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INTRODUCTION 

Wastewater treatment facilities are increasingly installing more and more high-

frequency water quality sensors, as high-quality data is essential for plant operation 

and optimization. The sheer volume of data being collected and the necessity to 

avoid the collection of erroneous data, has created a need for automated tools to 

assess the quality of that data and signal for maintenance as the need arises. As these 

datasets have increased in size and complexity, it has become difficult to identify 

problems in a timely manner either manually or to use simple rules that might have 

been sufficient previously. A software solution is thus developed to provide a quick 

analysis of fault detection. The anomaly detection algorithm is developed based on 

deep learning technology, where the detection model is derived solely from the data 

and no prior knowledge required.  

 

In November 2017 this project was launched to acquire real-world dataset from 

municipal and industrial wastewater plants. Our industrial partner, Primodal 

installed an RSM30 monitoring station with two high-frequency ammonia sensors 

at the primary effluent of the Dundas Wastewater Treatment Plant (WWTP) in 

Hamilton, Ontario. The generated data has been used to test the algorithms 

developed as part of this project. The two VARiON® Plus 700 IQ high-frequency 

sensors, conducts potentiometric measurement of ammonium concentration using 

ion-sensitive electrodes.   

 

Primary effluent ammonia is influenced by daily, seasonal and weather issues 

and thus exhibits typical stochastic behavior observed at the treatment plant. This 

stochasticity is a non-trivial problem as any algorithm must distinguish real but 

normal events (observed as changes in concentration) from sensor anomalies 

(observed as changes in concentration).  The term anomaly in this paper refers to 

any patterns or instances which differ from expected pattern. Figure 1 shows the 

daily concentration in normal dry days.  
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FIGURE 1: A typical ammonia concentration pattern in a typical dry day. 

 

 

Traditional ad hoc anomaly detection approaches struggle to identify real faults 

from normal process variations due to their rigid logic. A static threshold is not 

enough to distinguish faulty data with normal data, as the range of normal 

concentration is usually changing over time. A threshold that works well for the 

winter may not work for summer anymore. Besides, a set of manually designed 

rules for one WWTP may not work another WWTP. The data-driven approach is 

preferable as all the “rules” are derived from dataset directly. A LSTM (Long Short-

Term Memory) network is chosen as the data-driven approach due to its success in 

the recent time series problems in difference applications (Graves et al., 2013). It 

has the ability to learn long-range patterns and store the “rules” as a predictable 

model. Prediction of future values is calculated with its preceding values and the 

predictable model. The anomaly score can be calculated based on the difference 

between the predicted values and actual values. The anomalies can be detected and 

ranked based on the score.  

 

Moreover, some of the detected anomalies are the results of rain events. These 

precipitation-caused anomalies should be eliminated from the results when possible, 

as the “real” anomalies caused by sensor failures are of more interest. It is obviously 

possible to eliminate the rain events when precipitation or flow data are available. 

However, these two datasets are usually not accessible by the simple water quality 

sensors. An attempt was made to eliminate the “real” concentration anomalies with 

the temperature datasets collected by sensors.  

 

METHODOLOGY 

Rule-based Approaches 

Anomaly detection can be done manually by someone with sufficient domain 

knowledge. However, anomalies indicate that the system may not operate properly. 

The problem needs to be alarmed as soon as possible to avoid collecting faulty data. 

It is infeasible for a human engineer to monitor data 24/7.  It is thus advantageous 

to automate this process by employing algorithms.  

 

Simple thresholds such as an upper or bottom threshold can be applied, where a 

violation of a threshold triggers an alarm. This simple static rule works well for 

situations such as emergence when the concentration reaches extreme values. 

However, the normal range of ammonia concentration is not static. For the 

concentration in this project, in winter time such as January, an upper threshold can 
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be set at 20 as no reading can be above this value. Using the same threshold will 

trigger a lot of false alarms in the summertime such as June, as normal concentration 

can be easily above 25. A more proper threshold should be around 28 at this season.  

 

 

 
FIGURE 2: Threshold Comparison between January and June. 

 

 

A more feasible approach is to detect anomaly using its statistical features. One 

possible approach is to detect anomaly based on the possibility of distribution. As 

most data are within the normal range in a well-operated system, anomalies are 

usually rare events (Vallis et al., 2014). For example, for a normal distributed 

system, most of the data aggregates around its mean as shown below. Those unusual 

data on the two sides are very likely to be anomalies. A small percentage such as 5 

percent can be set as the threshold, as it can exclude most the normal data.  

