
Submitted to: c© E. Sekerinski & T. Zhang

A Normal Form for Multi-Exit Statements

Emil Sekerinski
Department of Computing and Software

McMaster University
Hamilton, ON, Canada

emil@mcmaster.ca

Tian Zhang
Department of Computing and Software

McMaster University
Hamilton, ON, Canada

zhangt26@mcmaster.ca

For a class of statements, a normal form provides a uniform way for their formal specification.
Control structures like exception handling introduce additional exit(s) of statements, and new normal
forms as a consequence. In this paper, we give the normal forms of several classes of multi-exit
statements, explore their algebraic properties, and discuss their potential of being utilized for the
development of programs, where a postcondition for each exit is required. All the theorems have
been checked with a formal verification tool.

1 Introduction

Normal forms of programs are of interest for a variety of reasons. Hoare et al. use a normal form to show
the completeness of algebraic laws of straight-line programs with bounded nondeterminism [10]; since
refinement can be expressed by equality and nondeterministic choice, this shows also the completeness of
refinement laws. Hennessy and Milner as well as Roscoe and Hoare consider normal forms of programs
with synchronous communication as a way of defining those [9, 20]. Jifeng, Page, and Bowen study the
transformation of occam programs into a normal form suitable for FPGA implementation [13]. Hoare,
Jifeng, and Sampaio express compilation of guarded command programs as a transformation to a normal
form [11]. Von Wright presents a normal form of programs with demonic and angelic (unbounded) non-
determinism [25]; the normal form relies on (abstract) angelic and demonic update statements. Abrial
gives a normal form for programs with demonic nondeterminism, which justifies the specification con-
structs of the B method [1]. Kozen proves that every program with while-loops and bounded nondeter-
minism can be transformed into a normal form with a single loop using only the rules of Kleene algebra
with tests [15]. Back and von Wright treat systematically normal forms for various classes of programs,
including those with demonic and angelic nondeterminism [3]. Ying uses the framework of Back and
von Wright for a normal form of probabilistic programs [26]. Borba et al. propose a normal form for
object-oriented programs [6], with application to refactoring. Silva, Sampaio, and Barros use a normal
form of occam programs for hardware / software partitioning [23]. Li, Zhu and He use a normal form
for a language with compensable transactions [17].

In the present work, we study normal forms for statements with a single entry and multiple exits. Such
statements arise in programming languages that allow returning from inside a procedure, breaking a loop,
exiting from inside a program, or raising exceptions. These control structures offer flexible manipulations
of control flow. For example, the exception handling models in Fig. 1 result multi-exit control structures:
the termination model in Java has a normal exit and an exceptional exit; the retry model in Eiffel [18]
allows retry statements that re-execute the body after dealing with exceptions, resulting an additional
retry exit that always redirects the control flow to the beginning of method.

We consider sequential programs and use the predicate transformer model for statements, as it is
expressive enough to distinguish between blocking and abortion, and includes both demonic and angelic

Emil Sekerinski
December 2011

2 Multi-Exit Normal Form

body

handler

(a) Termination model

body

handler

(b) Retry model

normal exit exceptional exit retry exit

Figure 1: Two Exception Handling Mechanisms

Java exception handling
t r y {

S
}
catch (E x c e p t i o n e) {

T
}

Eiffel exception handling
M

r e q u i r e
P

l o c a l
v a r s

do
S

ensure
Q

r e s cu e
T
[r e t r y]

end

Figure 2: Java / Eiffel Exception Handling Code

nondeterminism. An interpretation of demonic and angelic nondeterminism is by games, e.g. [3].
Cristian defines statements with single entry and multiple exits as a set of predicate transformers [7].

As King and Morgan point out, this disallows nondeterminism [14]; the solution is to use a single pred-
icate transformer with one postcondition for each exit instead, which we follow here. Jacobs formalizes
multi-exit statements of the Java language using state transformers, which again precludes nondeter-
minism [12]. Leino and Snepscheut study algebraic properties and derive weakest preconditions of
statements from a trace semantics. Here we start with a weakest preconditions semantics, from which
algebraic properties are derived.

We formalize the semantics of multi-exit statements in higher-order logic, following the methodology
of [8, 4, 2]. An intuitive means to formalize multi-exit statements is to encode the choice of exit as an
additional variable, then the theorems of traditional single-exit statements become applicable. However,
we chose to directly formalize these statements as higher-order predicate transformers for two reasons.
First, different state spaces on the exits are allowed. For example, in the above Java code, S is a statement
and T takes over in case exception e is raised in S. On the exceptional exit of S, there would be an
additional object e holding the information of the exception, thus the exceptional exit state space differs
from the one of normal exit. Similarly, in the above Eiffel code of method M, T handles exceptions
raised in S, while P and Q are the pre- and postconditions respectively. T is executed if S raises an

E. Sekerinski & T. Zhang 3

exception. If T terminates normally and it is followed by a retry statement, then M will be re-executed;
if T terminates with an exception, then the whole method M terminates with an exception. On the
normal exit, the local variables vars are excluded from the state space, while on the exceptional and retry
exits they are kept. Secondly, the formalization syntactically separates postconditions of exits, making
them more comprehensible than when postconditions of exits are mixed together. This methodology
has been adopted successfully in our previous work for verification rules in two different exception
handling mechanisms [21] and [22], including rules for loop verification. In this work we focus on a
more general version, capable of dealing with arbitrary number of exits with potentially different state
spaces. Isabelle/HOL was chosen as the proof assistant, due to its built-in support of higher-order logic,
extensive theories, and detailed documentation.

