNewAccountThisAccountandAccountDBFuliis similar to the cor-
responding operations on customers. OperatiewAccounexpects as parameters
the ID of an existing customer and an initial secret PIN. By making theaPps-
rameter we favour the scenario where the customer enters the desired PIN when
the cashier creates the account. If the ATM card and the PIN are mailed to the
customer, a random PIN must be generated in one of the above layers. Qperati
AccountOwnereturns the owner of an account.

number<« NewAccoun{cid, pin) =
PRE
cid € customers\ cid € CUSTOMERA pin € NAT A
accounts# ACCOUNTA fileOpen= TRUE
THEN
ANY newAccountnewNumbelWWHERE
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newAccount ACCOUNT- accountsA
newNumbee NAT A newNumbeg ran(accountNumbgr

THEN
accounts= accountsJ {newAccourit ||
accountNumbénewAccount:= newNumbe|
accountPifnewAccount:= pin || accountBalancdgewAccount:= 0 ||
accountOwngnewAccount:= cid || number.= newNumber

END

END;

found aid < ThisAccount(numbej =
PRE numbere NAT A fileOpen= TRUE THEN
IF numbere ran(accountNumbgrTHEN
aid := accountNumber? (numbey || found:= TRUE
ELSE aid :c ACCOUNT]|| found:= FALSE
END
END;

is «<— AccountDBFull =
PRE fileOpen= TRUE THEN
is := bool(accounts= ACCOUNTY)
END;

cid «+— AccountOwner(aid) =
PRE aid € accountsh aid € ACCOUNTA fileOpen= TRUE THEN
cid := accountOwne(aid)
END;

The operatiorBalancerequires the account’s PIN. The PIN is only used in the
precondition to verify the legitimacy of the client, but not in thedly of the opera-
tion. Specifying that the entered PIN must match the stored PIN in #eopdition,
forces us to prove th&8alanceis always called with the correct PIN. Unfortunately,
this implies that the parameteinis also present in the actual implementation where
it is not used at all. To gain additional security, especially if the uppiwace lev-
els are not fully proved, the correctness of the PIN could actually beegtiifithe
implementation — contrarily to the standard practice of not verifyiregpnditions
in implementations. Logically, it would be sound to allow implements to have
only a subset of the parameters of the corresponding machine, but incprtgs
would mean that the client’s C code would depend not only on the inter&foeed
by the machine, but also on the actual implementation. The alternativelvoeul
to drop thepin parameter altogether and trust in the clients always calling an au-
thorisation operation, such #@sithorized first. However, such a condition would
not create any proof obligations and would, therefore, not be verifiaithéB. A
model checking solution to the latter approach is documented in [26].

bal +— Balancgaid, pin) =
PRE
aid € accounts\ aid € ACCOUNTA
pin € NAT A accountPirfaid) = pin A fileOpen= TRUE
THEN
bal := accountBalancgid)
END;
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is < Authorized(aid, pin) =
PRE
aid € accountsA aid € ACCOUNTA pin € NAT A fileOpen= TRUE
THEN
is ;= bool(accountPirgaid) = pin)
END;

We can enforce that withdrawals and balance queries can only be performed
with the correct PIN. On the other hand, secrecy not being a property af/loes,
we cannot ensure it in B. Nothing can prevent an implementation to osguuét
pins onto a device, the state of which is not captured by the B specification

The operatiorDepositcredits the amount to the specified account. It cannot
verify that the money is actually given to the bank; this is the dutyefcashier.

We have to make sure that the additamtountBalance(aid) + amoudbes not
create an overflow. There are a number of approaches to this problem:

e One possibility is to blindly assume that no one will ever have tfluch money
and leave the addition unguarded. This will, however, rightfidByve us with an
undischargable proof obligation. Even if our assumption holdgpiag error by
a cashier could crash the system. The latter could again be caught by a check for a
maximum amount in the interface, leaving only a sequence of similar niegn
as problematic.

e We could strengthen the precondition Bépositwith accountBalance(aidk
maxint - amounand offer an additional operatidiaximalDepositeturning the
biggest possible deposit on a given account. Such an operation coukldmhe
abused to query the balance without the secret PIN from another software lay
Whether such guarding between software layers is needed in a closed system is
debatable. After all, no customer of the bank could abuse this loopholéatan
Only programmers writing clients could. Note that introducing suébophole
would not create any unprovable proof obligations in B. We cannotesspa
property like ‘client machines cannot infer the balance without knowledgee
secret PIN'in B.

e The third possibility is to leDepositindicate whether the operation has suc-
ceeded or not. This cannot as easily be abused to query the balance, because if
the operation succeeds a transaction is performed and the money must d&eually
transferred. Hence, this solution is chosen.

status«<— Depositaid, amounj =

PRE
aid € accountsA aid € ACCOUNTA amounte NAT A amount> 0 A
fileOpen= TRUE

THEN
IF accountBaland@id) < MAXINT - amountTHEN

accountBalandgid) := accountBalandgid) + amount]| status:= TRUE

ELSE status:= FALSE
END

END;
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Withdraw (aid, pin, amounj =
PRE
aid € accountsA aid € ACCOUNTA pin € NAT A amounte NAT A
accountPirfaid) = pin A amount< accountBaland@id) A
fileOpen= TRUE

THEN
accountBaland@id) := accountBalancg@id) - amount
END;
ChangePir(aid, pin, newPir) =
PRE

aid € accountsA aid € ACCOUNTA pin € NAT A accountPirfaid) = pin A
newPine NAT A fileOpen= TRUE

THEN
accountPirfaid) := newPin

END;

OperationdVithdrawandChangePirfollow the same pattern d3eposit

The two final operation®penandCloseconcern persistency. An image of the
set of customers, accounts, and strings (see below) is stored in thecigsated
by the parametersustomerFileNameaccountFileNamgand stringFileNamebe-
tween program runpenis meant to read an arbitrary state satisfying the invariant
from secondary storage.@pensucceeds, the result codatusand the status flag
fileOpenare set tofRUE Note that the new state must satisfy the invariant, even if
statusis FALSE In practice status= FALSEmeans that the aforementioned files do
not contain the image of a legal state or that the files cannot be properlysadces
Closewrites the current state of the machine to the three files.

status«+ Open(customerFileNameccountFileNamestringFileNamé =
PRE
customerFileName STRINGA accountFileName STRINGA
stringFileName= STRINGA fileOpen= FALSE
THEN

ANY customersinitcustomerNamelnicustomerYoblnijt
accountslnitaccountNumberlnjtaccountPinInit
accountBalancelnjtaccountOwnerlnitst

WHERE
customerslnit CUSTOMERA
customerNamelnit customersinit> STRTOKEN\
customerYoblni€ customerslinit— NAT A
customerNamelnip customerYoblnie customersinit— (STRTOKEN< NAT)
A accountsInitC ACCOUNTA
accountNumberlnie accountsinit— NAT A
accountPinlnite accountsInit— NAT A
accountBalancelnit accountsinit—+ NAT A
accountOwnerlnit accountsInit— customerslinit\
ste BOOL

THEN
customers= customersinit| customerName= customerNamelnif
customerYob= customerYoblInif|
accounts= accountsinit/| accountNumber= accountNumberinif|
accountPin= accountPinlInit|| accountBalance= accountBalancelnif|
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accountOwner= accountOwnerlnit|
foundCustomers= {} || fileOpen:= st|| status:= st
END
END;

status« Close=
PRE fileOpen= TRUE THEN
RESET || status:c BOOL
END

END

In B we can only reason about a single program run. We could express as an
invariant with auxiliary variables the condition that calli@ose then arbitrarily
modifying the state, and thereafter calli@penshould beskip on the base state
space, if both result codes indicate success. This could be expres€iasiegre-
ating a snapshot of the current state in a set of auxiliary variables. \Howse
cannot infer from this that externalisation and internalisation actuahwA meta-
language statementlose Oper) = skipis easier to understand than a similar con-
dition encoded as an invariant. Hence, it might be desirable to have a foretal
language with an associated proof tool for expressing such propertigsas is
done, for example, by the Refinement Calculator [16] for the refinement calculu

MachineBank encapsulating the basic functionality, is animated to test whether
it satisfies the stated requirements and also to check whether the latter areavhat w
actually want. The proofs for this machine ascertain that the initiadis&stablishes
the invariant and that the operations preserve it. However, the steglimrewritten
requirements and the structured notation to the formal B specification theno
formally proven, as indicated by the arrows in Fig. 4.7.

4.5.3 Discussion

The account number is a unique identifier for accounts. Hence, insteadaufuintr
ing the system-generated object identifietstomerdC CUSTOMER we could
have used account numbers as identifiers, simplifying the specificati@nothier
attributes would then have been functions with donaiocountNumberather than
accountsIn the implementation, we could have still used system-generated iden-
tifiers, in order to make references to accounts independent of the chosen pattern
for account numbers and to use a generic support machine for persisfectsob
The two specifications can be proved to be equivalent by mutual refinement (Exer
cise 4.3). We decided not to make the simplification in order to bettestitite the
general scheme.

In our example, we have only used very simple UML class models. We sketch
here briefly the translation of some more advanced elements.

Optional attributes can be modelled by partial functions. Attributemaki-
mal cardinality greater than one, as allowed in entity-relationship diagaande
expressed as general relations. Binary relations between classes with maximum car
dinality greater one for both classes are expressed as general relations in B.
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Subtypes can be expressed as a subsets. Hence, polymorphism can be expressed
in B as ‘soft types’. However, dynamic binding must be expressed asstaise
ments. Hence, only closed (complete) systems can be given a B translation. Fur
thermore, all classes with cyclic references must be specified in the same machine.
The transformation is difficult because B prohibits the calling of apens from
the same module and the use of sequencing in machines. B is well-suittg fo
translation of a certain class of object-oriented models.

The combination of B and OMT [69] object models, the predecessors of UML
class models, has been pioneered by Lano [47, 46]. Different translatiomgect
diagrams into B have been proposed [28, 76]; the B-Toolkit evenséfdool for
automatic translation (Sect. 4.11).

A simple translation of statecharts to B is also given by Lano [47]. Aatloor-
ough treatment can be found in Sekerinski [74]. Exercise 4.2 uses dymaocic
elling to add online banking with a login to our application.

4.6 Robust Abstraction

To keep the specification simple, the initial machBenkuses non-trivial precon-
ditions rather than elaborate error handling. We could build a graphsealinter-
face directly upon it. However, we opt for an intermediate layer, pragidoughly
the same functionality but with verification of parameters. Herewitheffectively
split up the task at hand. We avoid duplication of parameter checkingdiosdrc-
tions which can be performed in different manners, for example by a castégér o
an ATM, using different interfaces.

We have to decide whether we want to incli8knkinto the robust interfacRo-
bustBanlor not. If we want to reason about the behaviour on the robust levieler
want to be able to do such reasoning on even higher levels, we haveudeBenk
If, on the other hand, all interesting invariant conditions are pravahlthe lower
level, the inclusion would not make sense. Without includdagkwe cannot spec-
ify under which conditions the operation actually succeeds and which parameters
lead to which status code. However, we are guaranteed termination, which means
that the corresponding implementation can only call the lower level imgiéation
if the latter's precondition is satisfied. The advantage of the undefsyicn is
that the implementation is also allowed to return an error in cases notigyptap-
tured by the specification, arising from practical implementation issuesiabtide
to includeBankto be able to perform more reasoning; the alternative approach will
be illustrated on the next level up, the user interface layer. Beloveisghkcification
of RobustNewCustomaér the case wherBankwould not be included.

result«— RobustNewCustome(name yob) =
PRE namee STRINGA yobe NAT THEN
result:€ {successdh_full, db_error, customeralready _present
END
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Although specification and implementation structuring are largely indigo@n
in B, the above decision has some practical consequences. If we ifsdndééen Ro-
bustBankthe latter becomes the focus of refinement and implementation. We only
need to implemerBankif we opt for importing it in the implementation &tobust-
Bank In the alternate approach of non-inclusion, we implicitly assumeBlaak
is imported in the implementation of the robust level and that theesponding
operations are called.

MACHINE
RobustBanfmaxCustomersnaxAccounts

CONSTRAINTS
maxCustomers 1 .. 100000 maxAccounts 1 .. 200000

INCLUDES
BK.BanKmaxCustomersnaxAccounis

SEES
StrTokenType

DEFINITIONS
CUSTOMER==0.. maxCustomerd; ACCOUNT==0.. maxAccountd

SETS
RESULT= {successdbFull, dbError, customerAlreadyPresent
unknownCustomenegativeAmounamountTooBigunknownAccount
AmountGreaterThanBalanc®/rongPir}

We renaméBankin the includes clause so that references to its identifiers must
be fully qualified, which increases readability. Note that sets, elementofiern
ated sets, and constants do not participate in the renaming.

The robust operations are overly specific with respect to the reportetl resu
codes. For example in the caseRdbustNewCustomdine specification prescribes
the result code to babFull rather tharcustomerAlreadyPreseirt the case where
both are applicable, for example the database is full and the customer peassed
parameter is already in the database. This approach is simpler, but congteains t
implementation. Exercise 4.6 investigates the more general specification.

OPERATIONS
result<— RobustNewCustome(fname yob) =
PRE namec STRTOKEN\ yob e NAT THEN
IF BK.fileOpen= TRUE THEN
IF BK.customerst CUSTOMERTHEN
IF (nameyob) ¢ ran(BK.customerName BK.customerYgbTHEN
result:= success| BK.NewCustoméname yob)
ELSE result:= customerAlreadyPresent

END
ELSE result:= dbFull
END
ELSE result:= dbError
END

END;
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Since a machine is only allowed to change its local state, it is imperatate th
changes t@ankKs state are performed using the latter’s operations. However, query
operations such a@obustBalanceould be specified directly and one could argue
that it is pointless to write query operations in machines which aredeclin oth-
ers. If, however, we have convinced ourselves on the levidhokthat any access of
an account’s balance requires the corresponding PIN, this claim is autofyatreal
served if we only use operationsB&nkand do not read its variables directly. This
approach also facilitates change. Assume that we introduce a Banikrecording
all operations and, thereby, transfoRobustBalancénto a state modifying op-
eration. The operation approach does not require any changes on the eselist |
indicating better modular continuity. However, since in B we specifyals@ur and
not call-sequences — as in the realm of component software [15] —, we gjitm
have to adapt the implementation of the robust level, if the impleatiemtdoes not
call the same operation.

result nof <— RobustInitFindCustomer(namg =
PRE namec STRTOKEN'HEN
IF BK.fileOper- TRUE THEN
nof «— BK.InitFindCustomeinamg || result:= success
ELSE result:= dbError || nof:€ NAT
END
END;

found yob < RobustFindNextCustomer=
IF BK.fileOperr TRUE THEN found yob + BK.FindNextCustomer
ELSE found:= FALSE || yob:=0
END;

result number« RobustNewAccoun{name yob, pin) =
PRE namee STRTOKEM yob e NAT A pin € NAT THEN
IF BK.fileOper= TRUE THEN
IF BK.accountsz ACCOUNTTHEN

IF (nameyob) € ran(BK.customerName BK.customerYQbTHEN
result:= success|
number« BK.NewAccourf{BK.customerName BK.customerYob 1

(name yoby), pin)
ELSE result:= unknownCustomef number.€ NAT

END
ELSE result:= dbFull || number.€ NAT
END
ELSE result:= dbError || number.c NAT
END

END;

result bal < RobustBalancénumber pin) =
PRE numbere NAT A pin € NAT THEN
IF BK.fileOper- TRUE THEN
IF numbere ran(BK.accountNumbg@mHEN

IF pin = BK.accountPiiBK.accountNumber? (numbe}) THEN
bal +— BK.Balanc¢BK.accountNumber? (numbe}, pin) ||
result:= success

ELSE result:= WrongPin|| bal :€ NAT
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END
ELSE result:= unknownAccoun(f bal :c NAT
END
ELSE result:= dbError || bal :c NAT
END

END;

result name yob <+ RobustOwner(numbej =
PRE numbere NAT THEN
IF BK.fileOper= TRUE THEN
IF numbere ran(BK.accountNumbgmHEN
name:= BK.customerNan{BK.accountOwne(BK.accountNumber?!
(numbey)) ||
yob:= BK.customerYd(BK.accountOwne(BK.accountNumber?!
(numbey)) ||
result:= success
ELSE
result:= unknownAccoun name:c STRTOKEN| yob:e NAT
END
ELSE
result:= dbError || name:e STRTOKEN]| yob:e NAT
END
END;

result, dd < RobustDeposithumber amounj =
PRE numbere NAT A amounte NAT THEN
IF BK.fileOper= TRUE THEN
IF numbere ran(BK.accountNumbgmTHEN
IF amount> 0 THEN
IF BK.accountBaland®K.accountNumber?! (numbej) <
MAXINT - amountTHEN
dd + BK.Deposi(BK.accountNumber? (numbe}, amounj ||
result:= success
ELSE result:= amountTooBig| dd :€ BOOL

END
ELSE result:= negativeAmount dd:€ BOOL
END
ELSE result:= unknownAccounf| dd:€ BOOL
END
ELSE result:= dbError || dd:€ BOOL
END
END;

result«— RobustWithdraw (number pin, amoun} =
PRE numbere NAT A pin € NAT A amounte NAT THEN
IF BK.fileOper= TRUE THEN
IF numbere ran(BK.accountNumbg@mHEN
IF pin = BK.accountPiiBK.accountNumber? (numbe}) THEN
IF amount> 0 THEN
IF amount< BK.accountBaland®BK.accountNumber?! (numbey)
THEN
BK.WithdrawBK.accountNumbet ! (numbe}, pin, amouny ||
result:= success
ELSE result:= AmountGreaterThanBalance
END
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ELSE result:= negativeAmount

END
ELSE result:= WrongPin
END
ELSE result:= unknownAccount
END
ELSE result:= dbError
END
END;

result<— RobustChangePirfnumber pin, newPin) =
PRE numbere NAT A pin € NAT A newPine NAT THEN
IF BK.fileOper= TRUE THEN
IF numbere ran(BK.accountNumbgmTHEN
IF pin = BK.accountPifBK.accountNumber?! (numbe}) THEN
BK.ChangePitBK.accountNumber? (numbe}, pin, newPir) ||
result:= success
ELSE result:= WrongPin
END
ELSE result:= unknownAccount
END
ELSE result:= dbError
END
END;
status«— RobustOpen(customerFileNameaccountFileNamestringFileName =
PRE
customerFileName STRINGA accountFileNames STRINGA
stringFileName= STRING
THEN
IF BK.fileOper= FALSE THEN
status«— BK.OperfcustomerFileNameccountFileNamestringFileNamég
ELSE status:= FALSE
END
END;
status«+ RobustClose=
IF BK.fileOper= TRUE THEN
status«— BK.Close
ELSE status:= FALSE
END

END

4.7 Base Machines

Before we can build a graphical user interface on top of the robust abstraste
need to build support for the desired input and output mechanismsgkgm con-
sists of two parts: computation and interaction with the environnidrg.algorith-

mic aspects of a program can be expressed in B, whereas the input and ougput m
be coded in a traditional language. B does not contain direct language stgrpor
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communication with the environment, because input and output is vech me-
pendent on the target architecture (Web, X Windows, disk, audio, etc.).

The B development can be interfaced in two ways with its environmentgusin
base machines or using a main program written in a classical programmijgize
which calls the B development. A base machine is a machine the implementatio
of which is written in a classical programming language rather than in Bhek-s
ification of the desired functionality is given as a regular B machine abitttan
be used by other B constructs. The actual implementation, not being sipees
in B, is programmed directly in the desired classical language, for exampie, C
Ada. The alternative approach is to use B to create a service subsystemoa-sub
tine library, and write the main program which interfaces with the emrirent and
calls the B subsystem in a classical programming language. The two approaches
can also be combined, for example, we could write a base machine for file access
and still write the main program interfacing with the Web in C. In fatice only
scalars and one-dimensional array are implementable directly in BO and all other
data structures use library machines, which in turn are built on base meaciéw
interesting developments are possible without base machines at all.

We decided to use base machines rather than writing the main program directly
in a classical programming language. Base machines can be reused for other devel-
opments. From this perspective, it would be logical to have a stanteady of base
machines. However, the typical domain of B being embedded systems withrcust
interfaces, such a library would not be generally usable. Neverthelessyid lwe
desirable to have for educational purposes.

In many industrial applications, especially in those that build ortieggompo-
nents, B is only used to create the most safety-critical algorithmicp#reimiddle,
building on well-tested databases for persistent storage and complédwagiapser
interfaces. This often suitable compromise requires a great amountcadlifie to
be exercised to avoid parts of the algorithm being expressed outsitée Biave
chosen the all-B approach to illustrate its feasibility.

4.7.1 Strings in Atelier B

Atelier B has a typ&TRINGor constant character chair@TRINGcan be used for
passing a message like “Hello world” to a terminal output machine anyircase,
to pass the names of the dump files. However, there is no support fielitel
strings as needed for customers’ names. Atelier B does not permit objeatsatfle
length, such as strings, to be passed between operations. Because thetmizard
for constant-length strings either, we are forced to either use tokerfeasnces to
the actual strings, which are stored in a base machine, or pass stringsehbhyact
character with multiple calls. We opt for tokens. MachBieTokenTypelefines a
type of string tokens.

MACHINE
StrTokenType

SETS
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STRTOKEN
CONCRETE_CONSTANTS

EmptyStringToken
PROPERTIES

EmptyStringTokeg STRTOKEN

END

Note that the seeTRTOKENS abstract. Therefore, normal B machines cannot
simply ‘create new string tokens’ as would have been the case if we hadaused
subset of th&\AT instead. The fact th&TRTOKENS valued to a subset &fAT in
the implementation only helps the C-translator, but cannot be egglivi constructs
which see or imporgtrTokenType

Since string tokens can be compared with ‘=', we need to have an injection
from tokens to strings. To ensure this, only one single machinedf#isicStrings
allowed to generate tokens. Input base machines return tokens, nos skigg4.8
(left side) illustrates string 1/0O, witlBasicCGlas an example of an I1/0O machine.
ImplementatiorMainBank_ 1 requests a string to be inpiasicCGlreads a string
from the Web, enters the string BasicStringand in return receives a token, which
it returns to its clienMainBank 1. Note that the operations for entering new strings
and retrieving strings by token are not specified on the B level, butrdygooesent
in the hand-coded C implementation.

The rest of this subsection discusses additional aspects of passingsaifject
variable size in B. The material is of general interest, but is not necessamder-
standing the case study. Hence, it can be skipped on a first reading.

Unfortunately, the token solution has a shortcoming: We cannot ensuB
that no other base machine generates tokens. For example a random base machine
could have a machine parameter of set type and provide an operation whigtsretu
arbitrary elements of that set. Instanciated WERRTOKENthis machine could
generate tokens for whidBasicStringhas no corresponding string. We must also
ensure that whenever string tokens are externalised, the correspatritigg are
also saved.

The obvious, but for other reasons undesirable, remedy to the firbtepno
would be to introduce a sétgalTokensC STRTOKENN BasicString Any input
operation would then have to modigalTokensHowever, only the constructs that
includes/importBasicString but no others that only sd&asicString have access
to state modifying operations @&asicString* As a consequence, input from any
source would have to be implemented in a single base machine, contrgaicid-
ularity. For example, base machines for input from the Web and from &rtafrm
could not simply be combined by importing both, but would havéaaextually
merged.

1 This single writer and multiple readers restriction is daghe visibility of variables of
included/imported machines in the invariant of the inahgdimporting implementation.
Multiple writers could invalidate each other’s invariants
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Fig. 4.8.Alternatives for Input/Output and String Storage
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The single-writer restriction would complicate the design even if wald/limit
ourselves to a single input/output (1/0) machine. If we would natro externalise
all strings, but only a selected subset (the names of the customers)ahzted
again in future program runs, then implementatigank 1 would also need write
access t@asicStrinés state becaudank 1 would have to control the externalisa-
tion process. All components accessBagicStringn write mode would have to be
parents in a straight line, each imported by the next. Hence, the si@gtaedthine
would have to imporBasicString respectively be merged into a single machine to
also avoid the behind the scene passing of strings. ImplemenBaiok.1 would
then have to import this machiriasicAlllOString The real inelegance would be
that the I/O operations which are accessed from the interface layer woulddave
be promoted by the specificatioBankandRobustBankA similar pollution of the
specifications oBankwould occur if externalisation of strings were to be controlled
by the interface layer anBankwould have to provide operations to query the set of
strings to be externalised.

Because of the need to combine all I/O into a single I/O machine and therelut
ing of specifications with implementation aspects, we do not choosedhisas.
Rather we accept that we cannot maintain in B a set of all valid tokens. Fig. 4.8
illustrates the two alternatives. The specificationBafsicStringis given on page
161.

4.7.2 MachineBasicCGl

In order to input and output data to the Web, we need a machine to access the
common gateway interface (CGl), which we dalisicCGIl CGl is a standard for
interfacing external applications with information servers, such as WelrseiA

plain hypertext markup language (HTML) document that the Web daemoewvesri

is static, which means it exists in a constant state: a text file that dagsanige.

A CGI program, on the other hand, is executed in real-time, so that it cgutout
dynamic information. The user fills out a form in the browser and s¢inel data to

the server which executes the CGI program. The CGI program processagptibe i
modifies the local database, and generates an output which is sent back to the user’
browser for display.

MACHINE
BasicCGl

SEES
StrTokenType

OPERATIONS

status num«— ReadNainamg =
PRE namec STRINGTHEN
status:e BOOL || num:e NAT
END;



140 4. B Bank

In an HTML form every field has a unique name. OperafR@adNatnputs a
natural number value of a field, designated by its name, from a form. Sieaeser
can enter an arbitrary number into a given field, we can only assuratinais a
natural number. The browser, the server, and the connection between thgm bein
outside the realm of our specification, we cannot specify that the repcated is
actually the one entered by the user. An implementation which always réurns
independently of the users input would, therefore, be formally corither can
we specify under which circumstances the result code indicates success. Actually
an implementation which always fails would also be correct. The intended ngeani
of the operation is only captured by its name and the natural languagepdiescri
The only property guaranteed by the formal specification is termination.

Whether we use result codes or not depends upon how we can react to failure.
Consider, for example, a measuring device with an input sensor antl eoditore
the values as its only output device. If the disk fails, we can also stepugion.

In this case an abstraction specifying the disk as reliable leads to a sisgptem.
Alternatively, we might specify the disk as unreliable, but simplyoignthe result
codes in the higher layers, leading to unprovable obligations. Ontttez band, if

we can react to failure by, for example, storing the current state on adishrand
showing an error message on the screen, return codes are desirable. In nen safet
critical systems, operations with a very high success probability aee aisumed

to be fully reliable, because little can be done in case of failure and thétings
system is much simpler.

To be more precise, the return codes in our example indicate whether the Web
server has indicated an error or not. If, for example, the underlying feaedas
malfunctioned in a way not traced by the operating system or Web servex-for e
ample, a communication error resulting in a correct checksum, the error gees u
noticed. Building up a system from components, we specify each compaent s
arately and reason about the whole system using composition rules agsiinai
implementations to adhere to the specification. If a specification is too weak,
corresponding component cannot be used intelligently. Although mnotigful, a
specification saying that the CGlI functions might have failed even ifekelt indi-
cates success, is useless, because we cannot build on it. Risk estimatesalmsng p
bilistic reasoning would need to complement a developmentin B [8GH8,

OperatiorReadTokenStringeads a string from a form field. As described above,
the string is stored in machirBasicStringand only a token is returned. If the string
contained in the field is longer thamaxLengththe operations returns failure.

status str < ReadTokenStringlname maxLength=
PRE namee STRINGA maxLengthe NAT THEN
status:c BOOL || str:e STRTOKEN
END;

The remaining five operations are concerned with outputting a new do¢immen
response to the user’s request. Each document has a MIME (Multipurgeseet
Message Extension) type which tells the browser the format of the némgadata
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stream. In our case, the type is always “text/html”. OperaibiteLiteralContent-
Typelets us send the MIME type to the browser. ParametieneTypds of type
STRINGas a constant literal string is envisaged to be used as an actual parameter.

WriteLiteralContentType (mimeTypg=
PRE mimeType= STRINGTHEN skip END;

In HTML, certain characters such as™are reserved for markup purposes. Ad-
ditionally, 8-bit characters must be encoded using either their mnemonieiv
decimal codes in the Latin-1 character set. For example, the letter ‘U’ can be en-
coded as either ‘&uuml;’ or as * &#252;". Operatidi'riteLiteralStringoutputs a
string without any conversions; hence, the string can contain HTML bagspecial
characters must already be encoded. OperaiateLatinl TokenStringonverts a
string from the Latin-1 character set to its HTML encoding.

WriteLiteralString (str) =
PRE str € STRINGTHEN skip END;;

WriteLatin1TokenString (str) =
PRE str ¢ STRTOKEN'HEN skip END;

In arguments to CGI programs, certain reserved characters as well as 8-bit char-
acters must be encoded as their hexadecimal codes in the Latin-1 character set. The
letter ‘U0’, for example, is represented as ‘%FC’. Since such argumengstrmay
not contain any spaces, the latter are converted to ‘+'s. This type of coonéssi
performed by operatiowriteURLStringbefore outputting its argument.

WriteURLTokenString (str) =
PRE str ¢ STRTOKEN'HEN skip END;

WriteNat (num) =
PRE nume NAT THEN skip END
END

The actual output operations are specified as skip as the output is not thert o
state captured by the B specification. Although the output operationssafadlin
practice, we have chosen the less safe, but more convenient approach of specifyi
them as reliable.

A partial modelling of the output would also have practical consequentes. T
operations oBasicCGImight be called from different implementation constructs.
As long as the operations are inquiry operations they can be called frplarimen-
tations which se®asicCGl If, on the other hand, the output operations modify the
state, the lowest machine in the hierarchy ugagicCGImust import the latter and
promote the operations.

MachineBasicCGldoes not enforce its outputto be correct HTML, for example,
there is no check for matching markup tags. Although desirable, such cheald wo
make the machine much more cumbersome to use as tags could not be embedded in
strings and the machine would have to be updated to use new HTML tags.
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4.7.3 ImplementingBasicCGl

To implementBasicCGlwe first write an ‘empty’ B implementation the C trans-
lation of which gives us a C code skeleton conforming to the coding atdsdf
Atelier B’s translator. This skeleton is then filled in with the actual cdde imple-
mentationBasicCGL1 contains only the minimal information to conform to B and
be translatable. We have to value every set and constant, initialize covarietdes

of the specification, and list all the operations. Operations are sinpglyified as
skip, if they have no return parameters and otherwise as dummy assigriméne
return parameters. We do not prove anything about this empty implenoentdote
thatBasicCGL1 seesBasicStringto force the latter being imported somewhere in
the development.

IMPLEMENTATION
BasicCGL1

REFINES
BasicCGl

SEES
StrTokenTypeBasicString

OPERATIONS

status num«— ReadNainamg =
BEGIN
status:= TRUE; num:=0
END;

status str < ReadTokenStringlname maxLength=
BEGIN
status:= TRUE; str := EmptyStringToken
END;
WriteLiteralContentType (mimeTypg= skip;
WriteLiteralString (str) = skip;
WriteURLTokenString (str) = skip;
WriteLatin1TokenString (str) = skip;
WriteNat (nun) = skip
END

Rather than implementing CGI access from scratch we build upon the public
domain ANSI C library cgic version 1.05 from Thomas Boutell [13]isTlbrary
provides for comfortable parsing of form input. The second includeatbr file
trad_ctx.hdefines some macros suchRROTxto make the source code portable
between ANSI C and K&R compilers.

In a project, a machine can be imported several times with different instance
names. Different instances represent different data. Implementing a base epachin
we have to decide whether multiple instantiation is permitted ornfjdor example,

a base machine represents a physical device such as an LED only one copy of the
corresponding base machine should be included in a development. & enbabkine
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does not allow for multiple instantiations, we have to verify tihat project adheres
to this rule. The restriction cannot be expressed in AMN; depending th@otarget
language and the translator it is possible to write C code which faitompile,
respectively link if the rule is violated. If, as in our case, this is ra¥gible, manual
inspection is necessary. On the other hand, if we allow multiple inateotts, the
state of an instantiation must be included into the stBagicX type As discussed
above, we do not need to make our mactBasicCGlinstanciable, even if we use
it from more than one implementation construct. Hence, we opt for thipler
approach which also corresponds more closely to the reality we modelh®@dir t
base machin8asicFile (Sect. 4.10.4) illustrates multiple instantiation. The hand-
coded additions and modifications are set in italics in the C source files.

#includécgic.h”

#ifndef trad_ctx_include_def
#include"trad_ctx.h”

#endif

/* Links to machines from the SEES clause */

#ifndef StrTokenTypeinclude_def
#include”StrTokenType.h”

#endif

[* Structure associated to component (instance record) */
structBasicCGL type {
int BasicCGLinit_already done;

s
#defineBasicCGLinclude_def

/* Reference to machines from the SEES clause */
EXTERN strucStrTokenTypetype *StrTokenTypeptr;

[* Prototypes of translated operations */
EXTERN voidink _BasicCGl PROTF((struct BasicCGtype *v));

EXTERN voidnit _BasicCGI PROTF((struct BasicCGtype *v));

* Type of name changed manually from INT32 to char* */
EXTERN voidReadNat_BasicCGIl PROTF((struct BasicCGtype *v,
INT32 *status, INT32 *num, char *name));

[* The other operations can be found on the book’s Web page. */

In its original implementation, cgic provides itself a main functiod axpects
the user to write a function callezbiMain which is called after initialisation. By
changing a handful of lines as indicated in the online source code, wedia’s
mainfunction into a functiorcgilnit which we call frominit_BasicCGI The spec-
ifications does not allow the initialisation to fail. In practice, if thatialisation
fails we write a message &tderr and abort execution. Since we cannot perform
any transaction anyhow, abortion at startup is the simplest sol(tf@operations
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are simply calls to the corresponding procedures of cgic, respecfuatyf com-
mands.

#include<stdio.h>
#include”BasicCGl.h"
#include”BasicString.h”

void link _BasicCGI(PROTAstructBasicCGLtype *)v)
PROTCétructBasicCGLtype *v)
{

void init _BasicCGI(PROTA(tructBasicCGLtype *)v)
PROTCétructBasicCGLtype *v)

if (StrTokenTypeptr->StrTokenTypeinit_already done &&
(v->BasicCGLinit_already. done==0)}

if (cgilnit()!=0){
fprintf(stderr, "Initialization of BasicCGl failedn”); exit(-1);

v->BasicCGLinit_already done=1;

}
}

void ReadNat_BasicCGI(PROTA(tructBasicCGLtype *)v, PROTA(INT32 *)status,
PROTA(INT32 *)num, PROTA(char *)name)
PROTCSétructBasicCGLtype *v) PROTC( INT32 *status)
PROTC(INT32 *num) PROTC(char *name)

ints;

s=cgiFormInteger(name, num, 0);
if ((5==0)&&(*num>=0)) {
*status=TRUE;
} else{
*num=0; *status=FALSE;

}
}

[* The other operations can be found on the book’s Web page. */

We prove in B that all calls to operationsB&sicCGlsatisfy the respective pre-
conditions. Hence, there is no need to write checks for the preconditichg iC
code ofBasicCGI The hand-coded C implementation is a refinement of its B spec-
ification. The validity of the refinement has to be asserted using normitica&on
techniques, for example, testing and third party code inspection.

We make a separate project outBdsicCG| BasicString andStrTokenTypé&o
facilitate reuse in other projects. This also prevents us from accideatadtyvriting
the hand-coded implementation. The fibggc.candcgic.hmust be manually added
to the Makefile, copied from the data base to the code directory. Additiothe
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targetBasicCGImust be removed from the Makefile, as we only want to create a
library and make would produce an error because of the missaigfunction.

For didactic reasons, we have presented the implementation of the bagaenach
directly following its specification. In practice, we often write the ierpentation
only after we have actually used its specification in other constructs agrdbiy)
convinced ourselves of its appropriateness. The disadvantage of thas ike spec-
ification might not be implementable on the target system, causing akefall
dependent constructs.

4.8 User Interface

The user interface presents an entry mask to the user, parses the inphieitip
of BasicCG| sends the request to the robust interf&mbustBankand presents
the results using again the CGI machine. We first prototype thisaictien using
static HTML code with normal links between the pages rather than calls t6Gur
application. Once we are satisfied with the look and feel, we write theiniseface

new customer
[T T output A

2 or more
new account

matching
customers |iSt Of
form (simple) [ ~ customers A
Y

new customer
form

welcome ?ngt'cLGgs
customer
new account
form (full) [T A
deposit [ deposit
form output
Notations
( ) _> T )
static HTML CGl output link form input
page transition transition

Fig. 4.9.Cashier Interaction
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which generates the same HTML code based upon CGl requests. Static indormat
such as the input forms, remains in the form of normal HTML files.

The cashier is presented with a menu on the bottom of her terminal, frachwh
she can choose a form to enter a new customer, create a new account for ag existi
customer, or make a deposit. In the ‘new customer’ form, the cashiersetier
name and year of birth of the customer and clicks on a button to send thie da¢a
CGl application. In response, the cashier gets a screen saying that thempleaati
succeeded or that an error has occurred. These messages are all generated by the
same CGI program, but for prototyping we need to create different HThtiep.

After reading the output message, the cashier clicks on another menu choice.

When creating a new account, the cashier has the option of entering both the
customer’s name and year of birth or only the name. If there is only one cus
tomer with the given name in the system, an account is created. On the other
hand, if there is more than one customer with this name, the cashier enprds
with a list. She then simply clicks on the desired customer to create the ac-
count. In the latter case, the links contain all the parameters, which weauld u
ally be entered into the form by the cashier. For example for customefieGiy
born in ‘1978, and PIN ‘2001’ the URL of the link would be ‘http../cgi-
bin/AB/MainBank?command=1&name=Garfield&yob=1978&pin=2001".Thd CG

<HTML >
<HEAD ><TITLE >B Bank: New Customet/TITLE ></HEAD >
<BODY BGCOLOR="#228B22">
<H1>B Bank: New Customet/H1>
<FORM ACTION="http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/M&ank”
METHOD="POST">
<INPUT TYPE="HIDDEN" NAME="“command” VALUE="0" >
<TABLE BORDER="0">
<TR ALIGN="Center” VALIGN="Middle” >
<TD ALIGN="RIGHT” >Customer name:/TD >
<TD ALIGN="LEFT” ><INPUT NAME="name” SIZE="18" ></TD >
</TR>
<TR ALIGN="Center” VALIGN="Middle” >
<TD ALIGN="RIGHT" > Year of birthx</TD >
<TD ALIGN="LEFT” ><INPUT NAME="yob"” SIZE="4" ></TD>
</TR>
</TABLE >
<P>
<INPUT TYPE="submit” VALUE="Add customer*<BR>
<INPUT TYPE="reset” VALUE="Reset input form*>
<IP>
</FORM >
</BODY >
</HTML >

Fig. 4.10.HTML Source Code of ‘New Customer’ Form
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program doesn’t have to store any temporary information. ‘Deplesitis to simple
one-step interaction sequences like ‘new customer’, as depicted in Fig. 4.9.

For brevity’s sake, we do not list all the HTML pages. We assume theeread
to be familiar with basic HTML. In Fig. 4.10, theORM tag introduces the actual
entry form. Its attributéACTION states the URL of the CGI program, to which the
input data is sent upon pressing the submit button. The input filche’ takes
the customer name. Rather than creating a separate CGI application for each entry
form, we use a hidden input field ‘command’ which selects the desired agerat
The CGI program is our final B applications, which we copy to the C&daory
of the Webserver and give the suitable execution rights.

The user interaction at the ATM and the corresponding HTML pages areasimil
On a standard ATM, the account number is read from a card. To run our siomulat
without any special hardware, the user is also requested to enter the accobetnum
A typical ATM interface is modal, that is, one first inserts the card, thaeren
the PIN, and finally performs the desired transaction. In our simulati® user is
requested to enter all information in a single modeless dialog. Exer@sshdws
how to model a modal interface using the idea of links generated by tigegmmo

In order to make navigation easier in the simulation, we add a frame geawi
meta menu which lets us easily switch between the cashier terminal and the ATM,
displayed with different background colour in the right-hand sidente.

4.8.1 Main Program

To keep the size of the individual operations small, we create one opefio
transaction type. Since in B operations from the same construct cannotdak val
divide the user interface into two machines. MacHit@inBankcontains the main
program. It reads the ‘command’ field and calls the selected operation of machine
OperationsBankwhich does the actual work.

We do not duplicate the state on the user interface lev@igarationsBankas
we do not want to perform any reasoning. Hence, the specification of tha¢tams
operations is simply skip.

MACHINE
OperationsBank

OPERATIONS

NewCustomer= skip;
NewAccount= skip;
Deposit= skip;
Withdraw = skip;
Balance= skip;
ChangePin= skip;

Error (numbej =
PRE numbere NAT THEN skip END ;
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status«— Open(customerFileNameccountFileNamgstringFileName =
PRE
customerFileName STRINGA accountFileNames STRINGA
stringFileName= STRING
THEN
status:e BOOL
END;
status« Close=
BEGIN
status:e BOOL
END

END

The machineMainBankis also stateless. The specification of its single opera-
tion mainis skip, guaranteeing only termination. Since the persistent stastinexi
beyond a single program run, cannot be modelled, skip is in fact tiyeg@asonable
specification for a main program.

MACHINE
MainBank

OPERATIONS
main = skip
END

4.8.2 Implementations

The implementatioMainBank 1 first opens the database. Then it reads the value
of the ‘command’ input field, calls the selected operation, and closes theadatab

IMPLEMENTATION
MainBank 1

REFINES
MainBank

IMPORTS
BC.BasicCGJOB.OperationsBankStrTokenType

OPERATIONS
main =
VAR dbst st, resIN
dbst«+ OB.Opeiff’/tmp/customer”, "/tmp/account”, "/tmp/strings”);
IF dbst= TRUE THEN
st, res« BC.ReadNdtcommand");
IF st= TRUE THEN
CASE resOF
EITHER O THEN OB.NewCustomer
OR 1 THEN OB.NewAccount
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OR 2 THEN OB.Deposit
OR 3 THEN OB.Withdraw
OR 4 THEN OB.Balance
OR 5 THEN OB.ChangePin
ELSE OB.Error(0)
END
END
ELSE OB.Error(1)
END;
dbst+ OB.Close
ELSE OB.Error(2)
END
END

END

The implementatiorOperationsBankl imports RobustBank The operation
NewCustomefirst outputs the header of the result screen, which is independent
of the outcome of the operation. Then it reads the value of the ‘name; Galt$
RobustNewCustomeand presents the result.

The loop in operatio™NewAccounshows the advantage of not just using B to
create a subroutine library. In this case, loops on the user interfagleneuld not
be proved to terminate. For brevity’s sake, some operations are omittesllisting
below. They can, as all other constructs, be found on the book’s Web page.

