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Bořivoj Melichar

August 30, 2012

Edited by Jan Holub, Bruce W. Watson and Jan Žd’́arek
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Abstract. A parameterized approach to the problem of the maximum number of runs
in a string was introduced by Deza and Franek. In the approach referred to as the
d-step approach, in addition to the usual parameter the length of the string, the size of
the string’s alphabet is considered. The behaviour of the function ρd(n), the maximum
number of runs over all strings of length n with exactly d distinct symbols, can be
handily expressed in the terms of properties of a table referred to as the (d, n−d) table
in which ρd(n) is the entry at the dth row and (n−d)th column. The approach leads to a
conjectured upper bound ρd(n) ≤ n− d for 2 ≤ d ≤ n. The parameterized formulation
shows that the maximum within any column of the (d, n − d) table is achieved on
the main diagonal, i.e. for n = 2d, and motivates the investigation of the structural
properties of the run-maximal strings of length n bounded by a constant times the
size of the alphabet d. We show that ρd(n) = ρn−d(2n − 2d) for 2 ≤ d ≤ n ≤ 2d,
ρd(2d) ≤ ρd−1(2d − 1) + 1 for d ≥ 3, ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) for
d ≥ 5, and {ρd(n) ≤ n − d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}. The results
allow for an efficient computational verification of entries in the (d, n − d) table for
higher values of n and point to a plausible way of either proving the maximum number
of runs conjecture by showing that possible counter-examples on the main diagonal
would exhibit an impossible structure, or to discover an unexpected counter-example
on the main diagonal of the (d, n−d) table. This approach provides a purely analytical
proof of ρd(2d) = d for d ≤ 15 and, using the computational results of ρ2(d + 2) for
d = 16, . . . , 23, a proof of ρd(2d) = d for d ≤ 23.

Keywords: string, runs, maximum number of runs, parameterized approach, (d, n−d)
table

1 Foreword

The two first authors of this contribution have known of Bořislav Melichar’s work
since they ventured into the field of stringology a few years ago, while the third
author has known him and his work in compilers for many years. Bořek’s – as known
to his friends – accomplishments include establishing a highly reputed research group,
nurturing an impressive list of graduate students, and his pioneering and high-impact
research work as an internationally recognized leader in the field. It is an equal honour
and pleasure to dedicate to Bořek our work originally presented at the 2011 edition
of the vibrant Prague Stringology Conference series.

⋆ This work was supported by the Natural Sciences and Engineering Research Council of Canada
and MITACS, and by the Canada Research Chair program, and made possible by the facilities of
the Shared Hierarchical Academic Research Computing Network (http://www.sharcnet.ca/).
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2 Introduction

The problem of determining the maximum number of runs in a string has a rich
history and many researchers have contributed to the effort. The notion of a run
is due to Main [17], the term itself was introduced in [13]. Kolpakov and Kucherov
[14,15] showed that the function ρ(n), the maximum number of runs over all strings
of length n, is linear. Several papers dealt with lower and upper bounds or expected
values for ρ(n), see [3,4,5,9,10,11,12,18,19,20,21,22] and references therein.

The counting estimates leading to the best upper bounds [4,5] rely heavily on
a computational approach and seem to reach a point where it gets highly challeng-
ing, bordering intractability, to verify the results or make further progress. A few
researchers tried a structural approach, for instance [8,16].

A parameterized approach to the investigation of the structural aspects of run-
maximal strings was introduced by Deza and Franek [6]. In addition to considering
the length of the string they introduced the parameter d giving the function ρd(n),
the maximum number of runs over all strings of length n with exactly d distinct
symbols. These values are presented in the so-called (d, n− d) table, where the value
of ρd(n) is the entry at the row d and the column n − d. In Table 1, the entries for
the first 10 rows and the first 10 columns are presented. Several properties of the
table were presented in [6], the most important being the fact that ρd(n) ≤ n− d for
2 ≤ d ≤ n is equivalent with ρd(2d) ≤ d for d ≥ 2. In other words, if the diagonal
obeys the upper bound n− d, so do all the entries in the table everywhere. Though
in the related literature, the maximum number of runs conjecture – or simply runs
conjecture – refers to the hypothesis that ρ(n) ≤ n, in this paper we will take it to be
ρd(n) ≤ n− d. Note that while the upper bound of n is not achieved for any known
string, the n− d bound is achieved for all pairs (d, n) satisfying n− d ≤ min(23, d).

We discuss several additional properties of the (d, n − d) table, the behaviour
of the function ρd(n) on or nearby the main diagonal, and discuss some structural
properties of run-maximal strings on the main diagonal. The results allow for the
extension of computational verification of the maximum number of runs conjecture
to higher values of n and also indicate a viable approach to an analytical investigation
of the conjecture by either showing a possible counter-example to the conjecture would
have to exhibit an impossible structure, or exhibiting a counter-example on the main
diagonal of the (d, n− d) table and direct calculation of entries for smaller columns.

Let us remark, that although we believe with the majority of the researchers in
the field that the conjecture is true and hence view the d-step approach as a possible
tool to prove it, if a counter-example exists, there must be one on the main diagonal
and we believe it will be easier to find there as the run-maximal strings of length
being twice the size of the alphabet seem to exhibit a richer structure than general
run-maximal strings. For example, all tractable run-maximal strings satisfying n = 2d
are, up to relabeling, unique. A counter-example would be in essence a quite striking
result. The parameterized approach is inspired by a similar (d, n − d) table used for
investigating the Hirsch bound for the diameter of bounded polytopes. The associated
Hirsch (d, n−d) table exhibits similar property as the (d, n−d) table considered in this
paper. The Conjecture of Hirsch was recently disproved by Santos [23] by exhibiting
a violation on the main diagonal with d = 43.
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n− d
1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 .
2 1 2 2 3 4 5 5 6 7 8 .
3 1 2 3 3 4 5 6 6 7 8 .
4 1 2 3 4 4 5 6 7 7 8 .
5 1 2 3 4 5 5 6 7 8 8 .
6 1 2 3 4 5 6 6 7 8 9 .
7 1 2 3 4 5 6 7 7 8 9 .
8 1 2 3 4 5 6 7 8 8 9 .
9 1 2 3 4 5 6 7 8 9 9 .
10 1 2 3 4 5 6 7 8 9 10 .
11 . . . . . . . . . . .