The contribution of the present work is a collection of algebraic properties for multi-exit statements
and normal forms for three classes of statements, viz. monotonic, positively conjunctive, and universally
conjunctive statements. The normal form for monotonic statements allows an arbitrary statement with
n exits to be equivalently expressed by n+ 1 relations, one relation for an angelic update followed by
one relation for a demonic update for each exit. Positively conjunctive statements characterize abstract
programs and can be taken as a domain in which to formalize program development, e.g. [1, 3, 19].
The normal form allows an arbitrary positively conjunctive statement with n exits to be equivalently
expressed by a predicate, the precondition, and n relations, one for each exit. In addition, the predi-
cate is unique. The normal form of universally conjunctive statements allows an arbitrary universally
conjunctive statement with n exits to be equivalently expressed by n relations, one for each exit.

The next section develops the model of multi-exit statements as monotonic higher-order predicate
transformers with indexed postconditions. Section 3 introduces the main subclasses of statements,
viz. positively conjunctive, universally conjunctive, positively disjunctive, and universally disjunctive
statements. Section 4 discusses the algebraic structure of multi-exit statements. Sections 5 and 6 give the
normal forms for monotonic, positively conjunctive, and universally conjunctive statements. The final
section discusses the formalization of the theory in Isabelle/HOL and gives an application to the design
of specification languages.

2 Predicate Transformers with Indexed Postconditions

The values of type Bool are the truth values true and false. We write the equality of truth values ≡
instead of =. Truth values form a lattice with conjunction ∧ as the meet, disjunction ∨ as the join, ⇒
as the order relation, false as the bottom element, and true as the top element. The lattice is complete,
with ∀x • bx and ∃x • bx being the meet and the join of the set {x | bx}. The lattice is also distributive
as ∧ distributes over ∨ and ∨ distributes over ∧. This extends to infinite distributivity, in the sense that
a∨ (∀x • bx)≡ (∀x • a∨bx) and a∧ (∃x • bx)≡ (∃x • a∧bx).

A state predicate of type PΣ is a function from a state space Σ to Bool, i.e. a function of type
Σ→ Bool. On state predicates, conjunction ∧, disjunction ∨, implication ⇒, negation ¬, universal
quantification ∀, and existential quantification ∃ are defined by the pointwise extension of the corre-
sponding operations on Bool. For example, for state predicates p,q : PΣ and state σ : Σ, we have that
(p∧q)σ ≡ pσ ∧qσ and for p : α →PΣ we have (∀v : α • pv)σ ≡ (∀v : α • pvσ). As we use a typed
logic, we assume that types can be inferred, e.g. we write simply (∀v • pv). Entailment ≤ is defined by
universal implication, p ≤ q ≡ ∀σ • pσ ⇒ qσ . The predicates true and false represent the universally
true and false predicates, e.g. true σ ≡ true. The pointwise extension of a (complete, distributive) lattice
is again a (complete, distributive) lattice. Therefore state predicates with ≤ as the order relation form a

4 Multi-Exit Normal Form

complete distributive lattice.
For a tuple t = (t1, . . . , tn), we write t i for selecting its i-th element. An indexed state predicate

is a tuple (p1, . . . ,pn) of state predicates pi. We call X = {1, . . . ,n} its exit indices and write the
type PΣ1 × ·· · ×PΣn of an indexed state predicate more concisely as PΣX . The exit nrl = 1 is
the normal exit. On indexed state predicates, conjunction ∧, disjunction ∨, implication ⇒, negation
¬, universal quantification ∀, and existential quantification ∃ are defined by the elementwise exten-
sion of the corresponding operations on state predicates. For example, for indexed state predicates
P,Q : PΣX and exit index x ∈X , we have that (P∧Q)x = (Px∧Qx) and for P : α →PΣX we
have that (∀v • Pv)x = (∀v • Pvx). Entailment ≤ is defined by elementwise entailment of state predi-
cates, P ≤ Q ≡ ∧x • Px ≤ Qx for P,Q : PΣX . The indexed state predicates true and false represent
the elementwise true and false state predicates, e.g. true x = true. As indexed state predicates are an
elementwise extension of state predicates, indexed state predicates with ≤ as the order relation form a
complete, distributive lattice.

A predicate transformer (with multiple exits) is a function from an indexed state predicate, the post-
condition for each exit, to a state predicate, the precondition, i.e. is a function of type PΓX →PΣ.

We define some basic predicate transformers: abort may terminate at any exit in any state or may not
terminate at all; stop satisfies miraculously any postcondition on any exit by blocking execution; skipx
does not change the state and terminates at exit x. With indexed state predicate Q we define:

abort Q =̂ false

stop Q =̂ true

skipx Q =̂ Qx

Let S,T be predicate transformers. The sequential composition S ;x T executes first S and provided that S
terminates at exit x, continues with T . The demonic choice SuT establishes a postcondition at an exit if
both S and T do. The angelic choice StT establishes a postcondition at an exit if either S or T does. We
write t[i← v] for modifying tuple t to be v at index i:

(S ;x T)Q =̂ S (Q[x← T Q])

(SuT)Q =̂ SQ∧T Q

(StT)Q =̂ SQ∨T Q

Binary choice generalizes to choice over arbitrary sets. Let S be a set of predicate transformers:

(uS)Q =̂ (∀S ∈S • SQ)

(tS)Q =̂ (∃S ∈S • SQ)

The demonic choice over the empty set blocks, u /0 = stop, and the angelic choice over the empty set
aborts, t /0 = abort. We write uv • Sv for u{v | Sv} and tv • Sv for t{v | Sv}.