IMPLEMENTATION
OperationsBankl

REFINES
OperationsBank

IMPORTS
RB.RobustBar{t00, 200)

SEES
BC.BasicCGlI

CONCRETE_CONSTANTS
Falsel

PROPERTIES
Falsele BOOL — NAT

VALUES
Falsel= {(TRUE s 0), (FALSE — 1)}

DEFINITIONS

CASHIERHEADER(title) == HEADER(title, "#228B22");

ATM_HEADERtitle) == HEADERtitle, "#DC143C");

HEADERTitle,color) ==
BC.WriteLiteralContentTyg&ext/html™);
BC.WriteLiteralString” <HTML >\n<HEAD><TITLE >B Bank: ”);
BC.WriteLiteralStringtitle); BC.WriteLiteralString” </TITLE ></HEAD>\n");
BC.WriteLiteralString’ <BODY BGCOLOR="); BC.WriteLiteralStringcolor);
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BC.WriteLiteralString” >\n<H1>B Bank: ”);

BC.WriteLiteralStringtitle); BC.WriteLiteralString” </H1>\n"));
FOOTER== BC.WriteLiteralString’ </BODY></HTML >\n");
DB_FULL_MSG== BC.WriteLiteralString’ <P>Sorry. The database is full/P>");
DB_ERRMSG==

BC.WriteLiteralString” <P>Sorry. The databse is not workirgP>");
UNK_ACC MSQ@nun) ==

BC.WriteLiteralString” <P>Account "); BC.WriteNafnur);

BC.WriteLiteralString” is not in database:/P>"));
CGL_SCRIPT=="http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/MainBk
MAX_NAME_LENGTH== 256

OPERATIONS

NewCustomer=
VAR st, name yob resultIN
CASHIER_HEADER ("New Customer”);
st, name« BC.ReadTokenStrifthame”, MAX_NAME_LENGTH);
IF st=TRUE THEN
st, yob«— BC.ReadNdtyob");
IF st=TRUE THEN
result«— RB.RobustNewCustonfeame yob);
CASE resultOF

EITHER succes§HEN
BC.WriteLiteralString”’ <P>Customer ”);
BC.WriteLatin1TokenStrirjgams;
BC.WriteLiteralString” ("); BC.WriteNafyob);
BC.WriteLiteralString") has been added/P>")

OR customerAlreadyPreseiHEN
BC.WriteLiteralString” <P>Customer ”);
BC.WriteLatin1TokenStrirfgams;
BC.WriteLiteralString” ("); BC.WriteNafyob);
BC.WriteLiteralString”) is already in database/P>")

OR dbFull THEN DB_FULL _MSG

OR dbError THEN DB_ERR_MSG

END

END
ELSE BC.WriteLiteralString” <P>Could not get year of birth:/P>")
END
ELSE BC.WriteLiteralString” <P>Could not get name:/P>")
END;
FOOTER
END;

NewAccount=
VAR st, name yoh pin, result number nof, found ii IN
CASHIER_HEADER ("New Account”);
st, name«+ BC.ReadTokenString"name”, MAX_NAME_LENGTH);
IF st= TRUE THEN
st, pin < BC.ReadNa{("pin™);
IF st= TRUE THEN
st, yob«+ BC.ReadNa{"yob");
IF st= FALSE THEN
result nof <— RB.RobustlnitFindCustomer(name;
IF result= succes§HEN
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IF nof=0THEN
BC.WriteLiteralString (" <P>Customer ”);
BC.WriteLatin1TokenString (name;
BC.WriteLiteralString (" is not in database:/P>")
ELSIF nof=1THEN
found yob <+ RB.RobustFindNextCustomer,
st:= TRUE
ELSE BC.WriteLiteralString (" <P>Choose from lisk/P><UL>");
ii := 0; found yob «+— RB.RobustFindNextCustomer
WHILE found=TRUE DO
BC.WriteLiteralString ("<LI><A HREF=");
BC.WriteLiteralString (CGI_SCRIPT;
BC.WriteLiteralString ("?command=1&name=");
BC.WriteURLTokenString (name);
BC.WriteLiteralString ("&yob=");
BC.WriteNat (yob);
BC.WriteLiteralString ("&pin=");
BC.WriteNat (pin);
BC.WriteLiteralString (">");
BC.WriteLatin1TokenString (namg; BC.WriteLiteralString (” (*);
BC.WriteNat (yob); BC.WriteLiteralString () </A></L>");
found yob «— RB.RobustFindNextCustomer
INVARIANT
yobe NAT A
RB.BK.foundCustomers ' (RB.BK.foundCustomers
VARIANT
card(RB.BK.foundCustomeérsl-FalseXfound
END;
BC.WriteLiteralString (" </UL>")
END
ELSE DB_ERR_MSG
END
END;
IF st= TRUE THEN
result number« RB.RobustNewAccountname yob, pin);
CASE resultOF
EITHER succesSHEN
BC.WriteLiteralString (" <P>New account number ”);
BC.WriteNat (humbey;
BC.WriteLiteralString (" has been created for customer );
BC.WriteLatin1TokenString (namg;
BC.WriteLiteralString (" ("); BC.WriteNat (yob);
BC.WriteLiteralString (7). </P>")
OR unknownCustomeFHEN
BC.WriteLiteralString (" <P>Customer ");
BC.WriteLatin1TokenString (name;
BC.WriteLiteralString (" ("); BC.WriteNat (yob);
BC.WriteLiteralString (”) is not in database:/P>")
OR dbFull THEN DB_FULL _MSG
OR dbError THEN DB_ERR_MSG
END
END
END
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ELSE BC.WriteLiteralString (" <P>Could not get pin</P>")
END
ELSE BC.WriteLiteralString (" <P>Could not get name./P>")
END;
FOOTER
END;

Deposit=
VAR st, number amount result dd, name yobIN
CASHIER _HEADER ("Deposit”);
st number«+ BC.ReadNdtnumber”);
IF st= TRUE THEN
st, amount— BC.ReadNgtamount”);
IF st= TRUE THEN
result dd +— RB.RobustDepogitumber amouny;
CASE resultOF
EITHER succes§HEN
BC.WriteLiteralString” <P>A deposit of ”);
BC.WriteNafamoun};
BC.WriteLiteralString” has been made on account ”);
BC.WriteNafnumbey;
result name yob <+ RB.RobustOwnénumbey;
IF result= succesSHEN
BC.WriteLiteralString” belonging to ");
BC.WriteLatin1TokenStrirjgams;
BC.WriteLiteralString” ("); BC.WriteNafyob);
BC.WriteLiteralString”)")
END;
BC.WriteLiteralString”. </P>")
OR negativeAmountHEN
BC.WriteLiteralString” <P>Amount must be greater thanP>")
OR amountTooBigrHEN
BC.WriteLiteralString” <P>Amount too big. ")
BC.WriteLiteralString’No deposit has been madgP>")
OR unknownAccountHEN UNK _ACC_MSG(numbej
OR dbError THEN DB_ERR_MSG
END
END
ELSE BC.WriteLiteralString” <P>Could not get amount./P>")
END
ELSE BC.WriteLiteralString” <P>Could not get numbet./P>")
END;
FOOTER
END;

[* Operations Withdraw, Balance, and ChangePin and Erratteda Check the book’s Web
page. */
status«+ Open(customerFileNameccountFileNamestringFileNamé =
status<— RB.RobustOpdnustomerFileNameccountFileNamestringFileNamé;

status«+ Close=
status«— RB.RobustClose

END
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4.9 Implementation of the Robust Abstraction

The missing piece is the implementation of the robust |&®@bustBankWe have

to make a choice as to whether we want to im@®ank in the implementation

RobustBankl or whether we want to build directly on lower level abstractions.
Often, a more abstract specification is included into the robust level aimd-a

ilar, more concrete specification is imported in the implementation. Thehime

that is included in the specification should be as abstract as possibleitocaer-

specification. The machine that is imported in the implementation shmifflite

concrete to make it more useful. The use of two different constructesahis

dilemma. However, in our case we can include, respectively import the same ma-

Same machinBank is both included and imported (chosen path)

transitivity of refinement
r="="="======="="="="======"="="="="=========-* l
- \ 4
RobustBank_1 monotonicity RobustBank_1
of context
orthmic | /7 N\ | >
algori
: Bank | Bank_1
refinement Q data —
refinement

More abstract construébstractBank is included in specification,
more concrete constru€oncreteBank is imported in implementation (rejected alternative)

transitivity of refinement

r="="="======="="="="======"="="="="=========-* l
RobustBank_1 monotonicit
RobustBank o contexty RobustBank_1
—P . [~------ >
algorithmic
A Concret > Concretq
Atéséltrr]?(c ] refinement @ Jata Bank_1
refinement
b
Notations
Q —> -------- >
proved induced
machine implementation refinement refinement

Fig. 4.11.Import of Included Machine vs. Import of More Concrete Coust
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chineBankin both the specification and the implementation, avoiding a prolitarat

of constructs. In the alternative caBank respectively a more abstract versidb-
stractBank would have been used only in the specification, but would not have to
be refined to an implementation. Fig. 4.11 shows the two options.

Importing an already included machine without renaming, respectively renam-
ing it identically both times, constitutes an algorithmic refinemente identity
mapping invariant is implicitly added.

The operations first check whether the parameters and the current state satisfy
the preconditions of the corresponding operationBamk and then call them, or
report an error if the conditions do not hold.

IMPLEMENTATION
RobustBankl(maxCustomersnaxAccounis

REFINES
RobustBank

IMPORTS
BK.BanKmaxCustomersnaxAccounts

SEES
StrTokenType

OPERATIONS

result<— RobustNewCustomefnameyob) =
VAR status cid IN
IF BK.fileOper= TRUE THEN

status«+ BK.CustomerDBFujl

IF status= FALSE THEN
status cid < BK.ThisCustoménameyob);
IF status= FALSE THEN

BK.NewCustoménameyob); result:= success

ELSE result:= customerAlreadyPresent

END
ELSE result:= dbFull
END
ELSE result:= dbError
END

END;

result, nof < RobustInitFindCustomer(namg =
IF BK.fileOper- TRUE THEN
nof «— BK.InitFindCustomegmname; result:= success
ELSE
result:= dbError; nof:=0
END;

found yob «— RobustFindNextCustomer=
IF BK.fileOpen= TRUE THEN
found yob «— BK.FindNextCustomer
ELSE
found:= FALSE; yob:=0
END;
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result number« RobustNewAccoun{name yob, pin) =
VAR status cid IN
number:= 0;
IF BK.fileOper= TRUE THEN
status«+ BK.AccountDBFull
IF status= FALSE THEN
status cid < BK.ThisCustoméname yob);
IF status= TRUE THEN
number« BK.NewAccourftid, pin); result:= success
ELSE result:= unknownCustomer

END
ELSE result:= dbFull
END
ELSE result:= dbError
END

END;

result bal < RobustBalancénumber pin) =
VAR status aid IN
bal :=0;
IF BK.fileOper= TRUE THEN
status aid + BK.ThisAccour{humbey;
IF status= TRUE THEN
status«+ BK.Authorizedaid, pin);
IF status= TRUE THEN
bal < BK.Balancéaid, pin); result:= success
ELSE result:= WrongPin

END
ELSE result:= unknownAccount
END
ELSE result:= dbError
END

END;

result name yob < RobustOwner(numbej =
VAR status aid, cid IN
yob:=0;
IF BK.fileOper= TRUE THEN
status aid + BK.ThisAccount(numbe};
IF status= TRUE THEN
cid «+ BK.AccountOwner(aid);
name yob +— BK.CustomerData(cid);
result:= success
ELSE
result:= unknownAccounname:= EmptyStringTokeryob:= 0
END
ELSE
result:= dbError; name:= EmptyStringTokernyob:= 0
END
END;

[* Operations RobustBalance, RobustOwner, RobustDeshiustWithdraw,
and RobustChangePin omitted. Check on the book’s Web péage. *

status«— RobustOpen(customerFileNameaccountFileNamestringFileName =
IF BK.fileOpen= FALSE THEN

155



156 4. B Bank

status«— BK.OperfcustomerFileNameccountFileNamestringFileNamég
ELSE status.= FALSE
END;

status«+ RobustClose=
IF BK.fileOpen= TRUE THEN
status«+ BK.Close
ELSE status.= FALSE
END

END

4.10 Implementation ofBank

Our next task is to refinBankto an implementation, because we have chosen to im-
port it into RobustBankin Sect. 4.4 we have already outlined the basic structure of
this implementation. Now we have to take a closer look at our requireno@nine
hand and the available resources, that is, the B library machines and tlatirgper
system of the target computer, on the other. This is the gap we haviel¢geb

The data structures we need to implement are object classes with attributes as
well as relations. We need to be able to create new objects, read and modify their
attributes, and externalise and internalise them. All our attributesfayg@esNAT
andSTRTOKENIf we provide a possibility to reference string tokens with natural
numbers, strings, respectively references to string tokens can also bd Bker
NATs. Functional relationsaa¢ccountOwnercan also be modelled &AT attributes
if NAT is also chosen as the identifier type for objects.

Atelier B provides a base machiBASIC ARRAYRGE for two dimensional
array. This could be used to store objects with tiNANT attributes by letting the
first index select the object and the second the desired attribute or v \fethe
number of fields is known, we could alternatively use a number of onefsional
arrays which can be directly implemented in BO.

A simple machine for file access namBASIC FILE_VAR originating from
the data-base example of the B Book [2], is also provided. This magi@maits
objects with attributes of identical type to be stored and retrieved filemUsing
it to externalise strings would be very cumbersome. Also, it doeprmtide for
persistency between program runs as the name of the file is generated at random
Neither does it perform any error handling; file system errors cause iott.ab

We could implemenBankdirectly on our own base machin&sasicFile and
BasicStringand onBASIC ARRAYRGE However, it seems to be wiser to intro-
duce a middle layer, which encapsulates general support for objects. ipb-si
fies the implementation dankand gives us a reusable subsystem. It also frees us
from hardwiring whether we want to internalise the complete databasaratsbr
whether we only want to keep the currently accessed object in the main memory.

We implemenBankusing a machin®bjectproviding the aforementioned sup-
port for objects andBasicString The specification still leaves it open whether the
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complete database is kept in main memory or not. In the implementation we can
no longer postpone the decision. We decide to read the whole databazegg; st

the other solution for a similar object-support machine is develbgetbrial in the
aforementioned data-base example. Fig. 4.12 shows the structure iote¢hded
development with section numbers for reference. We create a separate project for
the object support and string machines to facilitate reuse.

4 \
foundCustomers_1 ,I L SET \'
\\ ,
7 ) \\\_’//
BasicString Object_1
(4.10.2)
Basi '/;ASIC ;F:\\ BasicFil
asic | 2 asicFile .
String_1 \ RAY_RGE | (4.104) BasicFile_t
\
\ /7

Basic Basic
String.h String.c
Notations
, . TG N . X
\ .
/ \  imports
|| I ) (renaming to X)
\\ /
N 7
~ —~—— 4 4—
machine implementation  hand-coded C library implements
machine

Fig. 4.12.Implementation oBank
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We proceed in a top-down fashion. We first identify the required fonetity
for implementingBank specify the necessary machin®bject and BasicString
and then implemerBank We then repeat the same sequence of step®Mipect
andBasicString

4.10.1 MachineObject

As stated aboveQbjectmust be able to store a set of objects, each having a given
number of attributes of identical type. We need to create new objects, nautify
read their fields, search for an object by the value of one of its fields, and check
whether the database is full or not.

Objecthas four parameters. The first paramet@xNofObjslenotes the maxi-
mal number of objects, which the machine can store. As discussed in Sestich5,
an upper bound is needed in a safety-critical system in order to avoid averflo
The question remains, however, how we should constrain the maxinua eabb-
jects. This value is determined by the available main memory storinglifexts
and the available disk space for externalisation. This contradicts outcamake
the specification independent of the target computer. Even if we know aettar
architecture, the available memory at run time depends also upon whichpother
cesses are running and how many instantiations ofihiectmachine are present.
Obviously, we cannot formally prove the instantiations to workday value —
except for 0. Such a proof would not be within B. In practice, we have&son
for the complete system that the chosen instantiations are permisitie given
resources. We implement our machine so that it allocates all the required ynemor
at startup. Although failure during initialisation also violates #pecification, it is
usually less harmful than at run time. For the second resource, the diskjst we
take the more optimistic and less safe assumption that the disk ahaayat least
as much free space as we have main memory.

MACHINE
Objec{maxNofObjsnofFields VALUE, valueElement

CONSTRAINTS
maxNofObjs= NAT1 A nofFieldse NAT1 A valueElemene VALUE

DEFINITIONS
FIELD ==0.. nofFields1; OBJECT== 0.. maxNofObjsl

VARIABLES
object objectSequencdeld, foundObjects

CONCRETE_VARIABLES
fileOpen

INVARIANT
objectC OBJECTA card(objec) < maxNofObjsh
objectSequence perm(objec) A field € FIELD — (object— VALUE) A
fileOpene BOOL A foundObjectsC object

INITIALISATION
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object:= {} || objectSequence |] || field:= FIELD x { {} } ||
fileOpen:= FALSE || foundObjects= {}

The second parametrofFieldstakes the number of fields per object. It would
be desirable to use a machine parameter of set type to designate the fleddthan
the integer range Q nofFields1. Using such a branded type, certain errors could be
flagged by the type checker rather than resulting in unprovable obligatianlater
stage of the development. The reason why we do not use a machine parérmseter o
type is that it is not possible in B to iterate over an arbitrary set imgriémentation
as will be required in the implementation@bject An iterator base machine cannot
be implemented either because of an unfortunate C encoding decision in Btelier

The third parameteYALUE is the domain of the fields. The fourth parameter
valueElementakes an arbitrary element MALUE It is required for the deter-
ministic initialisation of a concrete variable of tyMALUE in the implementation
Object 1.

OPERATIONS

obj «— CreateObject(initValue) =
PRE
initValue € VALUEA card(objec) < maxNofObjs\ fileOpen= TRUE
THEN
ANY newObj objSeqWHERE
newObje OBJECT- objectA objSege perm(objectU {newOb})
THEN
object:= objectU {newODbj} || objectSequences objSeq||
field:= A ii.(ii € FIELD | field(ii) U {newObj— initValue}) ||
obj := newObj
END
END;

vv < GetField(oo, ff) =
PRE 0o € NAT A oo € objectA ff € FIELD A fileOpen= TRUE THEN
vv ;= field(ff)(00)
END;
SetFieldoo, ff, w) =
PRE
00 € NAT A 00 € objectA
ff € FIELD A vv € VALUE A fileOpen= TRUE
THEN
field(ff)(o0) := vv || foundObjectse # (objec)
ND;

is <« Full =
PRE fileOpen= TRUE THEN
is := bool(card(objec) = maxNofObjs
END;

nof <+ NofObjects =
PRE fileOpen= TRUE THEN
nof := card(objec)
END;
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OperationGetSequenceOpermits the traversal of all objects. For this purpose
we have introduced the varialbdbjectSequencevhich is always a permutation of
the set of objects. Operati@reateObjecteshuffles the sequence to allow for more
implementation freedom. Exercise 4.5 shows how this, without tbgigion for
deleting objects overly general specification, allows the simple addifiabject
deletion.

obj < GetSequenceOHhjindex =
PRE
indexe NAT A indext1 € dom(objectSequenge\ fileOpen= TRUE
THEN obj := objectSequen¢mdex+1)
END;

The find operations follow the same pattern as their correspondenBasin

InitFind (ff, w) =
PRE ff € FIELD A vv € VALUEA fileOpen= TRUE THEN
foundObjects= field(ff) ~* [{w}]
END;
found oo + FindNext =
PRE fileOpen= TRUE THEN
IF foundObjects {} THEN
ANY obj WHERE obj € foundObjectsSTHEN
found oo, foundObjects= TRUE, obj, foundObjects {obj}
END
ELSE found:= FALSE || 00:c OBJECT
END
END;

Internalizing objects with references to other objects (relations), we ttave
be able to verify whether the references denote valid objects. Opetabamain
serves this purpose.

is < InDomain(obj) =
PRE obj € NAT A fileOpen= TRUE THEN
is := bool(obj € objec)
END;

If the file denoted by parameteameof Opendoes not exist a new file is created.

status«+ Open(fileNamé =
PRE fileNamec STRINGTHEN
ANY obj, objSeqstWHERE
obj C OBJECTA card(obj) < maxNofObjs\
objSeqge perm(obj) A ste BOOL
THEN
object:= obj || objectSequence objSeq|| foundObjectse 2 (obj) ||
field:€ FIELD — (obj — VALUE) || status:= st|| fileOpen:= st
END
END;
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status« Close=
PRE fileOpen= TRUE THEN
fileOpen:= FALSE || status:c BOOL
END

END

4.10.2 MachineBasicString

As explained in Sect. 4.7.1, machiBasicStringstores all strings in the system. Be-
cause of the single writer restriction, this cannot be reflected in theeBifggation.
The latter only represents the mapping from natural number indicesrtg sikens
and the registration of strings to be externalised.

MachineBasicStringcan store at moshaxNofStringgersistent strings. Oper-
ation AddStringcan be specified without any precondition that enough memory is
available for a string of a certain size as the memory allocation has alreasly tak
place upon token generation.

MACHINE
BasicStringmaxNofStrings

CONSTRAINTS
maxNofStringe NAT1

SEES
StrTokenType

VARIABLES
regStrings bsFileOpen

INVARIANT
regStringse NAT »~» STRTOKEM card(regString$ < maxNofStrings\
bsFileOpens BOOL

INITIALISATION
regStrings:= {} || bsFileOpen= FALSE

OPERATIONS
index<— AddString(s9 =
PRE
sse STRTOKENM\ card(regString$ # maxNofStrings\
bsFileOpers TRUE
THEN
IF sse ran(regString$ THEN index:= regStrings™? (s9
ELSE
ANY newldWHERE newlde NAT -dom(regString3 THEN
index regStrings:= newld regStringsJ {(newld— s9}
END
END
END;

is « IsFull =
is := bool(card(regStringd=maxNofStrings
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bb < InDomain(index =
PRE indexe NAT THEN
bb := bool(indexc dom(regString3)
END;

ss«— GetString(index =
PRE

indexe NAT A indexe dom(regString3 A bsFileOpers TRUE

THEN
ss:=regStringgindex
END;
found index«— FindString (s9 =
PRE sse STRTOKENTHEN
IF sse ran(regString$ THEN
found index:= TRUE, regStrings™1 (s9
ELSE
found:= FALSE || index:e NAT
END
END;

status nof +— BsOper(fileNameg =
PRE fileNamec STRINGTHEN
ANY res regStringsInitWHERE
rese BOOL A regStringsinite NAT »~ STRTOKEN\
card(regStringsIni} < maxNofStrings
THEN
regStrings:= regStringsinit|| bsFileOpen=res||
status:= res || nof := card(regStringsini}
END
END;

status« BsClose=
PRE bsFileOpen- TRUE THEN
bsFileOpen= FALSE || status.c BOOL
END

END

The empty implementation as well as the hand-coded C source are available

from the book’s Web page.

4.10.3 ImplementationBank_1

UsingObject BasicStringandL_SETwe can now implemer@ank We instantiate
the Objectmachine twice to implement the customer and account objects. Library
machinelL_SETis used for temporary storage of the not yet retrieved set of cus-

tomers from the find operations.
IMPLEMENTATION
Bank 1(maxCustomersnaxAccounfs

REFINES
Bank
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IMPORTS
BASIC BOOL, BASIC ARITHMETIC
BS.BasicStrinmaxCustomejs
customersl.ObjecfmaxCustomer2, NAT, 0),
accounts1.0bjectmaxAccounts4, NAT, 0),
foundCustomersl.L_SETmaxCustomers) .. maxCustomers)

SEES
StrTokenType

ConstantFalselis introduced for expressing variant functions in operations
ThisCustomeandInitFindCustomer

CONCRETE_CONSTANTS
Falsel

PROPERTIES
Falsele BOOL — NAT

VALUES
Falsel= {(TRUE r 0), (FALSE — 1)}

During internalisation, we have to check whether all references from accounts
to customers captured laccountOwnereference existing customers and whether
all references to strings froeustomerNamare in the domain of the internalised
strings. Hence, internalisation fails if it fails in one of the threstamtiated machines
or the consistency check fails. Rather than resetting the already internadisisd
if an error is detected, the linking invariant separates two cases. If intsatiah
succeeded, the state is represented by the state of the imported machiaesig@th
it is the initial state. ImplementatioBank 1 is a data refinement of machiBank
as specified by the linking invariant.

DEFINITIONS
customerNamel == 0;
customerYabl == 1;
accountNumberl == 0;
accountPinl ==1;
accountBalancel == 2;
accountOwnerl ==

CONCRETE_VARIABLES
nextAccountNumbet

INVARIANT

nextAccountNumbel € NAT A

((fileOpen= TRUE) =
customers= customersl.objectA
(Y II.(Il € customersl.object=

customerNan(#) = BS.regStringeustomersl.field customerNamel)(Il)))) A

customersl.fieldcustomerNamel) € customersl.object— dom(BS.regStringsA
card(BS.regStrings< card(customersA
customerYolr customersl.fieldcustomerYabl) A
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accounts= accounts1.objectA
accountNumbes accounts1.fieldaccountNumberl) A
accountPin= accounts1.fieldaccountPinl) A
accountBalance accountsl.fieldaccountBalancel) A
accountOwner accounts1.fieldaccountOwnerl) A
(Y II.(Il € accounts1.object=
accounts1.fieldaccountNumberl)(ll) < nextAccountNumbet)) A

nextAccountNumbetl < MAXINT - maxAccounts card(account$ A
customersl.fileOpen= TRUE A
accounts1.fileOpern= TRUE A
BS.bsFileOper TRUE A
foundCustomers ran(foundCustomersl.set vrb)) A

((fileOpen= FALSE) =
customers= {} A customerName {} A customerYol {} A
accounts= {} A accountNumber {} A
accountPir= {} A accountBalance {} A
accountOwner {} A
foundCustomers {} )

INITIALISATION
nextAccountNumbetl := O; fileOpen:= FALSE
OPERATIONS
NewCustomeKname yob) =
VAR cid, ii IN

cid « customersl.CreateObjecD);

ii + BS.AddStrin(hame;

customersl.SetFieldcid, customerNamel, ii);

customersl.SetFieldcid, customerYabl, yoh)
END;

name yob < CustomerData(cid) =
VAR snIN
sh«— customersl.GetFieldcid, customerNamel);
name«— BS.GetStrin¢sn);
yob <+ customersl.GetFieldcid, customerYabl)
END;

is +— CustomerDBFull =
BEGIN
is + customersl.Full;
IF is=FALSE THEN
is + BS.IsFull
END
END;

found cid + ThisCustomern(name yoh) =
VAR sindex curYobIN

cid := 0; curYob:= 0; found sindex<— BS.FindStringname);

IF found= TRUE THEN
customersl.InitFind(customerNamel, sindey;
found cid « customersl.FindNex
IF found=TRUE THEN

curYob« customersl.GetFieldcid, customerYabl)

END;
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WHILE (found= TRUE) A (yob# curYol) DO
found cid < customersl.FindNext
IF found= TRUE THEN
curYob« customersl.GetFieldcid, customerYabl)
END
INVARIANT
cid € 0.. maxCustomerg A founde BOOL A
customersl.foundObjects. customerName? [{namg] A
(found= FALSE = yob¢ customerYofzustomerName?® [{namé]]) A
(found= TRUE =
(cid € customerName? [{namég] A curYob= customerYofzid) A
(yob=curYob=> cid=(customerName) customerYop~! (nameyoh)) A
(yob# curYob= yob ¢ customerYdwustomerName! [{namg]-
customersl.foundObject))
VARIANT
card(customersl.foundObjectfs+ 1 - FalseXfound
END
END
END;

nof «+— InitFindCustomefnamg =
VAR found index sindexIN
foundCustomersl.CLR_SET,

nof:=0;

found sindex«— BS.FindStringnams;

IF found= TRUE THEN
customersl.InitFind(customerNamel, sindey;
found index<— customersl.FindNext
WHILE found= TRUE DO

foundCustomersl.INS SETinde);
nof:=nof+ 1,
found index<— customersl.FindNext
INVARIANT
(found= TRUE =
customerName?! [{namé] = ran(foundCustomersl.set vrb) U
customersl.foundObjects) {indext) A
(found=FALSE =
customerName? [{namg] = ran(foundCustomersl.set vrb) A
customersl.foundObjects {} ) A
nof = card(foundCustomersl.set vrb)
VARIANT
card(customersl.foundObjects1-FalseXfound
END
END
END;

found yob «<— FindNextCustomes
VAR nof, cid IN

nof < foundCustomersl. CARD.SET,

IF nof=0THEN
found:= FALSE; yob:=0

ELSE
found:= TRUE;
cid < foundCustomersl.VAL_SET1);
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foundCustomersl. RM\_SETcid);
yob <+ customersl.GetFieldcid, customerYabl)
END
END;

We assign consecutive account numbers to newly created accountsngkere
AccountNumbecontains the next account number which is the greatest number in
the system plus one. We do, however, not blindly trust that threnatised file ad-
heres to this convention, that is, we do not simplyrsattAccountNumbeo number
of accounts plus one, which would lead to an undischargable proof obligati

number< NewAccouni(cid, pin) =

VAR aid IN
aid < accounts 1.CreateObjec(0);
accountsl.SetFieldaid, accountNumberl, nextAccountNumbet);
accountsl.SetFieldaid, accountPin1, pin);
accounts1.SetFieldaid, accountBalancel, 0);
accountsl.SetFieldaid, accountOwnerl, cid);
number:= nextAccountNumbet;
nextAccountNumbet := nextAccountNumbet + 1

END;

bal < Balancgaid, pin) =
bal +— accounts1.GetFieldaid, accountBalancel);
is < Authorized(aid, pin) =
VAR actualPinIN
actualPin« accounts1.GetFieldaid, accountPin1);
is := bool(pin = actualPin
END;
cid «+— AccountOwner(aid) =
cid < accounts1.GetFieldaid, accountOwnerl);

status«— Deposit(aid, amounj =
VAR bal, xxIN
bal +— accounts1.GetFieldaid, accountBalancel);
xx:= MAXINT - amount
IF bal < xx THEN
accountsl.SetFieldaid, accountBalancel, bal+amouny;
status:= TRUE
ELSE
status:= FALSE
END
END;

OperatiorDepositintroduces the local variablex only because in BO the argu-
ments of a comparison cannot contain arithmetic expressions.

[* Operations Withdraw, ChangePin, AccountDBFull, andsRdcount omitted. Check on
the book’s Web page. */
status«+ Open(customerFileNameccountFileNamestringFileNamé =
VAR nofAccountsii, jj, aid, owner, nbr, nofStrings nofCustomersid, nameNryob,
curAid, curNbr, curCid, curNameNr curYoh xx, yy IN
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fileOpen:= FALSE; nextAccountNumbetl := 0;
status«— customersl.OperfcustomerFileName
IF status= TRUE THEN
status«— accounts1.OpeifaccountFileNamg
IF status= TRUE THEN
nofAccounts— accounts1.NofObjects
i :=0;
WHILE (ii < nofAccountsA (status= TRUE) DO
aid « accounts1.GetSequenceQb);
owner<+ accounts1.GetFieldaid, accountOwnerl);
status« customersl.InDomairfowne;
nbr +— accounts1.GetFieldaid, accountNumberl);
IF nbr > nextAccountNumbel THEN
xX:= MAXINT - nbr;
yy := maxAccounts nofAccounts 2;
IF xx < yy THEN
status:= FALSE
ELSE nextAccountNumbel := nbr + 1
END
END;
j=ii+ L
WHILE (jj < nofAccountsA (status= TRUE) DO
curAid « accounts1.GetSequenceQp);
curNbr < accounts1.GetFieldcurAid, accountNumberl);
IF nbr = curNbr THEN
status:= FALSE
END;
i=j+1
INVARIANT
ji € ii+1.. nofAccounts\
statuse BOOL A
(status= TRUE =
(V kk(kk € ii+2.. jj = nbr # accounts1.field
(accountNumberl)(accounts1.objectSequen@e))) A
ownere customersl.objectA
= (nbr > nextAccountNumbet A
MAXINT -nbr<maxAccountsiofAccounts2)))
VARIANT
nofAccounts jj
END;
i=ii+1
INVARIANT
ii € 0.. nofAccounts\
statuse BOOL A
nextAccountNumbel € NAT A
(status= TRUE =
(VKkk(kkel..ii =

167

accounts1.fieldaccountNumberl)(accounts1.objectSequengik)) <

nextAccountNumbet A

accounts1.fieldaccountOwnerl)(accountsl.objectSequengiek)) <

customersl.objectA
VIl € 1.. nofAccounts\ kk#£ Il =

accounts1.fieldaccountNumberl)(accountsl.objectSequeniek))
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= accounts1.fieldaccountNumberl)
(accounts1.objectSequeng@d)))) A
nextAccountNumbel < MAXINT - maxAccounts- nofAccounts
VARIANT
nofAccounts ii
END;
/* Consistency check of customefisand BS ommitted. Check on the Web. */
foundCustomersl.CLR _SET, fileOpen:= status
END
END
END;
status« Close=
BEGIN
status«+ customersl.Close
IF status= TRUE THEN
status«+ accounts1.Close
IF status= TRUE THEN status+ BS.BsClos&ND
END;
nextAccountNumbet := O; fileOpen:= FALSE
END

END

4.10.4 MachineBasicFile

In order to permanently store objects on disk, as required for the ingpitation of

Object we need a base machine to access the file system, which wasadile

It should let us open a file in different modes, access the file, and propatatons

to delete a file and check for the existence of a file. We want to store bathahat
numbers as well as elements of a given set, passed as a machine parameter. An
instance oBasicFilerepresents a single file.

The variablegileNameandfileModedenote the name and mode of the currently
open file. The name of the file has been specified as an arbitrary string, dlthoug
certain characters might not be permitted in file names and certain names might
denote special resources.

MACHINE
BasicFilg VALUE)

SETS
FILE_MODE = {READ.WRITE TRUNCATEWRITE READ WRITE

DEFINITIONS
READ MODE == {READ.WRITE READ};
WRITEIMODE == {READ.WRITE TRUNCATEWRITE WRITE

VARIABLES
fileMode fileOpen

INVARIANT
fileModee FILE_MODE A
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fileOpene BOOL

INITIALISATION
fileMode:€ FILE_MODE || fileOpen:= FALSE

OPERATIONS

status«— Open(fleNamemodg =
PRE fileNamec STRINGA modec FILE_MODE THEN
ANY rr WHERE rr € BOOL THEN
fileMode:= mode|| fileOpen:= rr || status:= rr
END
END;

status« Close=
PRE fileOpen= TRUE THEN
fileOpen:= FALSE || status:c BOOL
END;

status« DeletdfileNameé =
PRE fileNames STRINGTHEN
status:€ BOOL
END;

exists« FileExists(fileNamé =
PRE fileNamec STRINGTHEN
exists:e BOOL
END;

The read operations are specified as returning an arbitrary value, not linking
write and read at all. Such a specification would be very difficult to captul in
too cumbersome to apply in reasoning in clients, and impossible &fysatithe
implementation.

status« WriteNat (nunm) =
PRE nume NAT A fileOpen= TRUE A fileModee WRITEMODE THEN
status:e BOOL
END;

status num«— ReadNat=
PRE fileOpen= TRUE A fileModec READ_MODE THEN
status:e BOOL || num:e NAT
END;

status«+ WriteVal (val) =
PRE val € VALUEA fileOpen= TRUE A fileModec WRITEEMODE THEN
status:e BOOL
END;

status val < ReadVal=
PRE fileOpen= TRUE A fileModec READ_MODE THEN
status:c BOOL || val :€ VALUE
END

END
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The C implementation, which is based on the code skeleton generated from the
empty B implementation, consists mostly of straightforward calls@tibrrespond-
ing functions ofstdio.h The procedur®eadValBasicFilealso checks whether the
read value actually represents an element of the machine pararmeidE Unfor-
tunately, Atelier B's C translator only passes the upper bound of thesepting
integer range in the ill-named parameiere VALUE in the initialisation. This suf-
fices for enumerated sets that are represented as consecutive integer constants star
ing from 0. However, for instantiations MALUE with integer ranges with a lower
bound other than 0 we cannot test whether the read value is below the indicated
range. The sources &asicFile_1.imp BasicFile.h andBasicFile.ccan be found
online.

4.10.5 ImplementationObject 1

Using the base machirBasicFileand the library machinBASIC ARRAYRGEwe
can now implemenDbjectand, herewith, finish the development.

BASIC ARRAYRGE models a two dimensional array with the total function
arr_rge € RANGE— (INDEX — VALUE), whereINDEX, VALUE, andRANGE
are machine parameters. We instantR&ENGEwith the set of fields antNDEX
with the object numbers. For exampder_rge(0)(7)denotes the Oth field of the 7th
object. We use the variableofObjs 1 to denote the number of objects and link it
to objectwith object= 0.. nofObjs 1-1. This gives us also the linking invariant for
fieldasVii.(ii € FIELD = field(ii) = 0.. nofObjs 1-1 < arr_rge(ii)).

IMPLEMENTATION
Object 1(maxNofObjsnofFields VALUE, valueElement

REFINES
Object

IMPORTS
Bl.BasicFilgVALUE),
BA.BASICARRAYRGHO .. maxNofObjsl, VALUE, 0.. nofFields1)

DEFINITIONS
FIELD ==0.. nofFields1; OBJECT==0.. maxNofObijsl;
READ MODE == {READ.WRITE READ};
WRITEIMODE == {READ.WRITE TRUNCATEWRITE WRITE

CONCRETE_VARIABLES
nofObjs 1, findField findValue findMax findNext

INVARIANT
nofObjs. 1 € 0.. maxNofObjs\ object=0.. nofObjs 1-1 A
sizgobjectSequenge nofObjs.1 A
(Vii.(ii €0..nofObjs 1-1 = objectSequen¢ie+1) =ii)) A
(Vii.(ii € FIELD = field(ii) = 0.. nofObjs.1-1 < (BA.arr_rgeii)))) A
(fileOpen= TRUE =- (Bl.fileOper= TRUE A Bl.fleModec WRITEMODE)) A
findField e FIELD A findValuee VALUEA
findMaxe -1 .. nofObjs 1-1 A findNexte 0 .. nofObjs 1 A
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foundObjects (field(findField ~* [{findValug]) N findNext . findMax

INITIALISATION
nofObjs 1 := 0; fileOpen:= FALSE;
findField:= O; findValue:= valueElementfindMax:= -1; findNext= 0

OPERATIONS

obj < CreateObiject(initValue) =
VAR fld IN
fld:=0;
WHILE fld < nofFieldsDO
BA.STRARRRGH{ld, nofObjs 1, initValue);
fld:=fld+ 1
INVARIANT
fld € 0.. nofFieldsA BA.arr_rge € FIELD — (OBJECT— VALUE) A
(Vii.(ii € FIELD = field(ii) = 0.. nofObjs.1-1 < (BA.arr_rge(ii)))) A
(Vii.(ii €0.. fld-1 = BA.arr_rge(ii )(nofObjs.1) = initValue))
VARIANT
nofFields- fld
END;
obj := nofObjs_1; nofObjs 1 := nofObjs 1+ 1
END;

vv < GetField(oo, ff) =
v < BA.VALARRRGHff, 00);

SetFieldoo, ff, w) =
BA.STRARRRGHTf, 0o, w);

is <+ Full =
IF nofObjs.1 = maxNofObjsTHEN is := TRUE
ELSE is:= FALSE
END;

nof +— NofObjects =
nof := nofObjs 1;

obj < GetSequenceOHhjindex =
obj :=index
InitFind (ff, w) =
BEGIN
findField:= ff; findValue:= vv; findMax:= nofObjs_1-1; findNext= 0
END;

found 00 + FindNext =
VAR val, maxObj findStartIN
found:=FALSE; 00:=0;
IF findNext< findMaxTHEN
val + BA.VALARR RGHfindField findNexj;
findStart:= findNext
WHILE (findNext< findMaxX A (val # findValug DO
findNext= findNext+ 1;
val + BA.VALARR RGHfindField findNex}
INVARIANT
findNexte findStart. . findMaxA

171

(Y II.(II € findStart. . findNextl = BA.arr_rge(findField(ll) # findValug) A
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val = BA.arr_rge(findField)(findNexj}
VARIANT
findMaxfindNext
END;
IF val = findValueTHEN
found:= TRUE; oo := findNext
END;
findNext.= findNext+ 1
END
END;

is < InDomain(obj) =
is := bool(obj < nofObjs_1);
status«+ Open(fileNamé =
VAR st ii, fld, vwIN
status« Bl.FileExistgfileNam4;
IF status= TRUE THEN
status« Bl.OpertfileName READ);
IF status= TRUE THEN
status nofObjs 1 «— Bl.ReadNat
IF (status= TRUE) A (nofObjs.1 < maxNofObjs THEN
i :=0;
WHILE (status= TRUE) A (ii < nofObjs.1) DO
fld:=0;
WHILE (status= TRUE) A (fld < nofField§ DO
status vv + Bl.ReadVal
BA.STRARR RGHd, ii, w);
fld:=fld+ 1
INVARIANT
fld € 0.. nofFieldsA statuse BOOL
VARIANT
nofFields- fld
END;
i=ii+1
INVARIANT
ii €0..nofObjs.1 A statuse BOOL
VARIANT
nofObjs 1 -ii
END;
IF status= TRUE THEN
status« Bl.Close
IF status= TRUE THEN
status« Bl.OperffleName TRUNCATEWRITB
END
END
ELSE
nofObjs 1:=0;
status:= FALSE
END
ELSE
nofObjs1:=0
END
ELSE
nofObjs 1 := 0; status«<— Bl.OperffileName TRUNCATEWRITE
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END;
findMax:= -1; findNext:= 0O;
fileOpen:= status

END;

status« Close=
VAR ssii, fld, vwIN
ss«— Bl.WriteNa{nofObjs 1);
IF ss= TRUE THEN
i :=0;
WHILE (ss=TRUE) A (ii < nofObjs.1) DO
fld:=0;

WHILE (ss=TRUE) A (fld < nofField§ DO
v+ BA.VALARRRGHfld, ii);
ss«+ Bl.WriteValw);
fld:=fld+ 1

INVARIANT
fld € 0.. nofFields

VARIANT
nofFields- fld

END;
i=ii+1

INVARIANT
ii €0..nofObjs 1
VARIANT
nofObjs.1 -ii
END
END;
IF ss= TRUE THEN
status«+ Bl.Close

ELSE
status:= FALSE; ss+ Bl.Close
END;
fileOpen:= FALSE
END
END

At this point we can translate the complete project.

4.11 B-Toolkit Implementation

In this section we list some of the changes necessary to port the caserstody
Atelier B to the B-Toolkit. The point of this section is to illuate the large differ-
ences between the two tools —even on the language level'— which makegportin
a non-trivial task. The magnitude of such a port can be compared tcathadtion

of an X Window program written in K&R C to ANSI C on the Apple Macintos
both require some little changes on the language level and the useiftérard
base library. The rest of this section is mainly targeted at B-Toolkitaig/ho are
interested in a description of the adaptations made in the B-Toollstareof the
ATM.
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4.11.1 Differences in the Supported Language

The following ‘syntactic’ differences can be compensated for with simpleites:

¢ In the B-Toolkit, machine parameters are not repeated in refinements and imple-
mentations.