Table 1. Values for ρd(n) with 1 ≤ d ≤ 10 and 1 ≤ n− d ≤ 10. For more values, see [2]

3 Notation and Preliminaries

Throughout this paper, we refer to k-tuples: a symbol which occurs exactly k times in
the string under consideration. Specially named k-tuples are the singleton (1-tuple),
pair (2-tuple), triple (3-tuple), quadruple (4-tuple), and quintuple (5-tuple).

Definition 1. A safe position in a string x is one which, when removed from x, does
not result in two runs being merged into one in the resulting new string.

A safe position does not ensure that the number of runs will not change when that
position is removed, only that no runs will be lost through being merged; runs may
still be destroyed by having an essential symbol removed. Safe positions are important
in that they may be removed from a string while only affecting the runs which contain
them. When the position of a symbol is unambiguous, we may thus refer to a safe
symbol rather than to its position – for instance we can talk about a safe singleton,
or about the first member of a pair being safe, etc.

At various points we will need to relabel all occurrences of a symbol in a string
or substring. Let xa

b denote the string x, in which all occurrences of a are replaced
by b, and vice versa. Sd(n) refers to the set of strings of length n with exactly d
distinct symbols. For a string x, A(x) denotes the alphabet of x, while r(x) denotes
the number of runs of x.

Lemma 2. There exists a run-maximal string in Sd(n) with no unsafe singletons for
2 ≤ d ≤ n.

Proof. Let x be a run-maximal string in Sd(n). We will show that one of the following
conditions must hold:

(i) x has no singletons, or
(ii) x has exactly one singleton which is safe, or
(iii) x has exactly one singleton which is unsafe, and there exists another run-

maximal string x′ ∈ Sd(n) where x′ has no unsafe singletons, or
(iv) x has more than one singleton, all of which are safe.

Let x have some unsafe singletons.

First, consider the case that x has exactly one singleton, C, which is unsafe: x =
uavavCavavw, where u, v, andw are (possibly empty) strings, and a ∈ A(x)−{C}.
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Let x′ = uavav(Cavavw)aC = uavav(aCva
CCva

Cw
a
C) = uavavaCṽCṽw̃. Clearly,

x′ ∈ Sd(n), r(x
′) ≥ r(x), so x′ is run-maximal and has no singletons.

Next, consider the case that x has at least 2 singletons C, D, of which one is
unsafe, C. Without loss of generality, we can assume C occurs before D : x =
uavavCavavwDz, where u, v, w, and z are (possibly empty) strings and a ∈
A(x) − {C,D}. Let x1 = uavav(CavavwDz)aC = uavavaCṽCṽw̃Dz̃. Clearly,
x1 ∈ Sd(n) and r(x1) ≥ r(x). We then modify x1 by removing the safe sym-
bol a immediately to the left of the first occurrence of C, yielding x2. Finally, we
add a second copy of D adjacent to the original D, restoring the original length:
x3 = uavavCṽCṽw̃DDz̃. x3 ∈ Sd(n) and r(x3) > r(x2) ≥ r(x1) ≥ r(x), which
contradicts the run-maximality of x. ⊓⊔

Lemma 3 is a simple observation that for a position to be unsafe, a symbol must
occur twice to the left and twice to the right of that position.

Lemma 3. If a string x consists only of singletons, pairs, and triples, then every
position is safe.

A corollary of Lemma 3 is that the maximum number of runs in a string with only
singletons, pairs, and triples is limited by the number of pairs and triples. Specifically,
r(x) = #pairs+ ⌊3

2
#triples⌋. This is because a pair can only be involved in a single

run, and a triple can be involved in at most 2 runs. The densest structure achievable
is through overlapping triples in the pattern aababb, which has three runs for every
two triples. The pairs, meanwhile, are maximized through adjacent copies.

4 Run-maximal strings below the main diagonal and in the
immediate neighbourhood above

We first remark that every value below the main diagonal in the (d, n − d) table is
equal to the value on the main diagonal directly above it. In other words, the values
on and below the main diagonal in a column are constant.

Proposition 4. We have ρd(n) = ρn−d(2n− 2d) for 2 ≤ d ≤ n < 2d.

Proof. Consider a run-maximal string x ∈ Sd(n), where 2 ≤ d ≤ n < 2d. By
Lemma 2, we can assume x has no unsafe singletons. Since n < 2d, x must have
a singleton, and hence it must be safe. We can remove this safe singleton, yielding a
new string y ∈ Sd−1(n − 1) and so ρd(n) = r(x) = r(y) ≤ ρd−1(n − 1). Recall the
following inequality noted in [6]:

ρd(n) ≤ ρd+1(n+ 1) for 2 ≤ d ≤ n (1)

Thus, ρd−1(n− 1) = ρd(n). ⊓⊔

Proposition 4 together with inequality (1) gives the following equivalence noted
in [6]: {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(2d) ≤ d for 2 ≤ d}.
If there is a counter-example to the conjectured upper bound, then the main diag-
onal must contain a counter-example. If it falls under the main diagonal, then by
Proposition 4 there must be a counter-example on the main diagonal – i.e. it can be
pushed up, and if it falls above the main diagonal, by the inequality (1), there must
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be a counter-example on the main diagonal – i.e. the counter-example can be pushed
down.

We extend Proposition 4 to bound the behaviour of the entries in the immedi-
ate neighbourhood above the main diagonal in the (d, n − d) table. Proposition 5
establishes that the difference between the entry on the main diagonal and the entry
immediately above it is at most 1. In addition, the difference is 1 if and only if every
run-maximal string in Sd(2d) consists entirely of pairs; otherwise, the difference is 0.

