
MEMORY AS A
PROGRAMMING

CONCEPT IN
C AND C++

FRANTISEK FRANEK
McMaster University



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Frantisek Franek 2004

This book is in copyright. Subject to statutory exception and
to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces Utopia 9.5/13.5 pt. and ITC Kabel System AMS-TEX [FH]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data
Franek, F. (Frantisek)
Memory as a programming concept in C and C++ / Frantisek Franek.
p. cm.
Includes bibliographical references and index.
ISBN 0-521-81720-X – ISBN 0-521-52043-6 (pb.)
1. Memory management (Computer science) 2. C (Computer program language)
3. C++ (Computer program language) I. Title.

QA76.9.M45F73 2003
005.4'35 – dc21 2003051543

ISBN 0 521 81720 X hardback
ISBN 0 521 52043 6 paperback



CONTENTS

Acknowledgments
page ix

1
Introduction

page 1

2
From Source File to Executable File

page 7
Transformation of a source file to a load (executable) module. Why
we can and do discuss source programs and their behavior as if they
were executing somewhere in memory in their source form. Concepts
of static memory allocation, dynamic memory allocation, program
address space, and program system stack.

3
Variables and Objects; Pointers and Addresses

page 21
Variables as “data containers” with names. Values as data – simple (in-
nate or elementary) data, structures, and objects. Referencing variables

v



CONTENTS

through pointers. Unnamed “data containers” and their referencing
through pointers. The dual role of pointers as address holders and bi-
nary code “interpreters”. Various interpretations of the contents of a
piece of memory. Pointer arithmetic. Why C/C++ cannot be interpreted
in a platform-free manner like Java can. Why C/C++ cannot have a
garbage collector.

4
Dynamic Allocation and Deallocation of Memory

page 45
Fundamentals of dynamic allocation and deallocation of memory: free
store (system heap); per-process memory manager; C memory allocators
malloc(), calloc(), and realloc(); and C deallocator free(). How to
handle memory allocation/deallocation errors.

5
Functions and Function Calls

page 59
System stack, activation frame, activation frame as the storage for local
auto objects and for function arguments. Passing arguments by value
as opposed to by reference. Calling sequence. Recursion and its relation
to activation frames and the system stack. The price of recursion.

6
One-Dimensional Arrays and Strings

page 81
Static one-dimensional arrays and their representation as pointers.
Array indexing as indirection. Why an array index range check cannot
be performed in C/C++. The price of run-time array index range check-
ing; the “compile-time checking” versus “run-time checking” philoso-
phies. Passing static one-dimensional arrays as function arguments.
Definition versus declaration of one-dimensional arrays. Dynamic one-
dimensional arrays. Strings as static or dynamic one-dimensional char
arrays terminated with NULL. How to add a custom-made run-time
index range checker in C++.

7
Multi-Dimensional Arrays

page 97
Static multi-dimensional arrays and their representation. Row-major
storage format and the access formula. Passing multi-dimensional
arrays as function arguments. Dynamic multi-dimensional arrays.

vi



CONTENTS

8
Classes and Objects

page 106
Basic ideas of object orientation; the concepts of classes and objects.
Operators new, new[], delete, and delete[], and related issues. Con-
structors and destructors.

9
Linked Data Structures

page 132
Fundamentals, advantages, and disadvantages of linked data struc-
tures. Moving a linked data structure in memory, or to/from a disk, or
transmitting it across a communication channel – techniques of com-
paction and serialization. Memory allocation from a specific arena.

10
Memory Leaks and Their Debugging

page 159
Classification of the causes of memory leaks. Tracing memory leaks
in C programs using location reporting and allocation/deallocation
information-gathering versions of the C allocators and deallocators.
Tracing memory leaks in C++ programs: overloading the operators new
and delete and the problems it causes. Techniques for location tracing.
Counting objects in C++. Smart pointers as a remedy for memory leaks
caused by the undetermined ownership problem.

11
Programs in Execution: Processes and Threads

page 187
Environment and environment variables, command-line arguments
and command-line argument structure. A process and its main at-
tributes – user space and process image. Spawning a new process (UNIX
fork() system call ) from the memory point of view. Principles of inter-
process communication; SystemV shared memory segments and “shared
memory leaks”. Threads and lightweight processes; advantages and dis-
advantages of threads over processes. The need to protect the “common”
data in threads. Memory leaks caused by careless multithreading.

