
Finitary Fairness in Event-B

Emil Sekerinski and Tian Zhang

Department of Computing and Software, McMaster University, Canada
{emil, zhangt26}@mcmaster.ca

1 Introduction

In the design of concurrent systems, fairness allows to abstract from scheduling poli-
cies of in multi-process systems and from processor speeds in multi-processor systems.
In Event-B, like in action systems, the choice among events is nondeterministic [1,
2]. Fairness restricts this nondeterministic. In this paper we propose a way to express
fairness in Event-B. Finitary fairness has been proposed as a way of further restricting
standard fairness [3]. It is a “more realistic” notion of fairness, it allows some systems
to be modelled for which standard fairness is not su�cient, and it is more easily used for
proving properties in Event-B than standard fairness. We give a general transformation
from an Event-B model, in which some events are marked as fair, into an equivalent
plain Event-B model. A theoretical justification is given. A similar transformation was
proposed in [3], but does not lead to “equivalent” computations. The contribution of
this paper is this new transformation.

2 Motivation

Consider the event system in Fig. 1, which is taken from [3]. Both events L and R have
no guards and are thus always enabled. Both events are specified to be fair. A schedule
of an event system is a sequence of names of events that can occur in an execution
(which is going to be made precise shortly). A schedule can be a finite or an infinite
sequence; in the example all possible schedules are infinite. For example, a schedule
could start with:

LRRLRLLLRR . . .

Fairness of L implies that a schedule cannot contain an infinite sequence of R’s. A
schedule is bounded if for some natural number k, no fair event is neglected more than
k times consecutively. Finitary fairness of an event system means that all schedules are
bounded. For the example, a schedule in which the number of consecutive R’s continues
to increase is not bounded:

LRLRRLRRRLRRRRL . . .

Suppose the events belong to di↵erent processes. A scheduler is an automaton with
event names as the alphabet. For above schedule to be generated by an automaton, the
automaton would need to count the number of R’s and would need an unboundedly
large state. Conversely, if the schedule is bounded, only finite state is needed. Thus the

In Abrial, J.-R., Butler, M., Joshi, R., Troubitsyna, E., and Woodcock, J. C. P., Eds. Refinement Based Methods for the Construction of Dependable Systems (2010), no. 09381 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

invariants
x 2 BOOL
y 2 N

initialisation
x, y := TRUE, 0

fair event L
x := NOT x

fair event R
y := y + 1

Fig. 1. Event system with two fair events.

bounded schedules are exactly the languages of finite state schedulers. Since any prac-
tical scheduler uses a fixed amount of memory, finitary fairness is not only an adequate,
but a more precise abstraction from scheduling policies than standard fairness.

Suppose that the events are executed on di↵erent processors; the speeds of the pro-
cessors may di↵er and may vary. Finitary fairness implies that the speeds of the pro-
cessors may not drift apart unboundedly. Alur and Henzinger formalize this claim in
terms of timed transition systems [3]. Again, finitary fairness allows a more precise
abstraction of multiprocessor systems.

Since finitary fairness is more restrictive than standard fairness, one can expect more
properties to hold under finitary fairness. For example, the event system of Fig. 1 will
eventually reach a state in which x = TRUE ^ ¬powerOf2(y) holds: if this property
would always be false, then L must be scheduled only when powerOf2(y) holds, for
increasing values of y, but that is impossible in a bounded schedule.

The finitary restriction can be used for modelling unknown delays of timed systems.
In a distributed consensus, processes have to agree on a common output value, but each
process may fail and not deliver a value. This can be solved using finitary fairness, as
shown in [3], but cannot be solved using standard fairness only [4].

Proof rules for the termination of events in presence of fairness can get involved:
not all events must decrease the variant. It is su�cient if events that don’t decrease the
variant keep those fair events that do decrease the variant enabled, as by fairness these
will eventually be taken. The proof rule requires that an invariant is specified for each
event, e.g. as used in [5] for the refinement of action systems. This would require the
proof rules of Event-B to be significantly expanded.

The alternative that we follow is to transform an event system by replacing fair
events with regular events and introducing an explicit scheduler [6, 2]. The standard
proof rules of Event-B can then be applied. Figure 2 illustrates this. The event system
of (a) is supposed to eventually terminate as x is set initially some natural number
and fair event R decrements x. In the transformed event system fairness is achieved by
introducing a counter c that is decremented each time the (regular) event L is taken.
This eventually forces R to be taken as L becomes disabled when c reaches zero. When
R is taken, c is set again to a new positive value. In (b) the counter can does not have an
upper bound, but still event R will eventually be taken; this ensures standard fairness. In

invariants
x 2 N

initialisation
x :2 N

event L
when
x > 0

then
skip

end

fair event R
when
x > 0

then
x := x � 1

end

invariants
x 2 N
c 2 N

initialisation
x :2 N
c :2 N1

event L
when
x > 0
c > 0

then
c := c � 1

end
event R
when
x > 0

then
x := x � 1
c :2 N1

end

invariants
x 2 N
c 2 0 .. b

initialisation
x :2 N
c :2 1 .. B

event L
when
x > 0
c > 0

then
c := c � 1

end
event R
when
x > 0

then
x := x � 1
c :2 1 .. B

end

(a) (b) (c)