Proposition 5. We have ρd(2d) ≤ ρd−1(2d− 1) + 1 for d ≥ 3.

Proof. Let x ∈ Sd(2d) be a run-maximal string with no unsafe singletons (by Lemma 2).
If x does not have a singleton, then it consists entirely of pairs. It is clear that the
pairs must be adjacent and that r(x) = d and so x = aabbcc . . .. Removing the first
a and renaming the second to b, y = bbbcc . . . ∈ Sd−1(2d − 1) and ρd−1(2d − 1) ≥
r(y) = r(x) − 1 = ρd(2d) − 1. If x has a singleton, since it is safe we can remove it
forming a string y ∈ Sd−1(2d− 1) so that ρd−1(2d− 1) ≥ r(y) = r(x) = ρd(2d), and
so ρd−1(2d− 1) = ρd(2d). ⊓⊔

We have seen that the gap between the first entry above the diagonal and the
diagonal entry is at most 1. Proposition 6 establishes that the three entries just
above the diagonal are identical.

Proposition 6. We have ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) for d ≥ 5.

Proof. Let x be a run-maximal string in Sd−1(2d − 1). By Lemma 2 we can assume
that either it has a safe singleton or no singletons at all. In the former case, we can
remove the safe singleton obtaining y ∈ Sd−2(2d− 2) so that ρd−2(2d− 2) ≥ r(y) ≥
r(x) = ρd−1(2d− 1), and so ρd−1(2d− 1) = ρd−2(2d− 2). In the latter case, x consists
of pairs and one triple, and thus, by Lemma 3, all positions are safe. Therefore, we
can move all the pairs to the end of the string, yielding y = aaabbcc . . . ∈ Sd−1(2d−1)
and by removing the first a and renaming the remaining a’s to c’s, z = ccbbcc . . . ∈
Sd−2(2d− 2). It follows that ρd−2(2d− 2) ≥ r(z) = r(y) = r(x) = ρd−1(2d− 1), and
so ρd−1(2d− 1) = ρd−2(2d− 2).

Let x be now a run-maximal string in Sd−2(2d − 2). Again, if x has a singleton,
we can assume by Lemma 2 it is safe and form y by removing the singleton. y ∈
Sd−3(2d − 3) and ρd−3(2d − 3) ≥ r(y) ≥ r(x) = ρd−2(2d − 2). If x does not have a
singleton, then r(x) = d− 1. To see this, consider the two cases:

(i) x consists of two triples and several pairs. The most runs which may be obtained
in such a string, after grouping the pairs at the end of the string, is through the
arrangement aababbccddee . . .. In this case, there are d − 4 runs from the pairs,
and 3 runs from the triples, giving a total of d− 1 runs.

(ii) x consists of a quadruple and several pairs. The most runs which may be ob-
tained in this case is from a string with either the structure aabbaaccddee . . ., or
aabaabccddee . . ., where all the pairs have been grouped at the end, except for the
pair of bs which is used to break up the quadruple. In both cases, there are d− 4
runs involving characters c onward, and three runs involving the characters a and
b, again giving a total of d− 1 runs.

Now consider a string y = aabbaabbcdee . . . ∈ Sd−2(2d−2), which has two quadruples
(of a’s and b’s), two singletons (c and d), and several pairs (e . . .). This string has
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d− 6 runs from the pairs ee onward, and 5 runs from the characters a and b, giving
a total of d− 1 runs, i.e. r(x) = r(y). The singleton c in y being clearly safe, we can
remove it and continue as in the previous case. ⊓⊔

Remark 7 below providing a lower bound for the first 4 entries above the main
diagonal of the (d, n−d) table, is a corollary of the inequality ρd+s(n+2s) ≥ ρd(n)+s,
noted in [6], applied to ρ2(k) = k − 3 for k = 5, 6, 7 and 8.

Remark 7. We have ρd−k(2d− k) ≥ d− 1 for k = 1, 2, 3 and 4 and d ≥ 6.

5 Structural properties of run-maximal strings on the main
diagonal

We explore structural properties of the run-maximal strings on the main diagonal.
These results yield properties for run-maximal strings that have their length bounded
by nine times the number of distinct symbols they contain. We can thus shift the
critical region of the (d, n−d) table as summarized in Theorem 8, the proof for which
can be found at the end of this section.

Theorem 8. We have {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}.

Proposition 9 describes useful structural properties of run-maximal strings on the
main diagonal. The proof of the proposition relies on a series of lemmas all of which
are dealing with the same basic scenario: assuming we know that the table obeys the
conjecture for all columns to the left of column d, which is the first unknown column,
we investigate the run-maximal strings of Sd(2d).

Proposition 9. [Proposition] Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x be a run-

maximal string in Sd(2d). Either r(x) = ρd(2d) = d or x has at least ⌈7d
8
⌉ singletons,

and no symbol occurs exactly 2, 3, . . . , 8 times in x.

Proof. The proof that each symbol must be a singleton or occur at least 9 times is a
direct result of the lemmas which make up the remainder of this section. Then, let
x ∈ Sd(2d) be run-maximal, m1 denote the number of singletons, and m2 the number
of non-singleton symbols of x. We have m1 + 9m2 ≤ 2d and m1 + m2 = d, which
implies that m2 ≤ d/8 and hence m1 ≥ ⌈7d/8⌉. ⊓⊔

Proposition 9 provides a purely structural proof that ρd(2d) = d for d ≤ 15, and
using the computer generated results of ρ2(d+ 2) for d = 16, . . . , 23, that ρd(2d) = d
for d ≤ 23.

Corollary 10. We have ρd(2d) = d for d ≤ 23 and ρd(n) ≤ n− d for n− d ≤ 23.