¢ In the B-Toolkit, lowercase machine parameters are implicitly constramee
of type SCALAR

e Ordered pairs must be written &a — b) rather than(a,b) in the B-Toolkit,
whereas both notations are allowed in Atelier B.

e Sets and constants are valued in PIROPERTIESlause; there is no special
valuesVALUESclause as in Atelier B.

e The constanMAXINT, the greatest representable natural number, is not prede-
fined in the B-Toolkit.

¢ Inthe B-Toolkit, the subset Q MAXINT is denoted bysCALARather tharNAT.

The typeSCALARSs defined in machin&calar TYPE which must be imported
if scalars are used.

¢ In the B-Toolkit, booleans are defined as enumerated type in the libraryimeach
Bool TYPE which must be imported if booleans are used.

¢ In the B-Toolkit, strings are defined as sequences in the libgaing TYPE
which must be imported if strings are used.

¢ In the B-Toolkit, there can only be om@EFINITION clause per construct. Defi-
nitions are visible in the whole construct, not just from thetagtic introduction
point on forward as in Atelier B. Parameters of definitions are restrictsith¢pe-
letter identifiers (jokers). Definitions containing the parallel operé{@y must
be parenthesised.

¢ In the B-Toolkit, renamed variables must be parenthesised if the iniscteaieen.

¢ In the B-Toolkit, thebool(P)operator, which converts the value of a condition to
aBOOL, is not available in implementations. An if-clause must be used instead

e The B-Toolkit C translator does not accept arithmetic expressions as aetual
rameters. The values of arithmetic expressions must be evaluated asdl istor
local variables, which can then be passed as parameters.

e The C translator does not accept read access to output parameters, even if they
have been properly initialized. Local variables, which are at the end of the op
eration assigned to the output parameters, must be used within theiopénat
place of output parameters appearing on the right hand side of assigronents
conditions.

e Whereas the Atelier B translator creates only few name clashes, which lead to
errors at link time, its correspondent in the B-Toolkit cannot even leaogera-
tions on different layers with identical names. Hence, one is forced to imeswnt
names and, thereby, pollute the name space.

The following differences make porting from the Atelier B to the Bolkat dif-
ficult:

e The B-Toolkit does not support dot renaming in implementationss fireans
that renamed textual copies of multiple used constructs must be mader In ou
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case,Objectand all the constructs it needs would have to be textually present
with different name prefixes. This also requires identical proofs to biepeed

for each copy. This restriction in the B-Toolkit is due to the fact thiat@hstructs

are single instance only which is also exhibited by the C translattingum-
plementation data into global variables rather than instantiation red@rdthe

level of base machines, which reside in the standard library, textual regasn
performed automatically upon configuration. The team library does netdao

for renaming.

In the B-Toolkit all constants are abstract, whereas Atelier B has both cencret
and abstract constants. The B-Toolkit translator decides which constare can
used in implementations.

Concrete variables and variables in implementations are not supportegtbBdll
variables, such agextAccountNumbet, must be implemented using library ma-
chines. Sets which are both included and imported lead to name clashes. Differen
renaming does not help because sets do not participate in renaming. Hence, sets
must be factored out into separate machines which are only seen in the specifi-
cation. Third-party constructs which do not respect this design patach, as

the library machines in B-Toolkit prior to version 4, can, therefore heeasily
extended as extension is performed by both including and importegdme
machine.

The following differences would make porting from the B-ToolkitAtelier B

difficult. Some of these ‘additional features’ are used in the B-Tookxision:

Machines can contain théAR clause. Hence, we can use it to hide the return
parametedd from Depositin RobustDeposit

Machine parameters are visible in tRROPERTIESlause. Hence, we could
model the seCUSTOMERof machineBankas an abstract set with cardinality
maxCustomerand value it to)CUSTOMER = 0..maxCustomersfithe imple-
mentation. To rule out any circular definitions, Atelier B does not petinistin
accordance with [2, Chapter 12.1.7].

The B-Toolkit allows strings to be passed as parameters. Hence, theraégdo
to introduce string tokens. Strings being sequences implies thatdoacch as
sizeare applicable. Porting a construct which makes use of this from B-ifoolk
would be difficult. In general, string support in the B-Toolkitdetter. Unfortu-
nately, B-Toolkit’'s C translator creates fixed length arrays for local gtviri-
ables and does not perform any overflow tests.

Sets of imported or seen machines can be used in the instantiation of other ma-
chines.

Set machine parameters can be instantiated with ‘uniony ¢f sets. This is not
described in the B Book [2]; it could be understood as type sums.rtimfately,

on the implementation level, where sets are represented as (initial)alserfv
natural numbers, operations on such sets are based on the natural number pro
jections only, leading, in our opinion, to ill-typed expressiond among results.
Thus, for set€COLORS ={red, blue, greeh and FRUITS = {apple, banana,
grape} we can calculaté¢red, blug N {banana, grap¢= {blue} = {banang as
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bothblue andbananaare represented by 2. Union of sets is used extensively by
the base generator (see below).

4.11.2 Differences in the Provided Base Machines and Libraries

In the B-Toolkit, all provided library machines are base machines, whettetier8
comes only with a small set of base machines and numerous extensiongamthe
of normal B developments. In the B-Toolkit, base machines residecistdmdard
library (SLIB).

The B specification of base machines must be given in a separate project, oth-
erwise the linker requires an implementation in B and does not use thecoaed
C source. After successful analysis and compilation, the configured coralimag
with its C implementation is copied to the SLIB, to which one needsawrérmis-
sion. The main differences in the C encoding are the representation of realzta
in global variables rather than in instance records and the division of hewider
mation into the “.h’ and a ‘.g’ file. Note that when introducing a cowmst from the
SLIB, the C sources are copied. Thus, if the (implementation of the)rhastine
is changed, it must be removed and reintroduced into projects using it.

Compilation and linking is under the control of the tool. Hence, exksource
files such aggic cannot simply be added manually to the Makefile as in Atelier B.
Instead, they need to be introduced as so-called lower-level SLIB corssicogter-
level SLIB constructs have no B specification and can only be accessed from the C
code of other SLIB constructs. Instead of a lower-level SLIB, a norniidlr&ry can
be created out of the legacy code and included manually in a normal SLIBecnst

4.11.3 Adapting the Development

The B-Toolkit implementation takes the above listed language differénteac-
count. Additionally, supplied base machines have been used in place sélfhe
developed persistent object machines. The B-Toolkit provides base readbin
objects and string objects. Library machiBank str_obj, whereBankis the re-
name prefix for the instanciation, provides for string objects, like @vn base
machineBasicString Renameffnc_obj provides for two dimensional arrays; it
replacesObject of our Atelier B development. We introduce two copies called
CUSTOMER(ffnc_objandACCOUNT ffnc_obj for storing customers and accounts
respectively.

In combination with machinéle_dump the multiple object machines also pro-
vide for persistency. A file is opened wiie_dumpinto which all machines can ex-
ternalise their state. Unfortunately, the code contains no error orstensy check-
ing. Atelier B’s library also contains a machiBASIC_ SAVEwhich roughly corre-
sponds tdile_dump however, it does not function anymore and the corresponding
procedures have been removed from the B specification of the other library ma-
chines.
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4.11.4 Automatic Translation of Object Models

The B-Toolkit acknowledges the fact that object models can be automaticaikytr
lated to B machines. From a textual description of the object model a setatfines
and corresponding implementations is generated. The base descripgod.(=3)
lists global variablesdustomers and accounts) as well as the object classes
(CUSTOMER and ACCOUNT) with their attributes and the relations. Relations
can be expressed asymmetrically by being part of one of the participatjagtob
classes, as done in the example, or as separate entities.

From the base construct, a list of operations on the global variablesraab-
jects of the listed classes is generated. After optional manual filteringeaipbra-
tions’ list, a set of machines and implementations is generated. The iraptations
are based on constructs from the standard library described above. BaBadken
Foundation it would then be possible to implemeBank. Editing the generated
machines and implementations directly is not recommended because of the lack of
backward propagation to the base construct; it would result in breakéngik and
the possibility to regenerate the constructs after changing the base.

It is doubtful whether using the base generation tool would befigdtin our
case. Even if certain aspects are actually formally proved and the code is automat-
ically generated, added complexity is a source for errors. Manual reusesd th
library constructs that are actually needed seems to be better suited in our case.

SYSTEM
BankFoundation

IS

GLOBAL
customers : SET(CUSTOMER)[100];
accounts : SET(ACCOUNT)[200]
END;

BASE

CUSTOMER
MANDATORY

name : STRING [256]; yob : NAT
END;

BASE

ACCOUNT
MANDATORY

number : NAT; pin : NAT;

balance : NAT; owner : CUSTOMER
END

END

Fig. 4.13.Base Construct for Automatic Generation



178 4. B Bank

The B-Toolkit comes with three small data base like examples, cRBERISONL1,
PERSON2, andPERSONS3, which illustrate the differences between the manual
use of the standard library constructs and the application of the baseagrem

4.12 Discussion

4.12.1 Related Work

The B Book [2] contains a much smaller example of a database applicatien. Th

database example as well as an ATM case study are included in the Atelier B dis-

tribution. The documentation of the ATM, which is in French onlypydes an

exemplary requirement specifications, a traceability matrix, and a set otézgirs

ios. On the other hand, it lacks a description of the construction psaewell as

a detailed explanation of the produced code. The ATM relies on a Tcl/Tk guaph

interface as main program and delegates more work to unverified base machines.
A comprehensive B bibliography is maintained by the B users groupeowtb

at http://estasl.inrets.fr:8001/ESTAS/BUG/WWW/BUGhome/Bld@e.html.

4.12.2 Metrics

Fig. 4.14 provides some metrics of the development. The empty ingpitations of
the base machines, the hand-coded C sources, and the HTML pages are netiinclud

4.12.3 What Have We Proved?

We would like to conclude with a few remarks on proofs. What have weadlgt
proved in our development? We have proved that all operations of theimeach
respect their invariants and that the implementations are refinements offkeir
ifications, provided that the B theory is correct, the tools generated all seges
obligations, and the tools did not discharge any false obligations.

What haven’t we proved? We haven't proved that the specification corrdspon
to the informal requirements; especially, that we have captured all receritem
as invariants. Furthermore, we haven't proved that the hand-coded basm@sach
actually satisfy their specifications. We are also at the mercy of the B anSl#tor,
the C compiler, and the used computers with their operating systems.

In conclusion, the many unprovable and unproved aspects even of a fagmal d
velopment in B are a clear sign, that good engineering practices, includimgani
tion, peer code review, and testing, are also important in a ‘provedldement.

4.13 Exercises

Exercise 4.1 (Search operations)Give the cashier the possibility to display all
customers who have their 20th birthday this year and are entitled to enpréise
the pattern oBetFindCustomesindFindNextCustomeof machineBank
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Machines

total obvious proof| proof percent

length obligations obligations | auto proved
MainBank 9lines 3 0 100
OperationsBank| 49 lines 19 0 100
RobustBank 239 lines 101 10 100
Bank 288 lines 394 49 95
Object 171 lines 125 17 100
BasicFile 102 lines 26 0 100
BasicString 98 lines 41 6 100
BasicCGl 72 lines 15 0 100
StrTokenType 14 lines 1 0 100
Total | 1042 lines]| 725 | 82 ] 98

Implementations (without base machines)

total obvious proof| proof percent

length obligations obligations | auto proved
MainBank 1 52 lines 16 4 100
OperationsBankl | 334 lines 1028 285 99
RobustBank1 206 lines 856 27 85
Bank_1 305 lines 526 643 71
Object1 204 lines 291 230 70
StrTokenTypel 10 lines 3 2 100
Total [ 1111 lines] 2720 | 1191 | 78

Fig. 4.14.Statistics of the Development

Exercise 4.2 (Online banking).Extend the bank so that customers can transfer
money from one account to another over the Internet. The customer lagnig
the account number, a password, and a one time code. The latter can facigympl
be chosen to be the login number. After login, the customer can make amy nu
ber of transfers from her accounts to any accounts. The session is termipaed b
explicit logout or after a fixed timeout. Withdrawals must now als@bthorisable
using the customer’s password rather than the secret PINs of thedindigiccounts.
Tool generated forms, similar to the lists generated by ‘new accounthaantain
hidden information, like the ‘command’ field, can be used so that thexpadsand
one time code must only be entered once. For the timeout, a base machine gi
the time must be added and the time when a one time code was first usebdemus
stored on disk between program runs.

Exercise 4.3 (Simplified specification of accounts)As noted in Sect. 4.5.3, ac-
count numbers being unique they could be used as object identifiers formagcou
in machineBank Remove the setACCOUNT and accounts change the type of
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accountNumbeto NAT and the domain of the other account attributeadoount-
Number and constrain the cardinality atcountNumbetio maxAccountdntroduce

the current specification as a refinement of the new one. Optionally, uteotthe
simplified specification as refinement of the current specification to gain anreequiv
lence proof by mutual refinement.

Exercise 4.4 (Subtyping).Use subtyping modelled by subsetting to introduce two
kinds of accounts. Savings accounts which get interest and cheque accohatg wit
interest, but with the advantage that they allow overdrafts up to a cédirtain

Exercise 4.5 (Deleting customers and accountsrovide for the deletion of cus-
tomers and accounts. Be careful not to allow the deletion of accounts withemon
balance and of customers with accounts. Which invariants of the curreensyst
depend on the fact that deletion of customers and accounts is not possible?

Exercise 4.6 (Non-deterministic choice of error codes)lf several preconditions

of a transaction are not satisfied, the robust operations prescribesyexhath
result code must be returned. For exampldRdbustNewAccouris called with a
non-existent customer when the account data base isdhfull rather thanun-
knownCustomamnust be reported. Respecify the robust operations so that the choice
of the reported violated condition is arbitrary, thus avoiding gvecgication.
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5. Parallel Programming with the B Method

Michael Butler, Marina Walén

5.1 Introduction

In later chapters we shall use B AMN to design examples of so-cadkettive sys-
tems Reactive systems are systems that maintain an on-going interactiomaiith t
environment. Reactive systems may also be composed of parallel interadiing su
systems. Examples of such systems include plant controllers and eleatnaiti
services. The action system formalism, introduced by Back and Kurkii&{isjp
provides a framework for designing reactive systems by providingsvediymod-
elling on-going interaction, techniques for parallel decompositiorysfesns and,

of course, techniques for refining systems.

As we have already seen, a system is specified in B AMN as an abstract ma-
chine consisting of a state and some operations acting on that statés €sen-
tially the same structure as an action system, which describes the bahai/mu
parallel reactive system in terms of some state variables and the atomicsgdtgan
operations) that can make changes to the state. The operations of both Besachin
and action systems are described using notations based on Dijkstra'sedcard-
mand language [22]. Action systems are used to construct parallel antudestr
systems in a stepwise manner as described by Back and Sere [7]. Stepwise refine-
ment of action systems is formalised within the refinement calculus [7] based
the weakest-precondition calculus of Dijkstra. As B machines are also refireed i
stepwise manner relying on this calculus, we can refine action systems withi
B-Method. Thus action systems and B AMN are quite similar and, as we s#all
in this and subsequent chapters, applying the action system notioasatiepsm
within B AMN is straightforward and it allows us to design parallel reaefystems
using B AMN.

Different views as to what constitutes the observable behaviour of amasgts-
tem may be taken. In this chapter, we considstiade-basediew of action systems.

In the state-based view, action systems have a local and a global state. @m acti
system interacts with the environment, i.e., other action systemss\gtbal state.
Itis, thus, only the global state that is visible to and accessibleetetvironment. In
theevent-basediew, action systems only have internal state and they interact with
the environment via shared actions. A state-based view is also taken ine@h6épt
and 7, while an event-based view is studied in Chapter 8.

In this chapter we give a brief introduction to action systems and deskoly
they can be embedded in the B-Method. We also study action systems extétided



184 5. Parallel Programming with the B Method

procedures. We show how action systems can be composed into parallel sy@tems
nally, we compare the proof obligations of action system refinement ame nedint
within the B-Method.

5.2 Actions and Action Systems

We consider the action system framework and its embedding in the B-Mlgihiag
a brief introduction to action systems.

5.2.1 Action Systems in B AMN

We write the general form of an action systéms an Abstract Machine Specifica-
tion:

MACHINE A

INCLUDES
GlobalVar_z
VARIABLES
X
INVARIANT
1(x,2)
INITIALISATION
Init_x
OPERATIONS
a = Ap;

am = Am
END

Here the variablez are theglobal variables andk are thelocal variables. Each
variable is associated with some domain of values. The set of possiljarassits
of values to the state variables constitutes the state space. The datannoddiis
given asl (x,2). The initialisation statememnit_x assigns initial values to the local
variablesx. The global variablez are used for interaction with the environment,
i.e., other action systems. Each actigris a statement on the state variables and is
nameds;.

Since the global variables should be available to more than one acttansy
we need to treat them differently from the local variables. The global varadif
the action system is included as a machinglobalVar_z, in the abstract machine
specificatiorA. A separate machine should exist for each global variable. An action
system can then include exactly those global variables it refers to. In élchine
GlobalVar_z we declare the global variab#and give its properties in thavariant
clause:
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MACHINE  GlobalVar_z

VARIABLES
z
INVARIANT
T(2)
INITIALISATION
Init_z
OPERATIONS
assignz(y) = PRET(y) THEN z:=y END

END

The variablez is assigned via an operati@ssignz(y), where the valug/ to be
assigned ta is given as the parameter. All assignmentg to an action4; in the
action systenf\ are replaced by calls @ssignzin the corresponding operations in
the machine specificatioh

If a global variablezis a read-only variable in the action systé&mand is of type
natural number or set, it can alternatively be given as parameters in the mAchine
A(z), with their properties in theonstraintsclause.

The behaviour of an action system is that of Dijkstra’s guarded iteratate-
ment [22] on the state variables: the initialisation statement is exefitaedhere-
after, as long as there are enabled actions, one action at a time is non-disteratiy
chosen and executed. When none of the actions are enabled, the action system ter-
minates.

If two actions are independent, i.e., they do not have any variables in oamm
they can be executed in parallel. Their parallel execution is then equivalext to e
ecuting the actions one after the other, in either order. More on thess tapd
further references can be found elsewhere [5, 7, 8].

5.2.2 Actionsin B AMN

Actions will be specified as statements in the generalised substitutitatioro
of B AMN. The semantics of generalised substitutions is defined usingeseak
precondition formulae: for statemeBtind postconditio, the formula/§P char-
acterises those initial states from whiglis guaranteed to terminate in a state sat-
isfying P. The formula[S| falserepresents those initial states from whigls guar-
anteed to establish any postcondition; to see this, we have that fét, any

false = P.
Now, since[S| is monotonic, we have
[S/false = [FP.

We say thatS behaves miraculously in an initial state satisfy{isfalse since it
can establish any postcondition. For example, the statement
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SELECT falseTHEN T END
is miraculous in any initial state since
[SELECT falseTHEN T END]false = true.

We take the view that a statement is “enabled” only in those initial statadich
it behaves non-miraculously. The condition under which a stateBisrgnabled is
called itsguard, writtengd(S), where

gd(S) = —[Jfalse

From this we get the following rules for calculating the guardgerded state-
mentsunbounde@ndbounded choice statemepas well asssignment statements
gd( SELECT GTHEN SEND ) = GA gd(9)
gd( ANY X WHERE P THEN SEND ) = (3Ix. PA gd(9))
gd( CHOICE SORT END ) = gd(S) v gd(T)
gd(x:=E) = true.
For example, we get

gd( ANY xWHERE x€aTHEN a:=a\ {x} END)
= (Ix.xe aAtrue)

=a#{).

which means that this unbounded choice statement is enabled onlyawhéh.

A common form of an action iISELECT G THEN SEND, where theguard
G is a boolean expression on some state variables andatig Sis a statement
on these variables. We say that this action is enabled in a state when its@uard
evaluates tdrue andSis enabled. The action is a guarded statement which has the
weakest precondition,

[SELECT GTHEN SEND|P = G=[gP.
The syntax of an action interpreted as an operation in the B-Method is:
Operationname = PREP THEN (SELECT G THEN SEND) END

where the preconditioR mostly has the valugue and can then be left out.

Fig. 5.1 decribes a simple action system that sorts five natural numibespiess:
Each action swaps adjacent pairs of variables if the value of the lower oreaiggr
than the value of the higher one. Eventually the variables will end ug@dan
ascending order and all the actions will be disabled.
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MACHINE  Sort
VARIABLES
X1,X2,X3, %4, X5
INVARIANT
x1 € NAT A X2 € NAT A x3 € NAT A x4 € NAT A x5 € NAT
OPERATIONS
Swap = SELECT x1 > x2 THEN x1,x2 :=x2,x1 END ,
Swap = SELECT x2>x3 THEN x2,x3 :=x3,x2 END ;
Swap = SELECT x3> x4 THEN x3,x4 := x4,x3END ,
Swap = SELECT x4 > x5 THEN x4,x5 := x5,x4 END
END

Fig. 5.1.An Action System that Sorts Five Variables

5.3 Procedures Within Action Systems

In order to express communication and synchronisation within actistess com-
posed in parallel, as described in Sect. 5.4, we use action systems extettued wi
procedures [6, 7].

5.3.1 Procedures

Let us first study the procedures in the action systems. A procedure areleddly
giving aprocedure headeip, as well as grocedure bodyP. The call on a param-
eterless procedune = P within the statemer$is determined by the substitution:

S = gP/pl.

Thus, the body of the procedurg is substituted for each call on the procedure in
the statemert, i.e. the statement is expanded.
The procedures can also pass parameters. There are three different mechanisms
of parameter passing for proceduresli-by-value call-by-resultandcall-by-value-
result Call-by-value is denoted gx f), call-by-result as < p and call-by-value-
result asf’ « p(f), wheref is a parameter. This is actually the B mechanism.
We note that the value-result parametes renamed tdf’ on the lefthand side in
the declaration. Procedures with parameters can be expanded in the same way as
procedures without parameters. ez <+ p(x,y) = P be a procedure declaration,
wherex,y andz are formal parameters. A call gnwith the actual parameteesb
andc can then be expanded in the following way

S = gF/b,c+ p(ab)],
whereP’ is the statement

VAR XxV,Y,ZIN x:=a;y:=b;P;b:=y ;c:=z END.
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Furthermore, we permit the procedure bodies to have guards that axguiot
alent totrue. If an action calls a procedure that is not enabled, the system acts as if
the calling action never was enabled. Thus, the enabledness of the wheifeestat
is determined by the enabledness of the procedure. The calling action amddke p
dure are executed as a single atomic entity. This can easily be seen by anexampl
Let us consider the action

A = SELECT aTHEN S;; P; S END

and the procedure declaration
P = SELECT bTHEN T END.

Expanding the actioA then gives the following action:
SELECT aA—([S]-b) THEN S;; T; S END,

when$;, T and$; are considered to be always enabled. The guard of the a&tion
is, thus,gd(A) = aA —~([S]—b).

In an action system a global procedure declaration can model the receiving of a
message, while a procedure call on an imported procedure can be seen as sending a
message. Since the calling action and the procedure are executed as a sinigle atom
entity, they are synchronised. Thus, by using this extended actstemyramework
we can also model synchronisation and communication via procedures.

5.3.2 Procedures within Abstract Machines

An action system Avith procedures is of the form

MACHINE A

INCLUDES
GlobalVar_z,
GlobalProcEr,
LocalProcAq

VARIABLES
X

INVARIANT
1(x,2)

INITIALISATION
Init_x

OPERATIONS

pr = P,

Pk 5
Ag

Am

Pk
a1

1D

I

am
END
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on the state variablesandz, where the variablesandz are the local and the global
variables, respectively, as before. The data invariant is give(xag. The proce-
dures are the imported proceduresAfThey are declared in another action system
and called from withirA. Together with the exported proceduggswhich are de-
clared inA, but called from other action systems, they form the global procedures.
The local proceduregare both declared and called withd The local procedures
are assumed to be distinct from the global ones.

A procedure without parameters is interpreted as a statement in B AMN in the
same way as an action with the preconditiue. Procedures with input parameters
have a non-trivial precondition. For example, the procegum— p(x,y) = P of
an action system is in B AMN given as:

y,z+— p(xy) = PRET(x,y) THEN P END

whereT(x,y) gives the types of the input parametgrandy. Again the parameter
on the lefthand side is renamed.

The global procedurgs are given in the same abstract machine as the actions.
The local procedures on the other hand, are introduced in a separate machine:

MACHINE  LocalProcq

OPERATIONS
q = Q1,
a = Q
END

This is due to the fact that if an operatidrcalls an operatioB, thenA andB cannot

be operations of the same machine due to restrictions in the B-MeHiock the
local procedures are called from actionsdinthey cannot themselves be located in
A. The exported global procedurpson the other hand, are assumed to be called
from another machine. The global procedur¢kat are called in the actions 8§

but not declared i\, are introduced by including the machi@obalProcE.r:

MACHINE  GlobalProcE.r

OPERATIONS
r = skip
END

where their headers are given. Since the bodies of these procedures aliateoesf

to us, they can be given akip or remain undefined. These procedures are declared
in some other systeild composed in parallel wit in the manner described in the
next section.
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MACHINE A MACHINE B
INCLUDES INCLUDES
GlobalVar_u, GlobalVar_z, GlobalVar_v, GlobalVar z,
LocalProcA, GlobalProcA LocalProcB, GlobalProcB|
GlobalProcA
VARIABLES VARIABLES
X y
INVARIANT INVARIANT
R(X7 u7 Z) qy7 V7 Z)
INITIALISATION INITIALISATION
Init_x Init_y
OPERATIONS OPERATIONS
a = Ap; by = By,
am = Am bh = Bn
END END

Fig. 5.2.The Action System# andB in B AMN

5.4 Parallel Composition

Action systems can be composed to form parallel systems [7]. The parallpbecom
sition of the action system&andB is writtenA || B. This composition is formed by
merging the variables and actions of the subsyst&rasdB. The local state vari-
ables of the subsystems have to be distinct. This can, however, easilghieved
by renaming before forming the composition.

Let us now consider the action systeAsindB given in B AMN in Fig. 5.2,
where the variable lists andy contain no common variables. The global variables
and the procedures are defined as previously. The parallel compdsitidhof A
andB is then defined as the abstract machitiein Fig. 5.3. The common global
variablez of AandB will also be a global variable of the parallel compositifj B.
Similarily the global procedures & declared inGlobalProcAare considered as
global procedures ok || B, even if they are exported procedureg\aind imported
procedures oB. For the rest the variables, the invariant and the initialisation, ds wel
as the operations iA andB are simply merged to forrA || B.

The invariant ofA || B is the conjunction of the invariants of the subsysteims
andB. This imposes, however, an extra requirement on the operations efithe
systems. The operatiodg should preserve the invariaBtwhile the operationB;
should preserve invariaft This is mainly a restriction on the assignments to the
common global variablesin the operationgy andB;. These proof obligations are
an extension of the normal proof obligations prescribed by the B-dktm the
B-Method, a machine cannot be included in several different machines aimatilt
ously. Since machine& andB of Fig. 5.3 shareGlobalvVar_z and GlobalProcA
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MACHINE AB

INCLUDES
GlobalVar_u, GlobalVar.v, GlobalVar_z,
LocalProcA, GlobalProcA,
LocalProcB, GlobalProcB

VARIABLES

Xy
INVARIANT
INITIALISATION

Init_x || Init_y

OPERATIONS
a = A,

Fig. 5.3.The Parallel Composition of Action SysterAsndB

they cannot be part of the same development in the B-Method and prigéditiins
requiring that they preserve each other’s invariants would not be neceldsavy

ever, we wish them to be part of the same development and hence need to check that
they do preserve each other’s invariants.

The global variables are here included as separate machines. In cases where they
are read-only, they could also be declared as parameters of the machineseConsid
the machine# andB with their global variables, zandv, zin Fig. 5.2. Let us first
assumez to be a read-only variable i, but not inB. The parallel composition of
A(z)andB then gives the same res@lB as in Fig. 5.3. In cases whezés read-only
in both components, i.e., we would ha#éz) andB(z), their parallel composition
would be the machin@B(z) As the final case we consider the global variabt
Ato be read-only. We then have that the parallel compositiol(of andB yields
the machinéB(u).

We can note that the global proceduresfoin Fig. 5.2 are given in a sepa-
rate machinéslobalProcAinstead of in theoperationsclause. A similar approach
is taken inB. Additionally we assume thd calls the global procedures &fin-
cluding these procedures B The global procedures are, here, given in separate
machines, since some of them will be called locally in the composed ma&Bine
This approach is necessary in the B-Method whenever we consider more #an on
action system at a time and these action systems call the global procedures of each
other.
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MACHINE SortA
INCLUDES GlobalVar x3

VARIABLES
x1,%x2
INVARIANT
X1 € NAT A X2 € NAT
OPERATIONS
Swap = SELECT x1 > x2 THEN x1,x2 :=x2,x1 END ;
Swap = SELECT x2> x3 THEN x2,x3 :=x3,x2 END

END

MACHINE  SortB
INCLUDES GlobalVarx3

VARIABLES
x4, x5
INVARIANT
x4 € NAT A X5 € NAT
OPERATIONS
Swap
Swap

END

SELECT x3 > x4 THEN x3,x4 :=x4,x3 END ,
SELECT x4 > x5 THEN x4,x5 := x5,x4 END

11

Fig. 5.4.Parallel Sort

As an example of parallel composition, consider the two action sysBatd
and Sort2 of Fig. 5.4. The parallel composition of these is similar to the Ilsing
systemSortof Fig. 5.1 except that3 is global inSort1|| Sort2

5.5 Refining Action Systems

Specification machines usually contain abstract data structures that aresedydir
implementable in a programming languaData refinemens used in order to bring
abstract specifications towards implementations by replacing the local esriafbl

the abstract machine with concrete variables that are more easily implemented. A
general discussion on data refinement is given in Chapter 1.

5.5.1 Data Refinement of Actions

An abstraction invariariR(x,x ,z) relating the abstract variablesand the concrete
variables<', as well as the global variablesis used to replace abstract statements
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with concrete statements. ¥is a statement on the variableg, S is a statement
on the variableg',z, andR(x, X, z) is the abstraction invariant, then we write

SCrS

for “Sis data-refined by under abstraction invariai¥'.

5.5.2 Refinement of Action Systems

We may refine an action systefnwith an action syster/, whereA and A’ have
corresponding actions and global state, but possibly different localbles. Let
the abstract action systefnhave the variables andz, and the refined action sys-
tem A’ have the variableg andz The variablex are the abstract local variables
that are data refined into the concrete local variallehey are invisible to the
environment. The global variables on the other hand, form the interface to the
environment and are left unchanged.

In Fig. 5.5 the abstract action systefand its refinemerd’ are shown as ab-
stract machines with the refinement relatR(x, X', z). The machines for the global
variables and the local procedures are as before. In the refinement malthie éo-
cal procedureq are refined. We have also renamed the global variatie due to
restrictions in the B-Method and include the modified mackBiabalVar Z. How-
ever, in theinvariant clause we state that the global variat#esdZ really are the
samez=Z. For ease of reference, we R{x,X,z,7) denote the whole abstraction
invariantR(x,x,z) A z=Z.

Let us now study the refinement rule:

Definition 5.1. For the abstract action systeAand the concrete action systei
in Fig. 5.5,A is refined byA’ with abstraction invariant Rx,x',z Z), denotedA
Cr A/, provided each of the conditions below hold.

. Init_x Cr Init_x

. R Cr P, fori=1,...,k

. A Cr A, fori=1,...,m

. RAgd(R) = gd(P), fori=1,... k.
. RAgd(A) = gd(A), fori=1,...,m.

abhownN PP

Conditions 1, 2 and 3 ensure that the initialisation and each operagqreach
global procedure and action, 8f is a refinement of its counterpart & and are
referred to as data-refinement conditions. These are precisely the contlitans
define refinement of machines in B AMN [2]. Conditions 4 and 5 ensure that a
global procedure or an action # is only enabled, if the corresponding global
procedure or action i is enabled, and are referred to as progress conditions. In
order to be able to prove these two conditions within the B-Methxdd@®perations
need to be introduced into the machines of the action systems. Thisussésl later
in Chapter 7. The refinement of the local procedurés proved via Conditions 3
and 5 for the actions by expanding the procedure calls in the actionslasnexpin
Sect. 5.3.1.
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MACHINE A REFINEMENT A
REFINES
A
INCLUDES INCLUDES
GlobalVar_z, GlobalVar_Z
LocalProcq LocalProcd
VARIABLES VARIABLES
X X
INVARIANT INVARIANT
1(x,2) R(x,X,2) A z=7
INITIALISATION INITIALISATION
Init_x Init_x’
OPERATIONS OPERATIONS
pr = Pi; pL = P,
= R P = Bes
a = A a = A
am = Am am = Ap
END END

Fig. 5.5.An Abstract Action SystenA and its Refinemerd’ in B AMN

Intuitively, A Cr A’ means that any observable behaviou”bfs also an ob-
servable behaviour oA. Back and von Wright have investigated this notion more
formally in [9]. There, the observable behaviour of an action systemoidefied
as a set obtate-traceswhere a state-trace is a finite or infinite sequence of states
representing a possible evolution of the state of a system. AcjistersA is re-
fined byA’ when the state-traces Af are a subset of the state-traces\oBack and
von Wright show that the refinement rule of Definition 5.1 is sounthia model,
since the rule implies state-trace refinement. This state-trace approactilas b
the approach of Abadi and Lamport [1] to modelling reactive systems.

5.5.3 Refinement and Parallel Composition

The conditions in Definition 5.1 are sufficient to guarantee correct dateereéint
between action systems that are executed in isolation. The action sistaght,
however, occur in parallel composition with another action syd€tethaction sys-
temA s refined byA', ACr A, for some abstract relatid® thenA || Bis refined by
A’ || B under the same relatidR The contexB has then to be taken into account in
the refinement rule. We have thag| B Cr A’ || B, if the following holds for every
actionBin B:

RA [BJtrue= [B]R.
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Thus, the contexB should not interfere with the action systefnand it should
preserve the abstract relati®n

5.6 Discussion

In this chapter we gave a brief introduction to action systems and deddrdw they
can be embedded in the B-Method. The structure of an action system corespon
closely to the structure of a B machine. We saw that the action systeonaaif
shared global variables and shared global procedures can be modelled witBin the
framework. The only extension we needed was the extra proof oldigati parallel
systems requiring that they preserve each other’s invariants.

Some examples of parallel composition and refinement will be given in later
chapters.
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6. Production Cell
Emil Sekerinsk}

6.1 Introduction

This chapter is about specifying and implementing a control programgooduc-
tion cell using action systems in AMN. The production cell consists\af fna-
chines: two conveyor belts, an elevating and rotating table, a two-arot, rabd
a press. The machines are equipped with a total of 18 sensors for detayithiai
positions of the machines and for sensing the transported plates atadl @f &ight
actuators for setting the motors.

The production cell is a typical example oflsscrete control systenin reality,
all machines evolve continuously. However, at certain points the chantieio
state is notified to the control program, which may react to this change. Hence,
the evolution of the system can be sufficiently represented as a sequentepsof s
This means that discrete control systems can be modelled with (discrete) actio
systems. This chapter presents a general approach to developing congraipso
for discrete systems in AMN, and illustrates this with the completeld@ment of
a control program for a production cell.

6.1.1 Specifying Control Systems with Action Systems

When concerned with the correctness of the control program, or contrallghért,
we note that it cannot be judged on its own but rather depends on the ecjbest
haviour of the controlled plant as well. Hence, for formally verifyihg torrectness
of a controller, the behaviour of the plant, here in the form of theefiroduction cell
machines, has to be specified as well.

For discrete control systems, the plant can be modelled as an action system wi
only actions, which become enabled as the system evolves, and the coasaler
action system with only procedures, which are called by the plant. Theotientr
procedures are understood as “interrupt procedures” which are called upon certai
sensor changes. The controller reads the sensors and sets the actuaions tte t
plant reads the actuators and sets the sensors (see Fig. 6.1). In tleis diféerent
components of the plant may evolve concurrently, but the controllenb@sncur-
rent activity in parallel to the plant: the controller only reacts “instaatasly” to
events from the plant. This can be justified as the controller procedweather

1 Work done atAbo Akademi, Finland.
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simple and can be executed sufficiently fast compared to the evolutioe pfaht
such that their execution time is negligible. This is an assumptioméalelling con-
trol systems which can often, although not always, be made. If it doesithtthe
model of the controller has to include execution times, which is beyioadcope
of this chapter (this is studied, for example, in [29]).

\
Controlle-«—— Controller] Plant |--——7 Plant
State /—®| Actions \ Actions —®\_ State
Actuators|
Controller Plant

Fig. 6.1.Model of a Discrete Control System

6.1.2 Structure of the Development

The approach taken here is to start with a model ofwhele production cell sys-
tem as an action system in AMN. This model describes the behaviour of thie wh
system, i.e. the mechanical plant and the controller. Next, plant and tente
separated in a refinement step, in the sense that their parallel composities teé
initial specification. The plant specification describes the assumptions tiwobe-
haviour of the plant; it is not further refined. It can be used for checkimether the
actual plant does indeed satisfy these assumptions. Finally, in a secorahrefit
step, the controller is implemented.

The controller is developed by first viewing each machine as a system-in iso
lation and modelling each machine as an action system in AMN (Sec. 6.3). Next,
the controllers of all machine are derived by separating controller and iplant
refinement step (Sec. 6.4). Then, the specification of the whole produetibis
constructed using the specifications of the individual machines (SecFna)ly,
the controller of the whole system is derived (Sec. 6.6), reusingringqusly de-
rived controllers of the machines. In this way, the specifications andattang of
the machines become reusable for other plants.

This chapter gives an example of an action system in AMN with a compara-
tively large number of actions, but with simple bodies involvindyasimple data
structures. The whole variety of structuring facilities of AMN are udgéa loop in-
troduction or other more complicated algorithmic refinement steps are néduzd
whole development, including the proofs, is carried out with Ateier

The generated code for the controller can be connected to a graphical simulation
of the production cell. For this, some additional code is needed formgaginsor
values and writing actuator settings. This code, as well as the graphicdasonu
can be obtained from the book’s World Wide Web page.

For an understanding of the approach, this chapter can be read selectively by
focusing on specific machines. Most of the issues of developing a ¢@négram



6.2 The Production Cell 199

for a single machine can be studied with the feed belt. A simple interelotween
two machines is that of the feed belt and the table. The robot is an examale of
machine with a structured state space and involved internal safety requisessen
well as an involved interaction with other machines. Finally, the depetitdan
example of a machine where the state cannot be fully observed but whiicikaust

be treated with the same technique.

6.2 The Production Cell

The production cell consists of five interacting machines, a conveyo(thelfeed
belt), an elevating and rotating table, a robot with two orthogonal aamsess, and
another conveyor belt (the deposit belt), arranged as in Fig. 6.2.

<— ]
deposit belt arm
press
robot
arm 1
—-—|
feed belt Fig. 6.2. Top View of the
table Production Cell

The task of the production cell is to press metal plates which arrive ofedte
belt and to place them on the deposit belt. The following actions hapsagirence
while a metal plate traverses through the cell:

e The feed belt conveys the plate onto the table.

e The table elevates and rotates the plate to a position where the fiostammiy can
grip the plate.

e The first robot arm grips the plate, the robot rotates countercloclaviddeeds
the press.

e The press forges the plate and opens again.

e The robot, after rotating clockwise, unloads the press with its second ar

e The robot turns counterclockwise and releases the metal plate over thaetdepos
belt.

e The deposit belt conveys the plate to its end.

All machines act in parallel thus allowing several plates to be processed concur-
rently. The robot is equipped with two arms in order to maximiseubhput of the
production cell: the robot is supposed to fetch a plate from the tabike @nother
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plate is still being pressed such that the press can be quickly unloadedaatedl|
again. The control program has to ensure that

o the metal plates are processed properly, i.e. all metal plates are transpoged pr
erly and pressed exactly once and

¢ safety requirements of the machines are guaranteed, i.e. the machines do@ot mov
beyond end positions and do not collide.

We give a description of the “logical” properties of the machines, lapoint
details such as their geometry and speed, as well as the interface to the sedsors an
actuators.

r o

Fig. 6.3.The Feed Belt

The Feed Belt. The feed belt transports plates placed on its left end to its right end
and then to the table (see Fig. 6.3). A photo-electric cell goes “on” wheata p
arrives at the right end and goes “off” when it leaves the belt (and thus hasdmo
onto the table). The motor for the belt may be switched on and off: itdvag on
while waiting for a new plate and has to be switched off when a plate fseatnd

of the belt but cannot be delivered onto the table.

A
> _ A Fig. 6.4.The Table

The Table. The table lifts a single plate to the height of the robot and rotdtes t
plate clockwise such that it is orthogonal to the first robot arm. (@tter is needed
because the robot arms have no rotating grippers.)
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The table (see Fig. 6.4) has two reversing electric motors, one featilg and
one for rotating. Mechanical sensors indicate whether the table is attijtsidgt,
upper, and lower end position, respectively. The table must not mgambéts end
position. We assume that initially the table is in its lower leftipos.

/1

U Fig. 6.5.The Robot

The Robot. The robot has two orthogonal arms on a rotating base (see Fig. 6.5).
Both robot arms may extend and retract by reversing electric motors. 8otk
have three sensor positions, an inner, middle, and outer posiigpectively. These
arm positions are reported by mechanical sensors.

rr*r

position 1 position 2 position 3

Fig. 6.6.The Three Robot Positions, with Both Arms of the Robot Regc

The base has a reversing motor for rotation. The three relevanigmssif the
base are indicated by a mechanical sensor for each position (see Fig. 6.6).

1. In position 1, arm 1 has to extend to middle position for fetclimgetal plate
from the table.
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2. In position 2, arm 2 has to extend to its outer position for piglkirmetal plate
from the press.

3. In position 3, arm 1 has to extend to its outer position for logtlre press and
the arm 2 has to extend to its middle position for placing a metal plath®
deposit belt.

While rotating the robot, both arms have to be retracted to their iposition.
Neither the robot base nor the robot arms must move beyond theeataspend
positions.

Electromagnetic grippers at the end of each arm can hold a metal plate as long as
they are switched on. We assume that initially the robot base is dtqro3j arm 1
is at its inner position and arm 2 is at its middle position, and batipers are off.

Fig. 6.7.The Press

The Press. The press has a platform on which the metal plates are placed by the
robot (see Fig. 6.7). It closes by moving its platform up and opensidying the
platform down by a reversing motor. Due to the different heighthefrobot arms,
different positions have to be taken for loading and unloading thespiit is un-
loaded by robot arm 2 in lower end position and loaded by robot arm 1 idlenid
position. Three mechanical sensors indicating the lower, middle aret ppgition,
respectively.

Since the press platform and the robot arms may collide, the follogarfety
requirements have to be guaranteed. Firstly, when the robot is itiqmS3j robot
arm 1 may extend only if the platform is in loading (middle) positi&econdly,
when the robot is in position 2, robot arm 2 may extend only if trefptm is in
unloading (lower) position. The platform may move only after thgpeesive robot
arm has retracted to its inner position again. Of course, the platformnotisiove
beyond its upper and lower end position. We assume that initiallptbes is at its
lower position and is empty.