Fig. 2. (a) Event system with fair event R. (b) Counter c is used to ensure finitary fairness of R.
(c) Counter c is used to ensure standard fairness of R

(c) this counter be at most B, hence B gives an upper bound of how many times event R
can be ignored before it must be taken; this ensures finitary fairness.

A further reason for preferring finitary fairness is that it can simplify proofs of
termination. For a set of events to terminate, there must exist a variant, a function from
the state to a well-founded domain, and all events have to decrease the variant. For
proving the termination of the event system in Fig. 2 (c), following variant with natural
numbers as the well-founded domain is su�cient:

variant
x ⇤ (B + 1) + c

Event L decreases the variant by decreasing c. Event R decreases the variant by decreas-
ing x; while c may increase, as c is at most B, the variant is still decreased. A similar
variant cannot be given for the event system in (b). Natural numbers as the well-founded
domain are not su�cient with standard fairness.

3 Fair Event Systems

A fair event system P is a structure (Q, E,T, I, F) where

– Q is a set of states,

– E is a set of events,
– T is a set of transitions, relations over Q ⇥ Q indexed by E,
– I is the set of initial states, I ✓ Q,
– F is a set of fair events, F ✓ E
We write T (e) for the transition relation of event e. A computation p of P is a finite or
infinite maximal sequence of states and events alternating, written

p = �0
e0�! �1

e1�! �2
e2�! · · ·

such that �i 2 Q, ei 2 E, �0 2 I, and �i 7! �i+1 2 T (ei). That is, states �i and �i+1 must
be in relation T (ei). A computation is a finite sequence, or is terminating, if it ends with
a state sn that is not in the domain of any transition relation, 8e 2 E ·sn < dom(T (e)).
Otherwise it is an infinite sequence, or is nonterminating.

The schedule of a computation p is the projection of the sequence p to only the
events; the trace of p is the projection of p to only the states, i.e. for p as above:

schedule(p) = e0e1e2 . . .
trace(p) = �0�1�2 . . .

We write schedulei(p) for ei, the i-th event of computation p and tracei(p) for �i, the
i-th state of computation p. The guard of an event is the domain of its relation, grd(e) =
dom(T (e)); an event is enabled in a state if the state is in its guard, otherwise disabled.
A computation p is bounded if it is finite or if for some k 2 N, for all fair events
e 2 F, event e cannot be enabled for more than k consecutive states without being
taken, formally:

8i 2 N·9 j 2 i .. i + k·schedule j(p) = e _ trace j(p) < grd(e)
When considering finitary fairness, we are interested only in the bounded computations.
This definition of fair event systems generalizes that of transitions systems in [3] by
indexing the transitions with the events and by allowing only some events to be fair.

An Event-B model defines the set of states through the variables and invariants,
the transition relations through guards and generalized substitutions, and the initial
states through the initialization. Thus fair event systems are an abstract representation
of Event-B models, in which we additionally allow some events to be specified as fair.

4 The Finitary Weakly Fair Transformation

Let P = (Q, E,T, I, F) be a fair event system. We assume that E = {e1, . . . , en} and that
F is the subset {e1, . . . , em}withm  n. The finitary weakly fair transformation FWF(P)
ensures finitary fairness by introducing counter variables c1, . . . , cm, one for each fair
event. The counters indicate the priority of events. Once the counter of an event reaches
zero, that event must be tested: if it is enabled, it must be taken, otherwise it is skipped.
The counters are kept distinct, therefore only one counter can be zero. The counters
are initialized to values between 1 and B. On every transition, the guards of all fair
events must be tested: if an event is enabled, its counter must be decreased, otherwise
its counter is reset to a value between 1 and B. Formally, FWF(P) = (Q0, E,T 0, I0,?)
where for some B � m:

– Q0 = Q ⇥ Nm

– For every event ei 2 E, (�, c1, . . . , cm) 7! (�0, c01, . . . , c
0
m) 2 T 0(ei) if:

1. if ei is a regular event, ei 2 E � F, then
� 7! �0 2 T (ei) ^
(^ j 2 1 ..m · c j > 0^ ((� 2 grd(e j)^ c0j = c j � 1)_ (� < grd(e j)^ c0j 2 1 .. B)))