A
Hanoi Towers Puzzle

page 210

vii



CONTENTS

B
Tracing Objects in C++

page 216

C
Tracing Objects and Memory in C++

page 227

D
Thread-Safe and Process-Safe Reporting

and Logging Functions
page 234

Glossary
page 239

Index
page 255

viii



INTRODUCTION

The motivation for this book came from years of observing computer
science students at universities as well as professional programmers work-
ing in software development. I had come to the conclusion that there
seemed to be a gap in their understanding of programming. They usu-
ally understood the syntax of the programming language they were using
and had a reasonable grasp of such topics as algorithms and data struc-
tures. However, a program is not executed in a vacuum; it is executed in
computer memory. This simple fact exerts a powerful influence on the
actual behavior of the program – or, expressed more precisely, a subtle
yet powerful influence on the semantics of the particular programming
language. I had observed that many students and programmers did not
fully understand how memory affected the behavior of the C and C++ pro-
grams they were designing. This book is an attempt to fill this gap and
provide students and programmers alike with a text that is focused on
this topic.

In a typical computer science curriculum, it is expected that students
take courses in computer architecture, operating systems, compilers, and
principles of programming languages – courses that should provide them
with a “model” of how memory matters in the behavior of programs.

1



MEMORY AS A PROGRAMMING CONCEPT

However, not all students end up taking all these courses, and even if
they do, they may not take them in the right order. Often the courses are
presented in a disjointed way, making it difficult for students to forge a
unified view of how memory affects the execution of programs. Addition-
ally, not all programmers are graduates of university or college programs
that feature a typical computer science curriculum. Whatever the reasons,
there seems to be a significant number of computer science students and
professional programmers who lack a full understanding of the intricate
relationship between programs and memory. In this book we will try to
pull together the various pieces of knowledge related to the topic from all
the fields involved (operating systems, computer architecture, compilers,
principles of programming languages, and C and C++ programming) into
a coherent picture. This should free the reader from searching various
texts for relevant information. However, in no way should this book be
viewed as a programming text, for it assumes that the reader has at least
an intermediate level of programming skills in C or C++ and hence sim-
ple programming concepts are not explained. Nor should this book be
viewed as an advanced C/C++ programming text, for it leaves too many
topics – the ones not directly related to memory – uncovered (e.g., virtual
methods and dynamic binding in C++). Moreover, it should not be seen
as an operating system book, for it does not delve into the general issues
of the discipline and only refers to facts that are relevant to C and C++
programmers.

Unfortunately, there seems to be no curriculum at any university or
college covering this topic on its own. As a result, students usually end
up with three or four disjointed views: programming syntax and (an in-
complete) C/C++ semantics; algorithms and data structures, with their
emphasis on the mathematical treatment of the subject; operating sys-
tems; and possibly compilers. Although my ambition is to fill the gaps
among these various views – at least from the perspective of C/C++ pro-
gramming – I hope that the book proves to be a valuable supplement to
any of the topics mentioned.

My own experience with software development in the real world shows
that an overwhelming number of computer program bugs and problems
are related to memory in some way. This is not so surprising, since there
are in fact few ways to “crash” a program and most involve memory. For
instance, a common problem in C/C++ is accessing an array item with
an index that is out of range (see Chapter 6). A program with such a sim-
ple bug can exhibit totally erratic behavior during different executions,

2



INTRODUCTION

behavior that ranges from perfect to incorrect, to crashing at the exe-
cution of an unrelated instruction with an unrelated message from the
operating system, to crashing at the execution of the offending instruc-
tion with a message from the operating system that signals an invalid
memory access.

With the advent of object oriented programming and the design and
development of more complex software systems, a peculiar problem has
started to manifest itself more frequently: so-called memory leaks (see
Chapter 10). In simple terms, this is a failure to design adequate house-
cleaning facilities for a program, with the result that unneeded earlier
allocated memory is not deallocated. Such undeallocated and ultimately
unused memory keeps accumulating to the point of paralyzing the exe-
cution of the program or the performance of the whole computer system.
It sounds almost mystical when a programmer’s explanation of why the
system performs so badly is “we are dealing with memory leaks”, as if
it were some kind of deficiency of the memory. A more concrete (and
accurate) explanation would be “we did not design the system properly,
so the unneeded but undeallocated memory accumulates to the point of
severely degrading the performance of the system”. The troubles that I
have witnessed in detecting and rectifying memory leaks strongly indi-
cate that many students and programmers lack a fundamental appreci-
ation of the role and function of memory in programming and program
behavior.

We are not really interested in technical, physical, or engineering char-
acteristics of memory as such (how it is organized, what the machine
word is, how the access is organized, how it is implemented on the phys-
ical level, etc.); rather, we are interested in memory as a concept and
the role it plays in programming and behavior of C/C++ programs. After
finishing this book, the reader should – in addition to recognizing super-
ficial differences in syntax and use – be able to understand (for example)
the deeper differences between the “compile-time index range checking”
philosophy used in C/C++ and the “run-time index range checking” phi-
losophy used in Pascal (Chapter 6) or between the “recursive procedure
calls” philosophy used in C/C++ and the “nonrecursive procedure calls”
philosophy used in FORTRAN (Chapter 5). As another example, the reader
of this book should come to appreciate why Java requires garbage collec-
tion whereas C/C++ does not (and in general cannot); why C/C++ can-
not be interpreted in a manner similar to Java; and why Java does not
(and cannot) have pointers whereas C/C++ does (Chapter 3) – because