The Deposit Belt. The deposit belt transports plates placed by the robot on its right
end to its left end. A photo-electric cell goes “on” when a plate arrives atetfte |
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end and goes “off” when it has been removed (by a person or some other machine).
The motor for the belt may be switched on and off: it has to be off wivéing

for a new plate to be placed by the robot or while a plate is at its efdhslto be
switched on when a plate is placed on it and no other plate is at the belt$\end.
new plate may only be placed on the belt if there is no other plate on therlmie

plate is at the end of the belt; in both cases the belt motor must be off.

o

Fig. 6.8.The Deposit Belt

6.3 Specification of the Machines

For a modular specification of the production cell, first the behavibaaoh ma-
chine is specified separately as an AMN machine. The following principles are ap-
plied:

¢ All possible machine states are identified and are represented by variables of ap
propriate types.

e Each relevant sensor change is mapped to one action.

e Possibly additional actions for the interaction of the machine wsthritvironment
are introduced.

e Safety requirements of the machines are expressed in the respective igvariant

A schema of the machine specification is given in Fig. 6.9. We interpre¢ thes
machine specifications as action systems where all operations are actions. When
a parameterised action is selected, the parameters will have some arbitray valu
which is determined by the machine’s environment. Alternatively, noardehism
of the environment can be modelled by a non-deterministic choice witikiaction.

If the machines are viewed in isolation, these two mechanisms are equividernt
ever, these actions are later composed to larger actions where this nonkdistarm
is reduced. This composition can be more conveniently expressed whenrthe n
determinism is controlled by parameters.

When looking at machine specifications in isolation, the names of the action
are irrelevant. However, later for the production cell specification, therecwill
be referred to by their names for composing larger actions.
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MACHINE  Machine
VARIABLES

machine state
INVARIANT

variable types\
safety requirements
INITIALISATION

machine state initialisation

OPERATIONS

Action( parametery =
SELECT guard THEN
machine state change
END ;

END
Fig. 6.9.Schema for Machine Specifications

At this stage, only the safety requirements concerning the individodiyation
cell machines can be expressed. Safety requirements concerning the interaction of
the machines are expressed when constructing the specification of thepubole
duction cell.

6.3.1 The Feed Belt

For an abstract model of the feed belt, we identify the following states:

Running The belt is running with no part at the sensor.
StoppedThe belt is stopped with a part at the sensor.
Delivering The belt is running but with a part at the sensor.

The type of the feed belt state is defined in a separate AMN machine:

MACHINE FeedBeltTypes
SETS

FEEDBELT= { Running, Stopped Delivering }
END

The belt is initialised to statRunning From Runningit may go to stateDe-
livering or first to Stoppecdand then tdDelivering From stateDelivering, the belt
goes to statRunningagain. The transitions between the states are caused by actions
EndReachedndPartLeft which correspond to sensor changes, and by the action
ContinueDeliverywhich represents an interaction with the environment:
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MACHINE FeedBelt
SEES FeedBeltTypes
VARIABLES

belt
INVARIANT

beltc FEEDBELT
INITIALISATION

belt := Running
OPERATIONS

EndReachedA part reaches the end of the belt; for this, the belt must baes running.
The parametehaltindicates whether the belt has to be stopped or can be kepitigin

EndReachedhalt) =
PRE halte BOOL THEN
SELECT  belt= RunningA halt=TRUE THEN
belt:= Stopped
WHEN  belt= RunningA halt= FALSE THEN
belt:= Delivering
END
END,

ContinueDelivery The environment is ready to accept the part at the end of the be

~

ContinueDelivery =
SELECT belt=Stopped THEN  belt:= Delivering END ;

PartLeft The part on the belt has left the belt; for this, the belt masetbeen delivering.

PartLeft =
SELECT  belt=Delivering THEN  belt:= Running END

END

6.3.2 The Table

For an abstract model of the table, we represent its elevating state anthiisgo
state. Concerning the elevating state, the table is in exactly one oblibavihg
states:

AtUpper, AtLower The table is at its upper or lower sensor position, respectively.
MovingUp, MovingDown The table is moving upwards or downwards, respec-
tively.

Concerning the rotating state, the table is in exactly one of theWoipstates:
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AtLeft, AtRight The table is at its left (counterclockwise) or right (clockwise) sen-
sor position, respectively.

RotatingRight RotatingLeftThe table is rotating to the right (clockwise) or to the
left (counterclockwise) sensor position, respectively.

The type of the elevating and rotating state of the table is definedeparate
AMN machine:

MACHINE TableTypes
SETS

ELEV = { AtUpper, MovingUp, AtLower, MovingDown} ;
ROT = { AtLeft, RotatingRight AtRight, RotatingLeft}

END

We assume that the table is initially in st## owerandAtLeft From there, it
goes to statdlovingUpandRotatingRighsimultaneously, and from there to state
AtUpperandAtRightin either order. From there, the table goes to dtéagingDown
andRotatingRighsimultaneously, and from these back agaiAtibowerandAtLeft
in either order.

The actionsPartPlacedandPartTakenrepresent interactions with the environ-
ment, the actiontlpReachedDownReachedrightReachedandLeftReachedor-
respond to sensor changes.

MACHINE Table
SEES TableTypes
VARIABLES

elev, rot
INVARIANT

eleve ELEV A rot € ROT
INITIALISATION

elev:= AtLower || rot := AtLeft
OPERATIONS

PartPlacedA part is placed on the table; for this, the table must be ireloleft position.

PartPlaced =
SELECT elev= AtLowerA rot = AtLeft THEN
elev:= MovingUp || rot := RotatingRight
END,

PartTaken A part is removed from the table; for this, the table must bepper right
position.

PartTaken =
SELECT elev= AtUpperA rot = AtRight THEN
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elev:= MovingDown || rot := RotatingLeft
END ;

UpReachedThe table reaches its upper sensor position. For this, thle raust have
been moving upwards. The paramateveBackdetermined by the table’s environment,
indicates whether the table stays in its upper end positionaves back to lower left end
position.

UpReached moveBack =
PRE moveBack BOOL THEN
SELECT elev= MovingUpA moveBack=TRUE THEN
elev:= MovingDown || rot := RotatingLeft
WHEN  elev= MovingUpA moveBack= FALSE THEN
elev:= AtUpper
END
END ;

DownReachedThe table reaches its lower sensor position. For this, thie raust have
been moving downwards.

~

DownReached
SELECT elev=MovingDown THEN elev:= AtLower END,

RightReachedThe table reaches its right sensor position. For this, thke taust have

been moving rightwards. The parameteoveBackdetermined by the table’s environ-
ment, indicates whether the table stays in its right endtijposor moves back to lower
left end position.

RightReached moveBack =
PRE moveBack BOOL THEN
SELECT rot = RotatingRightA moveBack= TRUE THEN
elev:= MovingDown || rot := RotatingLeft
WHEN rot = RotatingRightA moveBack= FALSE THEN
rot ;= AtRight
END
END ;

LeftReachedThe table reaches its left sensor position. For this, thie talist have been
moving leftwards.

LeftReached =
SELECT rot = RotatingLeft THEN  rot:= AtLeft END

END

We did not assume anything about the relative speeds of rotating aradiiedev
If it was guaranteed by the mechanics that the table reaches its right and left end
position before its upper and lower end position, respectively, wedaooldel this
by changing the actiobpReacheéndDownReacheds follows:
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UpReached moveBack =
PRE moveBacke BOOL THEN
SELECT elev= MovingUpA rot = AtRightA moveBack= TRUE THEN
elev:= MovingDown || rot := RotatingLeft
WHEN  elev= MovingUpA rot = AtRightA moveBack= FALSE THEN
elev:= AtUpper
END
END,

DownReached
SELECT elev= MovingDownA rot = AtLeft THEN  elev:= AtLower
END ;

~

The advantage of strengthening the specification in this way is thatdiedd
the controller may get simplified. The disadvantage is that the regutntroller
can only be used if this assumption about the mechanics is indeed guaraimeed. S
in our case we cannot make such an assumption anyway, we proceed with the more
general specification.

6.3.3 The Robot

For an abstract model of the robot, we model the state of the robot ba.tiecastate
of each of the two robot arms with their grippers. The robot base isreith

AtPos1, AtPos2, AtPos3 The robot base is at sensor position 1, 2, or 3, respectively.

RotatingFwdToPosZ'he robot base is rotating from position 1 counterclockwise to
position 2.

RotatingFwdToPos3he robot base is rotating from position 2 counterclockwise to
position 3.

RotatingBackToPosd he robot base is rotating from position 3 clockwise to posi-
tion 2.

RotatingBackToPosThe robot base is rotating from position 2 clockwise to posi-
tion 1.

The robot arms are in exactly one of following states:

Atlnner, AtMiddle The robot arm is at its inner or middle sensor position, respec-
tively. Note that there is a sensor for the outer position, but tiressao not rest
there, they immediately retract again. Hence there is no need to represent it.

ExtendingToMiddIeThe robot arm is extending from its inner to its middle sensor

position.

ExtendingToOuteiThe robot arm is retracting from its middle to its outer sensor
position.

RetractingToMiddleThe robot arm is retracting from its outer to its middle sensor
position.

RetractingTolnnerThe robot arm is retracting from its middle to its inner sensor
position.
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MACHINE TwoArmRobotTypes
SETS

ROBOTBASE- { AtPos1, RotatingFwdToPos2AtPos2, RotatingFwdToPos3AtPos3,
RotatingBackToPos2RotatingBackToPos] ,

ROBOTARM= { Atlnner, ExtendingToMiddle RetractingTolnner AtMiddle,
ExtendingToOuter RetractingToMiddlg

END

The grippers of the robot arms either hold or don’t hold a part, wisakpre-
sented by the boolean variabksn1Holdingandarm2Holding respectively.

In order to generalise the specification of the robot, we refer to the ather
chines in a more general way, rather than assuming the particular machines of th
production cell. The robot loads and unloads a processing unit, heggrdiss, by
performing following sequence of moves cyclically:

o After a part becomes available in position 1, arm 1 fetches the part, arnatteetr
to innermost position, and the robot turns to position 2.

e When processing finishes while in position 2, arm 2 extends to itsrmatst
position, fetches the part, retracts to its innermost position, ancbthot turns to
position 3.

e When the processing unit becomes again ready for being loaded while in posi-
tion 3, arm 1 extends to its outermost position, releases the patti,tand re-
tracts to its innermost position. Also, arm 2 extends and, when thesdéphich
is here a belt) becomes ready, releases its part. When both arms are free and re-
tracted, the robot turns to position 1 and extends arm 1 to its mmdigion.

We assume that initially the robot is in position 3, arm 1 is at itemrposition,
arm 2 is at its middle position, and both grippers are released. Tatanitie cycle,
first arm 2 has to retract to its inner position.

The action$PartAvailable ProcessingFinishedProcessingReadpepositReady
represent interactions with the environment, the actitnsd ReachedPos2Reached
Pos3ReachedArmlinReachedArm1MiddleReacheddrm1OutReachedArm2in-
ReachedArm2MiddleReachedndArm20OutReachecbrrespond to sensor changes.

MACHINE  TwoArmRobot
SEES TwoArmRobotTypes
VARIABLES
base, arm1, arm2, arm1Holding, arm2Holding
INVARIANT

basec ROBOTBASE\ arm1l< ROBOTARMA arm2 € ROBOTARMA
arm1Holdinge BOOL A arm2Holdinge BOOLA

Safety RequirementArm 1 must not be extended beyond its middle position at robot
position 1 and must not extend at all at robot position 2. Armst not be extended
at all at robot position 1 and must not be extended beyond itisll; position at robot
position 3.
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( base= AtPos1=- arm1< { ExtendingToMiddle AtMiddle, RetractingTolnnet ) A
( base= AtPos1A arml e { ExtendingToMiddle AtMiddle } =
armlHolding= FALSE) A
(base= AtPos1A arml= RetractingTolnners- arm1Holding= TRUE) A
(base= AtPosl=- arm2= Atlnner A arm2Holding= FALSE) A

(base= AtPos2=- arm1= Atinner A arm1Holding= TRUE) A

( base= AtPos2=- arm2 < { Atinner, ExtendingToMiddle ExtendingToOuter
RetractingToMiddle RetractingTolnnes} ) A

( base= AtPos2A arm2 € { Atlnner, ExtendingToMiddlg ExtendingToOute} =
arm2Holding= FALSE) A

( base= AtPos2A arm2 € { RetractingToMiddle RetractingTolnnes =
arm2Holding= TRUE) A

( base= AtPos3=- arm1¢ { Atinner, ExtendingToMiddle ExtendingToOuter
RetractingToMiddle RetractingTolnnes} ) A

( base= AtPos3A arml € { ExtendingToMiddle ExtendingToOute} =
armlHolding= TRUE) A

( base= AtPos3A arml € { RetractingToMiddle RetractingTolnner =
armlHolding= FALSE) A

( base= AtPos3=- arm2 ¢ { ExtendingToMiddle AtMiddle, RetractingTolnner
Atinner} ) A

( base= AtPos3A arm2 € { ExtendingToMiddle AtMiddle } =
arm2Holding= TRUE) A

( base= AtPos3A arm2 € { RetractingTolnner Atlnner } =
arm2Holding= FALSE) A

Safety RequirementThe robot must rotate only with both arms retracted.

( base= RotatingFwdToPos2> arm1 = Atinner A arm1Holding= TRUE) A
( base= RotatingFwdToPos2> arm2= Atinner A arm2Holding= FALSE) A

( base= RotatingFwdToPos3; arm1 = Atinner A arm1Holding= TRUE) A
( base= RotatingFwdToPos3; arm2= Atlnner A arm1Holding= TRUE) A

( base= RotatingBackToPos2- arm1= Atlnner) A
( base= RotatingBackToPos2- arm2= Atlnner) A

( base= RotatingBackToPos%- arm1= Atlnner A arm2Holding= FALSE) A
( base= RotatingBackToPost- arm2 = Atlnner A arm2Holding= FALSE)

INITIALISATION

base:= AtPos3 ||
arml:= Atlnner || arm2:= RetractingTolnner||
arml1Holding:= FALSE || arm2Holding:= FALSE

OPERATIONS

PartAvailable A part becomes available for being transported to procgssid the robot
is ready to take it, i.e. the robot is in position 1 and arm iewrded to middle position.
Then arm 1 retracts to its inner position, holding the part.

~

PartAvailable =
SELECT base= AtPos1A arml= AtMiddle THEN
arml:= RetractingTolnner|| arm1Holding:= TRUE
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END ,

ProcessingFinishedProcessing of a part has finished and the robot is ready figatk
i.e. the robot is in position 2 and arm 2 is retracted. ThenZ@xtends.

ProcessingFinished =
SELECT  base= AtPos2A arm2= Atlnner THEN
arm2:= ExtendingToMiddle
END ;

ProcessingReadyA part may be processed and the robot is ready for placingitthe
robot is in position 3 and arm 1 is retracted and holds a pa@énTarm 1 extends to its
outer position via its middle position.

ProcessingReady =
SELECT base= AtPos3A arm1l= Atlnner A arm1Holding= TRUE THEN
arml:= ExtendingToMiddle
END ;

DepositReadyThe next machine becomes ready for further transportingtaapa the
robot is in position 3 and arm 2 is in middle position. As gtiite the invariant, arm 2
holds a (processed) part in this position. Arm 2 then reledise part and retracts to its
inner position.

DepositReady =
SELECT  base= AtPos3A arm2= AtMiddle THEN
arm2:= RetractingTolnner|| arm2Holding:= FALSE
END

Pos1Reached he robot base reaches position 1 while rotating backwdrdnThe rotat-
ing motor stops and arm 1 extends in order to pick up an unpseckepart.

PoslReached =
SELECT base= RotatingBackToPos1 THEN
base:= AtPos1|| arml:= ExtendingToMiddle
END ;

Pos2Reached he robot base reaches position 2. This happens while ¢ftbeobot base
rotates forward from position 1 or rotates backward fromitpws 3. In case it reaches
position 2 from position 1, it stops andufloadis true, arm 2 extends to the outer position
via the middle position. In case the base rotates back fraitipo 3, it continues to rotate
to position 1.

Pos2Reache(lunload) =
PRE unload: BOOL THEN
SELECT base= RotatingFwdToPos2 THEN
base:= AtPos2 ||
IF unload=TRUE THEN arm2:= ExtendingToMiddle END
WHEN  base= RotatingBackToPos2 THEN
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base:= RotatingBackToPos1
END
END ;

Pos3Reached he robot base reaches position 3 while rotating forwarthfpmsition 2.
Arm 2 extends to its middle position and, as stated in theriang holds a part. lfoadis
true, arm 1 extends as well in order to release the unpratgsseit holds.

Pos3Reache(lload) =
PRE load:BOOL THEN
SELECT base= RotatingFwdToPos3 THEN
base:= AtPos3 ||
IF load=TRUE THEN arml:= ExtendingToMiddle END ||
arm2:= ExtendingToMiddle
END
END ;

ArmlinReached Arm 1 reaches its inner position while retracting from itddie po-
sition position. This happens either in robot position afirm 1 has picked up a part,
or in position 3 after arm 1 has released a part. In positiohelrobot starts to rotate
forward to position 2, and in position 3 the robot starts t@at® backward to position 1
via position 2, provided robot arm 2 is retracted as well.

ArmlinReached =
SELECT arml= RetractingTolnnen base= AtPos1 THEN
arml:= Atlnner || base:= RotatingFwdToPos2
WHEN  arml= RetractingTolnnen base= AtPos3 THEN
arml:= Atlnner ||
IF arm2= Atlnner THEN base:= RotatingBackToPos2 END
END ;

Arm1MiddleReached Arm 1 reaches its middle position. This happens while either
base is at position 1 and arm 1 is extending to its middle osior while the base is
at position 3 and arm 1 is extending to its outer position tdariddle position, holding
a part, or while the base is in position 3 and arm 1 is retrgdtiom its outer position.
As follows from the invariant, arm 1 is extending to and retirgg from its outer position
only when the robot base in at position 3. When extending Bitjpm 1, the parameter
fetchPartdetermines whether there is a part available for fetchihgo) arm 1 grabs it
and retracts again, otherwise it stops there.

ArmlMiddleReache(ifetchPart) =
PRE fetchParte BOOL THEN

SELECT arml= ExtendingToMiddle\ base= AtPosl1 THEN
IF  fetchPart= FALSE THEN arml:= AtMiddle
ELSE arml:= RetractingTolnner|| arm1Holding:= TRUE
END

WHEN  arml= ExtendingToMiddle\ base= AtPos3 THEN
arml:= ExtendingToOuter

WHEN  arml= RetractingToMiddle THEN
arml:= RetractingTolnner

END
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END ,

Arml1OutReached Arm 1 reaches its outer position. As follows from the invatjahe
robot must be at position 3 and arm 1 must be holding a part @hm 1 releases the part
and retracts to its inner position.

Arm1OutReached =
SELECT arml= ExtendingToOuter THEN
arml:= RetractingToMiddle|| arm1Holding:= FALSE
END ;

Arm2InReached Arm 2 reaches its inner position. This happens in robot jorsR after
picking up a processed part or in robot position 3 after miepthe processed part. In
position 2 the robot starts to rotate forward to positionn3pdsition 3, the robot starts to
rotate backward to position 1 via position 2, provided arra fetracted as well.

Arm2InReached =

SELECT arm2= RetractingTolnnen base= AtPos2 THEN
arm2:= Atlnner || base:= RotatingFwdToPos3

WHEN  arm2= RetractingTolnnen base= AtPos3 THEN
arm2:= Atlnner ||
IF arml= AtinnerA armlHolding= FALSE THEN

base:= RotatingBackToPos2

END

END ;

Arm2MiddleReached Arm 2 reaches its middle position, while either the base j®at
sition 3 and arm 2 extends to its middle position, while theehia at position 2 and arm 2
extends to its outer position via the middle position, orlelarm 2 retracts from its outer
position. According to the invariant, the base is in thisecaisposition 2. When extending

in position 3 and the parameteepositPartis true, the processed part is released and the
arm retracts again, otherwise it stops there.

Arm2MiddleReachefldepositPart) =
PRE depositPartc BOOL THEN
SELECT arm2= ExtendingToMiddle\ base= AtPos3 THEN
IF  depositPart= FALSE THEN arm2:= AtMiddle
ELSE arm2:= RetractingTolnner|| arm2Holding:= FALSE
END
WHEN  arm2= ExtendingToMiddle\ base= AtPos2 THEN
arm2:= ExtendingToOuter
WHEN  arm2= RetractingToMiddle THEN
arm2:= RetractingTolnner
END
END ;

Arm20utReached Arm 2 reaches its outer position. According to the invaritime base
is in position 3. Arm 2 picks up a part and retracts again.

Arm20utReached =
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SELECT arm2= ExtendingToOuter THEN
arm2:= RetractingToMiddle|| arm2Holding:= TRUE
END

END

6.3.4 The Press

For an abstract model of the press, the press is in exactly one of theifodl states:

AtUnloading, AtLoading The press is at its lower sensor position for unloading or
at its middle sensor position for loading, respectively. Note thexttis a sensor
for the upper position in which the press is closed, but the pressrduiesst
there, it immediately opens again. Hence there is no need to represent it.

MovingToLoading MovingToUnloadingThe press is moving upwards from its
lower position to its middle position or moving downwards fras middle
position to its lower position, respectively.

Pressing, Opening The press is moving upwards from its middle sensor position
to its upper position or moving downwards from its upper senssitipa to its
middle position, respectively.

MACHINE PressTypes
SETS

PRESS= { AtUnloading, MovingToLoading AtLoading, Pressing, Opening,
MovingToUnloading}

END

The press goes cyclically from stafdlLoading after being loaded, to states
Pressing Opening MovingToUnloadingandAtUnloading where after the part has
been taken it goes to statelwvingToLoadingndAtLoadingagain. We assume that
the table is initially in its middle position and may have a pressetigvailable; to
initiate the cycle, the press has to move to its unloading position.

The actionsPartPlacedandPartTakenrepresent interactions with the environ-
ment, the action®ownReachedMiddleReachedand UpReachecdtorrespond to
sensor changes.

MACHINE Press
SEES PressTypes
VARIABLES

press
INVARIANT

pressc PRESS
INITIALISATION

press:= MovingToUnloading
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OPERATIONS

PartPlaced A part is placed in the press and the press may close. Fottibipress must
be in its middle, loading position.

PartPlaced =
SELECT press= AtLoading THEN  press.= Pressing END

PartTaken A part is fetched from the press and the press may move tovlaedsiddle
position (for getting loaded again). For this, the press tnesin its lower unloading
position.

~

PartTaken =
SELECT press= AtUnloading THEN  press:= MovingToLoading
END ;

DownReachedThe press reaches the lower sensor position. For this, &8s pnust be
below the middle position and must have been moving downsvarte press motor is
then stopped such that the press can be unloaded.

DownReached =
SELECT press= MovingToUnloading THEN  press.= AtUnloading
END ;

MiddleReachedThe press reaches the middle sensor position. This happgers either
the press is above the middle position and moves downwards loelow the middle
position and moves upwards. In the first case, the pressncmstito move downwards
and in the second case the press stops for being loaded.

MiddleReached =
SELECT press= MovingToLoading THEN  press.= AtLoading
WHEN  press= Opening THEN  press:= MovingToUnloading
END,

UpReachedThe press reaches the upper sensor position. For this,e@be must be above
the middle position and must have been moving upwards. Theembtor is reversed for
opening the press again.

UpReached =
SELECT press= Pressing THEN  press.= Opening END

END

6.3.5 The Deposit Belt

For an abstract model of the deposit belt, the deposit belt is in exaatiypbthe
following states:
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Empty The belt is stopped and there are no parts on it.

Transporting The belt is running with one part being transported.

Available The belt is stopped with a part at the end.

AvailableAndPlacedlhe belt is stopped with a part at the end and a second part is
at the front of the belt.

MACHINE DepositBeltTypes
SETS

DEPOSITBELT= { Empty, Transporting, Available, AvailableAndPlaced
END

We assume that the belt is initially in stéEenpty From there, it goes to states
Transportingand then tAvailable From statévailablg the belt goes either to state
Emptyor to stateAvailableAndPlacednd from there to statéransporting The
transitions between these states are caused by the &atitilaced which repre-
sents an interaction with the environment, or the actitrdReachedndPartTaken
which correspond to sensor changes:

MACHINE DepositBelt
SEES DepositBeltTypes
VARIABLES

belt
INVARIANT

beltc DEPOSITBELT
INITIALISATION

belt := Empty
OPERATIONS

PartPlacedA part is placed on the front of the belt, provided no partieadly there. The
belt starts to transport if no part is at the end of the belt.

~

PartPlaced =
SELECT belt=Empty THEN belt:= Transporting
WHEN  belt= Available THEN belt:= AvailableAndPlaced
END,

EndReachedA part reaches the end of the belt. The belt is then stoppet, avpart
available at its end.

EndReached =
SELECT belt=Transporting THEN  belt:= Available END,

PartTaken The part at the end of the belt is taken. If another part isqulam the front of
the belt, the belt starts to run.
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PartTaken =
SELECT belt= Available THEN belt:= Empty
WHEN  belt= AvailableAndPlaced THEN  belt:= Transporting
END

END

6.4 Derivation of the Machine Controllers

The next step is to decompose each machine into a plant and a controlleeralgen
approach is as follows:

e The plantis represented as an action system in AMN with local variables and with
actions. The controller is represented as an action system with local variaBiles an
procedures.

¢ Actuators and sensors become global variables to the plant and controleand
put in separate AMN machines. The actuators are read by the plant and set via
operation calls by the controller. The sensors are read by the controllesean
via operation calls by the plant. For this, the plant includes the ssrsal sees
the actuators. Dually, the controller includes the actuators and sees foessen

e The abstract machine is refined by the parallel composition of the plant @nd co
troller, with the actuators and sensors made local to the parallel conopo3ihe
abstraction invariant relates the abstract machine state to the plant statenth
troller state and to the sensors and actuators. By having possifdyedif plant
and controller states we can take into account that the controller may have onl
partial observabilityof the plant and may need to keep track of the plant evolution
in its own way.

e The actions of the plant refine the corresponding actions of the machime: t
guards are now expressed in terms of the plant variables, sensors, andragtuat
the bodies of the actions model the evolution of the machine by chara
plant state and the sensors and then calling the corresponding controlber
dures, like interrupt procedures. For this, the plant includes th&atar and
refines the abstract machine specification.

The general decomposition schema for this approach is shown in Fig.16.10
a plant action does not require a reaction of the controller, the corrdspoall
can be omitted. Also, if the actuators can not only be set but also read paiapeo
procedures in the actuator machine can be added. Having the actuators ansl sensor
encapsulated in separate machines allows to abstract from the details of damarticu
communication mechanism, which depends on the underlying hardware and oper
ating environment, e.g. memory mapped /O or calls to send and receive opsratio

Since this is a refinement step, the invariance properties of each machine are
inherited automatically: the controller, when “applied” to the plant, gotees all
previously shown safety requirements.

Although our goal is to produce controllers for the machines, we gebggrad-
uct specifications of the physical plant as well. These specifications areingttgo
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REFINEMENT  MachinePlant MACHINE  MachineCtrl
REFINES Machine INCLUDES MachineActuators
INCLUDES MachineCtrl, MachineSensors SEES MachineSensors
VARIABLES VARIABLES
plant state controller state
INVARIANT INVARIANT
variable types\ variable types
refinement invariant for plant variables, INITIALISATION
controller variables, actuators, sensors i q
controller state and actuatorg
INITIALISATION initialisation
plant state and sensors initialisation
OPERATIONS
OPERATIONS ActionCtrl ( parameter§y =
Action( parametery = controller state and
SELECT refined guard THEN actuators change
plant state and sensors chanpe
ActionCtrl ( parameterg
END,
END
END
MACHINE  MachineSensors MACHINE  MachineActuators
VARIABLES VARIABLES
sensors actuators
INVARIANT INVARIANT
variable types variable types
INITIALISATION INITIALISATION
sensorse any value actuators:€ any value
OPERATIONS OPERATIONS
SetSensofss) = SetActuato( aa) =
Sensor.= ss, actuator:= aa,
END END

Fig. 6.10.General Decomposition Schema for Plant and Controller
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be implemented in AMN, but can be used to check whether the physical plant does
indeed conform to these specifications.

This schema, although generally applicable, has the disadvantage that, ehen th
system gets large the abstraction invariant can get rather complex. Faothep
tion cell machines, we can employ a variation of this schema, shown in Hig. 6.
and Fig. 6.12. This schema helps in composing the production cellodientf the
machine controller by keeping the abstraction invariants local to theattamg. It
also incorporates two further simplifications:

e The decomposition into plant and controller and the introductiorenéers and
actuators is split into two successive refinement steps. The first refinstepnt
does not involve data refinement and yields an abstract specification of thie plan
and the controller. The second refinement step refines the controller bguctr
ing the sensors and actuators with an abstraction invariant. Thus, tesamd
actuators become local variables of the controller rather than its global lesriab
as in the general schema.

¢ Asthe machines are equipped with enough sensors, each controller can keep track
of the plant state. Thus, we can identify the controller and plant stdtetie
abstract machine state. In the decomposition step, we keefClODNCRETE-
VARIABLESN the controller (which is included in the plant). This way, the plant
and later the combined controller of the production cell can read those \ewiabl

e Since all sensors are binary, all sensor changes can be signalled to thdleontro
by a controller call for each sensor value. There is no need to represent thessenso
explicitly in AMN machines.

A difference to the general schema is that we only get an abstract plant specifica-
tion, not one which involves the sensors and actuators.

In this schema, the machine controllers (Fig. 6.11) now appear to blasimi
the original machine specification (Fig. 6.9). However, there is ogafgiant dif-
ference: the operations in the controller are procedures with precorslitioereas
the operations in the machines are actions with guards. Thus, in a sebseg-
finement step the preconditions of the controller procedures may be weakened o
eliminated.

For the refinement of the abstract machines to the plants, the conditioas-f
tion system refinement as given in Chapter 5 have to hold. Of the fouitzorsd
given in Definition 5.1, the first three (the initialisations are datfined, the pro-
cedures are data-refined, and the actions are data-refined) are those of AMN refine-
ment and checked by the tools. The fourth condition (under the abstramtariant
the guard of each abstract action implies the guard of the refining acticeg hol
our scheme trivially since the guards remain unchanged.

The following three types for actuator values are used:

MACHINE ActuatorTypes
SETS

MOTOR= { RUN, HALT } ;
REVMOTOR= { FWD, BACK, STOP} ,
GRIPPER= { HOLD, RELEASE}
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REFINEMENT  MachinePlant
REFINES Machine
INCLUDES MachineCitrl

OPERATIONS

Action( parametery =
SELECT guard THEN
ActionCtrl ( parameterg
END ;

END

Fig. 6.11.Decomposition Schema for the Production Cell Machines

MACHINE  MachineCtrl
CONCRETE_VARIABLES

machine state
INVARIANT

variable types
INITIALISATION

machine state initialisation

OPERATIONS

ActionCtrl ( parameterg =
PRE guard THEN
machine state change
END ;

END

IMPLEMENTATION MachineCtrlimp
REFINES MachineCitrl
IMPORTS MachineActuators
INVARIANT

refinement invariant for actuators
INITIALISATION

machine state and
actuators initialisation

OPERATIONS

ActionCtrl ( parameterg =
machine state change and
actuator setting

END

MACHINE  MachineActuators
VARIABLES

actuators
INVARIANT

variable types
INITIALISATION

actuators:€ any value

OPERATIONS

SetActuato aa) =
actuator:.= aa,

END

Fig. 6.12.Refinement Schema for the Controllers of the Production Cell
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END

6.4.1 The Feed Belt

The first refinement step decompobeedBelinto FeedBeltPlanandFeedBeltCtrl
The refinement of the actidBndReacheckelies on the fact that

SELECT  belt= RunningA halt= TRUE THEN
belt:= Stopped

WHEN  belt= RunningA halt= FALSE THEN
belt:= Delivering

END

is equivalent to:

SELECT  belt=Running THEN
IF halt=TRUE THEN belt:= Stopped
ELSE belt:= Delivering
END

END

The resulting code is:

MACHINE FeedBeltCtrl
SEES FeedBeltTypes
CONCRETE_VARIABLES

belt
INVARIANT

beltc FEEDBELT
INITIALISATION

belt := Running
OPERATIONS

EndReachedCtif halt) =
PRE halt e BOOLA belt= Running THEN
IF halt=TRUE THEN belt:= Stopped
ELSE belt:= Delivering
END
END

ContinueDeliveryCtrl =
PRE belt= Stopped THEN belt:= Delivering END ;

PartLeftCtrl =
PRE belt=Delivering THEN  belt:= Running END

END

REFINEMENT FeedBeltPlant
REFINES FeedBelt
SEES FeedBeltTypes
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INCLUDES FeedBeltCitrl
OPERATIONS

EndReachedhalt) =
PRE halte BOOL THEN
SELECT belt=Running THEN EndReachedCti{halt) END
END ;

ContinueDelivery=
SELECT belt=Stopped THEN  ContinueDeliveryCtrl END ;

PartLeft=
SELECT belt=Delivering THEN  PartLeftCtrl END

END

The second refinement step introduces in the controller the actuatior of
type MOTORfor the feed belt motor. It is set BUNf the feed belt iSRunningor
Deliveringand is be set tblALT if the feed belt isStoppedAlso, in this refinement
step the preconditions are eliminated.

MACHINE FeedBeltActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motore MOTOR
INITIALISATION

motor:€ MOTOR
OPERATIONS

SetMotor(mm) =
PRE mme MOTOR THEN motor:=mm END

END

IMPLEMENTATION  FeedBeltCtrlimp
REFINES FeedBeltCtrl

SEES FeedBeltTypesActuatorTypes
IMPORTS FeedBeltActuators
INVARIANT

(belt e { Running, Delivering} = motor= RUN) A
( belt= Stopped=- motor= HALT)

INITIALISATION
belt := Running; SetMotor( RUN)
OPERATIONS

EndReachedCt halt) =
IF  halt=TRUE THEN belt:= Stopped, SetMotor( HALT)
ELSE belt:= Delivering
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END ;
ContinueDeliveryCtrl =
BEGIN  belt:= Delivering; SetMotor(RUN) END ;

PartLeftCtrl =
belt:= Running

END

6.4.2 The Table

The first refinement step decompodele into TablePlantand TableCitrl Like
above, SELECT statements with multiple branches are transformed inteSE
statements with a single guard and body.

MACHINE  TableCitrl
SEES TableTypes
CONCRETE_VARIABLES

elev, rot
INVARIANT

eleve ELEV A rot € ROT
INITIALISATION

elev:= AtLower || rot := AtLeft
OPERATIONS

PartPlacedCtrl =
PRE elev= AtLowerA rot = AtLeft THEN
elev:i= MovingUp || rot := RotatingRight
END,

PartTakenCtrl =
PRE elev= AtUpperA rot = AtRight THEN
elev:= MovingDown || rot := RotatingLeft
END ;

UpReachedCtr{ moveBack =
PRE  moveBaclke BOOLA elev= MovingUp THEN
IF moveBack= TRUE THEN
elev:= MovingDown || rot := RotatingLeft
ELSE elev:= AtUpper
END
END ;

DownReachedCtrl =
PRE elev=MovingDown THEN elev:=AtLower END,

RightReachedCti{ moveBack =
PRE  moveBaclke BOOLA rot = RotatingRight THEN
IF moveBack= TRUE THEN
elev:= MovingDown || rot := RotatingLeft
ELSE rot := AtRight
END
END ;
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LeftReachedCtrl =
PRE rot = RotatingLeft THEN  rot:= AtLeft END

END

REFINEMENT  TablePlant
REFINES Table

SEES TableTypes
INCLUDES TableCtrl
OPERATIONS

PartPlaced =
SELECT elev= AtLowerA rot = AtLeft THEN  PartPlacedCtrl END ;

PartTaken =
SELECT elev= AtUpperA rot = AtRight THEN  PartTakenCtrl END ;

UpReached moveBack =
PRE moveBack BOOL THEN
SELECT elev=MovingUp THEN  UpReachedCtr{ moveBack
END
END ;

DownReached
SELECT elev=MovingDown THEN DownReachedCtrl END ;

RightReached moveBack =
PRE moveBack BOOL THEN
SELECT rot = RotatingRight THEN  RightReachedCti(l moveBacK
END
END ;

LeftReached =
SELECT rot = RotatingLeft THEN  LeftReachedCtrl END

~

END

The second refinement step introduces in the controller the acteddoidotor
androtMotor of type REVMOTORor elevating and rotating the table, respectively.
The actuatoelevMotoris set toFWD if the table isMovingUp to BACK if the
table isMovingDown and toSTOPRif the table isAtLoweror AtUpperposition. The
actuatorotMotor is set analogously. Also, in this refinement step the preconditions
are eliminated.

MACHINE TableActuators
SEES ActuatorTypes
VARIABLES
elevMotor, rotMotor
INVARIANT
elevMotore REVMOTORA rotMotor € REVMOTOR
INITIALISATION
elevMotor:e REVMOTOR]|| rotMotor :c REVMOTOR
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OPERATIONS

SetElevMotol( em) =
PRE eme REVMOTOR THEN elevMotor:==em END ;

SetRotMoto(rm) =
PRE rme REVMOTOR THEN rotMotor :=rm END

END

IMPLEMENTATION  TableCtrlimp
REFINES TableCtrl

SEES TableTypes ActuatorTypes
IMPORTS TableActuators
INVARIANT

( elev= MovingUp=- elevMotor= FWD) A

( elev= MovingDown=- elevMotor= BACK) A

(eleve { AtLower, AtUpper} = elevMotor= STOP) A
(rot = RotatingRight=- rotMotor = FWD) A

(rot = RotatingLeft=- rotMotor = BACK) A

(rot € { AtLeft, AtRight} = rotMotor = STOP)

INITIALISATION

elev:= AtLower, rot := AtlLeft,
SetElevMotoll STOP) ; SetRotMotoll STOP)

OPERATIONS

PartPlacedCtrl =
BEGIN
elev:= MovingUp;, rot := RotatingRight,
SetElevMoto( FWD) ; SetRotMotoll FWD)
END,

PartTakenCtrl =
BEGIN
elev:= MovingDown; rot := RotatingLeft
SetElevMoto BACK) ; SetRotMoto( BACK)
END,

UpReachedCtr{ moveBack =
IF moveBack= TRUE THEN
elev:= MovingDown; SetElevMoto( BACK) ;
rot := RotatingLeft; SetRotMotol BACK)
ELSE elev:= AtUpper, SetElevMoto STOP)
END ;

DownReachedCtrl =
BEGIN elev:= AtLower, SetElevMoto STOP) END,

RightReachedCti{ moveBack =
IF moveBack= TRUE THEN
elev:= MovingDown, SetElevMoto BACK) ;
rot := RotatingLeft; SetRotMoto BACK)
ELSE rot:= AtRight; SetRotMotol STOP)
END,
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LeftReachedCtrl =
BEGIN rot:= AtLeft; SetRotMoto STOP) END

END

6.4.3 The Robot

The first refinement step decompod@gArmRobointo TwoArmRobotPlanand
TwoArmRobotCtrlAs previously, SELECT statements with multiple branches are
transformed into SELECT statements with a single guard and body€efinement

of the actionPos2Reacherklies on the fact that

SELECT base= RotatingFwdToPos2 THEN
base:= AtPos2|| ...