Let P be an indexed state predicate. The assumption [P] allows continuation at exit x if Px = true.
If continuation at several exits is possible, the choice is demonic. If continuation is not possible, the
assumption stops. The assertion {P} also allows continuation at exit x if Px = true. If continuation at
several exits is possible, the choice is angelic. If continuation is not possible, the assumption aborts:

[P]Q =̂ ∧x • Px⇒ Qx

{P}Q =̂ ∨x • Px∧Qx

E. Sekerinski & T. Zhang 5

We have that [false] = stop and that [true] = ux • skipx. Dually, we have that {false} = abort and that
{true}=tx • skipx. For state predicates p1, . . . ,pk and distinct x1, . . . ,xk ∈X we write x1 7→ p1, . . . ,xk 7→
pk for the indexed state predicate that is p1 at x1, . . . , pk at xk, and false everywhere else. As a special
case, x 7→ true is the indexed state predicate that is true for x ∈X and false otherwise. In the case of
assertions and assumptions with only one predicate being true and all other false, the continuation is
deterministic, in the sense that [x 7→ true] = skipx = {x 7→ true}. If only a predicate for the normal exit
is specified, we write [p] for [nrl 7→ p] and likewise {p} for {nrl 7→ p}.
Theorem 1 Let p be a state predicate and Q be an indexed state predicate:

[p]Q = (p⇒ Qnrl)

{p}Q = (p∧Qnrl)

A (state) relation is a function of type Σ→PΓ. The empty relation ⊥ is defined by ⊥σ γ ≡ false,
the universal relation > is defined by >σ γ ≡ true, and the identity relation id by id σ σ ′ ≡ σ = σ ′.
Intersection ∩, union ∪, complement r, and composition ◦ can be defined straightforwardly, but are not
needed here; inclusion is defined by r ⊆ r′ ≡ ∀σ • r σ ≤ r′σ . An indexed (state) relation is a tuple of
relations with identical initial state space but possibly different final state spaces, i.e. is of type (Σ→
PΓ1)×·· ·× (Σ→PΓn). With X = {1, . . . ,n} we write this more concisely as Σ

X→PΓ. We write
>, ⊥, and id for the indexed relations that are universally >, ⊥, and id. For relations r1, . . . ,rk and
x1, . . . ,xk ∈X we write R = x1 7→ r1, . . . ,xk 7→ rk for the indexed relation R that is r1 at x1, . . . , rn at xn,
and ⊥ everywhere else.

An update specifies a state change by one relation for each exit, each relation relating the common
initial state to the final state at each exit. Let R be an indexed relation. The demonic update [R] allows
continuation at exit x from initial state σ if Rxσ specifies some final states. The choice among all
possible final states and the choice among all possible exits are demonic. If continuation is not possible,
the demonic update stops. Dually, the angelic update {R} allows continuation at exit x from initial state
σ if Rxσ specifies some final states. The choice among all possible final states and the choice among all
possible exits are angelic. If continuation is not possible, the angelic update aborts:

[R]Qσ =̂ ∧x • ∀γ • Rxσ γ ⇒ Qxγ

{R}Qσ =̂ ∨x • ∃γ • Rxσ γ ∧Qxγ

We have that [⊥] = stop and that [id] = ux • skipx. Dually, we have that {⊥} = abort and that {id} =
tx • skipx. Both updates [>] and {>} always terminate in some state at some exit, with [>] making the
choice among the exits and among the states demonic and {>}making these choices angelic. In the case
of updates with only one relation being the identity and all other relations being empty, the continuation
is deterministic, in the sense that [x 7→ id] = skipx = {x 7→ id}. For the case that only a relation for the
normal exit is specified, we write [r] for [nrl 7→ r] and likewise {r} for {nrl 7→ r}.
Theorem 2 Let r be a relation and Q be an indexed state predicate:

[r]Qσ = ∀γ • r σ γ ⇒ Qnrlγ

{r}Qσ = ∃γ • r σ γ ∧Qnrlγ

For an indexed state predicate P : PΣX , the lifting |P| : Σ
X→PΣ is an indexed state relation that, for

each exit, is a partial identity relation:

|P|xσ σ
′ =̂ Pxσ ∧σ = σ

′

6 Multi-Exit Normal Form

Assumptions and assertions can be expressed as demonic and angelic updates by lifting their argument
to an indexed state relation:
Theorem 3 Let P be an indexed state predicate:

[P] = [|P|]
{P} = {|P|}

A multi-exit statement S is a predicate transformer that is constructed of
• basic statements abort, stop, skipx, [P], {P}, [R], {R}, where x is an exit index, P is an indexed

state predicate, R is an indexed relation, and

• composed statements S1 ;x S2, uS , tS , where S1,S2 are statements and S is a set of statements.
The normal skip statement and the normal sequential composition are special cases:

skip = skipnrl

S1 ; S2 = S1 ;nrl S2

Exception handling is expressed in terms of the statement raise x to raise exception x and the statement
tryS1 onxdoS2 to start with S1 and on exception x to continue with S2, otherwise to continue normally.
With exceptions being exits, these are defined as:

raise x = skipx if x 6= nrl

tryS1 onxdoS2 = S1 ;x S2 if x 6= nrl

3 Monotonicity, Junctivity, and Domains

We characterize different classes of statements. Predicate transformer S is monotonic if P≤ Q⇒ SP≤
SQ for arbitrary indexed state predicates P,Q. An immediate consequence is:
Theorem 4 All basic statements are monotonic and all composed statements preserve monotonicity.
Positive “junctivity” properties are defined by distributivity over arbitrary, but non-empty sets of indexed
state predicates. Predicate transformer S is positively conjunctive if S (∀Q ∈Q • Q) = (∀Q ∈Q • SQ)
and positively disjunctive if S (∃Q ∈Q • Q) = (∃Q ∈Q • SQ) for arbitrary set Q 6= /0 of indexed state
predicates.
Theorem 5 Statements stop, skipx, assertion {P}, assumption [P], and demonic update [R] are positively
conjunctive. Sequential composition ;x and demonic choice u preserve positive conjunctivity.
Proof We give the proof only for the demonic update [R]. Let Q be a set of indexed predicates and σ a
state:

[R] (∀Q ∈Q • Q)σ

≡ 〈definition of demonic update〉
∧x • ∀γ • Rxσ γ ⇒ (∀Q ∈Q • Q)xγ

≡ 〈∀ infinite distributivity, ∀ commutativity〉
∀Q ∈Q • ∧ x • ∀γ • Rxσ γ ⇒ Qxγ

≡ 〈definition of demonic update〉
∀Q ∈Q • [R]Qσ

≡ 〈definition of ∀ for state predicates〉
(∀Q ∈Q • [R]Q)σ

E. Sekerinski & T. Zhang 7

Thus [R] is positively conjunctive. �

Angelic choice does not preserve positive conjunctivity in general. A dual theorem holds for positively
disjunctive statements.

Theorem 6 Statements abort and skipx, assumption [P], assertion {P}, and angelic update {R} are
positively disjunctive. Sequential composition ;x and angelic choice t preserve positive disjunctivity.

Universal “junctivity” properties are defined by distributivity over arbitrary sets of indexed state predi-
cates. Predicate transformer S is universally conjunctive if S (∀Q ∈Q • Q) = (∀Q ∈Q • SQ) and uni-
versally disjunctive if S (∃Q ∈Q • Q) = (∃Q ∈Q • SQ) for arbitrary set Q of indexed state predicates.

Theorem 7 Any universally conjunctive predicate transformer is positively conjunctive. Any positively
conjunctive predicate transformer is monotonic.

Proof The first part follows immediately from the definitions. For positively conjunctive predicate trans-
former S, we show that SP≤ SQ provided P≤ Q:

SP

= 〈assumption P≤ Q〉
S (P∧Q)

= 〈assumption S is positively conjunctive〉
SP∧SQ

≤ 〈property of ≤〉
SQ

Thus S is monotonic. �

It is easy to see that abort is not universally conjunctive by taking Q = /0. As a consequence, an as-
sertion {P} is in general not universally conjunctive either. Angelic choice does not preserve universal
conjunctivity. The relationship between universal and positive “junctivity” can be stated more precisely
by considering domains. For predicate transformer S, the termination domain and enabledness domain
are defined by:

tr S = S true

en S = ¬(S false)

We say that S is terminating if tr S = true and that S is enabled (or strict) if en S = true.

Theorem 8 A predicate transformer is universally conjunctive if and only if it is positively conjunctive
and terminating.

As an immediate consequence, stop, skipx, assumption [P], and demonic update [R] are universally con-
junctive. Also, sequential composition ;x and demonic choice u preserve universal conjunctivity. Dually,
we have:

Theorem 9 A predicate transformer is universally disjunctive if and only if it is positively disjunctive
and enabled.

8 Multi-Exit Normal Form

The termination domain trx S characterizes those initial states from which termination at exit x is guar-
anteed. More generally, for a set X ⊆X the state predicate trX S characterizes those initial states from
which termination at any of the exits of X is guaranteed. Writing X 7→ p for the indexed state predicate
that is p at all x ∈ X and false otherwise, we define:

trX S = S(X 7→ true)

By monotonicity we have that trX S≤ tr S and that trX S∨ trY S≤ trX∪Y S. To see that equality does not
always hold, consider X = {x,y}. For S = skipxuskipy we have that false = tr{x} S < tr S = true. We
also have that false= tr{x} S∨ tr{y} S < tr{x,y} S = true.

4 Algebraic Properties

For fixed exit index x, indexed predicate transformers with ;x as composition and skipx as unit form a
monoid. For distinct exit indices x,y, we only have that skipx is a left zero of ;y.

Theorem 10 Let X be the exit indices and let S,T,U be indexed predicate transformers. For any
x,y ∈X we have:

(S ;x T) ;x U = S ;x (T ;x U) (a)

S ;x skipx = S (b)

skipx ;xS = S (c)

skipx ;yS = skipx if x 6= y (d)

Proof For (a), we calculate for any indexed predicate Q:

((S ;x T) ;x U)Q
= 〈definition of ;x〉

(S ;x T)(Q[x← U Q])
= 〈definition of ;x〉

S (Q[x← U Q] [x← T (Q[x← U Q])])
= 〈for any a,b,c, t: t[a← b][a← c] = t[a← c]〉

S (Q[x← T (Q[x← U Q])])
= 〈definition of ;x〉

S (Q[x← (T ;x U)Q])
= 〈definition of ;x〉

(S ;x (T ;x U))Q

For (b) we have:
(S ;x skipx)Q

= 〈definition of ;x〉
S (Q[x← skipx Q])

= 〈definition of skipx〉
S (Q[x← Qx])

= 〈for any a, t: t[a← t a] = t〉
SQ

E. Sekerinski & T. Zhang 9

For (c) we have:
(skipx ;xS)Q

= 〈definition of ;x〉
skipx(Q[x← SQ])

= 〈definition of skipx〉
(Q[x← SQ])x

= 〈for any a,b, t: (t[a← b])a = b〉
SQ

Assuming x 6= y, we have for (d):

(skipx ;yS)Q
= 〈definition of ;y〉

skipx(Q[y← SQ])
= 〈definition of skipx〉

(Q[y← SQ])x
= 〈for any a,b,c, t with a 6= c: (t[a← b])c = t c〉

skipx Q

As the unit of a monoid is unique, we have that skipx is the unique identity of ;x. To see that (S ;x T) ;y U 6=
S ;x (T ;y U) in general, consider that x = nrl and y 6= nrl. Rewriting using try statements, it is intuitive
that tryS ; T onzdoU is in general different from S ; tryT onydoU. Assuming x,y 6= nrl and rewriting
S ;y skipx as trySonydoraise x we obtain the idiom of re-raising an exception; in this case, skipx (or
raise x) is neither unit nor zero.