2. if ei is a fair event, ei 2 F, then
� 7! �0 2 T (ei) ^
(^ j 2 1..m�{i}·c j > 0^((� 2 grd(e j)^c0j = c j�1)_(� < grd(e j)^c0j 2 1..B)))
_
(ci = 0 ^ � < grd(ei) ^ �0 = � ^ c0i 2 1 .. B)

3. distinct(c01, . . . , c
0
n)

– I0 is such that (�, c1, . . . , cn) 2 I0 if
1. � 2 I ^ (^ j 2 1 .. m · c j 2 1 .. B)
2. distinct(c1, . . . , cn)

All counters of the finitary fair transformation are between 0 and B and are distinct,
i.e. for all computations p of FWF(P) and for all natural numbers i with 0  i <
|trace(p)|:

tracei(p) = (�, c1, . . . , cn)) c1 2 0 .. B ^ . . . ^ cn 2 0 .. B ^ distinct(c1, . . . , cn) (1)
This property follows by induction over i: with FWF(P) = (Q0, E,T 0, I0,?) the initial
states I0 satisfy (1) and transitions T 0 preserve (1). In the transformation of fair events a
case analysis is needed: when the counter of an event reaches zero, the event’s transition
is take if enabled, otherwise not. This case analysis leads to splitting a fair event E into
E and E0 in the transformed system. For a fair event system P, we call the schedules
of the computations of P simply the schedules of P and the traces of computations of
P simply the traces of P. The schedules of P and FWF(P) are necessarily di↵erent, as
FWF(P) contains the auxiliary primed events. The restriction of a sequence s onto a set
S is the subsequence of s containing only elements of S . Following theorem justifies
the finitary fair transformation.
Theorem 1. For a fair event system P, the schedules of FWF(P) restricted to the events
of P are exactly the bounded schedules of P.

References
1. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language, in RODIN Project Deliverable 3.2.
(2005)

2. Back, R.J.R.: Refinement calculus, part ii: Parallel and reactive programs. In deBakker, J.W.,
deRoever, W.P., Rozenberg, G., eds.: REX Workshop on Stepwise Refinement of Distributed
Systems - Models, Formalisms, Correctness. Lecture Notes in Computer Science 430, Mook,
The Netherlands, Springer Verlag (1989) 67–93

3. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6) (1998)
1171–1194

4. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty
process. Journal of the ACM 32 (1985) 374–382

5. Back, R., Xu, Q.: Refinement of fair action systems. Acta Informatica 35(2) (1998) 131–165
6. Apt, K.R., Olderog, E.R.: Proof rules and transformations dealing with fairness. Sci. Comput.
Program. 3(1) (1983) 65–100

	09381-abstracts-collection
	09381 Extended Abstract Collection Refinement Based Methods for the Construction of Dependable Systems — Dagstuhl Seminar —
	 Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna and Jim C. P. Woodcock

	Seiten23-175
	Dagstuhl09381Fin.pdf
	09381.BoitenEerke.Paper!.pdf
	09381.ButlerMichael2.Paper!.pdf
	09381.ClabautMathieu.ExtAbstract!.pdf
	09381.FreitasLeo.ExtAbstract!.pdf
	09381.GrovGudmund1.ExtAbstract!.pdf
	09381.HallerstedeStefan.ExtAbstract!.pdf
	A (Small) Improvement of Event-B?

	09381.HoangThaiSon1.ExtAbstract!.pdf
	Qualitative Reasoning for the Dining Philosophers --- Extended Abstract ---
	Hallerstede and Hoang

	09381.HoangThaiSon.ExtAbstract!.pdf
	Event-B Decomposition for Parallel Programs --- Extended Abstract ---
	Hoang and Abrial

	09381.IliasovAlexei1.Paper1!.pdf
	09381.IliasovAlexei1.Paper!.pdf
	09381.IlicDubravka.ExtAbstract!.pdf
	09381.IrelandAndrew.ExtAbstract!.pdf
	09381.JacksonMichael1.ExtAbstract!.pdf
	09381.JonesClifford1.ExtAbstract!.pdf
	09381.LeinenbachDirk.ExtAbstract!.pdf
	Verifying the Microsoft Hyper-V Hypervisor with VCC
	Dirk Leinenbach, Thomas Santen

	09381.MeryDominique1.ExtAbstract!.pdf
	09381.RothAndreas1.ExtAbstract!.pdf
	09381.RussoJrAryldoG.Paper!.pdf
	The seed was spread out: The State of Practice of Formal Methods outside europe
	Aryldo G Russo Jr.

	09381.SatpathyManoranjan1.ExtAbstract!.pdf
	09381.SchellhornGerhard1.ExtAbstract!.pdf
	09381.SchmidtHolger.ExtAbstract!.pdf
	09381.SekerinskiEmil.Paper!.pdf
	09381.SnookColin.Paper!.pdf
	09381.TroubitsynaElena.ExtAbstract!.pdf
	09381.WrightStephen.ExtAbstract!.pdf