WHEN  base= RotatingBackToPos2 THEN
belt:= RotatingBackToPos1

END

is equivalent to:

SELECT  basec {RotatingFwdToPosRotatingBackToPos THEN
IF  base= RotatingFwdToPos2 THEN
base:= AtPos2|| ...
ELSE belt:= RotatingBackToPos1
END
END

Similar equivalences are used farm1inReachedhrm1MiddleReached\rm2-
InReachedandArm2MiddleReached he resulting code is:

MACHINE  TwoArmRobotCitrl
SEES TwoArmRobotTypes
CONCRETE_VARIABLES

base, arm1, arm2, arm1Holding, arm2Holding
INVARIANT

basec ROBOTBASE armlc ROBOTARMA arm2 < ROBOTARMA
arm1Holdinge BOOL A arm2Holdinge BOOL

INITIALISATION

base:= AtPos3 ||
arml:= Atlnner || arm2:= RetractingTolnner||
arm1Holding:= FALSE || arm2Holding:= FALSE

OPERATIONS

PartAvailableCtrl =
PRE base= AtPoslA arml= AtMiddle THEN
arml:= RetractingTolnner|| arm1Holding:= TRUE
END ,

ProcessingFinishedCtrl =
PRE base= AtPos2A arm2= Atlnner THEN
arm2:= ExtendingToMiddle
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END ,

ProcessingReadyCtrl =
PRE base= AtPos3A arml= Atinner A arm1Holding= TRUE THEN
arml:= ExtendingToMiddle
END,

DepositReadyCtrl =
PRE base= AtPos3A arm2= AtMiddle THEN
arm2:= RetractingTolnner|| arm2Holding:= FALSE
END,

Pos1ReachedCtrl =
PRE base= RotatingBackToPos1 THEN
base:= AtPos1|| arml:= ExtendingToMiddle
END ;

Pos2ReachedCtflunload) =
PRE unloade BOOLA basec { RotatingFwdToPos2RotatingBackToPos?
THEN
IF  base= RotatingFwdToPos2 THEN
base:= AtPos2 ||
IF unload=TRUE THEN arm2:= ExtendingToMiddle END
ELSE base:= RotatingBackToPos1
END
END ;

Pos3ReachedCt(lload) =
PRE load € BOOLA base= RotatingFwdToPos3 THEN
base:= AtPos3 ||
IF  load=TRUE THEN arml:= ExtendingToMiddle END ||
arm2:= ExtendingToMiddle
END ;

ArmlinReachedCtrl =
PRE arml= RetractingTolnner THEN
arml:= Atlnner ||
IF  base=AtPosl THEN base:= RotatingFwdToPos2
ELSIF arm2=Atinner THEN  base:= RotatingBackToPos2
END
END ;

Armi1MiddleReachedCt(lfetchPart) =
PRE fetchPartc BOOLA armle { ExtendingToMiddle RetractingToMiddlg
THEN
IF arml= ExtendingToMiddle\ base= AtPos1 THEN
IF  fetchPart= FALSE THEN arml:= AtMiddle
ELSE arml:= RetractingTolnner|| arm1lHolding:= TRUE
END
ELSIF arml= ExtendingToMiddle THEN arml:= ExtendingToOuter
ELSE arml:= RetractingTolnner
END
END ;

Arm1OutReachedCtrl =
PRE arml= ExtendingToOuter THEN
arml:= RetractingToMiddle|| arm1Holding:= FALSE
END ;
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Arm2InReachedCtrl =

PRE arm2= RetractingTolnner THEN
arm2:= Atlnner ||
IF  base=AtPos2 THEN  base:= RotatingFwdToPos3
ELSIF  arml= Atlnner A armlHolding= FALSE THEN

base:= RotatingBackToPos2

END

END ;

Arm2MiddleReachedCt(ldepositPart) =
PRE depositPartce BOOLA arm2 ¢ { ExtendingToMiddlg

RetractingToMiddlg THEN

IF arm2= ExtendingToMiddle\ base= AtPos3 THEN
IF  depositPart= FALSE THEN arm2:= AtMiddle
ELSE arm2:= RetractingTolnner|| arm2Holding:= FALSE
END

ELSIF  arm2= ExtendingToMiddle THEN
arm2:= ExtendingToOuter

ELSE
arm2:= RetractingTolnner
END
END ;
Arm20utReachedCtrl =

PRE arm2= ExtendingToOuter THEN
arm2:= RetractingToMiddle|| arm2Holding:= TRUE
END

END

REFINEMENT TwoArmRobotPlant
REFINES TwoArmRobot

SEES TwoArmRobotTypes
INCLUDES TwoArmRobotCitrl
OPERATIONS

PartAvailable
SELECT base= AtPoslA arml= AtMiddle THEN  PartAvailableCtrl
END,

ProcessingFinished =
SELECT base= AtPos2A arm2= Atlnner THEN  ProcessingFinishedCtrl
END ;

ProcessingReady =
SELECT  base= AtPos3A arm1l= Atlnner A arm1Holding= TRUE THEN
ProcessingReadyCtrl
END,

DepositReady =
SELECT base= AtPos3A arm2= AtMiddle THEN  DepositReadyCitrl
END ;

Pos1Reached =
SELECT base= RotatingBackToPos1 THEN  PoslReachedCtrl END ,

~

Pos2Reache@unload) =

~
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PRE unloade BOOL THEN
SELECT  basec { RotatingFwdToPos2RotatingBackToPos?2 THEN
Pos2ReachedCt(lunload)
END
END ;

Pos3Reache(lload) =
PRE loadeBOOL THEN
SELECT base= RotatingFwdToPos3 THEN  Pos3ReachedCtflload )
END
END ;

ArmlinReached =
SELECT arml= RetractingTolnner THEN  ArmlinReachedCtrl END ;

Armi1MiddleReache(@fetchPart) =
PRE fetchPartc BOOL THEN
SELECT armle { ExtendingToMiddle RetractingToMiddlg  THEN
Arm1MiddleReachedCitflfetchPart)

END
END ;
Arml1OutReached =
SELECT arml= ExtendingToOuter THEN  Arml1OutReachedCtrl
END ;

Arm2InReached =
SELECT arm2= RetractingTolnner THEN  Arm2InReachedCtrl END ;

Arm2MiddleReache@depositPar) =
PRE depositParte BOOL THEN
SELECT arm2e { ExtendingToMiddle RetractingToMiddlg  THEN
Arm2MiddleReachedCt(ldepositPart)
END
END,
Arm20utReached =
SELECT arm2= ExtendingToOuter THEN  Arm2OutReachedCtrl END

END
The second refinement step introduces the following actuators in thetentr

rotMotor This actuator of typ&@EVMOTORS for rotating the robot base. It is set
to FWD if the base isRotatingFwdToPos2r RotatingFwdToPos3t is set to
BACK If the base isRotatingBackToPos@r RotatingBackToPoshnd it is set
to STOPIf the base isAtPos1 AtPos2 or AtPos3

armlMotor, arm2Motor These actuators of typREVMOTORAare for extending
and retracting arm 1 and arm 2, respectively. They are 48\ if the corre-
sponding arm iE€xtendingToMiddler ExtendingToOutethey are set tBACK
if the corresponding arm RetractingTolnneor RetractingToOuterand are set
to STOPIf the arm isAtinneror AtMiddle (Recall that the arms never stay at
the outer position, they retract immediately.)

arml1Gripper, arm2Gripper These actuators of typ@RIPPERare set toHOLD
if arm1Holdingor arm2Holdingis true, respectively, and are setRELEASE
otherwise.
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Also, in this refinement step the preconditions are eliminated. Theiresabde
is:
MACHINE  TwoArmRobotActuators
SEES ActuatorTypes
VARIABLES
rotMotor , arm1Motor, arm2Motor, arm1Gripper, arm2Gripper
INVARIANT

rotMotor € REVMOTORA
armlMotore REVMOTOR\ arm2Motore REVMOTORA
arm1Gripper: GRIPPERA arm2Grippere GRIPPER

INITIALISATION

rotMotor :€ REVMOTOR||
armlMotor:e REVMOTOR|| arm2Motor:e REVMOTORY|
arml1Gripper:€ GRIPPER|| arm2Gripper:c GRIPPER

OPERATIONS

SetRotMoto(rm) =
PRE rme REVMOTOR THEN  rotMotor:=rm END;

SetArmilMoto(al) =
PRE ale REVMOTOR THEN armlMotor:=al END,

SetArm2Moto( a2) =
PRE a2 REVMOTOR THEN arm2Motor:=a2 END,

SetArm1Grippefgl) =
PRE gle GRIPPER THEN armlGripper:=gl END,

SetArm2Grippe(g2) =
PRE g2¢ GRIPPER THEN arm2Gripper:=g2 END

END

IMPLEMENTATION  TwoArmRobotCtrlimp
REFINES TwoArmRobotCtrl

SEES TwoArmRobotTypesActuatorTypes
IMPORTS TwoArmRobotActuators
INVARIANT

(rotMotor = FWD) < ( basec { RotatingFwdToPos2RotatingFwdToPos3 ) A
(rotMotor = BACK) < ( basec { RotatingBackToPos2RotatingBackToPos} ) A
(rotMotor = STOP) < ( basec { AtPos1, AtPos2, AtPos3} ) A

(armlMotor= FWD) < (armle { ExtendingToMiddle ExtendingToOute} ) A
(armlMotor= BACK) < (armle { RetractingTolnner RetractingToMiddlg ) A
(armlMotor= STOP) < (armle { Atinner, AtMiddle } ) A

(arm2Motor= FWD) < ( arm2e { ExtendingToMiddle ExtendingToOute} ) A
(‘arm2Motor= BACK) < (arm2e¢ { RetractingTolnner RetractingToMiddlg ) A
(arm2Motor= STOP) < (arm2¢ { Atinner, AtMiddle } ) A

(arml1Gripper= HOLD) < (arml1Holding= TRUE) A
(arm2Gripper= HOLD) < ( arm2Holding= TRUE)
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INITIALISATION
base:= AtPos3; arml:= Atlnner, arm2:= RetractingTolnne}

SetRotMotoll STOP) ; SetArm1Motol STOP) ; SetArm2Motol BACK) ,

armlHolding:= FALSE, arm2Holding:= FALSE,
SetArm1Grippef RELEASE ; SetArm2Grippef RELEASEH

OPERATIONS

PartAvailableCtrl =
BEGIN
arml:= RetractingTolnnei SetArm1Motoi BACK) ;
armlHolding:= TRUE, SetArm1Grippef HOLD)
END,

ProcessingFinishedCtrl =
BEGIN  arm2:= ExtendingToMiddlé SetArm2Moto FWD)

ProcessingReadyCtrl =
BEGIN arml:= ExtendingToMiddlé SetArm1Moto FWD)

DepositReadyCtrl =
BEGIN
arm2:= RetractingTolnne;, arm2Holding:= FALSE;
SetArm2Moto BACK) ; SetArm2Grippefl RELEASE
END ;

Pos1ReachedCtrl =
BEGIN
base:= AtPosl; SetRotMoto STOP) ;
arml:= ExtendingToMiddlé SetArm1Moto( FWD)
END,

Pos2ReachedCt(lunload) =
IF  base= RotatingFwdToPos2 THEN
base:= AtPos2; SetRotMoto STOP) ,
IF unload=TRUE THEN
arm2:= ExtendingToMiddle SetArm2Moto( FWD)

END
ELSE base:= RotatingBackToPos1
END ;
Pos3ReachedCt(lload) =
BEGIN

base:= AtPos3; SetRotMoto STOP) ;
IF  load=TRUE THEN
arml:= ExtendingToMiddle SetArm1Moto( FWD)

END ;
arm2:= ExtendingToMiddle SetArm2Moto( FWD)
END ;
ArmlinReachedCtrl =
BEGIN

arml:= Atlnner, SetArm1Motol STOP) ,
IF  base= AtPosl THEN

base:= RotatingFwdToPos2 SetRotMoto( FWD)
ELSIF arm2= Atlnner THEN

base:= RotatingBackToPos2 SetRotMoto BACK)
END

END ;

END ;

231
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END ,

Arml1MiddleReachedCtflfetchPart) =
IF arml= ExtendingToMiddle\ base= AtPosl THEN
IF  fetchPart= FALSE THEN
arml:= AtMiddle; SetArm1Motol STOP)
ELSE
arml:= RetractingTolnnei SetArm1Moto BACK) ;
armlHolding:= TRUE,; SetArm1Grippef HOLD)
END
ELSIF  arml= ExtendingToMiddle THEN  arml:= ExtendingToOuter
ELSE arml:= RetractingTolnner
END ;

Arm1OutReachedCtrl =
BEGIN
arml:= RetractingToMiddlé SetArm1Moto BACK) ;
armlHolding:= FALSE; SetArm1Grippe( RELEASE
END,

Arm2InReachedCtrl =
BEGIN
arm2:= Atlnner, SetArm2Motol STOP) ,
IF  base= AtPos2 THEN
base:= RotatingFwdToPos3 SetRotMoto( FWD)
ELSIF  arml= Atlnner A armlHolding= FALSE THEN
base:= RotatingBackToPos2 SetRotMoto BACK)
END
END

Arm2MiddleReachedCt(ldepositParf) =
IF  arm2= ExtendingToMiddle\n base= AtPos3 THEN
IF  depositPart= FALSE THEN
arm2:= AtMiddle, SetArm2Moto STOP)
ELSE
arm2:= RetractingTolnne, SetArm2Motoi BACK) ;
arm2Holding:= FALSE; SetArm2Grippef{ RELEASE
END
ELSIF  arm2= ExtendingToMiddle THEN  arm2:= ExtendingToOuter
ELSE arm2:= RetractingTolnner
END ;

Arm20utReachedCtrl =
BEGIN
arm2:= RetractingToMiddl§ arm2Holding:= TRUE,
SetArm2Grippe( HOLD) ; SetArm2Motoll BACK)
END

END

6.4.4 The Press

The first refinement step decompogesssinto PressPlanandPressCtrl The SE-
LECT statement with two branches in the actddiddleReacheds transformed into
a SELECT statements with a single guard and body.
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MACHINE  PressCtrl
SEES PressTypes
CONCRETE_VARIABLES
press
INVARIANT
presse PRESS
INITIALISATION
press.= MovingToUnloading

OPERATIONS

PartPlacedCtrl =
PRE press= AtLoading THEN  press;= Pressing END ,

PartTakenCtrl =
PRE press= AtUnloading THEN  press.= MovingToLoading END ;

DownReachedCtrl =
PRE press= MovingToUnloading THEN press:= AtUnloading END ;

MiddleReachedCtrl =
PRE presse { MovingToLoading Opening} THEN
IF  press= MovingToLoading THEN  press.= AtLoading
ELSE press:= MovingToUnloading
END
END ;

UpReachedCtrl =
PRE press=Pressing THEN press:= Opening END

END

REFINEMENT PressPlant
REFINES Press

SEES PressTypes
INCLUDES PressCitrl
OPERATIONS

PartPlaced =
SELECT press= AtLoading THEN  PartPlacedCtrl END ;

~

PartTaken =
SELECT  press= AtUnloading THEN  PartTakenCtrl END ;

DownReached =

233

SELECT press= MovingToUnloading THEN  DownReachedCtrl END

MiddleReached =
SELECT  presse { MovingToLoading Opening} THEN
MiddleReachedCitrl
END

UpReached =
SELECT press= Pressing THEN  UpReachedCtrl END

END
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The second refinement step introduces in the controller the actunatior of
type REVMOTOR(for the press motor. It is set tBWD if the press isMoving-
ToLoadingor Pressing to BACK if the press iSOpeningor MovingToUnloading
and toSTOPIf the press isAtUnloadingor AtLoading Also, in this refinement step
the preconditions are eliminated.

MACHINE PressActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motor¢ REVMOTOR
INITIALISATION

motor:€ REVMOTOR
OPERATIONS

SetMotor(mm) =
PRE mme REVMOTOR THEN motor:=mm END

END

IMPLEMENTATION  PressCtrlimp
REFINES PressCtrl

SEES PressTypesActuatorTypes
IMPORTS PressActuators
INVARIANT

( presse { MovingToLoading Pressing} = motor=FWD) A
(presse { Opening, MovingToUnloading} = motor= BACK) A
(presse { AtUnloading, AtLoading} = motor= STOP)

INITIALISATION
press.= MovingToUnloading SetMotor( BACK)

OPERATIONS

PartPlacedCtrl =
BEGIN  press:= Pressing, SetMotor( FWD) END ;

PartTakenCtrl =
BEGIN  press.= MovingToLoading SetMotor( FWD) END,

DownReachedCtrl =
BEGIN  press.= AtUnloading, SetMotor( STOP) END,

MiddleReachedCtrl =
IF  press= MovingToLoading THEN
press:.= AtLoading, SetMotor( STOP)
ELSE press.= MovingToUnloading
END,

UpReachedCtrl =
BEGIN  press.= Opening, SetMotor( BACK) END
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END

6.4.5 The Deposit Belt

The first refinement step decompodgaspositBeltinto DepositBeltPlantand De-
positBeltCtrl Again, SELECT statements with multiple branches are transformed
into SELECT statements with a single guard and body.

MACHINE DepositBeltCtrl
SEES DepositBeltTypes
CONCRETE_VARIABLES

belt
INVARIANT

belte DEPOSITBELT
INITIALISATION

belt := Empty
OPERATIONS

PartPlacedCtrl =
PRE belte { Empty, Available} THEN
IF belt=Empty THEN belt:= Transporting
ELSE belt:= AvailableAndPlaced
END
END ;

EndReachedCtrl =
PRE belt= Transporting THEN  belt:= Available END

PartTakenCtrl =
PRE belte { Available, AvailableAndPlaced THEN
IF  belt=Available THEN belt:= Empty
ELSE belt:= Transporting
END
END

END

REFINEMENT DepositBeltPlant
REFINES DepositBelt

SEES DepositBeltTypes
INCLUDES DepositBeltCtrl
OPERATIONS

PartPlaced =
SELECT  belte { Empty, Available} THEN  PartPlacedCtrl END ;

EndReached =
SELECT belt=Transporting THEN EndReachedCtrl END ,

PartTaken =
SELECT  belte { Available, AvailableAndPlaced THEN
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PartTakenCitrl
END

END

In this refinement step, the operatiBartTakenCtrlis noteworthy: its effect de-
pends on whether a part is placed on the front of the Betii{ableAndPlacedor
not (Available, which is not observable by any sensor readings. Hence, it is es-
sential that the deposit belt controller keeps track of the plant stateti{E&ather
machines, the state is fully observable and keeping the plant stateé@vexiables
is merely a convenience for testing the state.)

The second refinement step introduces in the controller the actunatior of
type MOTORfor the deposit belt motor. It is set RUNIf the deposit belt iSrans-
portingand toHALT if the deposit belt iEmpty Available or AvailableAndPlaced
Also, in this refinement step the preconditions are eliminated.

MACHINE DepositBeltActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motore MOTOR
INITIALISATION

motor:€ MOTOR
OPERATIONS

SetMotor(mm) =
PRE mme MOTOR THEN motor:=mm END

END

IMPLEMENTATION  DepositBeltCtrlimp
REFINES DepositBeltCtrl

SEES ActuatorTypes DepositBeltTypes
IMPORTS DepositBeltActuators
INVARIANT

( belt= Transporting=- motor= RUN) A
(belte { Empty, Available, AvailableAndPlaced = motor= HALT)

INITIALISATION
belt := Empty; SetMotor( HALT)
OPERATIONS

PartPlacedCtrl =
IF  belt=Empty THEN belt:= Transporting; SetMotor( RUN)
ELSE  belt:= AvailableAndPlaced
END,

EndReachedCtrl =
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BEGIN  belt:= Available; SetMotor( HALT) END,

PartTakenCtrl =
IF  belt=Available THEN belt:= Empty
ELSE belt:= Transporting, SetMotor( RUN)
END

END

6.5 Specification of the Production Cell

The production cell is specified in terms of the specifications of the iithatal ma-
chines:

¢ All machines are included once. By this, their variables and their initizdisst
are inherited. For referring to the machines more easily, they are givath sh
names by renaming.

e For each sensor change of each machine, there is one action in the production cell.
In the simplest case, a production cell action “calls” the correspondingiaatio
the machine concerned with this sensor change. In case the sensor change leads
possibly to an interaction with another machine, that interaction is speeiéied
well.

o Safety requirements concerning the interaction of the machines are expmessed i
the invariant.

The structure of the resulting specification is shown in Fig. 6.1@eNKhat the
production cell is not expressed as the parallel composition of the nes;Hint
rather by reusing the specifications of the machines through inclusioce $he
machines are included, their variables can only be changed through their opgrati
This ensures that the invariant of each machine is also an invariant of ttheqpiem
cell. In this way, the safety properties of the machines get automaticalyqieal
to safety properties of the production cell.

ProductionCell FeedBel

Table

TwoArmRobot

Press

Fig. 6.13. Structure of theProduc-
tionCell Specification: Arrows Stand
for Inclusion

o

DepositBelt
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MACHINE  ProductionCell
SEES

FeedBeltTypesTableTypes TwoArmRobotTypesPressTypesDepositBeltTypes
INCLUDES

FB. FeedBelt, TB. Table, RB. TwoArmRobot PR. Press, DB . DepositBelt
INVARIANT

Safety RequirementDelivery from the feed belt to the table is allowed only if tiale
is at lower left position.

(FB. belt= Delivering= TB. elev= AtLowerA TB. rot = AtLeft) A

Safety RequirementRobot arm 1 may only extend towards the press if the pressts in
middle position. Robot arm 2 may only extend towards thegoedy if the press is in its
lower position.

( RB. base= AtPos3A PR. press# AtUnloading= RB. arm1= Atlnner) A
( RB. base= AtPos2A PR. press# AtUnloading= RB. arm2= Atlnner) A

Safety RequirementThe press may only move if arm 1 is safe and if arm 2 is safe.

(RB. base= AtPos3A RB. arm1# Atinner=- PR. press= AtLoading) A
( RB. base= AtPos2A RB. arm2# Atinner=- PR. press= AtUnloading)

OPERATIONS

FeedBeltEndReachedA part reaches the end of the feed belt. If the table is ready fo
loading, i.e. in its lower left position, the feed belt cantés to run, otherwise it stops.

FeedBeltEndReached =
FB . EndReachedbool ( TB. elev# AtLowerV TB. rot # AtLeft) ) ;

FeedBeltPartLeft A part has left the feed belt and is placed on the table.

FeedBeltPartLeft =
BEGIN  FB. PartLeft | TB. PartPlaced END ;

TableUpReachedThe table reaches its upper position. If it is also in itsrigbsition, i.e.
becomes ready for unloading, and the robot is waiting fooading the table, the robot
picks the part.

TableUpReached =
IF  TB.rot = AtRightA RB. base= AtPos1A RB. arml= AtMiddle THEN
TB. UpReached TRUE) || RB. PartAvailable
ELSE TB. UpReached FALSE)
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END ,

TableDownReachedThe table reaches its lower position. If it is also in its fedition,
i.e. becomes ready for loading, and a part is available orfebd belt, the feed belt
continues to run.

TableDownReached =
BEGIN
TB. DownReached|
IF TB.rot = AtLeftA FB. belt= Stopped THEN
FB . ContinueDelivery
END
END,

TableRightReachedThe table reaches its right position. If it is also in its uppesition,
i.e. becomes ready for unloading, and the robot is waitingufdoading the table, the
robot picks the part.

TableRightReached =
IF TB. elev= AtUpperA RB. base= AtPos1A RB. arm1l= AtMiddle THEN
TB. RightReached TRUE) || RB. PartAvailable
ELSE TB. RightReached FALSE)
END,

TableLeftReachedThe table reaches its left position. If it is also in its lovpesition, i.e.
becomes ready for loading, and a part is available on thelfelecthe feed belt continues
to run.

TableLeftReached =
BEGIN
TB. LeftReached]|
IF  TB.elev= AtLowerA FB. belt= Stopped THEN
FB . ContinueDelivery
END
END,

RobotPos1Reachedhe robot base reaches position 1. The robot then contioues-t
tend arm 1.

RobotPos1Reached = RB. Pos1Reache(l

RobotPos2Reached he robot base reaches position 2, either while rotatingdod or
while rotating backward. If rotating forward and if the pgds ready for unloading, the
robot continues to unload it.

RobotPos2Reached =
RB. Pos2Reache@bool ( PR. press= AtUnloading) ) ,
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RobotPos3Reached he robot base reaches position 3. Arm 2 starts to extend toid-
dle position. If the press is ready for being loaded, the r@ootinues with loading the
press by extending arm 1.

RobotPos3Reached = RB. Pos3Reache@bool ( PR. press= AtLoading) ) ,

RobotArmlinReached Robot arm 1 reaches its inner position, while the robot isegit
in position 1 after picking a part or position 3 after placangart in the press. In position 1,
the robot starts to rotate forward. In position 3, the préagsto process and the robot
starts to rotate backward, provided arm 2 is free.

RobotArmlinReached =
BEGIN
IF RB.base= AtPos3 THEN PR.PartPlaced END ||
RB. ArmlinReached
END ;

RobotArm1MiddleReachedRobot arm 1 reaches its middle position, while the robot is
either in position 1 or position 3. In position 1, if the talblas a part available, the part is
fetched and both the robot and table continue. In positiche8arm continues to extend
or retract.

RobotArm1MiddleReached =
IF  RB. base= AtPos1A TB. elev= AtUpperA TB. rot = AtRight THEN
RB. Arm1MiddleReache(iTRUE) || TB. PartTaken
ELSE RB.ArmlMiddleReache{lFALSE)
END ;

RobotArm1OutReached Robot arm 1 reaches its outer position, while the robot is in
position 3 for loading the press. The arm then releases thpagrand retracts.

RobotArm10OutReached = RB. Arm1OutReachei

RobotArm2InReached Robot arm 2 reaches its inner position, while the robot isan p
sition 2 (for unloading the press). The robot then rotateswdod and the press moves to
its loading position.

RobotArm2InReached =
BEGIN
IF RB.base= AtPos2 THEN PR.PartTaken END ||
RB. Arm2InReached
END ;

RobotArm2MiddleReached Robot arm 2 reaches its middle position, while the robot is
either in position 2 (for unloading the press) or in positg(for depositing the part). In
position 2 it continues to extend or retract, in position Bieases the part it is holding
with arm 2, provided the deposit belt is free.
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RobotArm2MiddleReached =
IF RB.base= AtPos3A DB. belt=Empty THEN
RB. Arm2MiddleReached TRUE) || DB. PartPlaced
ELSE RB.Arm2MiddleReache(FALSE)
END ;

RobotArm20utReached Robot arm 2 reaches its outer position, while the robot is in
position 2 (for unloading the press). The arm then picks #réip the press and retracts.

RobotArm20utReached = RB. Arm20OutReacheil

PressDownReached he press reaches its lower position. If the robot is in pwsi2, the
robot continues with unloading the press.

PressDownReached =
BEGIN
PR. DownReached|
IF  RB.base= AtPos2 THEN RB. ProcessingFinished END
END ;

PressMiddleReachedrhe press reaches its middle position. If the robot is intosi3
and arm 1 holds an unprocessed part, the robot starts lotdress.

PressMiddleReached =
BEGIN
IF PR. press= MovingToLoading\ RB. base= AtPos3A
RB.arm1= Atlnner A RB. arm1Holding= TRUE THEN
RB. ProcessingReady
END ||
PR. MiddleReached
END ;

PressUpReached he press reaches its upper position. The press then opeains ag

PressUpReached = PR. UpReached

DepositBeltEndReachedThe part on the deposit belt reaches the end of the belt. The
belt stops. If the robot is holding a part over the deposit, bieé part is released.

DepositBeltEndReached =
BEGIN
DB . EndReached|
IF RB.base= AtPos3A RB. arm2 = AtMiddle THEN
RB. DepositReady
END
END ;

DepositBeltPartTaken The part at the end of the deposit belt is removed. The deposit
belt may continue to run if there is another part on it.
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DepositBeltPartTaken = DB. PartTaken
END

The actions considered so far were of the standard 8EhECT P THEN
S or of the more general forrSELECT P, THEN S WHEN P, THEN S ...
END. Here, the composed actions are of a more complex form. Still, they can be
equivalently expressed in the standard form. For example, aetedBeltPartLeft
is defined by:

FB. PartLeft | TB. PartPlaced

Using the definitions oPartLeftandPartPlaced this is after renaming equivalent
to:

SELECT FB. belt=Delivering THEN FB.belt:= Running END ||
SELECT TB.elev= AtLowerA TB.rot = AtLeft THEN

TB. elev:= MovingUp || TB. rot := RotatingRight
END

For the subsequent transformation, we rewrite this using theitiefinf SELECT
(see Appendix):
( FB. belt= Delivering=> FB . belt:= Running) ||

( TB. elev= AtLowerA TB. rot = AtLeft—-
TB. elev:= MovingUp || TB. rot := RotatingRight

(I) S| skip =S
(2) ST =TS (9) SIS =S
(3) S[(TJV) =(SIT)|u (10 S[| T =T[S
(4) true=S =S8 (1) S| (TJU) =(S|T)[Ju
(5 (PAQ)=S=P=(Q=Y9) (12) true| S =S
6) P=9|T=P=(S|T) (13 (PAQ)|S =P[(Q|Y
if [T]true holds | (14) (P|S||IT =P|[(S||T)
(7) (P=9 [T =P=(S]T) (15 (P[S[T =PI(S]T)
if [T]true holds | (16) P|(Q=9 = (P=Q)|(P|9
8 P=Q|9 =P=Q[(P=F9

Fig. 6.14.Transformation Rules for Statemer@sT, U and PredicateB, Q

Fig. 6.14 gives basic identities which can be used for merging the twonadito
one. The predicatfSltrue characterises those states for which termination is guar-
anteed (the precondition) & In the machind’roductionCel) termination is guar-
anteed for all operations, hence this predicate holds. By applying ruteigg and
then simplifying with rule (5), we get:

FB . belt= DeliveringA TB. elev= AtLowerA TB. rot = AtLeft—
FB. belt:= Running | TB. elev:= MovingUp || TB. rot := RotatingRight

Finally, this is equivalently expressed in AMN as follows, which isutbe standard
form for actions:
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SELECT FB. belt= DeliveringA TB. elev= AtLowerA TB. rot = AtLeft THEN
FB . belt:= Running || TB. elev:= MovingUp || TB. rot := RotatingRight
END

Using the rules in Fig. 6.14, the other actions can be transformedndastd form
as well.

6.6 Derivation of the Production Cell Controller

The final step is to construct the controller of the production cell éuh® con-
trollers of the machines. This is done in two refinement steps:

e The first refinement step decomposes the production cell into a prodwetion
plant and a production cell controller. The plant is modelled as an actitensys
with only actions and the controller as an action system with only proesdur
The plant includes the controller and refines the production cell. Theattemt
procedures call the controllers of the machines following the patterowfthe
production cell actions are composed of the actions of the machines.

¢ In the second refinement step the controller is implemented by eliminiisg t
constructs which are not allowed in AMN implementations.

MACHINE  ProductionCellCtrl
SEES

FeedBeltTypesTableTypes TwoArmRobotTypesPressTypesDepositBeltTypes
INCLUDES

FB . FeedBeltCtrl, TB. TableCtrl, RB. TwoArmRobotCtr| PR. PressCirl,
DB . DepositBeltCtrl

OPERATIONS

FeedBeltEndReachedCtrl =
PRE FB.belt=Running THEN
FB . EndReachedCti bool ( TB. elev# AtLowerV TB. rot # AtLeft) )
END,

FeedBeltPartLeftCtrl =
PRE FB.belt= DeliveringA TB. elev= AtLowerA TB. rot = AtLeft THEN
FB . PartLeftCtrl | TB. PartPlacedCtrl
END ;

TableUpReachedCtrl =
PRE TB.elev=MovingUp THEN
IF  TB.rot = AtRightA RB. base= AtPos1A RB. arml= AtMiddle
THEN  TB. UpReachedCtr{ TRUE) || RB. PartAvailableCtrl
ELSE TB. UpReachedCtr{ FALSE)
END
END,

TableDownReachedCtrl =
PRE TB.elev=MovingDown THEN
TB. DownReachedCitrl|
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ProductionCell |-=

FeedBelt
ProductionCellPlant FeedBeltPlan

t—{ ProductionCellCtrl ! - FeedBeltCtrl

—— Table
TablePlant

B

TableCtrl

i

TwoArmRobot
TwoArmRobotPlant

_4L‘ TwoArmRobotCtrl |

Press

|

i

PressPlant

PressCitrl

i

DepositBelt
DepositBeltPlant

DepositBeltCtrl

Fig. 6.15. Structure of the Development: Arrows Stand for Inclusion &iling Indicates
Refinement

|

IF TB.rot = AtLeftA FB. belt= Stopped THEN
FB . ContinueDeliveryCirl
END
END,

TableRightReachedCtrl =
PRE TB. rot = RotatingRight THEN
IF TB. elev= AtUpperA RB. base= AtPos1A RB. arml= AtMiddle
THEN  TB. RightReachedCti{ TRUE) || RB. PartAvailableCitrl
ELSE TB. RightReachedCti FALSE)
END
END,

TableLeftReachedCtrl =
PRE TB.rot = RotatingLeft THEN
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TB. LeftReachedCitrl)|
IF  TB.elev= AtLowerA FB. belt= Stopped THEN
FB . ContinueDeliveryCirl
END
END ;

RobotPos1ReachedCtrl =
PRE RB.base= RotatingBackToPosl THEN  RB.Posl1ReachedCitrl
END ;

RobotPos2ReachedCtrl =
PRE RB.basec { RotatingFwdToPos2RotatingBackToPos® THEN
RB. Pos2ReachedCt(lbool ( PR. press= AtUnloading) )
END ;

RobotPos3ReachedCtrl =
PRE RB. base= RotatingFwdToPos3 THEN
RB. Pos3ReachedCt(lbool ( PR. press= AtLoading) )
END,

RobotArmlinReachedCtrl =
PRE RB.arml= RetractingTolnnen
(RB. base= AtPos3= PR. press= AtLoading) THEN
IF RB.base= AtPos3 THEN PR. PartPlacedCtrl END ||
RB. ArmlinReachedCtrl
END ;

RobotArm1MiddleReachedCtrl =
PRE RB.armle { ExtendingToMiddle RetractingToMiddlg THEN
IF  RB.base= AtPos1A TB. elev= AtUpperA TB. rot = AtRight THEN
RB. Arm1MiddleReachedCt(ITRUE) || TB. PartTakenCtrl
ELSE RB.ArmlMiddleReachedCt(IFALSE)
END
END,

RobotArm1OutReachedCtrl =
PRE RB.arml= ExtendingToOuter THEN  RB. Arml1OutReachedCtrl
END ;

RobotArm2InReachedCtrl =
PRE RB.arm2= RetractingTolnnen
(RB. base= AtPos2= PR. press= AtUnloading) THEN
IF  RB.base= AtPos2 THEN PR. PartTakenCtrl END ||
RB. Arm2InReachedCtrl
END,

RobotArm2MiddleReachedCtrl =
PRE RB.arm2e { ExtendingToMiddle RetractingToMiddlg THEN
IF RB.base= AtPos3A DB. belt=Empty THEN
RB. Arm2MiddleReachedCt(ITRUE) || DB. PartPlacedCtrl
ELSE RB.Arm2MiddleReachedCt(IFALSE)
END
END ;

RobotArm20utReachedCtrl =
PRE RB.arm2= ExtendingToOuter THEN  RB. Arm20OutReachedCtrl
END ;

PressDownReachedCtrl =
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PRE PR. press= MovingToUnloading\

( RB. base= AtPos2= RB. arm2= Atlnner)
THEN

PR. DownReachedCtrl|

IF  RB.base= AtPos2 THEN RB. ProcessingFinishedCtrl END
END,

PressMiddleReachedCtrl =

PRE PR. presse { MovingToLoading Opening} THEN

IF PR. press= MovingToLoading\ RB. base= AtPos3A
RB. arml= Atlnner

THEN  RB. ProcessingReadyCtrl
END ||
PR. MiddleReachedCtrl

END,

PressUpReachedCtrl =
PRE PR.press=Pressing THEN PR.UpReachedCtrl END,

DepositBeltEndReachedCtd
PRE DB. belt= Transporting THEN
DB . EndReachedCtrl|
IF RB.base= AtPos3A RB. arm2 = AtMiddle THEN
RB. DepositReadyCitrl
END
END ;

DepositBeltPartTakenCtrl =
PRE DB. belt= Available THEN DB . PartTakenCtrl END

END

REFINEMENT  ProductionCellPlant
REFINES ProductionCell
SEES
FeedBeltTypesTableTypes TwoArmRobotTypesPressTypesDepositBeltTypes
INCLUDES
ProductionCellCtrl
OPERATIONS

FeedBeltEndReached =
SELECT FB.belt=Running THEN FeedBeltEndReachedCtrl END ;

FeedBeltPartLeft =
SELECT FB.belt=Delivering THEN FeedBeltPartLeftCtrl END ,

TableUpReached =
SELECT TB.elev=MovingUp THEN  TableUpReachedCtrl END ;

TableDownReached =
SELECT TB.elev=MovingDown THEN  TableDownReachedCirl
END,

TableRightReached =
SELECT TB.rot = RotatingRight THEN  TableRightReachedCirl
END ;
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TableLeftReached =
SELECT TB.rot = RotatingLeft THEN  TableLeftReachedCtrl END ;

RobotPos1Reached =
SELECT RB. base= RotatingBackToPosl THEN  RobotPos1ReachedCitrl
END ;

RobotPos2Reached =
SELECT RB. basee { RotatingFwdToPos2RotatingBackToPos THEN
RobotPos2ReachedCtrl
END ;

RobotPos3Reached =
SELECT RB. base= RotatingFwdToPos3 THEN
RobotPos3ReachedCtrl
END,

RobotArmlinReached =
SELECT RB.arml= RetractingTolnner THEN  RobotArmlinReachedCirl
END ;

RobotArm1MiddleReached =
SELECT RB.armle { ExtendingToMiddle RetractingToMiddlg THEN
RobotArm1MiddleReachedCitrl
END,

RobotArm1OutReached =
SELECT RB.arml= ExtendingToOuter THEN
RobotArm10utReachedCitrl
END,

RobotArm2InReached =
SELECT RB.arm2= RetractingTolnner THEN
RobotArm2InReachedCtrl
END,

RobotArm2MiddleReached =
SELECT RB. arm2e¢ { ExtendingToMiddle RetractingToMiddlg THEN
RobotArm2MiddleReachedCitrl
END,

RobotArm20utReached =
SELECT RB.arm2= ExtendingToOuter THEN
RobotArm20utReachedCtrl
END,

PressDownReached =
SELECT PR. press= MovingToUnloading THEN
PressDownReachedCitrl
END,

PressMiddleReached =
SELECT PR. presse { MovingToLoading Opening} THEN
PressMiddleReachedCitrl
END,

PressUpReached =
SELECT PR.press=Pressing THEN PressUpReachedCtrl END ,

DepositBeltEndReached =
SELECT DB.belt=Transporting THEN  DepositBeltEndReachedCitrl
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END ;

DepositBeltPartTaken =
SELECT DB.belt=Available THEN  DepositBeltPartTakenCitrl
END

END

IMPLEMENTATION  ProductionCellCtrlimp
REFINES ProductionCellCtrl
SEES
FeedBeltTypesTableTypes TwoArmRobotTypesPressTypesDepositBeltTypes
IMPORTS

FB . FeedBeltCtrl, TB. TableCtrl, RB. TwoArmRobotCtr| PR. PressCirl,
DB . DepositBeltCtrl

OPERATIONS

FeedBeltEndReachedCtrl =
IF TB.elev# AtLowerV TB. rot # AtLeft THEN
FB . EndReachedCti TRUE)
ELSE FB.EndReachedCti| FALSE)
END,

FeedBeltPartLeftCtrl =
BEGIN FB. PartLeftCtrl; TB. PartPlacedCtrl END ,

TableUpReachedCtrl =
IF  TB.rot = AtRightA RB. base= AtPos1A RB. arml= AtMiddle THEN
TB. UpReachedCtr{ TRUE) ; RB. PartAvailableCtrl
ELSE TB. UpReachedCtr{ FALSE)
END ;

TableDownReachedCtrl =
BEGIN
TB. DownReachedCtr]
IF TB.rot = AtLeftA FB. belt= Stopped THEN
FB . ContinueDeliveryCirl
END
END ;

TableRightReachedCtrl =
IF TB.elev= AtUpperA RB. base= AtPos1A RB. arm1l= AtMiddle THEN
TB. RightReachedCtil TRUE) ; RB. PartAvailableCitrl
ELSE TB. RightReachedCti| FALSE)
END,

TableLeftReachedCitrl =
BEGIN
TB. LeftReachedCtr)
IF  TB.elev= AtLowerA FB. belt= Stopped THEN
FB . ContinueDeliveryCitrl
END
END,

RobotPos1ReachedCtrl = RB. Pos1ReachedCitil
RobotPos2ReachedCtl
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IF  PR.press= AtUnloading THEN  RB. Pos2ReachedCt{ITRUE)
ELSE RB. Pos2ReachedCt(IFALSE)
END,

RobotPos3ReachedCtrl =
IF PR.press= AtLoading THEN RB.Pos3ReachedCt{l TRUE)
ELSE RB. Pos3ReachedCt(IFALSE)
END,

RobotArml1IinReachedCtrl =
BEGIN
IF  RB.base= AtPos3 THEN PR. PartPlacedCtrl END,
RB. ArmlIinReachedCtrl
END,

RobotArm1MiddleReachedCitrl =
IF  RB.base= AtPos1A TB. elev= AtUpperA TB. rot = AtRight THEN
RB. Arm1MiddleReachedCt{ITRUE) ; TB. PartTakenCtrl
ELSE RB.ArmlMiddleReachedCt(IFALSE)
END,

RobotArm10OutReachedCtrl = RB. Arm1OutReachedCtil

RobotArm2InReachedCtrl =
BEGIN
IF RB.base= AtPos2 THEN PR. PartTakenCtrl END,
RB. Arm2InReachedCtrl
END,

RobotArm2MiddleReachedCitrl =
IF RB.base= AtPos3A DB. belt=Empty THEN
RB. Arm2MiddleReachedCt{ITRUE) ; DB . PartPlacedCtrl
ELSE RB.Arm2MiddleReachedCt(IFALSE)
END,

RobotArm20utReachedCtrl =
RB. Arm20utReachedCtil

PressDownReachedCtrl =
BEGIN
PR. DownReachedCtr]
IF  RB.base= AtPos2 THEN RB. ProcessingFinishedCtrl END
END,

PressMiddleReachedCtrl =

BEGIN

IF  PR. press= MovingToLoading\ RB. base= AtPos3A
RB. arml= Atinner

THEN  RB. ProcessingReadyCtrl
END,
PR. MiddleReachedCtrl

END,

PressUpReachedCtrl = PR. UpReachedCtr|

DepositBeltEndReachedCtrl =
BEGIN
DB . EndReachedCtr]
IF RB.base= AtPos3A RB. arm2 = AtMiddle THEN
RB. DepositReadyCitrl
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END
END ;

DepositBeltPartTakenCtrl = DB . PartTakenCitrl
END

6.7 Discussion

The development was done completely with Atelier B version 3.2. Talils@n-
marises the length and the proving results for groups of AMN machines.

The entryActuatorTypesomprises the AMN machinesctuatorTypesndAc-
tuatorTypesimgthe dummy implementation). The entReedBeltcomprises the
AMN machinesFeedBelt FeedBeltPlant FeedBeltCtr] FeedBeltCtrlimp Feed-
BeltActuators FeedBeltActuatorsimiga simple device-specific implementation),
FeedBeltTypesandFeedBeltTypesim(ihe required dummy implementation). The
subsequent entries are analogous. The ePtoguctionCellcomprises the AMN
machinesProductionCel] ProductionCellPlant ProductionCellCtr] and Produc-
tionCellCtrlimp. The implementations dfeedBeltActuatorstc. which are required
for interfacing to the actuators are left out of the table.

The obvious proof obligations are those which are discharged imnegdigten
generated. All other proof obligations are submitted for automaticipgo Those
which could not be proved automatically, were proved interactively. Tmebeus
show a high degree of automation in the proofs and suggest that AhMNobDI
support, and the chosen modelling approach are suitable for this kimlolem.
However, it should be noted that all variables of the production celleangr finite
types and thus a complete automation of the proofs is theoreticallipfmss

total obvious proof| proof number | percent
length obligations obligations | unproved| autoproved
ActuatorTypes | 16 lines 8 0 0 100
FeedBelt 181 lines | 69 12 0 100
Table 299 lines | 191 39 0 100
TwoArmRobot | 672 lines | 1522 555 31 94
Press 222 lines | 102 21 0 100
DepositBelt 188 lines | 73 15 0 100
ProductionCell| 578 lines | 1770 194 23 88
Total 2157 lines| 3735 836 54 94

Table 6.1.Statistics of the Development

We like to add some critical observations about using AMN. First, §igations
are complicated by the fact that sequential composition is currently netediin
AMN machines (butit is allowed in refinements and implementations). Fanele,
it would have been simpler to defifableUpReacheith ProductionCellby

TB. UpReached
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IF ... robot can pick up part ... THEN
RB. PartAvailable | TB. PartTaken
END

for expressing that when the table reaches its upper position, it eithyerthere or
moves back again. Since this is not allowed, the actiBripReached/as given a
parameter which determines whether the table should move back or not,etberh
the TB.PartTakeraction should be performed as well. This leads to the situations
that some actions dfablehave such an additional parameter and some don'tand is
the only reason why action parameters are needed for the production cell it all. |
also leads to slight code duplication. Another solution would haeanlio formulate
theProductionCelkpecification with sequential composition as an AMN refinement
which refines some dummy AMN machine.

Secondly, guards and preconditions are treated asymmetrically in the kahse t
preconditions of (composed) operations have to be stated explisttyuards don't.
TheProductionCellctions are composed of actions of included AMN machines but
the guard of the composed action is not stated explicitly. By contresprocedures
of ProductionCellCtrlare composed of procedures of included AMN machines and
the preconditions of the composed procedures need to be stated explicitly

Finally, as discussed in Chapter 5, action system refinement leads to mofe pro
obligations than those of AMN machine refinement. Although these canbalso
handled within AMN (see also Chapter 7), these are not generated automatically
For the production cell, this no problem since the guards of the actiare left
unchanged in refinement, hence the additional proof obligation for acyisters
refinement, the exit condition, holds trivially. However, with t@posed general
refinement schema for control systems, automatic generation of thesepligaf
tions would be helpful.

We conclude by discussing some related approaches. The traditional niodel o
discrete event control systems, with separate specifications of the leamdral the
controlled system, is based on formal language theory [72]. Establattool-
supported approaches for the specification and verification of reactive syastems
Statecharts [34] and Esterel [11]. Both have been applied to control ss;shemn
typically with only the controller being specified. Statecharts and Estesehas
that the outputs of the program are perfect synchronwith the inputs, i.e. the
execution time is zero. This is the same assumption made here.