Proof. Assume that run-maximal x ∈ Sd(2d) satisfies r(x) = ρd(2d) > d. By Propo-
sition 9, x consists only of singletons for 2 ≤ d ≤ 6, r(x) = ρ1(d + 1) = 1 for
8 ≤ d ≤ 15, and d < r(x) = ρ2(d+ 2) for 16 ≤ d ≤ 23, which are impossible. ⊓⊔

Before we begin the lemmas to support 9Structural properties of run-maximal
strings on the main diagonalproposition.9, we first introduce a few concepts.
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Definition 11 (Map). A run (s, p, d) of period p, starting at position s and ending
at position d of a string x maps position i to position j if s ≤ i < j ≤ d and j− i = p.
We denote a mapping from i to j by i → j and call it a single-mapping. We extend
the mapping notation to (i1, i2) → (j1, j2), denoting s ≤ i1 < i2 < j1 < j2 < d
and j1 − i1 = j2 − i2 = p and call it a double-mapping. The triple- and higher order
mappings are defined analogously.

A multi-mapping will be any mapping which is not a single-mapping. The pres-
ence of a multi-mapping imposes equality on the substrings bounded on each side.
For example, in the double-mapping (ij, ij+1) → (ij+2, ij+3), x[ij..ij+1] the substring
between ij and ij+1 is the same as x[ij+2..ij+3] the substring between ij+2 and ij+3.

In the following lemmas, we assume that for 2 ≤ d′ < d, the conjecture holds,
i.e. ρd′(2d

′) ≤ d′. Note that it is equivalent to ρd′(n
′) ≤ n′ − d′ for 2 ≤ d′ ≤ n′

when n′ − d′ < d. We consider a run-maximal string x ∈ Sd(2d) containing a k-tuple
of c’s such that x = u0cu1c . . .uk−1cuk. We show that either the string x obeys
the conjectured upper bound, or can be manipulated to obtain a new string y with
a larger alphabet of the same or shorter length. We ensure that the manipulation
process does not destroy more runs than the the amount the alphabet is increased
or the length decreased. This allows us to estimate the number of runs in y based
on the values in the table for some d′ < d. In essence, we manipulate a string from
column d to a string from some column d′ < d while monitoring the number of runs.
In the manipulation process, we put an upper limit on the number of runs which are
destroyed (π), and a lower limit on how many additional symbols are introduced (δ).

In order to have more distinct symbols in y than in x we employ several strategies.
We can change all but one of the c’s to new characters c2, c3, . . . ck, thus introducing
k− 1 new characters. When multiple disjoint copies of a substring occur in x, we can
replace all copies of a symbol within one copy of the substring with a new symbol
which does not occur elsewhere in x. Given x = uvu, we can increase the number of
distinct symbols with y = uvû. uvûwû has two distinct symbols more than uvuwu
does, etc.

Since the length of the string remains constant while the number of distinct char-
acters increases, y ∈ Sd+δ(n). Since n− (d+ δ) < n− d, by the induction hypothesis
we know that r(y) ≤ n − d − δ. Therefore, r(x) − π ≤ r(y) ≤ n − d − δ, so
ρd(n) = r(x) ≤ n− d− δ + π. Thus, whenever π ≤ δ, ρd(2d) ≤ d.

Lemma 12. [Lemma]
Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal. Either r(x) =
ρd(2d) ≤ d or x does not contain a pair.

Proof. As shown in [6], a pair of c’s can be involved in at most one run. We change
the second c to a new symbol c2 creating y = u0cu1c2u2 . We destroy at most the
single run which contains the pair (π ≤ 1), and gain 1 symbol (δ = 1). As π ≤ δ, x
satisfies the conjecture or x does not contain a pair. ⊓⊔
Lemma 13. [Lemma] Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.
Either r(x) = ρd(2d) ≤ d or x does not contain a triple.

Proof. If a triple of c’s is involved in less than two runs, we can proceed as in the
proof of the previous lemma. Let us thus assume that the c’s are involved in two runs.

The string has the form x = u0cu1cu2cu3. In this case, we replace two of the c’s
with new symbols c2 and c3 creating y = u0cu1c2u2c3u3. This destroys at most only
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the two possible runs, while we gain two symbols (δ = 2). δ is again sufficiently large,
so either x satisfies the conjecture or x does not have a triple. ⊓⊔

For the above two lemmas, we did not need to use the notion of mappings. But
it can be seen that the runs involved only corresponded to single-mappings. If only
single-mappings are involved, then it is straight-forward to obtain a new string with
more distinct symbols while limiting the number of runs destroyed. In the following
cases, we must always deal with a multi-mapping.

Lemma 14. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a quadruple.

Proof. A quadruple of c’s at positions i1 < i2 < i3 < i4 can be involved in at most
four runs, corresponding to a double-mapping (i1, i2) → (i3, i4) and single-mappings
i1 → i2, i2 → i3, and i3 → i4. If there are only three or fewer runs the c’s are involved
in, replacing three occurrences of c’s by three new symbols will give δ = 3 and π ≤ 3,
hence π ≤ δ, giving the result of this lemma.

Hence we assume that the c’s are involved in exactly four runs. In this case re-
placing three of the c’s by new symbols is no longer enough, as π would be greater
than δ. However, from the double-mapping (i1, i2) → (i3, i4), we know that x[i1..i2] =
x[i3..i4]. Thus if x = u0cu1cu2cu3cu4, then u1 = u3, hence x = u0cu1cu2cu1cu4.

If u1 is non-empty, let a ∈ u1. We replace the last three copies of c by new
symbols c2, c3, and c4, and all instances of a in the second occurrence of u1 by a new
symbol a1 producing û1: y = u0cu1c2u2c3û1c4u4. This gives π ≤ 4, but now δ = 4,
satisfying the lemma.

If u1 were empty, either u2 is non-empty, giving x the form: x = u0 c c u2 c c
u4. Since u2 is non-empty, in order for the single mapping i2 → i3 to exist, there is
a symbol in u2 which must occur between the first and second c’s, or the third and
fourth c’s. However, this requires u1 to be non-empty, a contradiction. Therefore,
the mapping i2 → i3 cannot refer to a run in the string, a contradiction with our
assumption of the c’s being involved in four different runs.

