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1. Introduction and a completion conjecture

A Steiner triple system of order v (STS(v)) is a pair (V, B) where V is a v-set

of elements and B is a collection of 3-subsets of V called triples such that every

2-subset of V is contained in exactly one triple. It is well known that an STS(v)

exists if and only if v ≡ 1 or 3 (mod 6).

A parallel class in an STS(v) (V, B) is a subcollection of B which partitions the

set of elements V . A partition R of B into parallel classes is called a resolution, and

an STS which admits a resolution is said to be resolvable. For an STS(v) to possess

a parallel class, v must be divisible by 3, and thus v ≡ 3 (mod 6) is a necessary

condition for the existence of a resolvable STS(v).

A Kirkman triple system of order v (KTS(v)) is a triple (V, B, R) where (V, B)

is an STS(v) (called the underlying STS of the KTS), and R is its resolution. In

other words, a KTS(v) is an STS(v) together with a specific resolution R. It is

possible for an STS to be the underlying STS of several distinct, indeed, even of

nonisomorphic KTSs. [The smallest v for which this occurs is v = 15.]

The existence problem for resolvable STSs (or, which is the same, the existence

problem for KTSs) was posed by Kirkman in 1847 [K]. Some 120 years later, Ray-

Chaudhuri and Wilson [RW] proved that a KTS(v) exists for all v ≡ 3 (mod 6).

Consider two distinct parallel classes R1, R2 in a KTS(v). The

block-intersection graph G(R1, R2) has as its vertices all triples of R1 ∪ R2, with

two vertices adjacent if the corresponding two triples intersect. Clearly, G(R1, R2)

is a cubic bipartite graph with 2
3v vertices, and v edges.

Let C1, ..., Cm be a list of all nonisomorphic cubic bipartite graphs with 2
3v

vertices. Then we can associate with any KTS(v) (V, B, R), where R = {R1, ...,

R(v−1)/2}, the type matrix B = (bij) (where bii = 0, and for i 6= j, bij = k if

G(Ri, Rj) ' Ck), and the type vector T = (t1, ..., tm) where tk = |{bij : i < j, bij =

k}|. These have been used in [R] to classify the 7 nonisomorphic KTS(15) (see also

[FMR]), and formally proposed in [PP2] as invariants to distinguish KTSs.

Conversely, one may ask whether any cubic bipartite graph with 2
3v vertices

may occur as a block-intersection graph of two parallel classes in some KTS(v).
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The third author has conjectured that this is always so. An equivalent formulation

of this is the following completion conjecture.

Conjecture. Let v ≡ 3 (mod 6), v > 3, and let R1, R2 be two disjoint parallel

classes of triples on a v-set V . Then there exists a KTS(v) containing R1, R2 as

parallel classes.

We have verified this conjecture for v ≤ 21. There exists a unique bipartite

cubic graph on 6 vertices, K3,3, and, trivially, the block-intersection graph of any

two parallel classes in the unique STS(9) is isomorphic to K3,3. There exist two

nonisomorphic bipartite cubic graphs on 10 vertices (cf. No.14 and No.17 on the

list of [BF], with automorphism group of order 48 and 20, respectively; see Fig.1).

No.1 No.2

Fig.1 The bipartite cubic graphs on 10 vertices

Four different type vectors are associated with the 7 nonisomorphic KTS(15)

(cf. [R]).

Table 1

Type vectors
Graph No. Number of

1 2 associated KTS
21 0 2
9 12 2
3 18 2
0 21 1

Further, there are 13 nonisomorphic connected (and a unique disconnected) bi-

partite cubic graphs on 14 vertices [BF]; cf. also [PP2]. Among all known KTS(21)

(see Section 2 below), there is a unique KTS(21) discovered by Mathon [M] whose

type vector has 13 nonzero components corresponding to the 13 connected cubic

bipartite graphs with 14 vertices. This single KTS(21), together with any of the

KTS(21) whose type vector has nonzero component corresponding to the unique



3

disconnected cubic bipartite graph on 14 vertices (there are 27 KTS(21) of the lat-

ter type among the known ones) shows that the conjecture above holds for v=21

(even though many other sets of two or more known KTS(21) provide the same

verification).

Verification of the conjecture for v=27 - the next logical step -, while still

feasible, would likely require a more considerable computational effort: according

to [BF], the number of nonisomorphic cubic graphs on 18 vertices is 149 while

according to [MR2], there are at least 909 noisomorphic KTS(27). Even though

verifying it for v=27 would lend further support to the conjecture, it is not likely to

throw any light on the conjecture itself which, frankly, appears at this point quite

hopeless.

It is perhaps this feeling which leads one to consider some of the more promising

questions suggested by examining the type vector (and the type matrix). Let us

call a KTS(v) type-uniform of class k if tk is the unique nonzero component of its

type-vector T .

The unique KTS(9) is trivially type-uniform. Table 1 shows that three out of

the 7 KTS(15) are type-uniform; two of them are type-uniform of class 1, and one

of class 2. It is easily seen that the KTS(3n) corresponding to the affine resolution

of AG(n, 3), the n-dimensional affine space over GF(3), is type-uniform.

Does there exist a type-uniform KTS(v) for all v ≡ 3 (mod 6)? No type-

uniform KTS(21) is known at present. Among the known KTS(21), there are three

which come ”closest” to being type-uniform: these are the systems A.1a, A.2c and

A.4d of [MPR]; each of these has only two nonzero components in their respective

type vectors. Moreover, the KTS(21) No. A.2c has t12 = 42, t13 = 3 while A.4d

has t7 = 3, t12 = 42 (and all other ti’s are equal 0). Here the numbering of the

connected cubic bipartite graphs on 14 vertices is as in [BF], and we label the

unique disconnected cubic graph on 14 vertices C14.