The distinguishing feature of the action system approach is that waltbe
description of a control system on different levels of abstractiorh) wihumber of
proof obligations guaranteeing that each level is a refinement of the peevite.
Here we have illustrated how this allows the initial specification taleoncise
and abstract model of the control system and details of actuators and senisers t
introduced later. As also illustrated in subsequent chapters of this ddibution
can be introduced in refinement steps, thus allowing the developmenstobdied
control systems.

Another approach to modelling control systems with action systemsgawher
controller is a set of actions rather than procedures, is proposed i ¢dke study
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of refining a control system with action systems, where the continoeiaviour of
the plantis taken into account, is presented in [17].

The production cell has been formally treated by numerous approaches [50]. A
development of a control program by refinement where the machines are ewbdell
as communicating processes is given in [27]. This allows a simpler speoificat
of the machines but makes proofs of safety properties difficult since #uhimes
have no state. The production cell has also been treated by an extension dhHyAMN
traces, threads and temporal logic formulae [48].

6.8 Exercises

Exercise 6.1 (Additional Machine for Graphical Simulation). The derived con-
troller can be used for driving a graphical simulation of the productiell, if for

that purpose a sixth machine, a crane, is added. The crane takes parts on the de-
posit belt and puts them on the feed belt again, making the whole procags cy
The crane has an electromagnetic gripper which may be turned on and off; a bidi
rectional motor for lifting and lowering the gripper, and a bidireatibmotor for
moving the crane forward (towards the feed belt) and backward (toward$ethe
posit belt). Sensors are placed at the upper, the lower, the feed belt ashejibst

belt end position, respectively. The crane must move between the twoycoiedts

only in the upper position. For picking up a part from the deposit, bhe gripper

has to be lowered, for placing a part on the feed belt the gripper has simply
released. The graphical simulation and a description of its interface canie do

the book’s Web page.

Exercise 6.2 (Avoiding Processing Delays)The specification of the robot has the
following deficiency. When a part is ready in the press, the robot fiestsvuntil
another part is available on the table, and only after picking up that pée isress
unloaded. If the arrival of new parts on the table is delayed, unloatimgtess is
delayed as well. Improve the specification of the robot such that the pasben
unloaded immediately in these situations. When is the decision whethetdad
the press or first to pick up a new part on the table made best? Woulchgke it
dependent on the state of the table, the feed belt (which both may signalribat
part is arriving shortly), or the deposit belt (which may not allowaat po be placed
onit)?

Exercise 6.3 (Faster Robot Movement) Assume that the robot may rotate and
move its arms simultaneously and that the press may be loaded and unladded w
extended and rotating robot arms. Modify the robot operations and wehken
safety requirements accordingly.

Exercise 6.4 (Non-deterministic Initialisation). The plant specification assumes
that all machines are in proper initial positions. A more realistic satiéin would
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allow arbitrary initial positions. Also, sensors like those oe #nd of the con-
veyor belts might report the presence of a part. Express this by ajpgtepon-
deterministic assignments to the variables in the initialisationcdjpe with non-
deterministic initialisation, introduce a variable which determinbstiver the sys-
tem is inINIT or NORMALmode. InINIT mode, the only action of the machines
is to go to defined positions for further operation. Make the appatgiihanges.
Would you introduce a mode variable for each machine or for the wholdugation
cell? Would you insist that all safety requirements hold in initial@atnode?

Exercise 6.5 (Shutdown).The production cell specification assumes that the sys-
tem is continuously running until power is switched off. IntrodaceHUTDOWN
mode, in which all machines are stopped gracefully, and an operatiatDown
which enters that mode. Would you introduc&dUTDOWNmMode for each ma-
chine or for the whole production cell? Would you shut down all maehsimulta-
neously or in a certain order?

Exercise 6.6 (Emergency Stop)Introduce an operatidémergencyStopf the pro-
duction cell which immediately stops all motors but keeps the grippetstsyd on.
How would you recover from such a situation? Do all safety requiremeftsait!
in the case of an emergency stop?

Exercise 6.7 (Fault Detection).The preconditions of the (abstract) machine con-
trollers express constraints under which theses procedures will be dalledse

a machine breaks, these constraints might not hold. For example, fié¢kebelt
sensor breaks, it might report that the part at the end left the belt evagtitthe
belt is not running. Make the controller more robust by checkingdduffes. De-
cide how to react to each failure: either ignore it if safe operation is sigbjble
(assuming that the failure is transient), issue a warning on the sarekcontinue,

or do an emergency stop. Would you also change the machine specificatiohgeand t
plants? Note that a violation of a constraint may also be the consequisicear-
lier failure. Also note that some abnormal situations may also occuralbherhan
intervention, e.g. removing or placing a part.

Exercise 6.8 (Further Machine Requirements).Formalise the following safety
requirements as invariance properties:

¢ If the table is moving upwards (downwards), it is either in its tifiéft) position
or rotating towards it.

e Robot arm 1 is holding a part if and only if the robot is at positioantl arm 1
is retracting to the inner position, the robot is at position 2,her tobot is at
position 3 and robot arm 1 is extending to the middle or outer joosit

Express and formalise similar requirements for the table turningedett and
to the right, and for robot arm 2.

Add the following variables for modelling the state of the machinesenpoe-
cisely: a variable indicating whether a part is on the table, and a variatdéheth
a part is in the press. Modify all affected operations to update thosablesi For-
malise following requirements as invariance properties:
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If a part is on the table, it is either moving towards or at its uppett fgisition.
If no partin on the table, it is either moving towards or at its lower pef$ition.
The table is never in loading position with an part on it.

The table is never in unloading position with no part on it.

Can you think of similar requirements for the press?

Exercise 6.9 (Additional Sensors).Assume that two additional sensors are added
to the production cell, one indicating whether a part is on the tablemthdicating

(Exercise 6.4), and for a more elaborate fault detection (Exercise 6.7).



7. Distributed Load Balancing
Marina Walcen

7.1 Introduction

We specify a load balancing algorithm usiagtion systemwith procedures as de-
scribed in Chapter 5. A process network is considered to be associated with an
action system assigning each variable to a process. Messages are passed between
the processes by explicit communication. In a distributed action syséemaction
and procedure is local to some process referring only to variables of thaggs.

Our goal is to give the load balancing algorithm as a distributed acyistes.
The initial specification of the load balancing algorithm is not yet itisted. In
order to refine the algorithm into a distributed action system wehgessuperposi-
tion refinement methof, 30, 44], a powerful program modularisation and struc-
turing method for developing action systems in a layered manner by sagiegm
computation on top of an existing one. We carry out three superpostips each
introducing mechanisms that take the centralised initial specificationeofotid
balancing algorithm into a description that is completely distribusegherposition
refinement is a special case of the more general data refinement method presented in
Chapter 5. We show how this refinement method is formalised within theod.

7.2 Informal Problem Description

Let us now study the load balancing algorithm [33]. We consider a n&tafquro-
cesses, where the network forms a connected gigpf) The edge& in the graph
are the communication links between the procedeSommunication can only
take place between processes directly connected by an edge and it can go in both
directions. Even so, the graph is considered to be a rooted directed trexe thib
edges are directed towards the root. Each process is assumed to know titiesdent
of its direct neighbours and the number of tasks it posesses, i.@ads |

The thresholdtop, that states the preferable load of a process is considered
to be a fixed positive numbetop > 0), and is a constant of the load balancing
algorithm. In node the number of tasks is denotedlond_i. The tasks themselves
are irrelevant for the algorithm. Initially all the loads are 0 and &s&s$ are arbitrary
elements of the sdiasks

In the load balancing system each nadeceives new loads from an environ-
ment. Thus, we have a reactive system. The load balancing algorithrasstad
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Fig. 7.2. An Example of a Network Before and After Executing the LoadaBaing Algo-
rithm

distribute the load in the system evenly among the processes. Ifjriaaea load
less than the threshold, and its father, ngde the tree structure has a load greater
than or equal to the threshold, a task can be moved down fromirtodts son, node
j by increasing the load gfand decreasing the load b&s in Fig. 7.1(a). On the
other hand, if nodehas too many tasks and its father, npdeas a load less than or
equal to the threshold, a task can be sent from naexgteto its father, nodg which
is shown in Fig. 7.1(b). The load balancing makes it possible forde mothe tree
to transfer tasks from one of its branches to another. The load balanartgga of
nodes is then as in Fig. 7.2. Following the computation pattern abmpeatess is
idle forever, if there is enough work to be done.

The load of a node is always greater than or equal to zero during the coroputati
as stated in the invariant:

(Vi. i1 e V. load.i > 0).

This is due to the fact that initially the load of a nade assigned 0 and during the
computation the load is only decreased if it is greater than or equapt¢> 0),
otherwise it is increased. The new loads sent to the load balancing systarnthie
environment are assumed to be greater than or equal to 0.

At termination, when new loads are not sent to the system, each node either h
a load greater than or equal to the threshofulor a load less than or equaltiop:

(Vi. i1 eV. load.i >top) v (Vi. i € V. load.i < top).
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7.3 Problem Specification

Let us now write the specification of the load balancing algorithm as an ast®n
tem using B AMN. For better readability, we restrict the graph of our mecho
a graph with two nodes, node 1 and node 2. Node 2 is considered to heothé
is, however, easy to extend the algorithm to contain more than two nBglesx-
pressing the loads as functions from nodes to natural numbers, weesmrchave
replication of nodes.

The load balancing algorithm is given as the abstract machine specifiéation
tionsl The nameActionslrefer to “the actions in step 1”. Note that there is some
redundancy in some of the procedures: when a procedure has parametstsethe t
of the parameter is restricted in a PRE-substitution. The procedeléritay have
a guard given in a SELECT-substitution. Sometimes the former tondmplies
the latter, but here we prefer to keep this redundancy in order to beulaiththe
original action systems’ ideas [82], see e.g. the operdlimn Load 1P below.

MACHINE  Actions1( top)

top denotes the preferable load of a process

CONSTRAINTS
top>0

SEES
TaskProcessing

TaskProcessingontains the abstract typPASKSand operations for processing tasks,
described below

VARIABLES
loadl, load2, taskl, task2

loadlandload2denote the number of tasks in nodes 1 and 2

tasklandtask2denote tasks in nodes 1 and 2

INVARIANT

loadle N A load2 e N A taskle TASKSA task2e TASKS
INITIALISATION

loadl:=0 || load2:=0 || taskl:c TASKS|| task2:c TASKS

Initially all loads are 0 and each task variable is an arbitraember of the abstract type
TASKS

OPERATIONS
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New loaddl are received from the environment via the global procedima_Load

New Load 1P(ll) =
PRE IleN THEN
SELECT Il >0 THEN loadl:= Il
END
END ;
New Load 2P(ll) =
PRE IlleN THEN
SELECT I >0 THEN load2:= Il
END
END ;

Operations to be introduced later in the refinement:

Commit12 = skip,
Commit21 = skip,

Bal_Loads_Down_21 sends a task from node 2 down to the child node 1 when node 2 is
overloaded

Bal Loads Down 21 =
SELECT loadl< top A load2> top
THEN  ProcessTask 1 (task2) || loadl:=loadl+ 1 || load2:=load2— 1
END,

Bal_Loads Up_12 sends a task from node 1 up to the parent node 2 when node 1 is
overloaded

Bal Loads Up_12 =
SELECT load2< topA loadl> top
THEN  ProcessTask 2 (taskl) || load2:=load2+ 1 || loadl:=loadl— 1
END ,

Operations to be introduced later in the refinement:

ReleaseNodes 12
ReleaseNodes?21

skip ;
skip ;

~
~

Exit_Cond contains the exit condition of the action system for vertfamapurposes

Exit Cond =
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SELECT - (loadl< topA load2>top) A — (load2< top A loadl > top)
THEN  skip
END

END

The types of the tasks and the operations processing them are defined in the
machineTaskProcessingelow. The operations are givensdp, since they are not
of interest to us. Because of this it is enough to give the mactaskProcessinm
the SEES-clause @ctionslabove. In case these operations change the state of the
action systenf\ctions] the machindaskProcessingiould need to be given in the
INCLUDES-clause ofActions1

MACHINE  TaskProcessing
SETS
TASKS

TASKSs an abstract type of the tasks in the system

OPERATIONS

ProcessTaskmodels a task being processed without specifying how

ProcessTask 1(task) = PRE taske TASKS THEN skip END;
ProcessTask 2(task) = PRE taske TASKS THEN skip END

END

We consider a variable, an action, as well as a procedure with the firstiitalex
belong to nodé. In a distributed system actions and procedures of a node refer only
to variables of that node. The load balancing algorithetions1lis not distributed,
since variables of both node 1 and node 2 are referenced in order to evakiate th
guards of the actionBal Loads Down_21 andBal_Loads Up_12 of nodes 1 and
2. Furthermore, variables of both node 1 and node 2 are assigned todratitess.

In this chapter we develop a distributed load balancing algorithm, wésch
node only accesses its own variables. This developmentis performeddrpsajng
a set of mechanisms on the specificatietionsland introducing procedures in
such a way that, for example, an action with references to variables of both nodes
1 and 2 can be separated into an action with references to the variables of node 1
and a procedure with references to the variables of node 2 called by this détisn.
will result in an algorithm where each action and procedure only refers tablas
of a single node.



260 7. Distributed Load Balancing

7.4 Superposition Refinement

We use thesuperpositiormethod to develop the distributed load balancing algo-
rithm. Superposition is a powerful program modularisation anetsiring method

for developing parallel and distributed systems [5, 30, 44]. By dpglthe super-
position method to a program, we can increase the degree of paralleltte mfo-

gram and decentralise the control in the program. We add new functiotatite
algorithm while the original computation is preserved. The new fanatity could,

for example, be an information gathering mechanism that replaces direct access to
shared variables.

The superposition method has been formalised as a program refinement rule
within the refinement calculus for action systems [8]. It is a special kindiata
refinement and it is expressed as below for action systems extended withymexed
[75].

Let 2 anda’ be the two action systems given in B AMN in Fig. 7.3. The global
variables are the imported variablesind the exported variables The imported
variables are assumed to be read-only variables iand 2’. They are declared
in some other action system. The exported variables on the other hangictased
and initialised inz anda’. Since they are also accessible from other action systems,
they are declared in the machi@éobalVar_z The local variablex are declared in
both action systems. The superposition step adds new local vanehtesa’. The
purpose of these new local variables is to encode the superposed mechdrigsm.
is done by refining the global proceduf@sand the actiong\. Additionally some
new actiondB;j can be introduced.

Informally, an action system is correctly data refined by another action system
4" using the data invariaf® when:

(S1) the initialisation in2’ establishe® for any initial values oru and f, where
f denotes all the formal parameters of all the global procedures declaged in

(S2) each body of a global procedi®és data refined by the corresponding proce-
dure bodyP usingR, i.e., the procedur®’ has the same effect on the variables
x andzasR,

(S3) every actiom is data refined by the correspondiffgusingR, i.e., the action
Al has the same effect on the variabtendz asA,

(S4) every action3; is a data refinement of the empty statenskip usingR, i.e.,
these actions cannot modify the original variablesdz,

(S5) all actions inz are disabled whenever all actions4n are disabled wheR
holds, i.e., whenever the computationafterminates so does that af,

(S6) if a procedurd is enabled ina, so isP' in 4’ or then actions im’ will
enableP, i.e., in casez can continue its computation by responding to a call
onP so cana’ or thenP will become enabled in some later state, and

(S7) the computation denoted by the actidhs...,By terminates provide®
holds, i.e., the new actions cannot by themselves introduce an infioite, n
terminating computation into the system.

The correctness of the data refinement of the local proceduseshecked in step
(S3) by expanding the calling statements in the actions as described ite€bap
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MACHINE  4(u)

INCLUDES

GlobalVar_z,

LocalProcA g, GlobalProcEr
VARIABLES

X
INVARIANT

1(x,z,u)
INITIALISATION

X=X
OPERATIONS

P, = SELECT gP,

THEN sR END,

Pn = SELECT gR,
THEN sR, END ;
A = SELECT gA,

THEN sA; END ;
A = SELECT gA

THEN sA END,
B; = skip,
By = skip,

exit.cond=
SELECT —(gA1V...VgA)
THEN skip END

END

REFINEMENT  a'
REFINES
A

INCLUDES

GlobalVar_Z

LocalProcAq', GlobalProcEr’
VARIABLES

X,y
INVARIANT

R(x,y,zu) AN Z =z
INITIALISATION

XY :=Xo0,Yo
OPERATIONS

P, = SELECT gP,

THEN SF{ END ,

P, = SELECT gR,

THEN sB, END ;
A1 = SELECT gA]

THEN sA; END ;

A = SELECT gA

THEN sA END;
B, = SELECT gB;

THEN sB; END;

By = SELECT gBy
THEN sBc END ;
exit.cond=
SELECT —(gA} V... VoA
VgB1 V...V gBy)
THEN skip END

END

Fig. 7.3.Superposition Refinement Within the B-Method

The enabledness of the local procedures is checked within (S5). New procedures
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are not introduced in this refinement step. They are assumed to be icgbtfua
separate step where no refinements are involved.
Formally the superposition method is stated as a refinement rule asgollo

Definition 7.1 (Superposition refinement). Consider the abstract action system
and the concrete action systemi as in Fig. 7.3. Let g be the disjunction of the
guards of the actionsijAga’ the disjunction of the guards of the action'sakd g8
the disjunction of the guards of the actiong Bet further f denote all the formal
parameters of all the procedures. Fhen4 is superposition refined by’ using

R(x,y,zu, f), denotedz <g a’, if
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1) R(X07y07207u7f)
2 RCrP, fori=1,...,n
3 A CrA, fori=1,...,1
4) skip CrB;, fori=1,...,k
5 RA-(ga’'Vvgs) = —g4
6) RAgR =
(gP V[ WHILE —gP DO
(CHOICE Aj OR...OR A/ OR B; OR...OR B
OR (SELECT —(ga’V g8) THEN skip END) END)
END] TRUE), fori=1,...,n
(S7) R=[WHILE gBDO (CHOICE B; OR...OR B END) END | TRUE

(S
(S
(S
(S
(S
(S

Intuitively, a superposition refinement is a data refinement. Hence, it qastifeed
via the general theory on data refinement. In a superposition step, hcomeputa-
tions are added into the set of traces of an action system, as the observablielieh
of a system w.r.t. the original variables is kept unchanged.

Generally, the data refinement of Condition (S8)=r A{, holds if

(Al) PREgA THEN sA END CrsA and
(A2) RAQA = gA.

This follows directly from the rule of data refining one action wittodrer as de-
scribed in Chapter 5. Thus, according to (4] has the same effect on the program
variables as\i has wherR holds and, moreoveA establishe®R. The Condition
(A2) requires tha#\ is enabled wheneve is enabled provide® holds. The Con-
ditions (S2) and (S4) are defined in the same way.

The Conditions (S1) - (S3) follow directly from Definition 5.1@hapter 5. The
refinement of the auxiliary actior; is expressed with the Condition (S4) and (S7).
These conditions have no corresponding conditions in DefinitibrGondition (S5)
is a modification of the Condition (4) in Definition 5.1 taking thexdiary actions
into consideration. In Definition 5.1 Conditions (2) and (4) togetstate that the
guards of the procedures are not allowed to change during the refinemeesgro
Condition (S6), however, allows the guards of the proce@ute be strengthened
as long as the refined procediewill be enabled within the refined action system
4'. We can note that the superposition refinementr 4’ is the same as the data
refinementa Cgr 42’ when there are no auxiliary actions.ri and the guards of the
procedures are not changed.

Successive superposition refinements of action systems can be modelled as fol
lows:

If 49 <R, 41 and4, <R, 42 thenag <RiAR, 42.



7.5 Superposition Step Within the B-Method 263

MACHINE  GlobalVar_z

VARIABLES
z
INVARIANT
T(2)
INITIALISATION
2=z
OPERATIONS
assignz(y)= PRET(y) THEN z:=y END

END

Fig. 7.4.Declaration of a Global Variableof 4

MACHINE  LocalProcAq

OPERATIONS
g1 = SELECT gQ; THEN sQ, END ;

q = SELECT gQ THEN sQ END
END

Fig. 7.5.The Local Procedures of

7.5 Superposition Step Within the B-Method

We will now discuss how the superposition rule can be interpreteldimihe B-
Method, in order to be able to perform the derivation of the disteiiload balanc-
ing algorithm using the B-Method.

Let us consider the specificationand its superposition refinement given in
Fig. 7.3. The invarianR(x,Y,z u) used in the refinement step is considered to in-
clude the invariank(x, z,u) of the action system being refined. The exported global
variablezis included as the separate machine in Fig. 7.4, while the read-onlglglob
variablesu are given as parameters. The local procedgesnd their refinements
are given in the separate abstract machlmeslProcA g andLocalProcAd, re-
spectively. These machines only contain an OPERATIONS-clause where each local
procedura; is represented as an operation as in Fig. 7.5. The imported global pro-
cedures are introduced via the machiobalProcEr in Fig. 7.6. Since only the
headers of these procedures are of importance to us, they are defingkdpmas
explained in Chapter 5.

In the B-Method all the refinements of a specification use the same operation
names as the specification, which means that all operations that will existfimal
refinement also have to exist in the first specification. Since the opes&4o.. . , Bk
occur in the machine refinement, they are introduced askip-operations in the
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MACHINE  GlobalProcE.r

OPERATIONS
r = skip
END

Fig. 7.6.The Imported Global Procedures of

machinez . The operatiomxit_condis introduced in order to be able to prove Con-
dition (S5) of the superposition rule.

Let us now study how the proof rule for superposition refinement cbraslys-
tems can be performed in the B-Method. The proof obligations (B1}4) (8 the
B-Method are given in the Appendix. The first superposition Camdi¢S1) con-
cerning the initialisation is equivalent to the Condition (B2). Tanditions (S2) -
(S5) are implied by the Condition (B4) for the global procedueshe actiongy;,
the auxiliary action$3; and the exit condition, respectively. This correspondence is
discussed in more detail elsewhere [82]. The Conditions (S6) andofSke su-
perposition rule require that some extra B constructs are generaeefdie, these
conditions are treated more thoroughly below.

The Conditions (B1) and (B3) do not correspond to any of the camditin
the superposition rule. Since the invari&ig included in the invariarR due to the
superposition refinement and the preconditions are equivalent, thieylyrhold for
the embedded action system.

7.5.1 Enabledness of Global Procedures
Let us now proceed with the Condition (S6):

RAQR =
(gF V[ WHILE —-gR DO
(CHOICE A{OR ... ORA/ORB; OR ... OR By
OR (SELECT —(ga'Vv g8) THEN skip END) END)
END] TRUE)

For the weakest precondition of the WHILE-loop we need to find a variastt that
the invariantR implies that the variant is a natural number and that the variant is
decreased each time one of the actions in the loop is executed. These caratiion
created as proof obligations (T1) - (T5) for the WHILE-loop withire tB-Method.
We, thus, need to make a separate refinement step within the B-Method using a
WHILE-loop to prove this condition. The proof obligations (FXT5) are given in
the Appendix.

When checking the enabledness of the global procedkiieshe B-Method we
create an abstract machine and a machine implementation for the Conditjon (S6
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IMPLEMENTATION NewGlobalProc
REFINES
OldGlobalProc
IMPORTS
AllActionSystem
OPERATIONS
EnableProc=
VAR x,y,z,e IN
X:=Xo; Yi=Yo, Z:=2, €=€p,
IF -gF THEN
WHILE —-gP DO
X,Y,z,e +— AllActiongXx,y,z e)
INVARIANT R(X,Yy,z u) ARe(z u,€)
VARIANT E(e)
END
END
END
END

Fig. 7.7.Construct in B for Checking Enabledness of Global Proceddure

The abstract machine specificati@idGlobalProchas the invarianRA gR and
one operationskip. Its machine implementatioNewGlobalProcwill then have
the invarianfTRUEand a WHILE-loop as the refined operation. The condition on
the guardgR is automatically generated from an IF-substitution (observe thetsligh
redundancy in the machine, but not in the Condition (S6)). Thidempntation is
generated considering the refined machiri@nd is shown in Fig. 7.7.
A new expressiort(e) operating on the variablesis created as the variant. The
invariantR(x,y,z,u) of the Abstract Machine refinement is included in the in-
variant of the loop. The relatioRe(z u,e) gives the definition of the variant and is
also included in the invariant. Furthermore, the initialisation &f tefinementz’
is the initialisation of the loop. The negation of the guard ofglabal procedure,
—gPR, forms the WHILE-loop condition. Hence, a separate implementation meachi
is needed for each global procedure. The non-deterministic choice of thesaittio
the Condition (S6) is represented as a call to the oper&lctionsin the in-
cluded machine specificatiohllActionSystemThe operatiorAllActionsshown in
Fig. 7.8 is a SELECT-substitution containing all the operatidng’oi.e., the non-
deterministic choice of the actions i

The Condition (S6) in the superposition rule can now be expresseaims of
proof obligations generated within the B-Method:

(B) & (T2) A (TH).

The Conditions (T1), (T3), and (T5) do not directly correspond tp@mdition
in the superposition rule. The Condition (T1) is partly provegbyving the Condi-
tion (B2) and (T3) by proving (B4) foA; andB;, but additionally they check that the
variant establishes the invariaR{(z, u, e) in the initialisation and in the operations
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~

Xo, Yo, Z0 <— AllActiongx,y,z) =
PREx,y,z € TypesTHEN
SELECT gA; THEN sA&
WHEN gA, THEN sA,

WHEN g& THEN sA
WHEN gB; THEN sB;

WHEN gB, THEN sB
WHEN —(gA| V...VgA VgB1 V...V gBy)
THEN skip
END
END

Fig. 7.8.The Non-Deterministic Choice Between all the Operatiorth@Refined Machine

A andB;. Since the postcondition of the loop is considered tarB&Ehere, the
Condition (T5) holds trivially.

7.5.2 Termination of Auxiliary Actions
The last condition, (S7), of the superposition rule:
R=[WHILE gBDO (CHOICE B; OR ... OR B END) END | TRUE

can be checked within the B-Method in a similar way as the enabledness of the
global procedures, Condition (S6). Thus, we also create an abstract maphiie
fication and a machine implementation for the Condition (S7).

Here, the abstract machine specification TR&JEas the invariant andkip as
the initialisation and as the only operation. The machine implementafibagain
have the invarianTRUEand a WHILE-loop as the refined operation. This refined
operation;TermOfActionsis given in Fig. 7.9. The operaticfrermOfActiongorre-
sponds to the operatidenableProcpreviously created for the Condition (S6). We
can, however, note that the WHILE-loop condition here constitutésentlisjunc-
tion of the guards of the auxiliary actions. Furthermore, the operaiocAction
called from the WHILE-loop gives the non-deterministic choice meréhe aux-
iliary actionsB;. This operation is represented as a SELECT-substitution in the same
way as the operatioAllAction for the Condition (S6).

The Condition (S7) in the superposition rule can now as the Ciondi§6) be
translated into terms of proof obligations generated in the B-Method by

(S7) & (T2)A(T4).

Hence, there are corresponding proof obligations in the B-Method for@aich
dition (S1)-(S7) in the superposition rule.
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TermOfActions=

VAR x,y,z,e IN
XI=Xo, YI=Yo, Z:=2, €:=6€p,
WHILE (gB1V...vgBy) DO

X,Y, Z, € «— AuxActiongx,y, z e)

INVARIANT R(X,Y,z u) ARe(z u,€)
VARIANT E(e)
END

END

Fig. 7.9.Operation for Checking Termination of Auxiliary Actions

7.6 Refinement Step 1: Distributing Loads

Let us now study the development of the distributed load balancingitdgousing

the superposition refinement. We want to have a distributed load batpatgo-
rithm where each action and procedure of a node refer only to the variablestof t
node. In order to achieve this from the machine specificatiotionsl we have

to distribute the loads as follows. We introduce the procedinass Task 1P and
Trans Task 2P modelling the links between node 1 and node 2. They are called
from the action®al_Loads Down_21andBal_Loads Up_12, respectively. Let us,

for example, consider the actiddal_Loads Down_21. This action is modified to
send a task of node 2 to the neighbouring node 1 via the proc@dame Task 1P

and at the same time decredsad? of node 2 by one. Node 1 then increases its
variableload1 upon receiving the task via this procedure. Hence, we have the as-
signment toload2 in the actionBal_Loads Down 21 of node 2 and the assign-
ment toloadl in the procedurdrans Task 1P of node 1 called from the action
Bal_Loads Down 21, and we have distributed the varialdad.

The local procedurefrans Task 1P andTrans Task 2P are introduced as the
same kind of operations within the B-Method as the actions and thalgiobce-
dures. Since these local procedures are called from the actiokstions1R we
introduce a new machin®rocedureslonly containing these procedures. This ma-
chine is then included in the machiketions1P The global procedures are only
called from other action systems thastions1Pand can therefore be operations
in Action1P This corresponds well to proof obligations in the superpositidime-
ment step, where the global procedures are proved with the Condi88harid (S6)
and the local procedures are proved via the Conditions (S3) and (Shpfactions.

An overview of this step is given in Fig. 7.10. The refinement relatsogiven as a
“staircase”, while the arrows show which machines are included in othersditie
lines denote the current step.

The machine refinemewtctions1Prepresenting the global procedures and the
actions of the load balancing algorithm is given below.

REFINEMENT  Actions1P
REFINES
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Actons1P

Actions1

Fig. 7.10.0verview of the Derivation After the First Refinement Step

Actionsl
SEES
TaskProcessing
INCLUDES
Proceduresl

The machinéProcedureskontains the local procedures as operations

VARIABLES

loadl, load2, taskl, task2
INVARIANT

loadle N A load2 € N A taskle TASKSA task2e TASKS
INITIALISATION

loadl:=0 || load2:=0 || taskl:c TASKS|| task2:c TASKS

OPERATIONS

New Load 1P(Il) =
PRE IleN THEN
SELECT [11>0 THEN loadl:=Il
END
END ;
New Load 2P(Il) =
PRE IleN THEN
SELECT II>0 THEN load2:=Il

END

END ;
Commitl2 = skip,
Commit21 = skip,

Bal_Loads Down_21 of node 2 sendtask2to node 1 and order node 1 to charigadl
via the procedurd@rans_Task 1P, when node 2 is overloaded

Bal_Loads Down 21 =
SELECT loadl< topA load2> top
THEN loadl+— Trans Task 1P ( 2, task2, loadl) ; load2:= load2— 1
END,
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Bal_Loads Up_12 of node 1 sendsaskl1to node 2 to increaslwad?2 via the procedure
Trans Task 2P

Bal Loads Up_12 =
SELECT load2< topA loadl> top
THEN load2+— Trans Task 2P ( 1, taskl, load2) ; loadl:=loadl— 1
END,

ReleaseNodes12 = skip,
ReleaseNodes21 = skip,
Exit Cond =
SELECT - (loadl< topA load2>top) A — (load2< top A loadl > top)
THEN  skip
END
END

The new local procedures are given as follows:

MACHINE  Proceduresl
SEES
TaskProcessing

OPERATIONS

The procedur@rans_Task processes the tastgskmthat it receives from nodemmand
increases its load by 1

load1 0 +— Trans Task 1P( mm, taskm, loadl) =
PRE mm=2Ataskme TASKSA loadle N THEN
ProcessTask 1 (taskm) || load1.0:=loadl+ 1
END,
load2_0 +— Trans Task 2P( mm, taskm, load2) =
PRE mm= 1A taskme TASKSA load2e N THEN
ProcessTask 2 ( taskm) || load2.0:=load2+ 1
END

END

We can note that the new machifeoceduresldoes not have a state space
of its own. In this machine the state space of the action system is chaieyed v
the parameters of the procedures. The variddell, therefore, is still an input
as well as an output parameter in the procedure Tahs Task 1P in action
Bal_Loads Down_21, even if we claim that we have distributed its assignment com-
pletely intoTrans Task 1P.

Expanding the procedure calls in the two operatiBak Loads Down 21 and
Bal_Loads Up_12in the machine refinemertctions1Presults in the correspond-
ing operations in the machine specificati@ntionsl We actually only write the
machine in a different form, when we introduce new procedures. Tatgns1P
andProcedures1Rogether is a re-written form dfctions1
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Aux_Actions2 II New_Actions1
All_Actions2 |—>| Proc_Guard4 | No_ActionleI

|Proc_Guard1ﬂ

Actons1P

Fig. 7.11.0Overview of the Derivation After the Second Refinement Step

In this step we do not introduce any auxiliary actions nor do we charge th
guards of the global procedures. Thus, we do not need to introduce aaycer-
structs in the B-Method to prove this refinement step. The five prolaations gen-
erated for this refinement step were all trivial and were automatically discharged

7.7 Refinement Step 2: Estimation of Neighbouring Loads

As the second refinement step we add a mechanism to estimate the loads of each
neighbour. The more knowledge a node has about its neighbourstiegonecisely

it can perform its share of the load balancing independently. Thus, tépsvsll

make the control more decentralised and distributed in the system.

The load estimation can be performed by adding the variastsiandrec to
the algorithm. For example, the varialdstiml2denotes the estimate that node 1
has about the load in the neighbouring node 2. The boolean varedi&has the
valueTRUE when node 2 is committed to node 1 and node 1 has the right estimate
of load2 otherwise it has the valuALSE The values okstim2landrec2lare
defined in the same way. This refinement step is a superposition refinement.

Fig. 7.11 gives an overview of the load balancing system at the second refine-
ment step. Via the machingsctions2and Procedures2ve can check the refine-
ment of the initialisation, the actions, the procedures and the exditom. The
enabledness of the procedure guards is checked via the maéhow&uard1P
Proc_Guard2as well asAll_Actions2and the termination condition via the ma-
chinesNa_Actions1R New Actions2as well asAux_Actions2

7.7.1 Refinement of Actions and Procedures

Let us consider the refined load balancing algorithmations2andProcedures2

Initially the estimateestimis 0 and the variablec has the valuEALSE We split the

load balancing into three phases in this step. In the first phase nodeaminit

to each other for changing loads and update their estimeséispl2andestim21

to correspond to the loadsad2andloadl, respectively. In the second phase nodes

1 and 2 change their loads as long as there is an imbalance between them. In this
phase the estimates of nodes 1 and 2 are also updated. Thus, a node willzdway

the right estimate of the neighbour that it is changing loads witthérthird phase

when the loads are balanced between nodes 1 and 2, the commitment between them
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is released and they are free to commit to other neighbours. Furthermooega
can only be given a new load from the environment, when it is not iragbia load
balancing with some other node.

The load balancing, the second phase, in the refined action system is han-
dled via the old operationBal_Loads Down_ 21 and Bal_Loads Up_12 as well
asTrans Task 1P andTrans Task 2P. These are modified to update the load esti-
matesestim2landestim12 For the first and the third phase we need to introduce the
auxiliary action®CommitandReleaseNodes Each nodé should have the auxiliary
actionsCommitij andReleaseNodesij for each outgoing edgg, j) and each in-
coming edg€ j,i). In Actions2 whereE = {(1,2)}, node 1 has one outgoing edge
and node 2 has one incoming edge. Thus, the auxiliary operatiofoanenit. 12
andReleaseNodes 12 of node 1, andCommit 21 andReleaseNodes21 of node
2.

The refined machinActions2can now be given as follows:

REFINEMENT  Actions2
REFINES
Actions1P
SEES
BooL TYPE, TaskProcessing
INCLUDES
Procedures?2
VARIABLES
loadl, load2, taskl, task2, estim12, estim21, rec12, rec21

estiml2denotes the estimate that node 1 has about the load in node 2.

rec12has the valuF RUEwhen node 2 is committed to node 1, otherwisd. SE

INVARIANT

loadle N A load2 e N A taskle TASKSA task2e TASKS

A estiml12c N A estim21e N A rec12e BOOLA rec21e BOOL
A (recl2= TRUE= load2= estim12)

A (rec21l= TRUE=> loadl = estim21)

Node 1 has the right estimate of the load in nodél@d2 = estinl2), when node 2 is
committed to node I(recl2=TRUE).

INITIALISATION

loadl, load2:=0, 0 || taskl:c TASKS|| task2:c TASKS
| estiml2 estim21=0,0 || recl2, rec21l:= FALSE, FALSE

Initially the estimates are set to 0 and no nodes are conunitte

OPERATIONS



272 7. Distributed Load Balancing

If node 1 is not committed to any neighbour, it can receivewa load from the environ-
ment viaNew_Load_1P.

New Load 1P(ll) =
PRE IlleN THEN
SELECT recl2= FALSEA rec21= FALSEAIl >0
THEN  loadl:=1I
END
END,
New Load 2P(Il) =
PRE lleN THEN
SELECT recl2= FALSEA rec21= FALSEAIl >0
THEN  load2:= I
END
END ;

Commit_12 can be executed if

- there is an estimated imbalance between the loads of noaled 2 or

- node 2 does not have a good enough estimate of load1 or

- node 2 is already committed to node 1.

Node 1 shouldhot be comitted to node 2 upon execution.

The estimatestim21is updated and node 1 becomes committed to node 2.
Note thatAvV BAC = (AVB)AC below.

Commit12 =
SELECT
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21)
V rec12= TRUEA rec21= FALSE
THEN  estim2l=loadl, rec21l:= TRUE
END,
Commit21 =
SELECT
Imbalance( estim21, load2) v BadlyEstimated load2, estim12)
V rec21l= TRUEA rec12= FALSE
THEN  estiml2=load2, rec12:= TRUE
END,

Bal_Loads_Down_21 can be executed when nodes 1 and 2 are committed and node 2 is
overloaded. When the tadlask? is sent to node 1 the loads and estimates are updated in
the nodes 1 and 2.

Bal_Loads Down 21 =
SELECT  estim21< top A load2 > top A rec21= TRUE
THEN
loadl, estiml2— Trans Task 1P ( 2, task2, loadl, estim12 rec12) ;
load2:=load2— 1, estim2Ll= estim21+ 1
END,
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BalLoadsUp_12 =
SELECT estim12< top A loadl > top A recl2= TRUE
THEN
load2, estim21+— Trans Task 2P (1, task1, load2, estim21, rec21) ;
loadl:=loadl— 1, estim12=estiml12+ 1
END,

ReleaseNodes 12 can be executed if nodes 1 and 2 are committed to each other and
there is no imbalance between these nodes. The nodes arsa@fieom the commitment
by assigning=ALSEto therec-variables.

~

ReleaseNodes12 =
SELECT - (Imbalance(loadl, estim12) ) A rec12= TRUEA rec21= TRUE
THEN  recl2:= FALSE, rec21:= FALSE
END,

ReleaseNodes?21 =
SELECT - (Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE
THEN  rec2l.= FALSE, rec12:= FALSE
END,

Exit Cond =
SELECT

= Guard_Commit.12 A — Guard_Commit.21

A — Guard_Bal_Load_Down_21

A — Guard_Bal Load Up_12

A — Guard_ReleaseNodes 12 A — Guard_ReleaseNodes21
THEN  skip
END

DEFINITIONS

Imbalance(x,y) = x<topAy>topV (x>topAy<top),;
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(x=topAy#top)V (Xx#topAy=top);
Guard Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21) v rec12= TRUE
A rec21= FALSE;,
Guard Commit21 =
Imbalance( estim21, load2) v BadlyEstimated load2, estim12) V rec21= TRUE
A recl2= FALSE;,
Guard_Bal_Load Down 21 =
estim21< top A load2 > top A rec21= TRUEA rec12= TRUE,
Guard_Bal_Load Up_12 =
estim12< top A load1 > top A rec12= TRUEA rec21= TRUE,
Guard_ReleaseNodes12 =
= (Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE;
Guard_ReleaseNodes?21 =
— (Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE

END
In this step we extend the invariant A€tions1Pwith the definition of the new

variablesgestimandrecto get the invariant oActions2 Except for the types of the
new variables, the invariant iActions2should also state that wheac_ij holds,
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nodei has the right estimate ¢dad_j:

(Vi,j. i,j eV A((i,])) e EV (],i) €E).
rec.ij = TRUE= load_j = estim.ij),

considering thak = {(1,2)}. In case there were more edgegithan we consider
here, the invariant would also need to state that wieenij has the valudRUE
i.e., nodej is committed to nodg, the nodes and j cannot be committed to any
other node. This can formally be given as:

(Vi,j. i,jeVA((i,j) eEV (],i) €E). reciij =TRUE=
((Vk. keVA((i,keE Vv (ki)eE) A k#].
rec_ik = FALSEArec_ki = FALSE) A
(Vk. keVA((j,k) €E V(K ])€E) A kK#IL
rec_jk = FALSEArec kj = FALSE)).

The procedure$rans Task 1P andTrans Task 2P are turned into guarded pro-
cedures in this refinement step. Since they model a node receiving a task from
neighbouring node, the sending node must be committed to thisfapthe proce-
dure to be enabled. The local procedures are given as follows:

MACHINE  Procedures2
SEES
BooL TYPE, TaskProcessing

OPERATIONS

Trans_Task_1P receives a task from nodem= 2) and updates the load of node 1 as
well as its estimate of the load of the sender, if the sendesrismitted to node 1

load1 0, estim120 «<— Trans Task 1P( mm, taskm, loadl, estim12, rec12) =
PRE mm= 2 A taskmec TASKSA loadl<c N A estim12c N A rec12¢ BOOL
THEN
SELECT recl2=TRUE
THEN
ProcessTask 1 (taskm) ||
load1 0:=loadl+ 1 || estim120:=estim12— 1
END
END,

load2_0, estim210 «<— Trans Task 2P( mm, taskm, load2, estim21, rec21) =
PRE mm= 1A taskmec TASKSA load2<c N A estim21c N A rec21c BOOL
THEN
SELECT rec21=TRUE
THEN
ProcessTask 2 (taskm) ||
load2 0:=load2+ 1 || estim210:= estim21- 1
END
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END
END

We have proven the Conditions (S1) - (S5) of the superposigbneament. Out
of the 22 obligations generated, only the two concerning the oper&tiiincond
could not be discharged automatically. By supplying the tool with eséogical
rules that simplify these obligations, these can also be proved. Tgermsition
Conditions (S6) and (S7) will be treated in the following subsestio

7.7.2 Refining the Guards of the Global Procedures

A node cannot receive a new load from the environment, if it is comittethamge
loads with a neighbouring node. Thus, when introducing the loadhatts and
splitting up the load balancing in this refinement step, the guardsajltbal pro-
ceduresNew Loadsare strengthened. Because of this the enabledness of the global
procedures must be checked explicitly via the Condition (S6). Siregulards of

the proceduredlew Load 1P and New_Load 2P are identical, we only need to
check one of them.

We first create the machine specificatiBroc_Guard1P The invariant of the
machineActions2and the guard of the procedukew Load in the machineAc-
tions1Pform the invariant of the new machine. In the OPERATIONS-clause there
is only askip-operation.