Therefore, u2 must be empty as well and so we have x = u0ccccu4, merging the
4 possible runs containing the quadruple into a single run, a contradiction. ⊓⊔
Lemma 15. [Lemma] Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.
Either r(x) = ρd(2d) ≤ d or x does not contain a quintuple.

Proof. A quintuple of c’s at positions i1 < i2 < i3 < i4 < i5 can be involved in at most
5 runs despite there being 6 possible mappings: double-mappings (i1, i2) → (i3, i4)
and (i2 → i3) → (i4, i5), and single-mappings i1 → i2, i2 → i3, i3 → i4, and i4 → i5.
If both double-mappings exist, they correspond to the same run, as they have the
same period p and overlap by at least p.

Again, if the quintuple is involved in fewer than 5 runs, we can just replace 4
of the c’s with new symbols as in the previous lemmas. Thus we are assuming that
the quintuple is involved in exactly 5 runs. However, in this case we do not need
to introduce 5 new symbols, as we can always introduce 1 new symbol while only
destroying a single run. There are 3 cases to discuss:

1. All mappings exist. Then x[i5] is involved in two runs, one corresponding to
(i1, i2) → (i3, i4) and (i2, i3) → (i4, i5), and one corresponding to i4 → i5. If we
replace x[i5] by a new symbol c5, we destroy the run corresponding to i4 → i5, but
only a part of the run corresponding to (i1, i2) → (i3, i4) and (i2 → i3) → (i4, i5).
We thus obtain π ≤ 1 = delta.
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2. The mapping (i1, i2) → (i3, i4) exists, but (i2, i3) → (i4, i5) does not, while all
single-mappings exist. We can proceed as in the previous case.

3. The mapping (i1, i2) → (i3, i4) does not exist, but (i2, i3) → (i4, i5) does, while
all possible single-mappings exist. We proceed as in the first case, but with x[i1]
instead of x[i5]. ⊓⊔

Lemma 16. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a 6-tuple.

Proof. A 6-tuple at positions i1 < . . . < i6 can be involved in at most 8 runs, despite
there being 9 available mappings:

– triple-mapping: (i1, i2, i3) → (i4, i5, i6)
– double-mappings: (i1, i2) → (i3, i4), (i2 → i3) → (i4, i5), and (i3, i4) → (i5, i6)
– single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, and i5 → i6

As in Lemma 15, if either both (i1, i2) → (i3, i4) and (i2 → i3) → (i4, i5), or
(i2 → i3) → (i4, i5) and (i3, i4) → (i5, i6) exist, the two runs they correspond to
are actually the same run.

Let x = u0cu1cu2cu3cu4cu5cu6. We consider each configuration of of multi-
mappings separately:

1. (i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-mappings: By the double-
mappings, u1 = u3 = u6, and therefore the string x has the form: x =
u0cu1cu2cu1cu4cu1cu6. We consider the different cases of empty and non-empty
substrings separately:

(a) If u1 is non-empty, we replace 5 of the c’s with new symbols, and all instances
of some symbol in 2 of the 3 copies of u1, giving û1. So,
y = u0cu1c2u2c3û1c4u4c5û1c6u6. This gives π ≤ 7 = δ.

(b) Otherwise, u1 is empty. Assume that both u2 and u4 are non-empty. The
string then has the form: x = u0ccu2ccu4ccu6. This eliminates the possibility
of runs from the single-mappings i2 → i3 and i4 → i5. By replacing 5 of the c’s
with new symbols, we have π ≤ 5 = δ.

2. (i1, i2, i3) → (i4, i5, i6) and all single-mappings: By the triple-mapping, u1 = u4

and u2 = u5. If u1 and u2 are both be empty, then the possible run from the
single mapping i1 → i2 is merged with the one from i2 → i3, and i4 → i5 is merged
with i5 → i6. By replacing 5 of the c’s with new symbols, we have π ≤ 4 < δ = 5.
Therefore, assume at least one of u1 and u2 are non-empty. In this case, we can
also replace all instances of some symbol in one of them (whichever is non-empty),
giving y = u0c1u1c2u2c3u3c4û1c5û2c6u6. This transformation destroys at most
6 runs and introduces 6 or 7 new symbols (π ≤ 6 ≤ δ ≤ 7).

3. (i1, i2, i3) → (i4, i5, i6), one of (i1, i2) → (i3, i4) or (i3, i4) → (i5, i6) (but not both),
and all the single-mappings: Having one or the other of the double-mappings are
clearly mirror cases of each other, so we will assume without loss of generality
that (i1, i2) → (i3, i4) exists. By the double- and triple-mappings, u1 = u3 = u4

and u2 = u5.

(a) If u1 is non-empty, replace each instance of a symbol in 2 copies of it, along
with 5 of the c’s: with new symbols, y = u0cu1c2u2c3û1c4û1c5u2c6u6. This
increases the number of distinct symbols by 7 while destroying at most 7 runs
from the mappings (π ≤ 7 = δ).
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(b) If u1 is empty, we have x = u0ccu2cccu2cu6. This arrangement loses 1 possible
run due to merging i3 → i4 and i4 → i5, and eliminates the possible run from
the mapping i2 → i3 when u2 is non-empty, since if u2 is empty, all the runs
merge down to a single run. This reduces π from 7 down to 5, so by replacing
5 of the c’s with new symbols, we achieve π ≤ 5 = δ.

4. (i1, i2, i3) → (i4, i5, i6), (i2, i3) → (i4, i5) exist, and so do all the single-mappings.
By the double- and triple-mappings, u1 = u2 = u4 = u5.

(a) If u1 is non-empty, we relabel each instance of a symbol in 3 copies of u1: y =
u0c1u1c2û1c3u3c4û1c5û1c6u6. This increases the number of distinct symbols
by 8 while destroying at most 7 runs (π ≤ 7 < δ = 8).