 

 

 
FIGURE 3: Normal Distribution. 

 

 

The Extreme Studentized Deviate (ESD) test (Rosner, 1983) is an algorithm 

which detects anomalies assuming data is normally distributed. However, the 

concentration dataset exhibits a multimodal distribution due to its daily pattern so 

that general ESD cannot be applied directly. To address this problem researchers 

from Twitter built the Seasonal Hybrid ESD (S-H-ESD) on the top of the general 

ESD test (Vallis et al., 2014). A procedure was taken to decompose the seasonal 
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components such as daily pattern using the median and MAD (Median Absolute 

Deviation). MAD is defined as the median of the absolute deviations from the 

sample median. The resulting residual component has a unimodal distribution that 

is suitable for anomaly detection with general ESD. 

 

The second possible statistical approach is to make use of the derivative, as an 

anomaly is often related to the rapid or unusual rate of change in a time series. The 

third option is to make use of the daily pattern, as the expected value of a data 

sample can be estimated from its preceding value based on the expected pattern 

(LinkedIn, 2018). By moving lagging windows across the full dataset, a series of 

the subset can be generated to compute the expected values for each sample. 

Anomalies are identified from deviations from the expected value. The three 

approaches discussed above, i.e., S-H-ESD, derivative, and moving average are all 

based on different statistical features. There are more potential rule-based 

approaches available for similar tasks. Some more complex statistical techniques 

may even achieve satisfying results after being carefully designed by experts. 

However, they suffer from similar limits, i.e., the rules are “custom-made” for 

specific datasets. The customization requires extensive effort and these handcrafted 

rules tend to be difficult to adapt to a new system.  

 

Data-driven Approach 

Another way to handle this problem is to take the data-driven approach, where 

the “rules” are generated from data directly instead of design by an expert. In this 

paper, deep learning is chosen to be the data-driven approach because it has shown 

robust capabilities in a variety of tasks in recent years (Graves et al., 2013).  Deep 

learning can learn high-level representations of datasets automatically with little or 

no need for manual feature engineering and domain expertise. The basic structure 

of deep learning algorithms is called an artificial neural network (ANNs). The 

artificial neural networks are inspired by the structure and function of the biological 

neural networks in the brain. The term deep refers to architectures consisting of 

multiple hidden layers. In this paper, all the neural networks will be referred to as 

artificial neural networks.  

 

In general, a neural network consists of an input layer, multiple fully connected 

hidden layers, and an output layer. The input layer is the first layer which receives 

the input data. The input layer only forwards the input data without any processing. 

The output layer is responsible for processing the output. The layers in-between are 

referred to as hidden layers. Each layer contains multiple computational units, 

which are also called nodes or neurons. The nodes within hidden layers are 

responsible for memory and the inner state. A neuron receives input vectors from 

neurons in the previous layer along the directed edges. Each edge has a 

corresponding weight associated with it. The input data will be then be multiplied 

by the weight and subsequently added to the bias. Afterward, the sum serves as 

input for the activation function or transfer function. The output of a single neuron 

is usually a non-linear function of the weighted sum of its inputs and bias, which is 

achieved by the activation function. The final output will then be passed to neurons 
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in the next layer. The complex features of the dataset are learned during this process, 

which is similar to a pipeline where each layer does part of the task.  

 

 
FIGURE 4: Artificial Neural Network 

 

 

Training Neural Networks 

The difference between the predicted output and the expected output is referred 

to as the loss function or cost function. The training purpose of a neural network is 

to find the optimal parameters which minimizes the loss function. When the 

predicted output is close enough to the actual output, i.e. the loss function is 

minimized, the training process can stop as the information has been “learned”. One 

commonly used loss function is the mean squared error (MSE), which measures the 

averaged squared distance between the predicted values and actual values. The 

gradient is the measure of the change in the loss function corresponding to changes 

in the parameters. The algorithm used to calculate the gradients is called 

backpropagation, which calculates the gradients concerning the parameters. The 

"back" part of the name comes from the fact that the calculation of the gradient 

propagates backward through the neural networks. The gradient of the final layer 

of weights is calculated first while the gradient of the first layer of weights is 

calculated last. Partial computations of the gradient from one layer are reused in the 

computation of the gradient for the next layer based on the chain rule of derivatives. 

This backward flow of the error information allows for efficient computation of the 

gradient at each layer.  

  

The calculated derivatives are used by an optimization algorithm, gradient 

descent, to adjust the weights up or down, depending on the direction that 

minimizes the loss function. The optimization is an iterative process, where the 

training data needs to be passed multiple times before it reaches the optimal result. 