MACHINE  Proc_Guard1P(top)
CONSTRAINTS
top>0
SEES
BooL TYPE, TaskProcessing
VARIABLES
loadl, load2, taskl, task2, estim12, estim21, rec12, rec21, Il
INVARIANT

The invariant ofActions2

This invariant is given here for verification purposes andni® the antecedent of the
proof rule (S6) checking enabledness of global procediResyP)

loadle N A load2 e N A taskle TASKSA task2e TASKS

A estim12c N A estim21e N A rec12e BOOLA rec21e BOOL
A (recl2= TRUE= load2= estim12)

A (rec21l= TRUE=> loadl = estim21)

The guard of procedurdew Loadin Actions1P
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AleNAI>0
INITIALISATION

loadl, load2:= 0,0 || taskl:c TASKS| task2:c TASKS|| Il :e N
| estiml2 estim21:=0,0 || recl2, rec21:= FALSE, FALSE

Given in order to establish the invariant

OPERATIONS

Proc_Enabled to be introduced as a check for enabledness of the globakguoe
New_Load

~

Proc_Enabled = skip
END

Next, we create a machine implementatPnoc_Guard2from the actions and
the global procedures of the refinement maclkingons2 The negation of the guard
of the procedurdlew Load 1P is given as the WHILE-condition and the operation
All_Actionsin machineAll_Actions2is called from the loop. This operation consists
of a non-deterministic choice of all the actionsfintions2

IMPLEMENTATION Proc_Guard2
REFINES

Proc_Guard1P
SEES

BooL TYPE, TaskProcessingFunctions
IMPORTS

All_Actions2

All_Actions2contains all the actions @&ctions2

OPERATIONS

Proc_Enabled =
VAR loadl, load2, estim12, estim21, rec12,rec21,1l ,C1,C2,C3 IN

The initialisation ofActions2

loadl:= 0, load2:= 0, estim12=0, estim21=0,
recl2:= FALSE, rec21:= FALSE; Il := 0,

Clis 1ifrecl2has the valud RUE and O otherwise
C2is 1 if rec21has the valud RUE and O otherwise
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C3models the imbalance among the loads
These variables are updated each time the loop is executed

Cl+— BTSBOOL(recl2), C2+— BTSBOOL(rec2l),
C3+— imbalance( loadl, load2, top, estim12, estim21, rec12, rec21) ,

IF = (recl2= FALSEA rec21= FALSEAIl > 0) THEN

Perform only if the global procedutdew _Loadin Actions2is not directly enabled

WHILE — (recl2= FALSEA rec21=FALSEA Il > 0) DO

Execute as long as the global procedev Loadis not enabled

loadl, load2, estim12, estim21, rec12, rec21, C3+—

All_Actions( loadl, load2, estim12, estim21, rec12, rec21, top, C3) ;

Cl+— BTSBOOL(recl2); C2+— BTSBOOL(rec21)
INVARIANT

The invariant ofActions2

loadlc N Aload2¢ N

A estim12c N A estim21c N A rec12¢ BOOLA rec21c BOOL
A (recl2= TRUE=- load2 = estim12)

A (rec21l= TRUE=> loadl = estim21)

Al eN

The properties of the variant, explained above

ACle NAC2e NAC3eN

A (recl2=TRUE=Cl=1) A (recl2=FALSE=-C1=0)

A (rec2l=TRUE= C2=1) A (rec21=FALSE=-C2=0)
VARIANT

The variant decreases each time the loop is executed:
(2—(C1+4C2)) decreases each time a node becomes committed, and
C3 decreases after each balance action and at release of tnemhbetween two nodes

2-(Cl+C2)+C3
END
END
END

END

The non-deterministic choice of the actions in the refinement ma&ttiens2
is given in the machinall_Actions2below. The tasks are declared within this spec-
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ification machine, even if the rest of the variables are declared within tHemngmn-
tation machiné’roc_Guard2 This is due to the fact that the tasks are treated in a
non-deterministic manner in the derivation of the load balancing akgorand the
machine implementation does not allow non-determinism. We can obsetweéeh

do not use the implementation machine in the usual way here, but in suely a w
that we are able to generate the right proof obligations for proviegtperposition
refinement.

MACHINE  All_Actions2
SEES

BooL TYPE, TaskProcessing
INCLUDES

Procedures2
VARIABLES

taskl, task2

The variableaskis treated non-deterministically and is therefore dedéyere

INVARIANT

taskle TASKSA task2e TASKS
INITIALISATION

taskl:c TASKS|| task2:c TASKS

OPERATIONS

All _Actions represents the non-deterministic choice among all thersin the refined
machineActions2

load1.0, load2.0, estim120, estim210, rec120,rec21.0,C3.0«+—
All_Actiong load1, load2, estim12, estim21, rec12, rec21, top, C3) =

PRE loadle N Aload2e N A estiml12e N A estim21e N
Arecl2c BOOLA rec21c BOOLAtope N AC3e N
THEN

Commit12 | Commit21 || Bal_ Loads Down 21 [ Bal Loads Up_12
| ReleaseNodes 12 || ReleaseNodes?21 | Exit Cond

SELECT
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21)
V recl2= TRUEA rec21= FALSE

THEN  estim210:=loadl || rec21.0:= TRUE

WHEN
Imbalance( estim21, load2) v BadlyEstimated load2, estim12)
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V rec21= TRUEA rec12= FALSE
THEN  estim120:=load2 || rec12.0:= TRUE
WHEN
estim21< top A load2 > top A rec21= TRUE
THEN
load1 0, estim120 «— Trans Task 1P ( 2, task2, load1, estim12, rec12)
| load2_0:=load2— 1 || estim210:= estim21+ 1
|| C30:=C3-1
WHEN
estim12< top A load1 > top A rec12= TRUE
THEN
load2 0, estim210 «— Trans Task 2P ( 1, taskl, load2, estim21, rec21)
|| load1 0:=loadl— 1 || estim120:=estim12+ 1
|| C30:=C3-1
WHEN
= (Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE
THEN  rec12.0:= FALSE || rec210:=FALSE || C3.0:=0
WHEN
= ( Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE
THEN  rec210:=FALSE || rec120:=FALSE| C3.0:=0
WHEN
- Guard_Commit.12 A — Guard_Commit 21
A — Guard_Bal_Load Down 21
A — Guard_Bal _Load Up_12
A — Guard_ReleaseNodes12 A — Guard_ReleaseNodes21
THEN  skip
END
END

DEFINITIONS

Imbalance(x,y) = x<topAy>topV (x>topAy<top),
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(X=1t0pAy#top) V (x#topAy=top);
Guard_Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21) V rec12= TRUE
A rec21= FALSE;
Guard Commit21 =
Imbalance( estim21, load2) v BadlyEstimated load2, estim12) v rec21= TRUE
A recl2= FALSE;
Guard_Bal_Load_Down 21 =
estim21< top A load2 > top A rec21= TRUEA rec12= TRUE,
Guard Bal_Load Up_12 =
estim12< top A load1 > top A rec12= TRUEA rec21= TRUE,
Guard_ReleaseNodes12 =
= (Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE;
Guard_ReleaseNodes21 =
— (Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE

END

In the variant, (2 -C1+ C2)) + C3, of the WHILE-loop we state that the system
becomes more balanced each time the balancing adianhtoads Down_21 and
Bal_Loads Up_12 are executed. The variab&3 represents this decreasing imbal-
ance in the following way. It is decreased by one after each balancing operation and
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furthermore, by three after the commitment between the nodes has been released.
This is expressed in the machiRanctions

MACHINE  Functions
SEES
Bool TYPE

OPERATIONS

The variableC3is part of the loop variant for the load balancing algorithm.
It records the decrease in the imbalance of the system dexiecution.
When a commitment is released it is decreased by 3.

C3+— imbalancé load1, load2, top, estim12 estim21, rec12, rec2l) =

PRE loadle N Aload2e N A tope N;
A estim12e N A estim21e N A rec12e BOOLA rec21e BOOL
THEN
IF  loadl>topAload2<top THEN C3:=3+ (top— load2)
ELSIF loadl<topAload2>top THEN C3:=3+ (top— loadl)
ELSIF - (loadl= estim2l) v — (load2= estim12)
Vrecl2=TRUEV rec21=TRUE THEN C3:=3
ELSE C3:=0
END
END

END

The 59 proof obligations generated for the mactinec_Guards2form the en-
abledness condition for the global procediiew Loadin the machine refinement
Actions2 Of these proof obligations only 10 could not be discharged automigtical

The definition of the variant gives the extra rules needed to dischagge froof
obligations.

7.7.3 Termination of Auxiliary Actions

The termination of the auxiliary actiorGommitand ReleaseNodesneeds to be
checked with Condition (S7) in order féwctions2to be a superposition refinement
of Actions1P This condition is checked within the B-Method by first creating a
machineNa_Actions1Pto represent the non-existence of the auxiliary actions of
Actions2in Actions1P

MACHINE  Na_Actions1P( top)
CONSTRAINTS
top>0

OPERATIONS
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Aux_Actions_Term models the termination of no auxiliary actionsAations1P

Aux_Actions Term =  skip
END
Furthermore, we create the implementation machiee_Actions2to model the

termination of the auxiliary actions ictions2 The same invariant and variant are
used here as previously when checking the guards of the global procedures.

IMPLEMENTATION New Actions2
REFINES
No_Actions1P
SEES
BooL TYPE, Functions
IMPORTS
Aux_Actions2

Aux_Actions2contains the auxiliary actions @éfctions2

OPERATIONS

Aux_Actions.Term =
VAR loadl, load2, estim12, estim21, rec12,rec21,C1,C2,C3 IN

The initialisation ofActions2

loadl:= 0, load2:= 0, estim12=0, estim21=0,
recl2:= FALSE;, rec21.= FALSE,

Clis 1 if recl2has the valud RUE and O otherwise

C2is 1 if rec21has the valug RUE and 0 otherwise
C3models the imbalance among the loads

These variables are updated each time the loop is executed

Cl+— BTSBOOL(recl2), C2+— BTSBOOL(rec2l),
C3+— imbalance( loadl, load2, top, estim12, estim21, rec12, rec21) ,

WHILE Guard_Commit.12V Guard_-Commit.21 Vv
Guard_ReleaseNodes 12 Vv Guard_ReleaseNodes21 DO

Execute as long as one of the auxiliary actions are enabled

estiml12, estim21, rec12, rec21, C3<+—
Aux_Actions( loadl, load2, estim12, estim21, rec12, rec21, top, C3) ,
Cl1+— BTSBOOL(recl2), C2+— BTSBOOL(rec21)

INVARIANT
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The invariant ofActions2

loadlc N Aload2¢c N

A estiml12c N A estim21e N A rec12e BOOLA rec21e BOOL
A (recl2= TRUE=- load2 = estim12)

A (rec21= TRUE=> loadl = estim21)

The properties of the variant, as explained above:

ACle NAC2e NAC3eN

A (rec12=TRUE= Cl1=1) A (recl2= FALSE=> C1=0)

A (rec21l=TRUE= C2=1) A (rec21=FALSE=-C2=0)
VARIANT

The variant decreases each time the loop is executed:
(2—(C1+C2)) decreases each time a node becomes committed and
C3 decreases at release of commitment between two nodes

2-(Cl4+C2)+C3
END
END

DEFINITIONS

Imbalance(x,y) = x<topAy>topV (x>topAy<top),;
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(x=topAy#top)V (Xx#topAy=top);
Guard Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21) v rec12= TRUE
A rec21= FALSE;,
Guard Commit21 =
Imbalance( estim21, load2) v BadlyEstimated load2, estim12) V rec21= TRUE
A recl2= FALSE;,
Guard_ReleaseNodes12 =
= ( Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE;
Guard_ReleaseNodes21 =
= ( Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE

END
The non-deterministic choice of the auxiliary operations in the referéma-
chineActions2is given in the machin@ux_Actions2below.

MACHINE  Aux_Actions2
SEES
Bool TYPE

OPERATIONS
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Aux_Actions represents the non-deterministic choice of all the auxilections in the
refined machiné\ctions2

estim120, estim210, rec12.0,rec21.0,C3.0+«+—
Aux_Actiong loadl, load2, estim12, estim21, rec12, rec21, top,C3) =

PRE loadle N Aload2e N A estim12c N A estim21e N
Arecl2e BOOLA rec21e BOOLAtope N; A C3e N
THEN

Commit12 | Commit21 | ReleaseNodes 12 | ReleaseNodes21

SELECT
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21)
V recl2= TRUEA rec21= FALSE
THEN  estim210:=loadl || rec210:= TRUE
WHEN
Imbalance( estim21, load2) v BadlyEstimated load2, estim12)
V rec21= TRUEA recl2= FALSE
THEN  estim120:=load2 || rec12.0:= TRUE
WHEN
— (Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE
THEN  rec12.0:= FALSE || rec210:=FALSE || C3.0:=0
WHEN
— (Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE
THEN  rec21.0:= FALSE || rec12.0:=FALSE || C3.0:=0
END
END

DEFINITIONS
Imbalance(x,y) = x<topAy>topV (x>topAy<top),
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(Xx=topAy#top) V(X#topAy=top)
END

The 28 proof obligations generated by the B-Toolkit imply the Goowl (S7) in
the superposition rule. By also discharging these proof obligatienhave proved
the superposition step completely. For this construct only threbefenerated
proof obligations could not be discharged automatically. Accordiniggalefinition
of the variant they are, however, trivially true and can be dischargedthéthelp
of the interprover.

7.7.4 Introducing New Procedures

The auxiliary action€ommit.12andReleaseNodes 12 of node 1 assign variables
of both node 1 and node 2, i.e., the variables with the first index Rathce the
actions of each node in a distributed system should only assign variditesnode



284 7. Distributed Load Balancing

Procedures2fp
Aux_Actions2 New_Actions2
s |+———{rman | L

Fig. 7.12.0verview of the Derivation After the new Procedures aredaticed in the Second
Refinement Step

itself, we create two new procedurBmns LoadandReleaseReflfor each node in
the network. The proceduirans Load models a link for sending loads between
nodes, while the proceduReleaseReflsynchronises the release of a commitment
between two nodes. All the assignments to the variables of for examgie2
the auxiliary action€ommit.12 andReleaseNodes 12 of node 1 are moved to the
procedure§rans Load 2P andReleaseReflL 2P, respectively. These assignments
are replaced by calls to the procedures in the corresponding actions. Hen@ewve h
taken yet another step towards a distributed system.

The actions are now given in the machisetions2Pand the procedures in the
machineProcedures2PFig. 7.12 shows how these machines are related to the pre-
viously developed system.

REFINEMENT  Actions2P
REFINES
Actions2
SEES
BooL TYPE, TaskProcessing
INCLUDES
Procedures2P
VARIABLES
loadl, load2, taskl, task2, estim12, estim21, rec12, rec21
INVARIANT

loadle N A load2 e N A taskle TASKSA task2e TASKS

A estiml12c N A estim21e N A rec12e BOOLA rec21e BOOL
A (recl2= TRUE= load2= estim12)

A (rec21= TRUE=> loadl = estim21)

INITIALISATION

loadl, load2:=0,0 || taskl:c TASKS|| task2:c TASKS
| estiml2 estim21:=0,0 || recl2, rec21:= FALSE, FALSE

OPERATIONS

New Load 1P(ll) =
PRE 1lleN THEN
SELECT recl2= FALSEA rec21= FALSEAIl >0
THEN  loadl:=1I
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END
END ;
New Load 2P(Il) =
PRE IleN THEN
SELECT recl2= FALSEA rec21= FALSEAIl >0
THEN  load2:= I
END
END ;

Commit_12transfers the load of node 1 to node 2 for updating via pragedu

Trans_Load 2P

Commit12 =
SELECT
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21)

Vrecl2= TRUE
THEN  estim21, rec21+— Trans Load 2P (1, loadl, rec21)
END,
Commit21 =
SELECT
Imbalance( estim21, load2) v BadlyEstimated load2, estim12)

V rec21= TRUE
estim12 rec12<+— Trans Load 1P ( 2, load2, rec12)

THEN
END,
Bal_Loads Down 21 =
estim21< top A load2 > top A rec21= TRUE

SELECT
THEN
loadl, estiml2— Trans Task 1P ( 2, task2, loadl, estim12 rec12) ;

load2:=load2— 1, estim2Ll= estim21+ 1
END ;
BalLoadsUp_12 =
SELECT estim12< top A loadl > top A rec12= TRUE
THEN
load2, estim21+— Trans Task 2P (1, task1, load2, estim21, rec21) ;
loadl:=loadl— 1, estim12=estiml12+ 1

END ;

ReleaseNodes 12releases the commitmentin node 1 and requests node 2 to sarttee

via procedureReleaseRefL 2P

ReleaseNodes12 =
SELECT - (Imbalance( loadl, estim12) ) A rec12= TRUE
THEN  recl2:= FALSE, rec21+— ReleaseReflL2P (1, rec21)
END
ReleaseNodes21 =
SELECT - (Imbalance( estim21, load2) ) A rec21= TRUE
THEN  rec2l:= FALSE, rec12<— ReleaseRefL1P ( 2, rec12)
END
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Exit Cond =
SELECT
- Guard_Commit.12 A — Guard_Commit.21
A = Guard_Bal_Load Down 21
A — Guard_Bal Load Up_12
A — Guard_ReleaseNodes 12 A — Guard_ReleaseNodes 21
THEN  skip
END

DEFINITIONS

Imbalance(x,y) = x<topAy>topV (x>topAy<top),
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(X=1t0pAy#top) V (x#topAy=top);
Guard Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated loadl, estim21) V rec12= TRUE
A rec21= FALSE;
Guard Commit21 =
Imbalance( estim21, load2) v BadlyEstimated load2, estim12) v rec21= TRUE
A recl2= FALSE;,
Guard_Bal_Load Down 21 =
estim21< top A load2 > top A rec21= TRUEA rec12= TRUE,
Guard Bal_Load Up_12 =
estim12< top A load1 > top A rec12= TRUEA rec21= TRUE,
Guard_ReleaseNodes12 =
= (Imbalance( loadl, estim12) ) A rec12= TRUEA rec21= TRUE;
Guard_ReleaseNodes?21 =
— (Imbalance( estim21, load2) ) A rec21= TRUEA rec12= TRUE

END

The new procedurefrans LoadandReleaseReflare added to the procedures
in Procedures2o form the machin®rocedures2P

MACHINE  Procedures2P
SEES
BooL TYPE, TaskProcessing

OPERATIONS

load1 0, estim120 «<— Trans_Task 1P( mm, taskm, loadl, estim12, rec12)
PRE mm= 2 A taskme TASKSA loadle N A estim12c N A rec12e BOOL
THEN
SELECT recl2=TRUE
THEN
ProcessTask 1 ( taskm) ||
load1 0:=loadl+ 1 || estim120:= estiml2— 1
END
END ;
load2.0, estim210 «<— Trans_Task 2P( mm, taskm, load2, estim21, rec21) =
PRE mm= 1A taskme TASKSA load2 € N A estim21e N A rec21e BOOL
THEN
SELECT rec21=TRUE
THEN
ProcessTask 2 (taskm) ||
load2 0:=load2+ 1 || estim210:= estim21- 1

~
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END
END ;

Trans_Load_1P receives the load of nodam= 2) and updates the estimate of the load

of the sender while registering that the sender has conthitteode 1recl2 = TRUE)

estim120, rec12.0 «— Trans Load_1P( mm, loadm, rec12) =
PRE mm=2Aloadme N Arecl2¢ BOOL THEN
SELECT recl2=FALSE
THEN  estim120:=loadm || rec12.0:= TRUE
END
END,

estim210, rec21 0 «— Trans Load 2P( mm, loadm, rec21) =
PRE mm=1Aloadme N Arec21e BOOL THEN
SELECT rec21=FALSE
THEN  estim210:=loadm || rec21.0:= TRUE
END
END,

ReleaseRefl releases the commitment to the senden= 2) by assigningrecl2 to
FALSE

rec12 0 +— ReleaseRefL1P( mm, recl2) =
PRE mm=2Arecl2¢ BOOL THEN
SELECT recl2=TRUE
THEN  rec12.0:= FALSE
END
END ;
rec21 0 +— ReleaseRefL.2P( mm, rec21) =
PRE mm=1Arec2l¢ BOOL THEN
SELECT rec21=TRUE
THEN  rec21.0:= FALSE
END
END

END

Expanding the procedure calls in the acti@mmmitandReleaseNodesin Ac-
tions2Pwill result in the operation€ommitandReleaseNodesn Actions2 Hence,
this step involves merely a re-writing of the machine. All the 30 prufgations
generated in this step were automatically discharged.

7.8 Refinement Step 3: Distributing the Estimates

In the machinéActions2Pwe refer to variables of node 8stim2landrec?2], in the

operationCommit.12 of node 1. Since an operation of a node should only refer to

its own variables in a distributed algorithm, we need to introduce a amésim for
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Fig. 7.13.0verview of the Derivation After the Third Refinement Step

a node to know what estimates its neighbours have about it witharerefing the
estimate of that neighbouring node. In the third superpositionwtpherefore,
add the variablesldload12 oldload21 send12andsend21The variableoldload12
gives the value of the load of node 1 last sent to node 2, i.e. the estimde 2
has aboutoadl The boolean variableend12has the valud RUE if the value of
load1 has been sent to node 2 and node 1 is committed to change loads with node
2. When the commitment is releaseehd1ds assigned the valUéALSE The vari-
ablesoldload2landsend2lare interpreted similarly. This refinement step is given
in the machine#\ctions3andProceduresdelow. Their relations to the previously
developed machines are shown in the overview in Fig. 7.13. The enabdauirtbe
procedure guards are checked via the machtes Guards2R Proc_Guards3and
All_Actions3

REFINEMENT  Actions3
REFINES

Actions2P
SEES

BooL TYPE, TaskProcessing
INCLUDES

Procedures3
VARIABLES

load1, load2, task1, task2, estim12, estim21, rec12, rec21,
oldload12, oldload21, send12 send21

oldload12contains the value dbadl latest sent to node 2, i.e. the estimate node 2 has
aboutload1

sendl12has the valuerRUEif the value ofloadl has been sent to node 2 and node 1
is comitted to node 2, when the nodes 1 and 2 are not commithed ithe valuEALSE

INVARIANT

loadle N A load2 € N A taskle TASKSA task2e TASKS

A estim12c N A estim21c N A rec12¢ BOOLA rec21c BOOL

A oldload12¢ N A oldload21c N A send12c BOOLA send21c BOOL
A (recl2= TRUE=> load2 = estim12)
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A (rec21= TRUE= loadl= estim21)
A (send12= TRUE= oldload12= load1)
A (send21= TRUE=- oldload21= load2)

When node 1 is committed to node 2, the load of nodeddy, is the same as the load
last sent from node 1 to node @dload12

A (send12= TRUE=rec21= TRUE) A (rec21= TRUE=- send12= TRUE)
A (send21= TRUE=rec12= TRUE) A ( rec12= TRUE=- send21= TRUE)

send14s a mirror ofrec21andsend2lis a mirror ofrec12

A oldload12= estim21A oldload21= estim12

oldload12andestim2lalways correspond to each other, as weblatoad21andestim12

INITIALISATION

loadl, load2:=0, 0 || taskl:c TASKS|| task2:c TASKS
| estiml2 estim21=0,0 || recl2, rec21l:= FALSE, FALSE
| oldload12, oldload21:= 0,0 || send12 send21l= FALSE, FALSE

Initially oldloadl2 andoldload21 are 0 andend.2 andsen®1 have the valuEALSE,
since no nodes are committed

OPERATIONS

New_Load_1P assigns a new load to node 1, if node 1 is not committed to enoitde

New Load 1P(Il) =
PRE lleN THEN
SELECT recl2= FALSEA send12= FALSEA Il >0
THEN  loadl:= I
END
END ;
New Load 2P(ll) =
PRE 1lleN THEN
SELECT rec21= FALSEA send21= FALSEAIl >0
THEN  load2:= I
END
END ;

Commit_12 senddoadlto node 2 to update the load estimates in node 2 and regiger th
load as sent. Furthermore, it commits node 1 to nodeaPnmit12 is enabled in case of
an imbalance, a too bad estimate in node 2 or a commitmentdaf 200 node 1
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Commit12 =
SELECT
Imbalance( loadl, estim12) v BadlyEstimated load1, oldload12)
V rec12= TRUEA send12= FALSE
THEN
estim21, rec21«— Trans Load 2P (1, loadl, rec21) ;
oldload12:= loadl, send12= TRUE
END,
Commit21 =
SELECT
Imbalance( estim21, load2) v BadlyEstimated load2, oldload21)
V rec21= TRUEA send21= FALSE
THEN
estim12 rec12«— Trans Load 1P ( 2, load2, rec12) ,
oldload21:=load2; send21:= TRUE
END,

Bal_Loads Down_21 sends a task from node 2 to node 1 and updates the loads and
the estimates in nodes 1 and 2, if the nodes are committecctoather and there is an
imbalance between them

Bal_Loads Down 21 =
SELECT  estim21< top A load2 > top A rec21= TRUEA send21= TRUE
THEN
load1, estim12, oldload12+—
Trans Task 1P ( 2, task2, load1, estim12, rec12, oldload12, send12)
load2:=load2 - 1, estim2Ll=estim21+ 1,
oldload21:= oldload21— 1
END,
BalLoadsUp_12 =
SELECT estim12< top A loadl > top A rec12= TRUEA send12= TRUE
THEN
load2, estim21, oldload21<+—
Trans Task 2P (1, taskl, load2, estim21, rec21, oldload21, send21) ,
loadl:=loadl— 1, estiml2=estiml2+ 1,
oldload12:= oldload12— 1
END,

ReleaseNodes 12releases the commitment synchronously between nodes 1 ahe2
there is no imbalance between these committed nodes

ReleaseNodes12 =
SELECT - (Imbalance( loadl, estim12) ) A rec12= TRUEA send12= TRUE
THEN
recl2, send12= FALSE, FALSE;,
rec21, send21+— ReleaseReflL2P (1, rec21, send21)
END,
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ReleaseNodes21 =
SELECT - (Imbalance( estim21, load2) ) A rec21= TRUEA send21= TRUE
THEN
rec21, send21l= FALSE, FALSE;,
recl2, send1%— ReleaseRefL1P (2, recl2, send1?
END,

Exit_Cond represents the exit condition

Exit Cond =
SELECT
= Guard_Commit.12 A = Guard_Commit.21
A — Guard_Bal_Load_Down_21
A — Guard_Bal Load Up_12
A — Guard_ReleaseNodes 12 A — Guard_ReleaseNodes21
THEN  skip
END

DEFINITIONS

Imbalance(x,y) = x<topAy>topV (x>topAy<top),;
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(x=topAy#top) V(x#topAy=top),
Guard Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated load1, oldload12)
V rec12= TRUEA send12= FALSEA rec21= FALSE;
Guard_Commit21 =
Imbalance( estim21, load2) v BadlyEstimated load2, oldload21)
V rec21= TRUEA send21= FALSEA rec12= FALSE,
Guard_Bal_Load Down 21 = estim21< top A load2 > top A rec21= TRUE
A send21= TRUEA rec12= TRUEA send12= TRUE,
Guard Bal_Load Up_12 = estim12< top A load1 > top A rec12= TRUE
A send12= TRUEA rec21= TRUEA send21= TRUE,
Guard_ReleaseNodes12 = - (Imbalance(loadl, estim12)) A rec12= TRUE
A send12= TRUEA rec21= TRUEA send21= TRUE,
Guard_ReleaseNodes21 = - (Imbalance( estim21, load2)) A rec21= TRUE
A send21= TRUEA rec12= TRUEA send12= TRUE

END

The variablesoldload12and oldload21are initially assigned 0 and the vari-
ablessendl12and send21lare initially FALSE During the execution the variables
oldload12andsendl2eflect the changes in the variabtestim2landrec2], respec-
tively. We strengthen the invariant Attions2Pto include this relation between the
new variablesdldload, senjiand the old oneddad, estim, regconsidering that
E = {(1,2)}. The variableoldload.ij is always updated when the nodemnd| are
committed:

(Vi,j. ,j eVA((i,]) € EV(],i)€E).
sendij = TRUE= oldload.ij =load.i).
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Furthermore, the variablendandrec correspond to each other in the following
way
(Vi,j. i,j eV A((i,]) € EV (j,i) €E). sendij =rec_ji),

and the variablesldloadandestimas follows
(Vi,j. i,j eVA((i,j) e EV(],i) € E). oldload.ij = estim.ji).

All the operations are updated to reflect the changes in the variables. The oper
ations are modified only to refer to local variables, which for example mdweats t
operationCommit.12 of node 1 only refers to variables of node 1, except for the
parameters in the procedure call trans_Load _2P.

The local procedures are also changed to model the distribution of theaésti
with the new variablesldloadandsend

MACHINE  Procedures3
SEES
BooL TYPE, TaskProcessing

OPERATIONS

Trans_Task_1P receives a task from nodem= 2) and updates its loads and estimates,
if the nodes 1 andhmare committed

load1.0, estim120, oldload12.0 <
Trans Task 1P( mm, taskm, load1, estim12 rec12, oldload12, send1? =
PRE mm= 2 A taskmec TASKSA loadlc N A estim12c N A rec12¢ BOOL
A oldload12e N A send12c BOOL

THEN
SELECT recl2= TRUEA send12= TRUE
THEN
ProcessTask 1 ( taskm) || oldload12.0:= oldload12+ 1
| load10:=loadl+ 1 || estim120:= estiml2—1
END
END

load2_0, estim210, oldload21 0 <—
Trans_Task 2P( mm, taskm, load2, estim21, rec21, oldload21, send2l) =
PRE mm= 1A taskme TASKSA load2 e N A estim21e N A rec21e BOOL
A oldload21¢ N A send21e BOOL
THEN
SELECT rec21l= TRUEA send21= TRUE
THEN
ProcessTask 2 (taskm) || oldload21.0 := oldload21+ 1
| load2.0:=load2+ 1 || estim210 := estim21— 1
END
END ;
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Trans_Load_1Preceives a load from nodem = 2) and updates its estimate of this load,
if the sendemmis not committed to node 1 upon the procedure call

~

estim120, rec12.0 «— Trans Load_1P( mm, loadm, rec12) =
PRE mm=2Aloadme N A recl2e BOOL THEN
SELECT recl2= FALSE
THEN  estim120:=loadm || rec12.0:= TRUE
END
END,
estim210, rec21 0 «— Trans Load 2P( mm, loadm, rec21)
PRE mm=1Aloadme N A rec2le BOOL THEN
SELECT rec21=FALSE
THEN  estim210:=loadm || rec210:= TRUE
END
END

>

ReleaseReflL 1P releases the commitment between nodes Iram(= 2)

rec12 0, send120 «— ReleaseReflL 1P( mm, rec12, send1? =
PRE mm=2Arecl2¢c BOOLA send12c BOOL THEN
SELECT recl2= TRUEA send12= TRUE
THEN  rec12.0:= FALSE || send120:= FALSE
END
END,

rec21 0, send210 «— ReleaseRefl 2P( mm, rec21, send2l) =
PRE mm=1Arec2l1c BOOLA send2lc BOOL THEN
SELECT rec21= TRUEA send21= TRUE
THEN  rec21.0:= FALSE || send210:= FALSE
END
END

END

We can prove the Conditions (S1) - (S3) and (S5) in the superpositie by
proving the 42 proof obligations generated for the refinerdenions3 There are
no auxiliary actions in this refinement step. Hence, the Conditions (S#{S%R),
concerning the refinement and the termination of the auxiliary actions, redxkn
proven here.

The guards of the global procedures are changed in this refinement step, such
that we, for example, haveendl2instead ofrec21andoldload12instead ofes-
tim21in the procedurdNew LoadlP This change means that we would need to
check the enabledness of the global procedures in Condition (S6). Theecisang
however, trivial since the invariant states tig#nd12= rec21)and(oldload12 =
estim21) Thus, the guards of the global proceduiesv_Loadin the machineAc-
tions2Pare equivalent to the corresponding ones in the maokatiens3 We have
proved this condition using the B-Toolkit by creating similar maekias in the pre-
vious step. The step generated 75 proof obligations of which 63 coulisblearged
automatically. The rest could again be discharged with the interproverdiygthe
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definition of the variant to the proof rules. We have omitted this ppere, since it is
similar to the previous step.

7.9 Decomposition of the Load Balancing Algorithm

In a distributed action system each action and procedure is local to a nodegfer
only to variables of that node. The values of the variables of a node areisitlle

to other nodes by explicitly communicating them to that node via praeechills.
When embedding an action system within the B-Method a distributeditdgor
consists of machines, where the operations in each machine refer to variades of
node. Several machines can belong to the same node.

Even though the load balancing algorithAttions3and Procedures3that we
have derived is distributed in action system sense, the operationgtohbdes 1
and 2 are given in the same machine construct. Because of this we also have to
declare the variables of both nodes in the machictions3and perform the changes
to the state space iRrocedures3with parameters. We can, however, decompose
the system so that operations in a machine construct only refer to varddhles
node and make the system explicitly distributed. The decomposditire reverse
procedure to the parallel composition of action systems, as explaindthiot€r 5.

Let us now decompose the load balancing algorithm within the B-Methoe:.
included all procedures and actions of a node into one machine, we wowdcahav
cyclic reference between the machines of node 1 and node 2, since the actions of
node 1 call the procedures of the neighbouring node 2 and vice versasépagate
all the operations that represent local procedures of a node into one madiine
all operations that represent actions and global procedures of a node itih@rano
machine, we avoid these cyclic references. We then have an action-machine and a
procedure-machine for each node in the network. These machines will, Bogwev
both assign the same variables, which is not allowed within the B-Methioe so-
lution to this is to create a third component for a node, a variable-meckmirthis
machine the variables are declared and given types. The variables are assigned via
the operations in the variable-machine. All the assignments in the actia@hine
and the procedure-machine are replaced by calls to these operations. In the decom
posed algorithm each node then controls itself and we have a decentralised con
in the system. The overview of this decomposition is shown in Fit4.

We now reorganise the actions and the procedurégiions3andProcedures3
according to the description above. Here we have chosen to show onlatiemas
of node 1. The machines of node 2 are similar.

MACHINE  NodelActions( top)
CONSTRAINTS
top>0

The thresholdop giving the preferable load of a process

SEES
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Procedures
P1, P2
decomposition
Actions s
+Variables
V1,V2; Al, A2

— INCLUDES

Fig. 7.14.Decomposition of Action Systems Within B-Method

BooL TYPE, TaskProcessing

INCLUDES
NodelVar, Node2 Proc

The variables of node 1 and the procedures of the neighlipndde 2

OPERATIONS

The global procedures of node 1 assigning the variablesdd dovia assignment opera-

tions:

~

New Load 1P(Il) =
PRE IleN THEN
rec12= FALSEA send12= FALSEA Il > 0

SELECT
THEN  loadl assign(ll)
END

END ,

The actions of node 1 assigning the variables of node 1 vigrasgnt operations:

Commit12 =
SELECT
Imbalance( loadl, estim12) v BadlyEstimated loadl, oldload12)

V recl2= TRUEA send12= FALSE

THEN
Trans Load 2P (1, loadl) ||
oldload12 assign( loadl) || sendl2assign( TRUE)

END ;
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Bal LoadsUp_12 =
SELECT estim12< top A loadl > top A rec12= TRUEA send12= TRUE
THEN
Trans Task 2P (1, taskl) || loadl assign(loadl— 1)
| estiml2assign( estiml2+ 1) || oldload12 assign( oldload12— 1)
END ;
ReleaseNodes12 =
SELECT - (Imbalance( loadl, estim12) ) A rec12= TRUEA send12= TRUE
THEN
rec12 assign( FALSE) || send12assign( FALSE) ||
ReleaseReflL2P (1)
END ;

The exit condition of the action system of node 1:

Exit Condl =
SELECT
- Guard-Commit.12 A - Guard_Bal_Load Up_12
A — Guard_ReleaseNodes 12
THEN  skip
END
DEFINITIONS
Imbalance(x,y) = x<topAy>topV (x>topAy<top),
BadlyEstimated x,y) = x>topAy<topV (x<topAy>top)V
(x=topAy#top)V (Xx#topAy=top);
Guard Commit12 =
Imbalance( loadl, estim12) v BadlyEstimated load1, oldload12)
V rec12= TRUEA send12= FALSEA rec21= FALSE;
Guard_Bal_Load Up_12 = estim12< top A loadl> top A rec12= TRUE
A send12= TRUEA rec21= TRUEA send21= TRUE,
Guard_ReleaseNodes12 = - (Imbalance(loadl, estim12)) A rec12= TRUE
A send12= TRUEA rec21= TRUEA send21= TRUE

END

We give the imported global variables as parameters of the action-machine,
Nodel Actions since this is the machine with the main operations of the node. We
do not declare any variables in this machine, but we include them via thebleri
machineNodel Var. The procedures of the neighbouring nodes, hNerde2 Proc,
should also be included. The global proceddiew Load 1P of node 1 is an op-
eration ofNodelActions as well as the action€ommit.12, Bal_Loads Up_12
andReleaseNodes 12 of node 1. These operations assign the variables via calls to
the assignment operationsiodel Var. Furthermore, the parameters only needed
for changing the state space Attions3and Procedures3are not included in the
procedure calls here.

In the machineNodel Proc the operations consist of the procedures of node
1: Trans Task 1P, Trans Load 1P andReleaseRefl. 1P. We include the variables
of node 1 in this machine in the same way as in the macNipdel Actions The
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variables are also here assigned via assignment operations. Since thiegafab
node 1 are included in this machine, they need not be referenced and changed via
procedure parameters asRrocedures3

MACHINE  NodelProc
SEES

BooL TYPE, TaskProcessing
INCLUDES

Nodel Var

The variables of node 1

OPERATIONS

The local procedures of node 1 assigning the variables of Aoda assignment opera-
tions:

Trans_ Task 1P( mm, taskm) =
PRE mm=2 A taskme TASKS THEN
SELECT recl2= TRUEA send12= TRUE
THEN
ProcessTask 1 (taskm) || oldload12 assign( oldload12+ 1)
| loadl assign(loadl+ 1) || estiml2assign( estiml2— 1)
END
END ;
Trans Load 1P( mm, loadm) =
PRE mm=2Aloadme N THEN
SELECT recl2=FALSE
THEN  estiml2assign(loadm) || recl2 assign( TRUE)
END
END ;
ReleaseRefL1P(mm) =
PRE mm=2 THEN
SELECT recl2= TRUEA send12= TRUE
THEN  recl2assign( FALSE) || send12assign( FALSE)
END
END

END

The state space, i.e. the variables of nodes 1 and 2, is split up in the decom-
position and therefore the actions and procedures of nhodéNbdie1 Actionsand
Nodel Proceduresnly refer to variables of node 1, while the actions of node 2 in
Node2 ActionsandNode2 Procedurenly refer to the variables of node 2. All the
variables of node 1 are declared and initialised in the maddoue1 Var. Further-
more, each variable has an assignment operation and can only be assigned via this
operation. The value to be assigned is given as a parameter of the operation.
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MACHINE  NodelVar
SEES
BooL TYPE, TaskProcessing
VARIABLES
load1, taskl, estim12, rec12, oldload12, send12

The variables of node 1

INVARIANT

loadl e N A taskle TASKSA estim12c N A rec12¢€ BOOL
A oldload12¢ N A send12c BOOL

The types of the variables of node 1

INITIALISATION

loadl:= 0 || taskl:c TASKS|| estiml2=0 || recl2:= FALSE
| oldload12:=0 || send12= FALSE

Initialisation of the variables of node 1

OPERATIONS

Assignments to the variables of node 1:

loadlassigrfll) = PRE [N THEN loadl:=I END,

tasklassigritt) = PRE tte TASKS THEN taskl:=tt END,

estiml2assigfll) = PRE IlleN THEN estiml2=II END;

oldload12 assigrfll) = PRE IleN THEN oldload12:=1l END,

recl2.assigfbb) = PRE bbeBOOL THEN recl2:=bb END,

sendl2assigifbb) = PRE bbeBOOL THEN send12=bb END
END

The invariant contains only the type information here, because a sisgign-
ment operation does not establish the whole invaria®ations3 However, since
the decomposition step only involves re-arranging the variables arap#rations
of the system, all the operations and variables of nodeAtiions3andProcedures3
can also be found iNode1 Actions Node1 ProcandNodel Var. By creating these

machines containing actions, procedures and variables for each node in the&knetwo

we have developed a distributed load balancing algorithm using tietBod.
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7.10 Discussion

In this chapter we have derived a distributed load balancing algorithm & non-
distributed specification using the B-Method. The specification of tperithm was
given as an action system translated into an abstract machine specification. The al-
gorithm was then refined in three steps within the B-Method. The refinestews
were constructed in such a way that the proof obligations generated feonrcibrre-
sponded to the conditions of the superposition rule within themaslstems frame-
work. In the first step of the derivation we distributed the loadsmbyducing proce-
dures to the system. As the following step we added an estimation methasiig

the superposition refinement. When proving that step we needed toun& o
extra constructs within the B-Method: one implementation machinetecking
the enabledness of the global procedures and another for checking the tenminat
of the auxiliary actions. The computation in the auxiliary actions wssitluted by
introducing more procedures. As a final superposition step we added meeh-
anism to keep track of the estimates of the neighbours. Since we didtroxtuce
any auxiliary actions in this step, we only needed to create one extra Brecnst
the one for checking the enabledness of the global procedures, whengtttriast
superposition step using the B-Method. An overview of the dedwatias given in
Fig. 7.13. By decomposing the resulting algorithm so that each machiriaics
operations and refers to variables of only one node, we have reached lautkstri
load balancing algorithm within the B-Method.

Using the B-Toolkit as a mechanical aid to prove the superpositioreragnt
of a system gives us some advantages compared to performing the refinapsent st
manually. It is easier to detect errors in the algorithm, as well as inadequadies i
invariant. These shortcomings are usually detected when studyingabggiiga-
tions that cannot be automatically proved. Additionally, using thematver in the
B-Toolkit for the superposition proofs gives us more confidendhase proofs.

There are, however, also drawbacks when using the B-Method for degeing
tion systems. The substitutions allowed in the specifications andereéints are
very restrictive. For example, a WHILE-loop cannot be introduced theilast re-
finement step, the machine implementation. Therefore, in order to be gevie
the superposition rule within the B-Method, we need to create ext@Btructs.

In conclusion, we can say that even if the B-Method is intended for refining
sequential programs, we are able to use it in the derivation of digadiprograms.
This is due to the fact that we can write an action system within the B-ddieth
However, to carry out the derivation of distributed programs withm B-Method
demands some efforts with the original B-Method. The extensi@swdsed in the
next chapter and elsewhere [18] would facilitate this process.

7.11 Exercises

Exercise 7.1 (Verification of Decomposition).Show that the decomposed system
is a refinement ofctions3andProcedures3n the last refinement step.
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Exercise 7.2 (Load Balancing in C).Generate C-code for the decomposed load
balancing algorithm.

Exercise 7.3 (Expanding the Network).Derive the load balancing algorithm for a
network with more than two nodes.



8. Distributed Electronic Mail System

Michael Butler

8.1 Introduction

In this chapter, we use an action system/AMN combination to designrébdistd

email system. The design starts with the abstract specification of an emaileserv

as a single machine with a simple state structure. The goal is to ineplethis
abstract service on a store-and-forward network, where not all nodesraotiydi
connected and messages may pass through a number of intermediate nodes before
reaching their recipient. The first refinement of the abstract machine inviblees
introduction of data structures more closely resembling the stordeamard archi-

tecture. Subsequent design steps involve the parallel decompositibe system

into subsystems representing the agents at each node in the network diréc¢he
communications links in network.