(b) If u1 is empty, x = u0cccu3cccu6, and 2 single-mappings are lost through
merging i1 → i2 with i2 → i3 and i4 → i5 with i5 → i6. Replacing 5 of the c’s
with new symbols is sufficient to give π ≤ 5 = δ.

5. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i3, i4) → (i5, i6) exist, and so do all the
single-mappings. From the double- and triple-mappings, u1 = u2 = u3 = u4 =
u5. All the possible runs are actually one long run, so the last c may be replaced
with a new symbol without destroying any runs. This gives π = 0 < δ = 1. ⊓⊔

Lemma 17. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a 7-tuple.

Proof. A 7-tuple of c’s at positions i1 < . . . < i7 can be involved in 9 runs, despite
there being 12 possible mappings:

– triple-mappings: (i1, i2, i3) → (i4, i5, i6), and(i2, i3, i4) → (i5, i6, i7)
– double-mappings: (i1, i2) → (i3, i4), (i2, i3) → (i4, i5), (i3, i4) → (i5, i6), and
(i4, i5) → (i6, i7)

– single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, i5 → i6, and i6toi7

As with the overlapping double-mappings, if both triple-mappings are present,
they correspond to the same run. As having both triple-mappings cannot increase
the possible number of runs, we assume without loss of generality that if a triple-
mapping is present, it is (i1, i2, i3) → (i4, i5, i6).

As with 15Structural properties of run-maximal strings on the main diago-
nallemma.15, we need every element of the 7-tuple to be covered by a multi-mapping.

There are 5 cases to consider:

1. (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all single-mappings (a total of 8 mappings).
Due to the double-mappings, u1 = u3 and u4 = u6, the string x must have the
form x = u0cu1cu2cu1cu4cu5cu4cu7.
(a) u1 non-empty, u4 non-empty: replace all instances of a symbol in 1 copy of

each of u1 and u4, along with 6 of the c’s with new symbols:
y = u0cu1c2u2c3û1c4u4c5u5c6u4c7u7. This destroys at most 8 runs and in-
troduces 8 new symbols (π ≤ 8 = δ).

(b) u1 non-empty, u4 empty. The string x then has the form
x = u0cu1cu2cu1ccu5ccu7. This eliminates the possibility of a run corre-
sponding to the mapping i5 → i6, unless u5 is empty, in which case 2 possible
runs are lost to merging into one. Replacing all instances of a symbol in 1 copy
of u1 along with 6 of the c’s by new symbols gives π ≤ 7 = δ.

(c) u1 empty, u4 non-empty. This is a reversal of the previous case, and is satisfied
accordingly.
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(d) u1 and u4 empty. The possibility of runs corresponding to the mappings
i2 → i3 and i5 → i6 are eliminated, so relabeling 6 of the c’s gives π ≤ 6 = δ.

2. (i1, i2, i3) → (i4, i5, i6), (i4, i5) → (i6, i7), and all single-mappings (a total of 8
mappings). From the multi-mappings, u1 = u4 = u6 and u2 = u5, so the string
x must have the form x = u0cu1cu2cu3cu1cu2cu1cu7.
(a) If u1 is non-empty, we replace all instances of a symbol in 2 copies of u1, along

with 6 of the c’s with new symbols
y = u0cu1c2u2c3u3c4û1c5u2c6û1c7u7. This gives π ≤ 8 = δ.

(b) Otherwise, u1 is empty, so the string x = u0ccu2cu3ccu2ccu7. When u2

is non-empty, this eliminates the possibility of a run corresponding to the
mapping i5 → i6, so by replacing all instances of a symbol in a u2 along with
6 of the c’s with new symbols, we achieve π ≤ 7 = δ.

(c) If u1 and u2 are both empty, 3 possible runs are lost through merging, so
relabeling 6 of the c’s gives π ≤ 5 < δ = 6.

3. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all the single-
mappings (a total of 9 mappings). From the multi-mappings, u1 = u4 = u6 and
u2 = u3 = u5.
(a) If u1 are u2 are both non-empty, replacing all instances of a symbol in 2

copies of each of u1 and u2 along with 6 of the c’s with new symbols, gives us
π ≤ 9 < δ = 10.

(b) If u1 is empty, the string has the form x = u0ccu2cu2ccu2ccu7. The possible
run corresponding to the mapping i5 → i6 is eliminated, so replacing all in-
stances of a symbol in 2 copies of u2 along with 6 of the c’s with new symbols
is sufficient to give π ≤ 8 = δ.

(c) If u2 is empty, the string has the form x = u0cu1cccu1ccu1cu7. The runs
corresponding to the mappings i2 → i3 and i3 → i4 are merged, and the
possible run corresponding to the mapping i4 → i5 is eliminated, so replacing
all instances of a symbol in 2 copies of u1 along with 6 of the c’s with new
symbols is sufficient to give π ≤ 7 < δ = 8. ⊓⊔

Lemma 18. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain an 8-tuple.

Proof. 1. (i1, i2, i3) → (i4, i5, i6), (i5, i6) → (i7, i8), and all single-mappings (a total
of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu2cu3cu1cu2cu6cu2cu8.
(a) If u2 is non-empty, we can replace all instances of a symbol in 2 copies of u2:

y = u0cu1c2u2c3u3c4u1c5û2c6u6c7û2c8u8. This gives π ≤ 9 = δ.
(b) Otherwise, u2 is empty, giving x = u0cu1ccu3cu1ccu6ccu8. This eliminates

the possibility of a run from the mapping i6 → i7. This means π ≤ 8.

i. If u1 is non-empty, we can replace all instances of a symbol in 1 of the
copies of u1 along with 7 of the c’s, giving
y = u0cu1c2c3u3c4û1c5c6u6c7c8u8. This results in π ≤ 8 = δ.

ii. If u1 is also empty, the string is structured as x = u0cccu3cccu6ccu8. In
addition to the elimination of the mapping i6 → i7, the runs corresponding
to the single mappings i1 → i2 and i2 → i3 are merged, along with the
runs corresponding to the mappings i4 → i5 and i5 → i6. This reduces the
maximum number of runs to π ≤ 6. By relabeling 7 of the c’s, we obtain
π ≤ 6 < δ = 7.
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2. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu2cu1cu1cu2cu6cu2cu8.
(a) If u1 and u2 are both non-empty, we can replace all instances of a symbol in

2 copies of each, along with 7 of the c’s:
y = u0cu1cu2cû1cû1cû2cu6cû2cu8. This results in π ≤ 10 < δ = 11.