The refinement relation is defined by universal entailment of indexed state predicates. For indexed
predicate transformers S,T we define:

Sv T =̂ ∀Q • SQ≤ T Q

Intuitively, refinement may reduce demonic choice and may increase angelic choice, where the choice is
between exits or states. For example, skipxuskipy v skipx. This is captured by the lattice structure of
indexed predicate transformers.

Theorem 11 Indexed predicate transformers with v as the order relation, abort as bottom, stop as top,
u as meet, and t as join form a complete distributive lattice.

This follows immediately from indexed predicate transformers being a pointwise extension of state pred-
icates. The monoid and lattice structure are connected by following distributivity properties.

Theorem 12 Let S,T be indexed predicate transformers and S ,T be non-empty sets of indexed predi-
cate transformers such that X is the index set of S and all elements of S :

(uS ∈S • S) ;x T = (uS ∈S • S ;x T) (a)

S ;x (uT ∈T • T)v (uT ∈T • S ;x T) if S is monotonic (b)

S ;x (uT ∈T • T) = (uT ∈T • S ;x T) if S is positively conjunctive (c)

10 Multi-Exit Normal Form

Proof For (a), we calculate for any indexed predicate Q:

((uS ∈S • S) ;x T)Q
= 〈definition of sequential composition〉

(uS ∈S • S)(Q[x← T Q])
= 〈definition of demonic choice〉

(∀S ∈S • S (Q[x← T Q]))
= 〈definition of sequential composition〉

(∀S ∈S • (S ;x T)Q)
= 〈definition of demonic choice〉

(uS ∈S • S ;x T)Q

For (b) we have:

(S ;x (uT ∈T • T))Q
= 〈definition of sequential composition〉

S(Q[x← (uT ∈T • T)Q])
= 〈definition of demonic choice〉

S(Q[x← (∀T ∈T • T Q)])
⇐ 〈monotonicity (*)〉
∀T ∈T • S (Q[x← T Q])

= 〈definition of sequential composition〉
∀T ∈T • (S ;x T)Q

= 〈definition of demonic choice〉
(uT ∈T • S ;x T)Q

The proof of (c) is similar, except that it uses positive conjunctivity of S in step (*).

5 Normal Form for Monotonic Predicate Transformers

Every multi-exit statement is a monotonic indexed predicate transformer by definition. We show that the
converse also holds, that every monotonic indexed predicate transformer can be equivalently expressed as
a multi-exit statement. It turns out that only normal angelic update, normal sequential composition, and
demonic update are needed to express any monotonic indexed predicate transformer. Following theorem
and its proof generalize those of [3] for single-exit statements.

Theorem 13 Let S be a monotonic indexed predicate transformer. Then there exist a relation r and an
indexed relation R such that S = {r} ; [R].

Proof Assume that S : PΓX →PΣ is a monotonic indexed predicate transformer. Define relation
r : Σ → P(PΓX) and indexed relation R : PΓX

X→ PΓ as follows, where P is an indexed state
predicate of type PΓX :

r σ P =̂ SPσ

RxPγ =̂ Pxγ

E. Sekerinski & T. Zhang 11

Then, for arbitrary indexed predicate Q and arbitrary state σ0 we have:

({r} ; [R])Qσ0

≡ 〈definition of sequential composition〉
{r}(Q[nrl← [R]Q])σ0

≡ 〈definition of demonic update〉
{r}(Q[nrl← (λ σ • ∧ x • ∀γ • Rxσ γ ⇒ Qxγ)])σ0

≡ 〈Theorem 2, definition of R〉
(∃P • r σ0 P∧ (∧x • ∀γ • Pxγ ⇒ Qxγ))

≡ 〈definition of r, definition of ≤〉
(∃P • SPσ0∧P≤ Q)

≡ 〈(**)〉
SQσ0

The step (**) is shown by mutual implication:

(∃P • SPσ0∧P≤ Q)

⇒ 〈S is monotonic, context says P≤ Q〉
(∃P • SQσ0∧P≤ Q)

⇒ 〈weakening〉
(∃P • SQσ0)

⇒ 〈quantifier rule〉
SQσ0

For the reverse implication we have:

(∃P • SPσ0∧P≤ Q)

⇐ 〈witness P = Q〉
SQσ0∧Q≤ Q

≡ 〈reflexitivity〉
SQσ0

Together this shows that S = {r} ; [R]. �

As a consequence, any monotonic indexed predicate transformer can be expressed as a statement. The
normal form {r} ; [R] can be interpreted as a simple two-player game [3]: given an initial state, first
the angel chooses an intermediate exit and an intermediate state. Then, for any possible intermediate
exit and intermediate state, the demon choses the final exit and final state. An interesting observation
is how the intermediate state space is constructed in the proof. The precondition is of type PΣ, the
indexed postcondition is of type PΓX , and the intermediate condition is of type P(PΓX). That is,
an intermediate state is a set of final states. Given initial state σ , the angel first picks an indexed state
predicate P of type PΓX such that SPσ holds and then the demon picks at each exit x a final state γ

such that Pxγ holds.