One pass over all the training datasets is referred to as an epoch. After every epoch, 

the parameters, i.e., weights and biases get closer to their optimum values which 

minimize the loss function. A proper number of epochs can be set such that the 

parameters move from under fitting to optimal. 
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Recurrent Neural Networks with Long Short-Term Memory (LSTM) 

There are different types of neural networks, which expertise in different tasks. 

Recurrent neural networks (RNNs) as one type of ANNs, are designed for temporal 

tasks such as speech recognition. The idea behind RNNs is to make use of 

sequential information. RNNs are called recurrent because they perform the same 

operation on every sample of a sequential input, with the output being dependent 

on the previous steps. The main feature of an RNN is the hidden state, which is 

calculated based on the previously hidden state and the input at the current step. 

The first hidden state is typically initialized to all zeroes. RNNs are formed with a 

chain of repeating modules. At any time t, the RNN unit receives the input from the 

current time step and the hidden state from the previous time step. The output is 

then calculated, and the hidden state is also updated. The current output depends on 

all the previous inputs. Thus, memory is maintained during the training.  

 

In theory, RNNs can learn dependencies between steps that are arbitrarily far 

apart. However, in practice, an RNN is only able to remember short-term memory 

sequences due to the so-called vanishing/exploding gradient problem (Pascabu et 

al., 2013) caused by the repeated use of the recurrent weight matrix. Vanishing 

gradient refers to the problem when the gradients flowing through the network 

become very small as the chain rule is applied many times in the backpropagation. 

In the worst case, this may completely stop the neural network from further training. 

The exploding gradient problem is the opposite situation, where the weights 

become so large that the model becomes unstable and unable to learn from the 

training data. 

 

 
FIGURE 5: Recurrent Neural Network (RNN) (Lecun et al., 2015). 

 

 

LSTMs were introduced to solve the problems in traditional RNNs (Hochreiter 

and Schmidhuber, 1997). Gating mechanisms are introduced in the LSTM units to 

enable the model to decide whether to accumulate certain information or not. There 

are three gates, input gate, forget gate and output gate. The gradient can now flow 

through these gates, and only the useful information can flow in and store in the 

state.  
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FIGURE 6: Long Short-Term Memory (LSTM) Memory Cell 

 

 

LSTM (long short-term memory) as a variant of RNN have become the model 

of choice due to its ability to handle long-range dependences in a time sequence. It 

is thus chosen as the type of neural network used for this project. In this paper, the 

training and testing are done with a Python library TensorFlow developed by 

Google. Three weeks’ concentration is selected as a training set. During these three 

weeks there was no precipitation, so the training set has a good representation of 

the normal daily pattern. The daily pattern of normal dry days will be learned and 

stored in the LSTM networks as a predictable model. The predicted or expected 

ammonia concentration at any time is estimated based on its preceding values and 

the predictable model. The prediction error is calculated as the offset between the 

predicted and actual values. The calculation for the anomaly score is done with The 

Numenta Platform for Intelligent Computing (NuPIC) (Lavin et al., 2015). Like the 

probability distribution discussed above, the anomaly score is ranked based on the 

likelihood of the prediction error. One or more thresholds can be set for the anomaly 

score.  

 

Datasets 

To evaluate the performance of algorithms, the datasets and the anomalies they 

contain need to be analyzed first. The ammonia dataset is collected by sensors 

which take reading every minute.  

 

In terms of the duration of anomalies, the ammonia anomalies can be point 

anomalies such as Anomaly-1 in Figure 6 or anomalies sections such as Anomaly-

2 and Anomaly-3. Points anomalies are the single instance deviated from the typical 

pattern. Different reasons can cause point anomalies, and they are generally random 

events. A point anomaly is momentary and usually does not affect the operation too 

much. The detection in this project focuses on continuous sections of anomalies 

rather than point anomalies.  The performance of algorithms is evaluated based on 

their ability to detect anomalous sections instead of point anomalies. In the 

following, anomalous sections will be referred to as anomalies. 
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FIGURE 7: Ammonia Concentration in March 2018. 