3



MEMORY AS A PROGRAMMING CONCEPT

all these aspects are related in some way to memory and its use. The
reader should understand the issues concerning memory during object
construction and destruction (Chapter 8); learn how to compact or serial-
ize linked data structures so they can be recorded to a disk or transmitted
across a network (Chapter 9); and learn how to design programs that allow
monitoring of memory allocation/deallocation to detect memory leaks
(Chapter 10). The reader will also be exposed to important concepts not
exclusively related to C/C++, concepts that are usually covered in cour-
ses on operating systems but included here by virtue of being related to
memory: for example, concepts of process and thread and interprocess
communication (Chapter 11) facilitated by memory (shared memory seg-
ments, pipes, messages). Of course, as always, our interest will be on the
memory issues concerning both the processes and the threads.

The book is divided into eleven chapters. Chapter 2 deals with the
process of compilation, linking, and loading in order to explain how the
behavior of programs can be discussed and examined as if they were exe-
cuting in the source form, how the static and the dynamic parts of mem-
ory are assigned to a program, and how the abstract address space of the
program is mapped to the physical memory. Most of the topics in Chap-
ter 2 are drawn from the field of the principles of operating systems. We
cover the topics without referring to any particular operating system or
any low-level technical details. Otherwise, the text would become cum-
bersome and difficult to read and would distract the reader from focusing
on memory and its role in C/C++ programming. However, knowledge of
the topics covered in Chapter 2 is essential to almost all discussions of the
role of memory in the subsequent chapters.

Chapter 3 deals with variables as memory segments (data containers)
and the related notions of addresses and pointers, with a particular em-
phasis on various interpretations of the contents of memory segments and
possible memory access errors. In Chapter 4, dynamic memory alloca-
tion and deallocation are discussed and illustrated using the C allocators
malloc(), calloc(), and realloc() and the C deallocator free(). In Chap-
ter 5, function calls are explained with a detailed look at activation frames,
the system stack, and the related notion of recursion. In Chapter 6, one-
dimensional arrays and strings, both static and dynamic, are discussed.
Chapter 7 extends that discussion to multi-dimensional arrays.

Chapter 8 examines in detail the construction and destruction of C++
objects together with the C++ allocators (the operators new and new[])
and the C++ deallocators (the operators delete and delete[]) in their

4



INTRODUCTION

global and class-specific forms. The focus of the chapter is not the object
orientation of C++ classes but rather the aspects of object creation and
destruction related to memory. Similarly, in Chapter 9 we discuss linked
data structures but not from the usual point of view (i.e., their definition,
behavior, implementation, and applications); instead, our point of view
is related to memory (i.e., how to move linked data structures in memory,
to or from a disk, or across a communication channel). Chapter 10 is de-
voted to a classification of the most frequent problems leading to memory
leaks and their detection and remedy for both C and C++ programs.

We started our discussion with operating system topics related to pro-
grams – compilation, linking, and loading – in Chapter 2, and in Chapter11
we finish our book by again discussing operating system topics related
to programs in execution: processes and threads, and how they relate to
memory. Of course, this chapter must be more operating system–specific,
so some notions (e.g., the system callfork()and the sample code) are spe-
cific to UNIX.

Finally, in the appendices we present some complete code and discuss
it briefly. In Appendix A we describe the Hanoi towers puzzle and provide
a simple C program solving it (for completeness, as the puzzle is men-
tioned in Chapter 5 in relation to recursion). In Appendix B we present
a simple C++ program on which we illustrate object tracing: how to keep
track of objects and of when and where they were allocated (this includes
localization tracing as well). We go through various combinations of turn-
ing the features on and off. In Appendix C, a similar C++ program is used
and object tracing, localization tracing, and memory allocation tracing
are all demonstrated. Appendix B and Appendix C both illustrate debug-
ging of memory leaks as discussed in Chapter 10. Finally, Appendix D
contains process-safe and thread-safe UNIX logging functions (used in
examples throughout the book) that serve to illustrate some of the topics
related to processes and threads discussed in Chapter 11.

Every chapter includes a Review section that contains a brief and con-
densed description of the topics covered, followed by an Exercises section
that tests whether the reader has fully grasped the issues discussed. This
is followed by a References section, pointing the reader to sources for ex-
amining the issues in more depth. All special terms used in the book are
defined and/or explained in the Glossary, which follows Appendix D.

I have tried to limit the sample computer code to the minimum needed
to comprehend the issues being illustrated, leaving out any code not rele-
vant to the topic under discussion. Hence some of the fragments of code

5



MEMORY AS A PROGRAMMING CONCEPT

within a given chapter are not complete, though all were tested within
larger programs for their correctness.

I wish you, dear reader, happy reading, and I hope that if somebody
asks you about it later you can reply: “if my memory serves, it was a rather
useful book”.

6