12 Multi-Exit Normal Form

To illustrate this with a concrete example, consider statement S with two exists, a normal and an
exceptional exit, X = {nrl,exc}. Recalling that skip = skipnrl, we define raise = skipexc and S =
skipt raise. The weakest precondition of S is S (q1,q2) = (q1 ∨ q2). The normal form of S is {r}; [R]
such that r p(q1,q2)≡ p = (q1∨q2) and R = (r1,r2) where r1 (q1,q2)γ1 ≡ q1 γ1 and r2 (q1,q2)γ2 ≡ q2 γ2.
From any precondition p, the normal angelic update {r}= {(r,⊥)} always exits normally. However, in-
tuitively it can choose to go to the intermediate state (p, false), which represents either exiting normally
with postcondition p or exiting exceptionally with false, it can also choose to go to the intermediate state
(false,p), which represents either exiting normally with postcondition false or exiting exceptionally with
p, or it can choose to establish any (q1,q2) where p = (q1∨q2). In case of (p, false), the next statement,
[(r1,r2)], forces r1 to be chosen (r2 is ⊥ due to false, according to the definition) and S exits normally
with p, as skip does. In case of (false,p), the next statement, [(r1,r2)], forces r2 to be chosen (r1 is ⊥ due
to false, according to the definition) and S exits exceptionally with p, as raise does.

As a second example, consider statement S defined by S = skipu raise. The weakest precondition
of S is S (q1,q2) = (q1 ∧ q2). The normal form of S is {r}; [R] such that r p(q1,q2) ≡ p = (q1 ∧ q2),
and R = (r1,r2) where r1 (q1,q2)γ1 ≡ q1 γ1, r2 (q1,q2)γ2 ≡ q2 γ2. From any precondition p, the normal
angelic update {r} = {(r,⊥)} exits normally. It can choose to go in the state (p,p) or it can choose to
establish and (q1,q2) where p = (q1∧q2). In case of (p,p) in the intermediate state, the next statement,
[(r1,r2)] can choose r1 and exit normally with p, as skip does, or choose r2 and exit exceptionally with
p, as raise does.

A further observation is that, in principle, sequential composition at exit other than nrl, general
angelic updates, demonic choice, and angelic choice are not needed to express an arbitrary monotonic
predicate transformer. Still, we consider them for symmetry reasons and to be able to define concrete
programming constructs in terms of those.

6 Normal Form for Conjunctive Predicate Transformers

Statements stop, skipx, assumption [P], and demonic update [R] are universally conjunctive and sequen-
tial composition ;x and demonic choice u preserve universally conjunctivity. We show that in turn every
universally conjunctive predicate transformer can be expressed by a statement consisting only of single
demonic update, with one relation for each exit. For this, it is convenient to use bounded quantification.
The bounded universal quantification on state predicates is defined by (∀v | bv • pv)σ ≡ (∀v | bv⇒
pvσ), where bv : Bool and pv : PΣ. The bounded quantification on indexed state predicates is defined
by (∀v | bv • Pv)x = (∀v | bv⇒ Pvx) where bv : Bool and Pv : PΣX .

Lemma 14 If S is a universally conjunctive predicate transformer, then for all indexed state predicates
Q and all states σ :

SQσ ≡ (∀P | SPσ • P)≤ Q

Proof When SQσ = true:

(∀P | SPσ • P)≤ Q

≡ 〈splitting ∀〉
Q∧ (∀P | SPσ ∧P 6= Q • P)≤ Q

≡ 〈∧-elimination〉
true

E. Sekerinski & T. Zhang 13

When SQσ = false:

(∀P | SPσ • P)≤ Q

⇒ 〈S is monotonic, Theorem 7〉
S (∀P | SPσ • P)≤ SQ

≡ 〈definition of conjunctivity〉
(∀P | SPσ • SP)≤ SQ

⇒ 〈definition of ≤〉
(∀P | SPσ • SP)σ ⇒ SQσ

≡ 〈definition of ∀〉
(∀P | SPσ • SPσ)⇒ SQσ

≡ 〈definition of ∀, assumption SQσ = false〉
true⇒ false

≡ 〈lattice property〉
false

Thus we know that SQσ ≡ (∀P | SPσ • P)≤ Q �

Theorem 15 Let S be an universally conjunctive indexed predicate transformer. There exists a unique
indexed relation R such that S = [R].

Proof Let X be the exit indices of S. For arbitrary x ∈X we define:

Rxσ = (∀P | SPσ • Px)

Then we calculate for any indexed state predicate Q:

[R]Qσ

≡ 〈definition of R, definition of demonic update〉
∧x ∈X • ∀γ • (∀P | SPσ • Px)γ ⇒ Qxγ

≡ 〈definition of ≤ on state predicates〉
∧x ∈X • (∀P | SPσ • Px)≤ Qx

≡ 〈definition of ≤ on indexed state predicates〉
(∀P | SPσ • P)≤ Q

≡ 〈Lemma 14〉
SQσ

14 Multi-Exit Normal Form

This shows that [R] = S. For uniqueness we have:

[R] = [R′]

≡ 〈antisymmetry〉
[R]v [R′]∧ [R]w [R′]

≡ 〈definition of demonic update, definition of ≤, definition of ⊆〉
∧x ∈X • Rx⊇ R′ x∧Rx⊆ R′ x

≡ 〈antisymmetry〉
∧x ∈X • Rx = R′ x

≡ 〈equality of tuples〉
R = R′

�

Lemma 16 If S is conjunctive, then [tr S] ; S is universally conjunctive.

Proof For arbitrary predicate S, we show that [tr S] ; S is terminating:

tr ([tr S] ; S)

= 〈definition of tr〉
([S true] ; S) true

= 〈definition of sequential composition〉s
[S true] (true [nrl← S true])

= 〈Theorem 1〉
S true⇒ (true [nrl← S true])nrl

= 〈simplification of function update〉
S true⇒ S true

= 〈lattice property〉
true

Thus with Theorem 8, [tr S] ; S is universally conjunctive by definition. �

Theorem 17 Let S be an arbitrary positively conjunctive predicate transformer. Then there exists a
unique predicate p and a unique indexed relation R such that S = {p} ; [R].