We are able to show that there exists no type-uniform KTS(21) of class 14.

Indeed, suppose that a parallel class R1 of a KTS(21) is

R1: AAA BBB CCC DDD EEE FFF GGG

(where we simply suppressed indices 1,2,3). Since G(R1, R2) is to be discon-

nected, we may assume without loss of generality the second parallel class R2 to

be R2: ABC ABC ABC DEF DEG DFG EFG. Then there are essentially 4 possi-

bilities for the third parallel class R3 (keeping again in mind that G(R1, R3) is to

be disconnected):

(a) ABC ABC ABC DEF DEG DFG EFG

(b) ABD ABD ABD CEF CEG CFG EFG

(c) ADE ADE ADE BCF BCG BFG CFG

(d) DEF DEF DEF ABC ABG ACG BCG.
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But G(R2, R3) must also be disconnected. With R1 and R2 as above, it is

easily seen that possibilities (b) and (d) both lead to connected graphs G(R2, R3).

Thus R3 can be of type (a) or (c) only. On the other hand, there can be in a

KTS(21) at most 3 parallel classes of type (a), and, without loss of generality, at

most 6 parallel classes of type (c), say, 3 as given above, and 3 of the form

AFG AFG AFG BCD BCE BDE CDE.

But such a system would then contain a subsystem KTS(9) which is impossible

in a KTS(21).

At the other end of the spectrum, one could require the T -vector of a KTS(v) to

contain a maximum possible number of nonzero components. Let us call such a KTS

type-heterogeneous. For v=15, somewhat trivially, the four KTS(15) that are not

type-uniform, are type-heterogeneous (as there are only two nonisomorphic cubic

bipartite graphs on 10 vertices). It is numerically possible for a KTS(21) to have

in its T -vector all 14 components positive. No such KTS(21) is known at present,

however. For v ≥ 27, the maximum possible number of nonzero components is

easily seen to be
(

(v−1)/2
2

)

. Do there exist type-heterogeneous KTS(v) for any

orders v ≡ 3 (mod 6), v ≥ 21?

More generally, we can ask whether there exists, for any k, 1 ≤ k ≤
(

(v−1)/2
2

)

,

a KTS having exactly k (≤ k, or ≥ k, respectively) nonzero components in its

T -vector. One observation we can make is that if the automorphism group of a

KTS(v) acts transitively on its parallel classes then at most 1
2 (v − 1) components

of its T -vector can be nonzero. But whether a KTS(v) transitive on its parallel

classes exists for every v ≡ 3 (mod 6) is another open question... even though such

KTSs are known to exist whenever 1
3v or 1

2 (v − 1) is a prime-power ≡ 1 (mod 6)

(cf., e.g., [RC]), as well as for many other orders.

2. The type vector and type matrix

As mentioned already, it was suggested earlier (cf., e.g., [PP]) to use the type

vector and type matrix as invariants for KTSs. Their sensitivity appears to be

surprisingly high. In the process of examining the sensitivity of the type vector as

an invariant, we have first collected all data on the KTS(21) constructed to date.

These include:

(i) 33 nonisomorphic KTS(21) for each of which its underlying STS(21) has an

automorphism consisting of three disjoint cycles of length 7 [MPR];

(ii) 5 nonisomorphic KTS(21) whose underlying STS(21) has an automorphism

of order 7 with 7 fixed points and not included in (i), [T];

(iii) 48 nonisomorphic KTS(21) whose underlying STS(21) is 4-rotational

[MR1];

(iv) 19 nonisomorphic constructed by Petrenjuk by means of H-transformations

(cf. [PP3]) of systems in (i) and (ii) [PP1];

(v) 99 nonisomorphic KTS(21) constructed by Mathon from the STS in (i)

by replacing subsystems of order 7 (their number is three, one or zero) in

all possible ways, and then finding their resolutions, or by assuming an

automorphism of order 3 consisting of 7 disjoint cycles of length 3, [M].
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The only possible overlaps among the 205 systems of the above 5 types could

appear between those of type (ii) and (iv), (ii) and (v), and (iv) and (v). There

turned out to be no overlap between (ii) and (iv) but there were 5 KTS(21) ap-

pearing in both (ii) and (v), and 7 KTS(21) in both (iv) and (v). Thus the number

of known pairwise nonisomorphic KTS(21) is 192. Among the KTS(21) of type

(v) constructed by Mathon, one finds the first known examples of KTSs having no

nontrivial automorphism.

The type vector distinguishes the systems almost perfectly. There is only one

pair of nonisomorphic KTS(21) not distinguished by type vectors. This pair, how-

ever, was distinguished by the type matrices. At the same time, calculating the

type vector (or type matrix) proved extremely fast. Determining the type vector

would normally involve testing graphs for isomorphism. But instead of using a gen-

eral graph isomorphism algorithm, we simply made use of the fact that the number

of 4-cycles and 6-cycles through the vertices of cubic bipartite graphs on 14 vertices

distinguishes these graphs completely. Thus computing the number of 4-cycles and

6-cycles in these graphs, and, consequently, computing the type vector (and type

matrix) proved extremely easy and fast.

A list of 192 known KTS(21) together with their type vectors is available on re-

quest from the authors through e-mail. Requests should be directed to

franya@maccs.dcss.mcmaster.ca or to rosa@mcmail.cis.mcmaster.ca .
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