 

 

The ammonia concentration depends on both the ammonia load and wastewater 

load. The daily ammonia load comes from the industry and residence and has its 

daily pattern. The ammonia load is relatively stable regardless of the weather 

condition. However, the wastewater load is heavily affected by the weather, 

especially precipitation. The ammonia concentration thus depends on the 

precipitation. The concentration may become abnormal compared to the dry days 

when there is precipitation. For example, for Anomaly-3 of Figure 7 that occurred 

at the end of March, the abnormal concentration dropped gradually and came back 

to the normal range in the next day. We are not so concerned about these anomalies 

as they are still normal events. The anomalies caused by other factors such as sensor 

faults are of more interest. Anomaly-2 was observed from March 13th to 16th when 

a wrong calibration was made, creating readings of only half of the actual values. 

In situations like this, an alarm should be sent when the non-precipitation anomalies 

are detected. Thus, after all anomalies are detected, “real” anomalies need to be 

eliminated based on the precipitation information.  

 

The most straightforward way to distinguish Anomaly-2 from Anomaly-3 is to 

consult the precipitation data. Any concentration anomalies which occur in a rainy 

period is more likely to be caused by precipitation. The precipitation dataset is 

downloaded from the Environment Canada website. However, precipitation data 

can only be used to explain the anomaly but not detect an anomaly with the 

algorithm for several reasons. Firstly, the precipitation is available on a daily basis, 

which is not enough to feed into the neural networks.  Secondly, there is a distance 

between the weather station and the WWTP. The increased wastewater amount may 

not be accurately reflected by the precipitation.  
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FIGURE 8: Precipitation in March 2018. 

 

 

The next option is to use the flow provided by WWTP, which contains readings 

every 15 minutes. The flow dataset also has a daily pattern, while an anomaly can 

be observed when there is precipitation (March 2nd and March 28th). However, flow 

data is not available, so it is not a perfect substitute for precipitation data.  

 

 
FIGURE 9: Flow data in March 2018 

 

 

The temperature data is usually available as it is attached to the ammonia sensor, 

which also takes reading every minute. It can also reflect the precipitation indirectly. 

For example, in the winter, the temperature of the freezing rain is much lower than 

that of the wastewater. When there is rainfall, there will also be an anomaly in the 

temperature. 
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FIGURE 10: Temperature data in March 2018. 

 

As a summary, there are four datasets – concentration, precipitation, flow and 

temperature in total. Concentration, temperature and weather data contain reading 

from January 2018 to June 2018. Flow data contains readings from January 2018 

to March 2018. Weather data and flow data are collected and published by industry 

experts with a high standard quality control. We assume there are no faulty data 

caused by mechanical failures or operation errors.  

 

We went through the ammonia concentration manually and identified that there 

are 11 anomalies. Nine of 11 anomalies can be explained and evidenced by the other 

datasets. The remaining two anomalies are the “real” anomalies. For the “real” 

anomaly in March, the wrong calibration caused the concentration reading is half 

of the expected values, while the temperature and flow data were not affected. The 

second “real” anomaly occurred at the end of May when the WWTP was pumped 

empty. The sensors were exposed to the air during that time, so both concentration 

and temperature showed extreme values. The flow data was not available for this 

time.   

 

RESULTS AND DISCUSSION 

The rule-based algorithms are used as the baseline. The S-H-ESD algorithm is 

implemented by the R library AnomalyDetection developed by Twitter. By 

specifying the length of the repeating pattern, the detected anomalies are indicated 

by green cycles. The beginning part of Anomaly-2 with rapid change is detected 

and circled by the green dots, but the major part is not detected.  The precipitation 

caused anomaly cannot be detected.  

 



WEAO 2019 Technical Conference, Toronto, Ontario                               Page 11 
 

 
FIGURE 11: The detection result of the S-H-ESD algorithm 

 

 

The derivative and moving average algorithms are both implemented by 

Luminol by LinkedIn. The anomaly score is calculated by combining the results 

from two algorithms. Figure 12 displays the anomaly score of concentration at 

March 2018. Similar to the S-H-ESD algorithm, only the beginning of the anomaly 

has a distinguishable anomaly score.  

 

 
FIGURE 12: Detection Result of Derivative and Moving Average Algorithms. 

 

 

The two rule-based algorithms can both detect an anomaly with rapid change, 

i.e., the beginning part of the anomaly. However, for this anomalous section lasting 

for three days, it means most of the faulty readings were still labeled as normal. In 

practice, this is easy to be confused with a point anomaly, as only a few points with 

a high score are detected.  
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The prediction errors are thus the offset between predicted values and actual 

values. The anomaly score or anomaly likelihood is calculated based on the 

probability of prediction errors, with 0.0 as the lowest likelihood and 1.0 as the 

highest likelihood. The threshold can be set according to the user. In this paper, the 

threshold is set such that any score higher than 0.5 is guaranteed to be an anomaly 

(highlighted with dark red), and any score between 0.4 and 0.5 are possible to be an 

anomaly (highlighted with light red). The two “real” anomalies are both detected.  