Proof It is easily seen that we must choose p = tr S:

S = {p} ; [R]

⇒ 〈congruence〉
tr S = tr ({p} ; [R])

≡ 〈from definitions〉
tr S = (p∧ tr [R])

≡ 〈from definitions〉
tr S = p

E. Sekerinski & T. Zhang 15

By Lemma 16 we have that {p} ; [R] is universally conjunctive. Then we can conclude by Theorem 15
that some indexed relation R exists such that [tr S] ; S = [R], and by the proof of that theorem, Rxσ =
(∀P | SPσ • Px). Then we have for arbitrary indexed predicate Q:

({tr S} ; S)Q

≡ 〈from definitions〉
({tr S} ; [tr S] ; S)Q

≡ 〈definition of ;, assertion, assumption〉
tr S∧ (tr S⇒ SQ)

≡ 〈lattice property〉
tr S∧SQ

≡ 〈definition of tr S〉
S true∧SQ

≡ 〈S is monotonic by Theorem 7〉
SQ

Thus S = {p} ; [R] for p and R as above. �

7 Conclusions

The results of this paper have been checked with the Isabelle/HOL theorem prover using a shallow
embedding1 [24]. The type of indexed state predicates, PΣX = PΣ1× ·· ·×PΣn can be expressed
with a shallow embedding in higher order logic only for a specific value of n, but not for arbitrary n. We
addressed this by two formalizations. One allows exits to have different state spaces, but is restricted to a
small number of exits (up to three). This is used for the main results. A second formalization generalizes
this to an arbitrary number of exits, but typing in higher order logic requires all Σi to be the same.

In conclusion, using the model of monotonic predicate transformers, we have explored the algebraic
structure of multi-exit statements and we have given the normal forms of statements, positively conjunc-
tive statements, and universally conjunctive statements. Like the normal form of single-exit statements,
the normal form of Theorem 13 is non-constructive, in the sense that the exact weakest precondition SP
for each P is needed, which puts a limit in presence of recursion. Also, in the normal form {r} ; [R], the
first statement “explodes” the state space and the second statement “shrinks” it again [25].

The normal form for positively conjunctive statements gives some insight for specification languages.
Consider a procedure specification similar to those found in [5, 16]. We assume that the procedure
operates on variables v:

requires p(v)
ensures a(v,v′)
signals x : b(v,v′)
signals y : c(v,v′)

Here, p is the precondition of the procedure and a,b,c are the “postconditions” for normal termination
and when raising exceptions x,y. Such a specification can be understood as a statement S given by:

S = {p} ; [nrl 7→ a,x 7→ b,y 7→ c]

1The Isabelle/HOL theory files are available at http://www.cas.mcmaster.ca/~zhangt26/NormalForm

http://www.cas.mcmaster.ca/~zhangt26/NormalForm

16 Multi-Exit Normal Form

This definition is in normal form for positively conjunctive statements. Hence this form allows an ar-
bitrary positively conjunctive statement to be specified. We immediately have the tr S = p, justifying
calling p the precondition. We let domr be the domain of relation r, formally domr σ ≡ ∃σ ′ • r σ σ ′.
For the enabledness domain we calculate:

en S

= 〈for any p,S: en({p} ; S) = (p⇒ en S)〉
p⇒ en [nrl 7→ a,x 7→ b,y 7→ c]

= 〈for any R: en [R] = ∨x • dom(Rx)〉
p⇒ (∨x • dom(Rx))

If procedure calls are supposed to be always enabled, then this implies that under the precondition, at
least one postcondition has to specify a final state. Hence this is a feasibility condition for specifications
of multi-exit statements [19].

References

[1] Jean-Raymond Abrial (1996): The B Book: Assigning Programs to Meanings. Cambridge University Press.

[2] R. J. R. Back (1993): Refinement Calculus, Lattices and Higher Order Logic. In Manfred Broy, editor:
Program Design Calculi, NATO ASI Series 118, Springer Berlin Heidelberg, pp. 53–71, doi:10.1007/978-3-
662-02880-3 2.

[3] Ralph-Johan Back & Joakim von Wright (1998): Refinement Calculus: A Systematic Introduction. Springer-
Verlag.

[4] R.J.R. Back & J. Wright (1990): Refinement concepts formalised in higher order logic. Formal Aspects of
Computing 2(1), pp. 247–272, doi:10.1007/BF01888227.

[5] M. Barnett, K. R. M. Leino & W. Schulte (2005): The Spec# Programming System: An Overview. In
G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet & T. Muntean, editors: Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, Springer, pp. 49–69. Available at http://dx.doi.org/10.
1007/978-3-540-30569-9_3.

[6] Paulo Borba, Augusto Sampaio, Ana Cavalcanti & Márcio Cornélio (2004): Algebraic reason-
ing for object-oriented programming. Science of Computer Programming 52(1-3), pp. 53 – 100,
doi:10.1016/j.scico.2004.03.003. Available at http://www.sciencedirect.com/science/article/

pii/S0167642304000474.

[7] Flaviu Cristian (1984): Correct and Robust Programs. IEEE Transactions on Software Engineering 10(2),
pp. 163–174.

[8] Michael J.C. Gordon (1989): Mechanizing Programming Logics in Higher Order Logic. In Graham
Birtwistle & P.A. Subrahmanyam, editors: Current Trends in Hardware Verification and Automated The-
orem Proving, Springer New York, pp. 387–439, doi:10.1007/978-1-4612-3658-0 10.

[9] Matthew Hennessy & Robin Milner (1985): Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), pp. 137–161. Available at http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/
2455.2460.

[10] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sorensen, J. M.
Spivey & B. A. Sufrin (1987): Laws of Programming. Communications of the ACM 30(8), pp. 672–686.
Available at http://doi.acm.org/10.1145/27651.27653.