(b) If u1 is empty and u2 is non-empty, we have x = u0ccu2cccu2cu6cu2cu8. This
eliminates the possibility of a run corresponding to the mapping
i2 → i3, and merges the runs corresponding to i3 → i4 and i5 → i6, so
π ≤ 8. We replace all instances of a symbol in 2 of the copies of u2, giving
y = u0cc2u2c3c4c5û2c6u6c7û2c8u8. This results in π ≤ 8 < δ = 9.

(c) If u1 is non-empty, and u2 is empty, we have x = u0cu1ccu1cu1ccu6ccu8.
This eliminates the possibility of a run corresponding to the mapping i6 → i7
(unless u6 is empty, which results in 3 possible runs being merged). We replace
all instances of a symbol in 2 copies of u1, along with 7 of the c’s with new
symbols, giving y = u0cu1c2c3û1c4û1c5c6u6c7c8u8. This results in π ≤ 9 = δ.

(d) If u1 and u2 are both empty, we have x = u0ccccccu6ccu8, merging 5 runs cor-
responding to the single mappings, and preventing the possible run correspond-
ing to (i1, i2) → (i3, i4) because because its generator would be non-primitive.
Therefore, by replacing 7 of the c’s with new symbols, we obtainπ ≤ 5 < δ = 7.

3. (i1, i2, i3) → (i4, i5, i6), (i2, i3) → (i4, i5), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu1cu3cu1cu1cu6cu1cu8.
(a) If u1 is non-empty, we can replace all instances of a symbol in 4 copies of u1,

along with 7 of the c’s ith new symbols, yielding
y = u0cu1c2û1c3u3c4û1c5û1c6u6c7û1c8u8. This results in π ≤ 10 = δ.

(b) If u1 is empty, the string has the form x = u0cccu3cccu6ccu8. This merges
the runs corresponding to the mappings i1 → i2 with i2 → i3, and i4 → i5
with i5 → i6, and eliminates the possible run corresponding to the mapping
(i2, i3) → (i4, i5) (unless u3 is empty, in which case the 2 more runs are lost
through merging). This gives π ≤ 7 = δ by just replacing 7 of the c’s with new
symbols.

4. (i1, i2, i3) → (i4, i5, i6), (i3, i4) → (i5, i6), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu2cu2cu1cu2cu6cu2cu8.
(a) If u2 is non-empty, replace all instances of a symbol in 3 copies of u2 with new

symbols, giving π ≤ 10 = δ.
(b) If u2 is empty, the runs corresponding to the single mappings i2 → i3 and

i3 → i4 are merged, giving 9 possible runs. If u1 is non-empty, the mapping
corresponding to the i4 → i5 is also prevented, giving 8 possible runs. (If u1 is
empty, 5 possible runs are lost through merging, making the process trivial.)
By replacing all instances of some symbol in 1 copy of u1 along with 7 of the
c’s gives π ≤ 8 = δ.

5. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3 → i4), (i3, i4) → (i5 → i5), (i5, i6) → (i7, i8),
and all single-mappings (a total of 11 mappings). By the multi-mappings, the
string has the form x = u0cu1cu1cu1cu1cu1cu6cu1cu8. If u1 is non-empty,
replace all instances of a symbol in 5 copies of u1, along with 7 of the c’s with
new symbols, giving π ≤ 11 < δ = 12. Otherwise, u1 is empty, and 4 single runs
are lost through being merged, giving π ≤ 7 = δ.
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6. (i1, i2, i3, i4) → (i5, i6, i7, i8) and all single-mappings (a total of 8 mappings), By
the quadruple-mapping, the string has the form
x = u0cu1cu2cu3cu4cu1cu2cu3cu8. u1, u2 and u3 cannot all be empty (or
several runs are merged), so we replace all instances of a symbol in at least 1 of
them, along with 7 of the c’s with new symbols. This gives π ≤ 8 ≤ δ ≤ 10.

7. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), and all single-mappings (initially
9 runs). Having the double-mapping completely enclosed within one side of the
quadruple-mapping, means it exists on the other side of the quadruple-mapping
too, so (i5, i6) → (i7, i8) also exists. By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This gives a total of 10 runs.

(a) If u1 is non-empty, replaces all instances of a symbol in 3 of the copies of it,
along with 7 of the c’s, giving π ≤ 10 = δ.

(b) Otherwise, u1 is empty, giving the structure x = u0ccu2ccu4ccu2ccu8. How-
ever, this eliminates the possibility of the single-mappings i2 → i3, i4 → i5,
and i6 → i7 (unless u2 or u4 are empty, in which case 4 or 2 possible runs are
lost through merging, respectively). This reduces the number of possible runs
to at most 7, and we can achieve π ≤ 7 = δ by simply replacing 7 of the c’s
with new symbols.

8. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3) → (i4, i5), and all single-mappings (a total of
9 mappings): By the multi-mappings, the string has the form
x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

(a) If u2 is non-empty, replace all instances of a symbol in 2 copies of it, along
with 7 of the c’s with new symbols, giving π ≤ 9 = δ.

(b) Otherwise, u2 is empty, giving x = u0cu1ccu3ccu1ccu3cu8. This eliminates
the possibility of a run corresponding to the single mappings i3 → i4 and
i5 → i6 (unless u1 or u3 are empty; in either case, 2 possible runs are lost
through merging), giving π ≤ 7, which is achievable by replacing 7 of the c’s.

9. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i3, i4) → (i5, i6), and all single-mappings (a total of
9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This same configuration was previously dis-
cussed when we assumed it had 10 mappings, so it can be satisfied again in this
case.

10. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-
mappings (a total of 10 mappings). By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This same configuration was previously
discussed when we assumed it had 10 mappings, so it can be satisfied again in
this case.

11. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3) → (i4, i5), (i4, i5) → (i6, i7), and all single-
mappings (a total of 10 mappings). By the multi-mappings, u1 = u5, u2 = u4 =
u6, and u3 = u7, so the string has the form
x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

(a) If u2 and one of u1 or u3 is non-empty, replace all instances of a symbol in 1
copy of u1 or u3 and 2 copies of u2, along with 7 of the c’s with new symbols,
giving π ≤ 10 ≤ δ = 10 or 11.

(b) If u2 is non-empty, but both u1 and u3 are empty, the string has the form x =
u0ccu2ccu2ccu2ccu8. The possibility of runs corresponding to the mappings
i2 → i3, i4 → i5, and i6 → i7 is eliminated, so by replacing 7 of the c’s we
achieve π ≤ 7 = δ.
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(c) If u2 is empty, the string has the form x = u0cu1ccu3ccu1ccu3cu8. The
possibility of runs corresponding to the mappings i3 → i4 and i5 → i6 is
eliminated. Since neither u1 nor u3 are empty (or many more possible runs
are lost through merging), raising 1 copy of each of these gives π ≤ 8 < δ = 9.

12. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all single-
mappings (a total of 10 mappings). By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu2cu1cu2cu1cu8. Therefore,
x = u0(cu1cu2)

3cu1cu8, so we can replace the first c only destroying at most a
single run (π ≤ δ = 1).

13. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2, i3) → (i4, i5, i6), and all single-mappings (a
total of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu1cu3cu1cu1cu1cu3cu8. This merges the possible runs from i1 → i2
and i2 → i3, as well as i4 → i5, i5 → i6, and i6 → i7, leaving 6 possible runs.
Replacing 7 of the c’s with new symbols is sufficient to give π ≤ 6 < δ = 7.
In addition, we can layer up to 2 double-mappings on top of the triple and quadru-
ple mappings, giving a total of 11 mappings. Again, there are at least 3 possible
runs lost through merging, giving at most 8 runs. Since u1 and u3 cannot both
be empty, we can replace all instances of a symbol in 1 of the copies of u1 or u3.
Therefore, π ≤ 8 ≤ δ.

14. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3, i4) → (i5, i6, i7), and all single-mappings (a
total of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu1cu1cu4cu1cu1cu1cu8. This merges the possible runs corresponding
to i1 → i2, i2 → i3, and i3 → i4, along with i5 → i6, i6 → i7, and i7 → i8,
decreasing the maximum number of runs by 4. By replacing 7 of the c’s with new
symbols, we get π ≤ 5 < 7 = δ.
Once again, we can also layer on up to 2 additional double-mappings on top of
the triple- and quadruple-mappings. However, we are still limited to 11 possible
runs. Less the 4 possible runs lost to merging gives us π ≤ 7 = δ from replacing
7 of the c’s with new symbols. ⊓⊔

Remark 19. While the previous lemmas were provided for entries on the main diago-
nal, the result can be generalized to any entry in column n−d where ρd′(n

′) ≤ n′−d′

for n′ − d′ < n − d. Either ρd(n) ≤ n − d, or no run-maximal x ∈ Sd(n) has a pair,
triple, . . . , 8-tuple. The induction hypothesis only requires that all entries to the
left of the unknown column satisfy the conjecture; there is no restriction within the
unknown column.

Having proven Proposition 9, we can present the proof of Theorem 8:

Proof. The proof follows directly from Proposition 9. If the conjecture does not hold,
let d be the first column for which ρd(2d) > d. Let x ∈ Sd(2d) be run-maximal.
By Proposition 9, x has at least k = ⌈7d

8
⌉ singletons, and by Lemma 2 they must

all be safe. Let us form y by removing all these safe singletons. This gives a string
y ∈ Sd−k(2d− k) violating the conjecture, i.e. r(y) > d. d′ = d− k = d

8
and d = 8d′

and 2d− k = 9d′. Thus we found a y ∈ Sd′(9d
′) such that r(y) > 8d′. ⊓⊔

When investigating a single column, the first counter-example in the column can-
not have a singleton, as otherwise the counter-example could be pushed up. Nor, by
Proposition 9, can it contain a k-tuple for 2 ≤ k ≤ 8. Theorem 8 together with
these facts give a simplified way to computationally verify that the whole column d
satisfies the conjecture: show that there are no counter-examples for 2 ≤ d′ ≤ d

8
, and
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only strings with no k-tuples, 1 ≤ k ≤ 8, need to be considered when looking for the
counter-examples.

6 Conclusion

The properties presented in this paper constrain the behaviour of the entries in the
(d, n− d) table below the main diagonal and in an immediate neighbourhood above
the main diagonal. One of the the main contributions lies in the characterization of
structural properties of the run-maximal strings on the main diagonal, giving yet
another property equivalent with the maximum number of runs conjecture. Not only
do these results provide a faster way to computationally check the validity of the
conjecture for greater lengths, they indicate a possible way to prove the conjecture
along the ideas presented in Proposition 9 and its proof: a first counter-example
on the main diagonal could not possibly have a k-tuple for any conceivable k. We
were able to carry the reasoning up to k = 8, but these proofs are not easy to
scale up as the combinatorial complexity increases. The hope and motivation for
further research along these lines is that there is a common thread among all these
various proofs that may lead to a uniform method ruling out all the k-tuples and
thus proving the conjecture, or to exhibit an unexpected counter-example on the main
diagonal of the (d, n−d) table. Recent extensions of the parameterized approach shows
the unexpected existence of a binary run-maximal string of length 66 containing a
substring of four identical symbols aaaa, [1]. Similarly, considering squares instead
of runs, the approach shows that, among all strings of length 33, no binary string
achieves the maximum number of distinct primitively rooted squares [7] .
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