 

 
FIGURE 13: Detection Result for March 2018. 

 

 

 
FIGURE 14: Detection Result for May 2018. 

 

 

The comparison of different detection results are summarized in Table 1. The 

manual inspection shows that there are 11 anomalies, where 9 of them are caused 

by precipitation. The two “real” anomalies that are shown in Figure 13 and Figure 

14, were both are successfully detected, with the whole anomalous sections being 

highlighted as the red zone.  

 

The same data-driven approach is applied to the flow data and temperature 

datasets to eliminate the “real” concentration anomalies. In this paper, “real” 

anomalies are the two anomalies in Figure 13 and Figure 14.  

 

 

 

TABLE 1: Comparison of three detection algorithms. 
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 S-H-ESD Derivate & Moving 

Average 

RNN with 

LSTM 

True Positive 2 * 2 * 10 

False Positive 0 0 1 

False Negative 0 0 1 

*: Only the beginning portion of anomalies are detected 

 

 

 
FIGURE 15: Detection Result of Flow for March 2018. 

 

 

The flow data between January 2018 and March 2018 contains five anomalies, 

which were caused by five major precipitation events. Comparing the two detection 

results between concentration and flow, the period when both results contain 

anomalies are likely to be affected by rainfall. By eliminating concentration 

anomalies during these periods, the “real” anomalies can be eliminated. However, 

eliminating “real” anomalies with the flow data is usually not an applicable option 

in similar projects. Flow data is acquired by WWTP, and it is infeasible to measure 

it with simple sensors.  

 

 

TABLE 2: Detection result for flow data. 

 RNN with LSTM 

True Positive 5 

False Positive 1 

False Negative 0 

 

The temperature data is used as a substitute for flow data as the temperature 

sensor is attached to the concentration sensor. There are ten anomalies in the 

temperature dataset. The detection for temperature shows a less accurate result 

compared to that of the concentration and flow, as shown by the false positive and 

false negative results.  
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FIGURE 16: Detection Result of Temperature for March 2018. 

 

 

TABLE 3: Detection result for temperature data.  

 RNN with LSTM 

True Positive 6 

False Positive 2 

False Negative 4 

 

After further analyzing the results, it is found to be difficult to eliminate the “real” 

concentration anomalies purely based on temperature anomalies. In the 

summertime such as June, when the rain temperature is close to the wastewater 

temperature, the precipitation does not affect the temperature too much thus no 

temperature anomaly can be detected. The detected anomaly (normal rain event) in 

Figure 17 can be misinterpreted as “real” anomaly as it only appeared in 

concertation but not temperature.  

 

 
FIGURE 17: Detection Result of Concentration for June 2018. 
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FIGURE 18: Detection Result of Temperature for June 2018. 

 

 

The opposite situation may also happen, where “real” anomaly may be 

misinterpreted as a normal rain event. In Figure 14 and Figure 19, in the last two 

days of May when the sensors were exposed to the air, both concentration and 

temperature showed anomalies. In such a case, both anomalies are caused by 

precipitation, and they are both “real” anomalies. Eliminating concentration 

anomalies based on temperature will lead to the wrong result.  

 

 
FIGURE 19: Detection Result for May 2018. 

 

CONCLUSIONS 

High-quality, high-frequency data is essential for successful process modeling 

and process control.  In this paper, a data-driven approach which makes use of deep 

learning techniques was taken to solve a real-world ammonia concentration dataset.  

Two rule-based algorithms serve as the benchmark, where both algorithms detect 

anomalies based on the statistical features. The LSTM approach considers 

periodicity to distinguish the normal with the abnormal behaviors, with the 

predicted anomalous data flagged and qualitatively ranked based on the severity 

and likelihood that the data are faulty (i.e., good, maybe faulty, probably faulty, 

definitely faulty).The results show that the LSTM based algorithm outperform the 

rule-based algorithm, where ten out of 11 anomalies can be detected with only one 

false positive. Both “real” anomalies were successfully detected. Further 

elimination of the “real” anomalies was then attempted with the flow and 

temperature datasets. The results show that temperature is not a perfect substitute 

for flow data. In practice, some water quality datasets may be needed to fully 

eliminate the impact of precipitation. The algorithms have been successfully 
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applied to well-maintained sensor signals and are now being tested with poorly 

maintained sensors to judge their suitability in a real-world application. 
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