[11] C. A. R. Hoare, He Jifeng & A. Sampaio (1993): Normal form approach to compiler design. Acta Informatica
30(8), pp. 701–739. Available at http://dx.doi.org/10.1007/BF01191809.

http://dx.doi.org/10.1007/978-3-662-02880-3_2
http://dx.doi.org/10.1007/978-3-662-02880-3_2
http://dx.doi.org/10.1007/BF01888227
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1016/j.scico.2004.03.003
http://www.sciencedirect.com/science/article/pii/S0167642304000474
http://www.sciencedirect.com/science/article/pii/S0167642304000474
http://dx.doi.org/10.1007/978-1-4612-3658-0_10
http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/2455.2460
http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/2455.2460
http://doi.acm.org/10.1145/27651.27653
http://dx.doi.org/10.1007/BF01191809

E. Sekerinski & T. Zhang 17

[12] Bart Jacobs (2001): A Formalisation of Java’s Exception Mechanism. In D. Sands, editor: ESOP ’01:
Proceedings of the 10th European Symposium on Programming Languages and Systems, Springer-Verlag,
pp. 284–301.

[13] He Jifeng, Ian Page & Jonathan Bowen (1993): Towards a Provably Correct Hardware Implementation of
Occam. In George Milne & Laurence Pierre, editors: Correct Hardware Design and Verification Methods,
Lecture Notes in Computer Science 683, Springer Berlin / Heidelberg, pp. 214–225. Available at http:
//dx.doi.org/10.1007/BFb0021726.

[14] Steve King & Carroll Morgan (1995): Exits in the Refinement Calculus. Formal Aspects of Computing 7(1),
pp. 54–76.

[15] Dexter Kozen (1997): Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19(3), pp. 427–443.
Available at http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/256167.256195.

[16] G. T. Leavens, A. L. Baker & C. Ruby (2006): Preliminary design of JML: a behavioral interface spec-
ification language for Java. SIGSOFT Software Engineering Notes 31, pp. 1–38. Available at http:
//doi.acm.org/10.1145/1127878.1127884.

[17] Jing Li, Huibiao Zhu & Jifeng He (2007): Algebraic Semantics for Compensable Transactions. In Cliff
Jones, Zhiming Liu & Jim Woodcock, editors: Theoretical Aspects of Computing – ICTAC 2007, Lecture
Notes in Computer Science 4711, Springer Berlin / Heidelberg, pp. 306–321. Available at http://dx.doi.
org/10.1007/978-3-540-75292-9_21.

[18] Bertrand Meyer (1997): Object-Oriented Software Construction, 2nd edition. Prentice-Hall.
[19] Carroll C. Morgan (1994): Programming from Specifications, 2nd edition. Prentice Hall.
[20] A.W. Roscoe & C.A.R. Hoare (1988): The laws of OCCAM programming. Theoretical Computer Science

60(2), pp. 177 – 229, doi:10.1016/0304-3975(88)90049-7. Available at http://www.sciencedirect.
com/science/article/pii/0304397588900497.

[21] Emil Sekerinski & Tian Zhang (2012): Verification Rules for Exception Handling in Eiffel. In Rohit Gheyi
& David Naumann, editors: Formal Methods: Foundations and Applications, Lecture Notes in Computer
Science 7498, Springer Berlin / Heidelberg, pp. 179–193.

[22] Emil Sekerinski & Tian Zhang (2013): On a New Notion of Partial Refinement. In John Derrick, Eerke Boiten
& Steve Reeves, editors: Proceedings 16th International Refinement Workshop, Electronic Proceedings in
Theoretical Computer Science 115, Open Publishing Association, pp. 1–14, doi:10.4204/EPTCS.115.1.

[23] Leila Silva, Augusto Sampaio & Edna Barros (2004): A Constructive Approach to Hardware/Software Parti-
tioning. Formal Methods in System Design 24(1), pp. 45–90. Available at http://dx.doi.org/10.1023/
B:FORM.0000004787.52329.98.

[24] Markus Wenzel (2011): The Isabelle/Isar Reference Manual. Available at http://isabelle.in.tum.de/
doc/isar-ref.pdf.

[25] J. von Wright (1994): The lattice of data refinement. Acta Informatica 31(2), pp. 105–135,
doi:10.1007/BF01192157.

[26] M. Ying (2003): Reasoning about probabilistic sequential programs in a probabilistic logic. Acta Informatica
39(5), pp. 315–389. Available at http://dx.doi.org/10.1007/s00236-003-0113-z.

http://dx.doi.org/10.1007/BFb0021726
http://dx.doi.org/10.1007/BFb0021726
http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/256167.256195
http://doi.acm.org/10.1145/1127878.1127884
http://doi.acm.org/10.1145/1127878.1127884
http://dx.doi.org/10.1007/978-3-540-75292-9_21
http://dx.doi.org/10.1007/978-3-540-75292-9_21
http://dx.doi.org/10.1016/0304-3975(88)90049-7
http://www.sciencedirect.com/science/article/pii/0304397588900497
http://www.sciencedirect.com/science/article/pii/0304397588900497
http://dx.doi.org/10.4204/EPTCS.115.1
http://dx.doi.org/10.1023/B:FORM.0000004787.52329.98
http://dx.doi.org/10.1023/B:FORM.0000004787.52329.98
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://dx.doi.org/10.1007/BF01192157
http://dx.doi.org/10.1007/s00236-003-0113-z

	Introduction
	Predicate Transformers with Indexed Postconditions
	Monotonicity, Junctivity, and Domains
	Algebraic Properties
	Normal Form for Monotonic Predicate Transformers
	Normal Form for Conjunctive Predicate Transformers
	Conclusions