Chapter 5 introduced the state-based view of action systems. In this ¢hapter
we take an event-based view of action systems. In the event-based \éegxeh
cution of an operation is regarded as an event, but only the identityeoévant
is observable and the state is regarded as being internal and not obsefable.
event-based view corresponds to the way in which system behaviourdsliexd
in various process algebras such as ACP [10], CCS [55] and CSP [38]. & ex
correspondence between action systems and CSP was made by Morgan [56]. Using
this correspondence, techniques for event-based refinement and parallel composi
tion of action systems have been developed in [19, 20]. In this chapeshall use
the event-based view of action systems, applying the techniques 0201% B
abstract machines.

Before going through the case study, we look more closely at the -based
view of action systems. In particular, we look at how actions can represent com
munication events, how such events can be hidden from the environmeioan
systems can be combined in parallel such that they interact through shared actio

8.2 Event-Based Actions Systems
Fig. 8.1 contains an action system, calMlll, specified as a B abstract machine.

This is intended to represent a simple vending machine. The state ofaitigma
is represented by the varialtle The machine has two actions represented by the
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operationgoinandchoc Initially nis setto 0 so that only theinaction is enabled.
When thecoin action is executed) is set to 1, and only thehocaction is enabled.
Execution of thechocaction then results igoin being enabled again and so on.
ThusVM1 describes a system that alternatively engagesmir@action then ahoc
action forever.

MACHINE VM1
VARIABLES n
INVARIANT  ne {0,1}

INITIALISATION
n:=0

OPERATIONS
coin = SELECT n=0THEN n:=1END
choc = SELECT n=1THEN n:=0END

END

Fig. 8.1.Simple Vending Machine

An event-based view means that the environment of an abstract machine can
only interact with the machine through its actions and has no direct accessao a
chine’s state. The environment of a machine can also control the execuéotiafs
by blocking them. This will be seen clearly in Sect. 8.4, where parallel csitipo
of action systems is described.

For any abstract machirid, we writea (M) for the set of action names M.

For example,

a(VM1) = { coin,choc}.
We refer toa (M) as thealphabetof M. We write M.a for the action named in
machineM. For example,

VM1.coin = SELECT n=0THEN n:=1END.

8.2.1 Parameter Passing

The actions of an action system can be input actions, with associated inpat-par
eters, or output actions, with associated output parameters. An input actid®e
represented by a B AMN operation of the form

namgx) = S
wherex represents the input parameter(s). An input action models a channellthroug

which a machine is willing to accept an input value whenever that action isehabl
An output action will be represented by a B AMN operation of the form
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y+—name= S

wherey represents the output parameter(s). An output action models a channel
through which a machine is willing to deliver an output value whenevat ac-
tion is enabled.

We shall assume that no action can be both an input action and an output action.
See Sect. 8.7 for a discussion of this issue.

Fig. 8.2 specifies an action system representing an ordered buffer. It is always
ready to accept values of type on theleft channel, and to output on thgght
channel a value that has been input but not yet output. Values are outpetarder
in which they are input.

MACHINE  Bufferl
VARIABLES s
INVARIANT seseqT

INITIALISATION

si=()
OPERATIONS

left(x) = SELECT xc T THEN s:=5s"(x) END

y«—right = SELECT s# () THEN y,s: = head(s),tail(s) END

END

Fig. 8.2.0rdered Buffer

8.2.2 Refinement

When refining an action systeM by an action systenN, bothM and N must
have the same alphabet, though they may have different state-spaces. Befilsem
defined as follows:

Definition 8.1. For abstract action system M and concrete action system N, where
a(M) = a(N), M is refined by N with abstraction invariant Al, denotedd\,; N,
provided each of the following conditions hold:

1. M.init CTa N.init
2. M.a Ca; N.a, each a a(M)
3. Alngd(M.a) = gd(N.a), each ac a(M).

This definition is a special case of the definition introduced in Chapter 5.
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8.2.3 Example Refinement: Unordered Buffer

We specify and refine a buffer that does not guarantee to output valuesdrdere

in which they are input. An unordered buffer is described by an actioesysiat

has abagof values as its state variable. A bag is a collection of elements that may
have multiple occurrences of any element. We woiig T for the set of finite bags

of typeT. Bags will be enumerated between bag brackeasmd>~. Additionof bags

b, c, is writtenb + ¢, while subtractionis writtenb — c. Bag containment is written

X € b.

The action systertBufferlof Fig. 8.3 describes an unordered buffer that com-
municates values of typ€. The initialisation statement dfBufferlsets the bag
to be empty. The input actioleft accepts input values of type, adding them to
the baga. Provideda is non-empty, the output actiaight non-deterministically
chooses some element frarand outputs it.

MACHINE  UBufferl
VARIABLES a
INVARIANT acbag T

INITIALISATION
a=<>
OPERATIONS

left(x) =
SELECT
XeT
THEN
a:=a+ <x-
END

y «—right =
ANY y WHERE

yca
THEN

ay:=a-<y>y
END

END

Fig. 8.3.Unordered Buffer

It can be shown thatBufferlis refined byBufferlof Fig. 8.2. As an abstraction
invariant, we use

Al = a=bag(s),

wherebag(s) represents the bag of elements in sequendde proof obligations
generated by Definition 8.1 are as follows:
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UBufferinit Cp Buffer.init

UBufferleft CTa Bufferleft
UBufferright CTp; Bufferright

Al A gd(UBuffer.left) = gd(Buffer.left)
Al A gd(UBuffer.right) = gd(Buffer.right)

8.3 Internal Actions

In this section, action systems are extended to include internal actidemal ac-
tions are not visible to the environment of a machine and are thuisledte control

of the environment. Any number of executions of an internal action may ascur
between each execution of a visible action. Any state from which internaihactio
can be executed infinitely is said to &ergent Internal actions do not have input
or output parameters.

An example of an action system with internal actions is given in Fig. 8.4.
UBuffer2represents an unordered buffer with an input chatefebnd an output
channetlight. However, instead of having a single bag as its state varidiaffer2
has two bagsh andc. Theleft action places input values in bagwhile theright
action takes output values from bagvalues are moved frofnto ¢ by the internal
actionmid, which is enabled as long &sis non-empty. Sincé is finite, mid will
eventually be disabled, so it cannot cause divergence.

We write 3(M) for the set of internal actions in systevh

8.3.1 Refinement with Internal Actions

Intuitively it can be seen thdtBuffer2 behaves in the same way d8ufferl of
Fig. 8.3. We shall introduce a proof rule that allows us to verifgt thBufferl C
UBuffer2 This rule is a special form of simulation in which the concrete systasn h
some internal actions, and the abstract system has no internal actions.

To ensure that the internal actions do not introduce divergence, we usk-a w
foundedness argument. A 38tF, with irreflexive partial ordek, is well-founded
if each non-empty subset ¥ F contains a minimal element under. For exam-
ple, the natural numbers with the usual ordering, or the cartesian gtrofitwo
or more well-founded sets with lexicographic ordering, all form vielinded sets.
The well-foundedness argument requires the use of a well-found&i Betnd a
variant, which is an expression in the state-variables. The variant should alveays
an element oV F, and it should be decreased by each internal action of the concrete
system.

The simulation rule is as follows:

Definition 8.2. Let M and N be action systems whei@) =a(N) andp(M) ={}.
M is simulated by N with abstraction invariant Al, well-founded&@%, and variant
E, denoted M= (a1 wiE) N, provided each of the following conditions hold:

1. M.init Ta N.init
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MACHINE  UBuffer2

VARIABLES b,c

INVARIANT bebagT A cebag T

INITIALISATION
b,c:=<>,<>
OPERATIONS

left(x) =
SELECT
xeT
THEN
b:=b+ <x>~
END

y<«—right =
ANY Yy WHERE
yec
THEN
cy:=c—<y-Yy
END

INTERNAL OPERATIONS

mid =
ANY zWHERE
zeb
THEN
b,c:=b—<z-,c+ <z~
END

END

Fig. 8.4.Unordered Buffer with an Internal Action

. M.a Cal N.a, each a a(M)
. skip Cai N.h, each he B(N)

. AINE=e = [N.h|(E<e),

2
3
4. Al = EeWF
5
6. AlIAgd(M.a) = gd(N.a) vV 3h-(he B(N) A gd(N.h)),

each he B(N)

each ac a(M)

Conditions 1, 2, and 3 are data-refinement conditions. Conditions P aned the
same as in Definition 8.1. Condition 3 ensures that each internal actdrcafises
no change to the corresponding abstract state. Conditions 4 and 5 aredéterr
as non-divergence conditions. Condition 4 ensures that the va&riesnan element
of WF, while Condition 5 ensures that the internal actiondlaflways decrease
when executed. Together, Conditions 4 and 5 ensure that the internabaftiare
eventually disabled and so cannot introduce divergence. Condition 6riyeeps
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condition and ensures that, whenever an actioMat enabled, either the corre-
sponding action ol is enabled, or some internal actionMis enabled.

8.3.2 Example

To show thatJBufferlC UBuffer2 we use the abstraction invariant
Al=a=b+c

We use the size of balg, written #b, as a variant, withN as a well-founded set.
Note thatUBuffer2.mids a refinement ogkipunder this abstraction invariant since
the bag sunb + c is unchanged by its execution. Al&Buffer2.middecreases the
variant #b.

8.3.3 Hiding Operator

Let M be an action system, ai@lbe a set of operation names, w&hC a(M). We
write M\ C for the machiné/ with each action named @ converted into an internal
action. The input/output parameters of an internalised action shouldchésed
using theVAR x - SEND construct. Note that action hiding is simply a syntactic
transformation oM.

Action hiding is monotonic: iM is refined byN, thenM\C is refined byN\C.

8.4 Parallel Composition

In this section, we describe a parallel composition operator for actistersys. The
parallel composition of action systerivs andN is writtenM || N. M andN must

not have any common state variables. Instead they interact by synchgpaisr
shared actions (i.e., actions with common names). They may also pass values on
synchronisation. We look first at basic parallel composition and latérdd parallel
composition with value passing.

8.4.1 Basic Parallel Composition of Actions

To achieve the synchronisation effect, shared actions are “fused” usipgutakel
operator for action§S|| T). This operator satisfies the following properties:

e Xx:=E ||y:=F = xy:=EF
e SELECT GTHEN SEND || SELECTH THEN TEND =
SELECT GAH THEN S|| T END.

Since the variables changed by constituent actions are independent, treffecty
of the parallel operator for actions is to ensure that the composite astirabled
exactly when both component actions are enabled.
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8.4.2 Basic Parallel Composition of Action Systems

The parallel composition of action systeisandN is an action system constructed
by fusing shared actions ™ andN and leaving independent actions independent.
The state variables of the composite systehj| N are simply the union of the
variables oM andN.

MACHINE N1 MACHINE N2
VARIABLES m VARIABLES n
INVARIANT me {0,1} INVARIANT  ne {0,1}
INITIALISATION INITIALISATION
m:=0 n:=0
OPERATIONS OPERATIONS
a= b=
SELECT SELECT
THEN THEN
m:=1 n:=1
END END
c = c =
SELECT SELECT
m=1 n=1
THEN THEN
m:=0 n:=0
END END
END END

Fig. 8.5.Action Systems with Common Actions

As an illustration of this, considét1 andN2 of Fig. 8.5.N1alternates between
ana-action and a-action, whileN2 alternates betweentaaction and ac-action.
The systenN1|| N2is shown in Fig. 8.6. The- andb-actions ofN1 || N2 come
directly from N1 and N2 respectively, while the-action is the fusion of the-
actions ofN1 andN2. The initialisations oN1 andN2 are also fused to form the
initialisation of N1 || N2. The effect ofN1|| N2 is that, repeatedly, tha- or the
b-actions can occur in either order, then both systems must synchronise on t
action.

8.4.3 Parallel Composition with Value-Passing

We extend the parallel operator to deal with parameterised actions and value-
passing. An output action from one system is composed with a siynliklled
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MACHINE  N1||N2
VARIABLES m,n
INVARIANT myne {0,1}
INITIALISATION
m,n:=0,0
OPERATIONS
a = SELECT m=0THEN m:=1END
b = SELECTn=0THEN n:=1END
¢ = SELECTm=1An=1THEN mn:=0,0 END

END

Fig. 8.6.Parallel Composition of Action Systems

input action form another in such a way that the output value generatee lfiygh
is passed on as the input value for the second. For example, given an actipn
of the form

y+— name= SELECT G THEN u,y:=U,Y END
and an input action of the form

naméx) = SELECT xe€ AAH THEN v:=F(x) END,
their value-passing fusion is represented as:

y+— name= SELECT H A G THEN u,y,v:=U,Y,F(Y) END.

Notice howF (x) becomes- (Y), modelling the passing of the output value from the
output action to the input action. Notice also that the fused actiosa¥ &n output

action.
More generally, leM.namebe an output action of machid andN.namebe
an input action oN. We shall assundehatM.namehas the form:

y<+—name= ANY U,y WHERE P THEN u,y:=u,y END
and thatN.namehas the form:
naméx) = SELECT xe AAH THEN v:=F(x) END,

whereH is independent ox. The value-passing fusion of these two actions is de-
fined by:

1 We only make these assumptions on actions that are to be seahjoparallel with other
actions.
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Definition 8.3 (Value-passing Fusion).

y +— name
= ANY U,y WHERE P A H THEN u,y,v:=u,y,F(y) END.

Furthermore, the composition of lame an Nname is only permitted provided
IMAP = Y €A
where |y is the invariant of M.

This restriction ensures that the output value generated by the outiountiactiways
acceptable by the input action.

The composition of two systendd andN is then constructed by fusing com-
monly named input-output pairs of actions as described by Definitio8.Before,
independently named actions remain independent. The fusion of inputtpajps of
actions is also permitted: assuienamehas the form

naméx) = SELECT x€ AA GTHEN u:=F(x) END,
and thatN.namehas the form:

naméx) = SELECT xe BAH THEN v:= G(x) END,

The fusion of these two actions is defined by:
Definition 8.4.
namex)

= SELECT xe€ (AnB) AGAH THEN u,v:=F(x),G(x) END.
Fusion of output-output pairs of actions is not permitted.

Fig. 8.7 describes the action systetdBufferL and UBufferR The system
UBufferLis simply an unbounded buffer witight renamed tanid, while UBufferR
hasleft renamed tanid. WhenUBufferLandUBufferRare placed in parallel, they
interact via thanid channel, with values being passed fraiBufferLto UBufferR
This can be seen by constructing the composite action sysiufferL || UBufferR
as described above (see Fig. 8.8). The only proof obligation (frormDefi 8.3)

associated with this composition is that tiBufferL.midis guaranteed to output a
value of typeT, i.e.,

bebag T = [UBufferL.mid(ye T).

If the mid action of UBufferL || UBufferRis hidden, then the resultant action
system is the same &tBuffer2of Fig. 8.4. SinceJBufferlC UBuffer2 we have
that:

UBufferlC (UBufferL|| UBufferR\{mid}.
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MACHINE  UBufferL
VARIABLES b
INVARIANT bebagT

INITIALISATION
b:=<>
OPERATIONS

left(x) =
SELECT
xeT
THEN
b:=b+ <x>~
END

y<+— mid =
ANY y WHERE
yeb
THEN
by:=b—<y>y
END

END

MACHINE  UBufferR
VARIABLES ¢
INVARIANT cecbag T

INITIALISATION
Ci= <>
OPERATIONS

y <« right =
ANY y WHERE
yec
THEN
cy:=c—=<y>y
END

mid(x) =
SELECT
xeT
THEN
C:=C+ <X~
END

END

Fig. 8.7.Buffers

8.4.4 Design Technique

311

The derivation of the syste(BufferL|| UBufferR\ {mid} illustrates a design tech-

nique that may be used to decompose an action system into parallel sulssystem

refine the state variables so that they may be partitioned amongst thestrhs,
introducing internal actions representing interaction between subsystemsar-
tition the system into subsystems using the parallel operator @arsevThe refine-
ment of the single system can always be performed in a number of stepsthather

a single step.

Most importantly, the parallel composition of action systems is nmmio: if M
is refined byM’ andN is refined byN’, thenM || N is refined byM' || N’. This means
that when we decompose a system into parallel subsystems, the sulssystgine

refined independently.

8.5 Email System

The action systems of this case study contain indexed sets of channels, each on

offering similar behaviour. An indexed statement is used to specifa¢tiens as-

sociated with such channel sets. For example, to specify an indexed set of inpu

channelq i.in | i € F }, with associated actions, the following notation is used:
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MACHINE  UBufferL|| UBufferR
VARIABLES b,c

tl

INVARIANT bebagT A cebag T

INITIALISATION
b,c:=<>-,<>
OPERATIONS
left(x) = SELECT
xeT
THEN
b:=b+ <x>~
END
y<— right = ANY y WHERE
yec
THEN
Cy:=c—=<y-Yy
END
y<+— mid = ANY y WHERE
yeb
THEN
b,c,y:=b—<y>,ct+<y>y
END

END

Fig. 8.8.Parallel Buffers

iin(x) = S.

The intention is that thé-indexed statement represents a set of input acti§ins.
should constrainto be an element df. An indexed set of output channels is writ-
ten:

y+—i.out = S.

When an indexed input action suchian(x) is internalised, it is collapsed into
a single parameterless statement by transforming it to

left = VAR i,x - S END.

Similarly for an indexed output action.

8.5.1 Abstract Specification

We suppose that an email service allows a set of users to exchange messages
amongst themselves. Each user resides at a node, and each user may engage in either
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asendaction, or aeceiveaction. LetNoderepresent the set of nodes in the system.
We shall assume th&todeis finite. LetMessrepresent the type of messages that
may be exchanged, and Etvbe the cartesian product bfodeandMess In the
pair (r,m) € Eny, r is the recipient nodemis the message, and we say tfratm) is
anenvelope

The initial specification of the email servic®lailSys] is given in Fig. 8.9.
Variablemail contains all messages sent but not yet received. Initiadlif is empty.
For each node, there is asendaction and aeceiveaction. Actions.sendaccepts
an envelopgr,m) at sending nods and adds it to the bagpail. If there is at least
one message for recipient nodm mail, then actiorr.receivechooses one of these
messages and outputs it.

MACHINE  MailSys1

SETS

NodeMess
Env= Nodex Mess

VARIABLES mail
INVARIANT  mail € bag Env

INITIALISATION
mail ;.= <>
OPERATIONS

~

ssendr,m) =
SELECT
s& NodeA (r,m) € Env
THEN
mail := mail + < (r,m)>
END

m<— r.receive =
ANY n WHERE
(r,n) € mail
THEN
mail := mail — <(r,n)> || m:=n
END

END

Fig. 8.9.Electronic Mail Service

8.5.2 First Refinement of MailSys

Our goal is to implementailSyslas astore-and-forwarchetwork, where not all
nodes are directly connected, and envelopes must pass through a numtesnoéint
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diate nodes before reaching their recipient. In the first refinement steptnoduce
data structures more closely resembling the store-and-forward architeanal in-
troduce internal actions for passing envelopes between these data structures

In MailSys2 mail is replaced by a set of stores, one per node, and a set of
buffers representing direct links between nodes. The constant retatiariN od e«
Noderepresents the connectivity of the netwofd;:b) € netmeans there is a direct
communications link from nodato nodeb.

Routing relations are used to determine which intermediate nodes an envelop
may pass through. Before definingaute, we present some simple graph theory
concepts. We say thaigmaph Gis a relation on a set of nodds(e.g.,netis a graph
onNodg. A pathfromatobin Gis a non-empty sequengef nodes fronN, such
that piGp41, for each 1< i < #p, andpy = aandpgp = b. Let G* be the reflexive
transitive closure ofs. ThenaG*b means there is a path froato b in G. Note that
there is always a path fromto ain G, i.e.,(a). An arcfromato b in G is a path
from a to b in which all nodes are distinct. N is finite, then theelongationfrom
atobin G, writteneg(a,b), is the length of the longest arc froato b in G. Since
the only arc fromato ais (a), we haveeg(a,a) = 1. We defingoutesas follows:

Definition 8.5. Let G be a graph on nodes N. Then Ro{s the set ofoutesof
G, is the set of subgraphs of G such that for akRoute$G), and all ab,c € N,
where a# c,

aRbAbRc = er(a,c) > er(b,c).

Here, eaclR € Route$G) is a routing relation(a,b) is a single step iR, andc is
a destination node. The definition says that as we move from add@&odeb on
routeR, the elongation to the destination natldecreases.

MailSys2will use a fixed set of routes, each one uniquely identified by a tag
from a sefTag These routes are represented by the constant function

route € Tag— Routegnet).

In order that each distinct pair of nodes be connected by at least one routaglive sh
assume that the constant functiooite satisfies:

|Ji- (i € Tag| route(i)*) = Nodex Node

For convenience, the constants associated with routing are collected in thmenach
Routingof Fig. 8.10

On input, each envelope will be assigned one of these routes by being tagged
with the route identifier. At any point on its journey the choice loé hext node
to which an envelope is sent will be determined by its destination andsigresl
route. Since a route is a relation, the choice of next node may be etenrtinistic.
Elongations are used as a variant to ensure that all envelopes eventuallyheach t
destination.

MailSys2is then specified in Figs. 8.11 and 8.12. Corresponding to each node
in the network, there is a store (bag) of tagged envelopes. These ardedduiel
the variablestore Corresponding to each direct link in the network, there is an
unordered buffer of tagged envelopes. These are modelled by the véin&blEhe



8.5 Email System 315

MACHINE  Routing
SETS Tag
CONSTANTS net route

PROPERTIES

nete Node« Node A

routec Tag— (Node«> Nodg A

ran route C Routegnet) A

Ui- (i € Tag| route(i)*) = Nodex Node

END

Fig. 8.10.Routing Information

invariant states that there is always a path from the current position ef\aiope
to its recipient in the assigned route.

MACHINE  MailSys2
REFINES MailSys1
SEES Routing
VARIABLES storglink

INVARIANT

storec Node— bag(Tagx Env) A
link € net— bag(Tagx Env) A

v(i,r,
((0,r
((

mail = Xa- (a € Node| enystorga))) +
3(a,b)-((a,b) € net| enylink(a,b)))

m)-( (i,r,m) € Tagx Env A a,b € Node=
,m) € storga) = (a,r) € routei)* ) A
b) € netA (i,r,m) € link(a,b) = (b,r) € route(i)* )) A

2

VARIANT

>(a,i,r,m)-(ac NodeA (i,r,m) € storga) | &(a,
>(a,b,i,r,m)-( (a,b) € netA (i,r,m) € link(a,b) |

;
(

Fig. 8.11.Refined Email System

The abstract and the concrete variables are related by equmsihgvith the
sum of envelopes in each store and each link. We \Eiite; for the summation of a
set of bagdy;. Letenvbe the function that removes tags from tagged envelopes, i.e.
enyi,r,m) = (r,m). If bis a bag of tagged envelopes, trem(b) is the correspond-
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ing bag of untagged envelopes. The abstraction invardnis then the conjunction

of the invariants oMailSyslandMailSys2

The variant must be shown to be decreased by the internal operations of the
refined system. We use the elongation from the current position of eaelopevo
its destination in its route to define the variant. Egt n; represent the summation
of a set of naturals;, and lete (a,b) be the elongation frorato b onroute(i), i.e.

€oute(i) (8,b). The varian€k is then defined as in Fig. 8.11.

INITIALISATION

store:=Aa-(a€ Node| <>) ||
link:=Aa,b-((a,b) € net| <>)

OPERATIONS

s.sendr,m) =
ANY i WHERE
se NodeAi € TagA
(r,m) € EnvA (s,r) € route(i)*
THEN
storgs) := storg(s) + <(i,r,m)>
END

m<«— r.receive =
ANY i,n WHERE
r € Nodea (i,r,n) € storg(r)

THEN
storg(r) :=store(r) — <(i,r,n)> | m:=n
END
INTERNAL OPERATIONS
forward =

ANY a,b,i,r,m WHERE

(i,r,m) e storda) A r#a A

(a,b) e route(i) A (b,r) € route(i)*
THEN

storga) := storga) — <(i,r,m)> ||

link(a,b) :=link(a,b) + <(i,r,m)=
END

relay =
ANY a,b,i,r,mWHERE
(a,b) e net A (i,r,m) € link(a,b)
THEN
link(a,b) :=link(a,b) — <(i,r,m)> ||
storegb) := storgb) + <(i,r,m) =
END

END

Fig. 8.12.0perations of the Refined Email System
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All stores and links are initially empty. The acti@sendaccepts an envelope
(r,m), chooses a routethat (directly or indirectly) connectsto r, and addsi,r,m)
to the bagstore(s). If there is at least one message for recipieint store(r), then
actionr.receivechooses one of those messages and outputs it.

The internal actionforward takes a tagged envelope that has not yet reached
its recipient from sometorga), chooses the next nodeto forward the envelope
to, and places the envelopelink(a,b). The internal actiomelay simply takes an
envelope from somknk(a, b) and places it irstorgb).

By a sequence oforward andrelay actions, a message sent at ngde even-
tually delivered to the store of its recipient nadf his is the case sinddailSyslis
refined byMailSys2 which may be checked using Definition 8.2 and the invariant
and variant of Fig- 8.11.

8.5.3 Parallel Decomposition of MailSys

In this stepMailSys2is decomposed into two parallel systerAgentsandMedia,
specified in Figs. 8.13 and 8.14gentsepresents the behaviour of all the nodes of
the network, and hassend receive forward, andrelay channel for each network
node.Agentsonly has the state variabktore Media represents the direct com-
munications links of the network, and hagarward and arelay channel for each
network nodeMediaonly has the state variablek. AgentsandMediacommuni-
cate viaforward andrelay channels, and we have that

MailSys2= (Agentsl| Medial)\
{aforward|ae Node}U{ b.relay| b e Node}.

8.5.4 Parallel Decomposition of Agents

In this step,Agentslis decomposed into a set of parallel action systems, each
one representing the behaviour of an individual node of the netvizagh action,
a.name of Agentslonly refers tostorga), so thatAgentsIimay be partitioned into

a set of independent parallel subsystems:

Agentsl= | a-(a€ Node| LocalAgent{a)),

whereLocalAgent{a) is specified in Fig. 8.15.

For anya € Node we equatestorga) of Agentslwith the variablelstore of
LocalAgenta) and actiona.sendof Agentslwith actionsendof LocalAgenta)
and similarly for the other actions. Siné&éodeis finite, the generalised parallel
composition of statements used in the initialisation is defined by édnage of the
binary operator. The only statements that are fused in the construétipa-da €
Node| LocalAgent{a)) are the initialisations; otherwise the decomposition simply
involves the partitioning o$toreand the indexed actions.
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MACHINE  Agentsl
VARIABLES store
INVARIANT  storec Node— bag(Tagx Env)

INITIALISATION
store:=Aa-(a€ Node| <)
OPERATIONS

s.sendr,m) =
ANY i WHERE
sc NodeAi € TagA
(r,m) € EnvA (s,r) € route(i)*
THEN
storg(s) := storg(s) + <(i,r,m)>
END

m<«— r.receive =
ANY i,n WHERE
r € NodeA (i,r,n) € storgr)
THEN
storg(r) := storeg(r) — <(i,r,n)> || m:=n
END

W,i"'r',m «— aforward =
ANY b,i,r,mWHERE
ac Noden
(i,r,m) e storda) A r#a A
(a,b) e routg(i) A (b,r) € route(i)*
THEN
storga) := storga) — <(i,r,m)> ||
Wi, m :=bi,rm
END

b.relay(a,i,r,m) =
SELECT
a,beNodeA ieTag A (r,m) € Env
THEN
storegb) := storgb) + <(i,r,m) >
END

END

Fig. 8.13.Network Agents
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MACHINE  Medial
VARIABLES  link
INVARIANT  link € net— bag(Tagx Env)

INITIALISATION
link:=Aa,b-((a,b) € net| <)
OPERATIONS

~

a.forward(b,i,r,m)
SELECT
a,beNodeA ieTag A (r,m) € Env
THEN
link(a,b) :=link(a,b) + < (i,r,m)>
END

a,i’,r',m «+— brelay =
ANY a,i,r,mWHERE
(a,b) e net A (i,r,m) € link(a,b)
THEN
link(a,b) :=link(a,b) — <(i,r,m)> ||
a,i',r',m :=airm
END

END

Fig. 8.14.Network Media

8.6 CSP Correspondence

In CSP [38], the behaviour of a process is viewed in terms of the gwenthich
it can engage in. Each proceBshas an alphabet of evenks and its behaviour
is modelled by a set dfilures F and a set oflivergences DA failure is a pair
(t,X), wheret is a trace of events and is a set of eventst,X) € F means that
P may engage in the trace of eveniand then refuse all the eventsXn A diver-
gence is a trace of eventls andd € D means that, after engaging the trateP
may diverge (behave chaotically). Procésg-, D) is refined by proces&, F’,D’),
written (A,F,D) C (A,F',D’), if

FOF andDDD'.

In [56], a correspondence between CSP and an event-based view of action sys-
tems is described. This involves giving a failures-divergence semantiastion
systems, with action names representing events {M§ represent the failures-
divergence semantics of action syst®nThe definition of{M]} may be found in
[19, 56]. The observable behaviour of an action system is representesddiures-
divergence semantics and it can be shown [19, 85] tht i refined byN (Defi-
nitions 8.1 and 8.2), then any observable behaviolt isfan observable behaviour
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MACHINE  LocalAgentla)
CONSTRAINTS ae Node
VARIABLES Istore

INVARIANT  Istoree bag(Tagx Env)

INITIALISATION
Istore:= <>
OPERATIONS

sendr,m) =
ANY i WHERE
(r,m) € EnvAi € TagA (a,r) € route(i)*
THEN
Istore:= Istore+ < (i,r,m)>
END

m<«— receive =
ANY i,n WHERE
(i,r,n) € Istore
THEN
Istore:= Istore— <(i,r,n)> || m:=n
END

b',i"r',m «— forward =
ANY b,i,r,mWHERE
(i,r,m) € lstore A r #a A
(a,b) e route(i) A (b,r) € route(i)*
THEN
Istore:=Istore— <(i,r,m)> ||
o,i' " m :=Db,i,r,m
END
relay(d,i,r,m) =
SELECT
a eNodeA ieTag A (r,m) € Env
THEN
Istore:= Istore+ < (i,r,m)>
END

END

Fig. 8.15.Individual Agent
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of M, i.e.,
{MI E {N]-

CSP has both a hiding operat@\C) for internalising events and a parallel
composition operato(P || Q) for composing processes based on shared events.
Both operators are defined in terms of failures-divergence semantic§P|l die
the failures-divergence semantics of a CSP pro€esghen[P\C] is defined by
HIDE([[P]],C) and[[P || Q] is defined byPAR[P], [Q]]). whereHIDE andPARare
described in [38]. It can be shown [19] that the hiding and parallel operébo
action systems correspond to the CSP operators; that is, for actie@mspdtand
N:

{M\C]} = HIDE({M]},C)
M [INI} = PAR{ME}, {NI}).

SinceHIDE and PAR are monotonic w.r.t. refinement, our earlier claim that the
hiding and parallel operators for action systems are monotonic ifi¢alsti

8.7 Concluding

Although operations in B AMN can have both input and output parametevas
stated earlier that actions can either be input actions or output actionsttadth.
Consider an AMN action of the form

y «— naméx) = S,

In the implementation of this operation, we would expect a delay betweerptecei
of x and the delivery of. In particular, we may want to push the computation of
y into some internal actions. In order to do this using simulation (itedn 8.2),
the operation should be broken into an input action, representing reteipand

an output action, representing deliveryyofin this way, we can introduce internal
actions that are executed in between receipx ahd delivery ofy, contributing
towards the computation gf It also allows us to interleave other visible actions
between receipt of and delivery ofy.

Abrial has proposed an approach to the design of protocols using thel®anet
[3]. With this approach, a protocol is specified as a single operatiochwbisubse-
quently decomposed into a sequence of steps through a series of refinérhents.
introduction of each new step in the protocol is justified by showliag it is a data-
refinement of theskip action. This is the same as our data-refinement condition on
internal actions being introduced by a simulation step (Definition 8.2)

We have seen the close correspondence between action systems and the abstract
machines of B and seen the similarity between their notions of refinement. Becaus
of this close correspondence, we are able to apply action system technighes su
as internalisation of actions and parallel composition to abstract machinese T
techniques provide a powerful abstraction mechanism since they all@abstract
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away from the distributed architecture of a system and the complexaatimns
between its subsystems; a system, such as the email service, can be specified as a
single abstract machine and only in later refinement steps do we need taizdrod
explicit subsystems and interactions between them. The reasoning retuirsel

these techniques involves refinement arguments and variant arguments,sthieh i

sort of reasoning already used in B. The techniques are also very modudar sin

the parallel components of a distributed system can be refined and decomposed
separately without making any assumptions about the rest of the system.

8.8 Exercises

Exercise 8.1 (Defining bags) Define a B machine providing bags and the bag op-
erations for containment, addition and subtraction.

Exercise 8.2 (Message broadcastExtend the specification of the email system to
include an operation to broadcast a message to all users. Refine this extgstdeul
in such a way that the broadcast operation is implemented as efficiently aslpossi

Exercise 8.3 (Distributed database).Specify a simple database in B. Using the
techniques described in this chapter, refine this specification into abdisui
database where the records of the database are distributed througieoaltisedes.
When a database request cannot be serviced locally, it should be passed®n to th
relevant remote node.
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Appendix

Expressions

The full syntax of expressions can be found in the B-Book of Ab8hahd in Chap-
ter 1 of this book. In this section we remind the reader of the syntax emaistics
of some of the expressions used in the case studies of this book.

Let EandF be expressiong,a list of variablesP a predicateSandT sets, and
letmandn be natural numbers. Let additionatly 1,r2 be relations fron®o T and
assume thaaC Sandt C T.

E—F Ordered pair

n..m The set of non-negative integers betweemdm
inclusive

>z-(P|E) The sum of values of the natural number expresgion
for zsuch thaP holds

ST Set of relations fronsto T:
P(SxT)

sar Domain restriction:
{XY|X,yeraxes}

rot Range restriction:
{Xyxyerayet}

s4qr Domain subtraction:
{XyX,yeraxe S—s}

ret Range subtraction:
{XyxyeranyeT—t}

r-1 Inverse ofr:
{V:Xy,x e (T xS AX,yer}

r(s Image of ses under relatiorr:
{Ylye TAIx.(XESAXYET)}

ri<r2 Overriding ofrl byr2:
(dom(r2) qrl)uUr2

risr2 Overriding ofr2 byr1:
r2<rl

p®q Direct product ofp andq:

% %2, (%,2) € (Sx (U xV))AX,y€ pAX,Z€ q}
rn Then:th iterate ofr:
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r0=id(s), Mt =r;mM

re The reflexive transitive closure of
Un.(ne Nr")

S+»T Set of partial functions frorsto T:
{rire S TAGF 1) Cid(T)}

S—>T Set of total functions fron$to T:
{f|f € S-» T Adom(f) =S}

S+ T Set of partial injections fromsto T:
{flIfeS»TAf1eT+ S}

S—T Set of total injections fronsto T:
(S—=T)N(S—>T)

S-»T Set of partial surjections froigto T:
{f|f € S+ Aran(f) =T}

S—»T Set of total surjections fror8to T:
(S»T)N(S—=T)

S—»T Set of bijections fronBto T:
(S=>»T)N(S—T)

Az-(ze SAPIE) Function construction

Substitutions

In the Generalised Subsitution Language (GSL), substitutionsnéeepreted as
statements of a sequential imperative programming language.

The application of a (generalised) substitutiéito a predicatd, written [G] R,
is interpreted as the weakest precondition (weakest predicate) such that statement
G terminates in a state satisfyifyy In Dijkstras original notation [22], this is writ-
ten aswp ( G, R). If P implies [G] R, then this is equivalent to stating the under
preconditionP statemenG establishes postconditid?) i.e.:

(PYG{R} iff P=[G]R

Generalised substitutions are axiomatised as follows:

[xx:=E]R = Rwith free occurences o replaced by simple
[skip] R = R skip
[P|G]IR = PA[G]R preconditioned
[P=GR = P=][CGR guarded
[G[JH]IR = [GIRA[H]IR alternate
[@zz. (G)]R = Vzz.(G] R),if xxnot free inR unbounded choice
[G;HIR = [G][H]R sequential

Herexx are variablest: an expressior, R predicates, an,H substitutions.
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Precondition and Guard

The preconditiopre ( G) of a generalised substituti@hcharacterises its domain of
definednesdWhenG is started within that domain, thé&his guaranteed to execute
in a well-defined manner and to terminate. Wli&rs started outside its precondi-
tion, any arbitrary behaviour is possible, including nontermimatiche precondi-
tion is defined by:

~

pre(G) = [G]true precondition

Following laws can be used in determining the precondition of genedafibsti-
tutions:

pre(xx;(=E) = true

pre(P|G) = PApre(G)
pre(P—=G) = P=pre(G)
pre(G[JH) = pre(G)Apre(H)
pre(@xx.(G)) = Vxx.pre(G)

The guardyd ( G ) of a generalised substitutidd characterises the domain of
enablednesdVithin that domainG may be executed. Whea is started outside its
domain of enabledness, it will not execute at all. The guard is defined dgfirsed

by:
gd(G) = ~[G]false guard

Following laws can be used in determining the guard of generalisedtstibsts:

gd(xx:=E) = true

gd(P[G) = P=gd(G)
gd(P=G) = PAgd(G)
gd(G[H) gd(G)vgd(H)

gd( @xx. (G)) Ixx.gd(G)

Equality and Refinement of Substitutions
Two substitution& andH are considered to be equal, writtén= H, if they always
lead to the same postcondition:

G=H = forallpredicate®: [G]P=[H]P equality

SubstitutionG is refined by substitutioHl, written G C H, if whenevelG estab-
lishes a postcondition, so doels

GCH = forallpredicate®: [G] P= [H]P refinement
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AMN Substitutions
BEGIN G END

PRE P THEN G END

IF P THEN G END

IF P THEN G ELSE H END

IF PTHEN G
ELSIF QTHEN H

ELSIF RTHEN K
END

IF PTHEN G
ELSIF QTHEN H

ELSIF RTHEN K

ELSEL

END

CHOICE GOR --- ORH END
SELECT PTHEN G END

SELECT PTHEN G
WHEN Q THEN H

WHEN RTHEN K
END

SELECT PTHEN G
WHEN Q THEN H

WHEN RTHEN K
ELSEL
END

1N

i

i

1N

i

i

1N

1N

i

i

G

P|G

P—= G[ - P= skip
P=G[-P=H

P=G]J
-PAQ=H]]

“PA-QA---AR=K]]
“PA=-QA--- A= R= skip

P=G]J
—|P/\Q:>H[]

~PA-QA---AR=K]
-PA-QA---A=R=L
G[--[H

P—G

P=G]J
Q=H]

éz?K
P=G]J
Q=H]

R=K]]
-PA-QA---A=-R=1L



CASE E OF
EITHER | THEN G
OR p THEN H
OR g THEN K
END
END
CASE E OF
EITHER | THEN G
OR p THEN H
OR g THEN K
ELSE L
END
END
VAR xIN G END
ANY x WHERE P THEN G END
LET x BE x=EIN G END

x:=bool(P)

X:€E
x:P

f(x):=E

i

1N

1N

1N

i

1N

i

1N

i

Appendix

Ec{ll=GJ
Ee{p}=H]

Ece{ag}=K]
Eg{l,p,...,q} = skip

Ec{l}=G]
Ee{p}=H]

Ec{a}—K]
Eg{l,p,....q} =1L

@x.G
@x.(P=G)
@Xx.(x=E=G)

P —= x:=TRUE]]
- P = x:=FALSE

@X .(X eE=x:=X")
@X .([x:=X]P=x:=X")

fi=f< {x—E}

Machines and Proof Obligations for Consistency

The syntactic structure of an abstract machine specification is as follows:

MACHINE  Machine.name(f)

CONSTRAINTS
E
CONSTANTS
Cc
PROPERTIES
C
VARIABLES

331
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X
INVARIANT

I
INITIALISATION

H
OPERATIONS

Operationname=PRE PTHEN GEND;

END

A machine can include other machines via INCLUDES -clause. The in-
cluded machines become part of the including machine. An included machine can
be renamed by prefixing its name with some identifier followed by a dahén
INCLUDES -clause. Renaming may be used to include multiple copies of a sin-
gle machine. A machine can get access to other machines vidSESclause.

The variables, sets, and constants of the used machine can be refered tmin the i
variants and AMN substitutions of the using machine provided thabies are

not modified. When a machir@EESanother machine the variables, sets, and con-
stants of the machine become known to the seeing machine. They can only appear
in AMN substitutions provided they are not modified. TBETENDS-clause in-
cludes machines. All the operations of the included machines become opgrdtion

the including machine. Used, seen, and extended machines can be renamed.

The B-Method supports the checking of the internal consitency of amaabst
machine. The internal consitency of the machine above is proved vialtbeifoy
five proof obligations:

(C (3 f.F)

(C2) F=(3c.C

(C3) (FAC)=(3x.I)
(C4 (FAC)=[H]I

(C5 (FACAIAP) =[Gl

Machine Refinement and Associated Proof Obligations

The syntactic structure of an abstract machine refinement is as follows:

REFINEMENT Refinemenname

REFINES
Machine_name

VARIABLES

X/

INVARIANT
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R
INITIALISATION
HI
OPERATIONS
Operationname=PRE P THEN G END;

END

The name of the machine beeing refined is given inRE€INES-clause. The
parameters, sets, constants, and properties are inherited from the refinedemach
The variables of the refined machine can appear in the invariant of the refiming m
chine, but they cannot be referensed in the AMN substituitions ofefieimg ma-
chine. A refinement can see a list of machines usingstBES clause.

The correctness of a refinement step w.r.t. the machteshine_name(f)and
Refinemennameabove is proved by verifying the following four proof obligatson

(B1) (3(x,X).1 AR)

(B2) [H'=([H]-R)
(B3) (V(x,X).(I A\RAP)=P)
(B4) (V(x,X). (I ARAP) = [G]-([G]-R)).

Machine Implementation

The syntactic structure of an abstract machine implementation is the saha af

an abstract machine refinement except thaREEINEMENT -clause is replaced

by anIMPLEMENTATION -clause. Th@OPERATIONS-clause gives implemen-
tations to all the operations specified in the machine denoted iREFNES-
clause. When an implementatitdPORTS a list of machines, the variables and
constants of these machines can be used in the invariant of the impogtigrma.

They cannot, however, appear in the operations. The operations offibetéd ma-
chines can be used by the importing machine. An implementation machine can see
other machine via th8EESclause.

The proof obligations for an implementation are basically the same &g tho
for refinement. However, in an implementation we can use more prograntikeng
construct not allowed in the other machines. The loop construct is ahemf. The
proof obligations for a loop

Loop=T;WHILE P DO G INVARIANT R VARIANT E END
for some predicat® are as follows:

(T1) [TIR

(T2) R=E € NAT

(T3) (VI.(RAP)=[GR)

(T4) (VI.(RAP) = [n:=E|([G|(E <n)))
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(T5) (VI.(RA-P) = Q).



