
Nordic Journal of Computing

A NOTE ON CROCHEMORE’S REPETITIONS

ALGORITHM A FAST SPACE-EFFICIENT

APPROACH

F. FRANEK1, W.F. SMYTH1,2, X. XIAO1

1- McMaster University, Department of Computing and Software,
Room ITB-202, Hamilton, Ontario, Canada L8S 4L7

2 - School of Computing, Curtin University, GPO Box U-1987
Perth WA 6845, Australia

franek@mcmaster.ca, smyth@arg.cas.mcmaster.ca,
xiaox@arg.cas.mcmaster.ca

Abstract. The space requirement of Crochemore’s repetitions algorithm is gen-
erally estimated to be about 20mn bytes of memory, where n is the length of the
input string and m the number of bytes required to store the integer n. The same
algorithm can also be used in other contexts, for instance to compute the suffix
tree of the input string in O(n log n) time for the purpose of data compression. In
such contexts the large space requirement of the algorithm is a significant draw-
back. There are of course several newer space-efficient algorithms with the same
time complexity that can compute suffix trees or arrays. However, in actual im-
plementations, these algorithms may not be faster than Crochemore’s. Therefore,
we consider it interesting enough to describe a new approach based on the same
mathematical principles and observations that were put forth in Crochemore’s orig-
inal paper, but whose space requirement is 10mn bytes. Additional advantages of
the approach are the ease with which it can be implemented in C/C++ and the
apparent speed of such an implementation in comparison to other implementations
of the original algorithm.

1. INTRODUCTION

Crochemore’s algorithm [2] computes all the repetitions in a finite string x

of length n in O(n log n) time. The algorithm in fact computes rather more
and can be used, for instance, to compute the suffix tree of x, hence possibly
as a tool for expressing x in a compressed form. In such contexts the space
requirement becomes as important as the time complexity. It appears that
known implementations of Crochemore’s algorithm require at least 20mn

bytes of memory for the task of refining the equivalence classes alone, where
m is the number of bytes required to store the integer n.

Here we present a different implementation based on the mathematical
properties and observations of [2] and thus having the same time complexity
O(n log n) as the original algorithm. However, the new data structures used
for the representation of classes and for the execution of the refinement
process allow the space requirement to be substantially reduced.

Received March 20, 2003.

2 F. FRANEK, W.F. SMYTH, X. XIAO

There are several newer space-efficient algorithms to compute suffix trees
or arrays (notably [4], [3]) of the same worst-case complexity as Crochemore’s.
The motivation for our investigation of a space-efficient implementation of
the classical Crochemore’s algorithm that may be competetive with these
newer algorithms stems from the fact that the actual implementations of
these algorithms may not in fact be any faster.

A large memory saving comes from the fact that our algorithm requires
storage for only n classes at any given time, rather than 2n as in the origi-
nal algorithm. This alone brings the space requirement down to 15mn. Of
course there is some extra processing related to this reduction in space, but
it does not affect the time complexity, and in fact it appears that in practice
our implementation runs a good deal faster than the standard implementa-
tion proposed in [2]. A further 5mn space reduction is achieved by smart
utilization of the space:

◦ allowing space to be shared by data structures, as in memory multi-
plexing — for example, if a queue empties faster than a stack grows,
then they can share the same memory segment;

◦ spreading one data structure across several others, as in memory vir-
tualization.

Taken together, these “tricks” bring the space requirement down to 10mn.
Additional advantages of this approach are the ease with which it can

be implemented in C/C++ and, as remarked above, its apparent speed in
comparison to other implementations of the original algorithm.

In this paper we do not due to space limitations provide any detailed
computer instructions, but we try to give a high-level description of our
approach, so that the reader can understand how the space savings are
achieved. However, the C source code can be viewed or downloaded at
www.cas.mcmaster.ca/∼franek, the web site of one of the authors.

In our discussion below we assume that the reader is familiar with both
Crochemore’s algorithm and its mathematical foundation. We make the
usual assumption required for Crochemore’s algorithm that the alphabet is
ordered; therefore we are able to assume further that the classes correspond-
ing to the first level (p = 1) can be computed in O(n log n) time.

For better comprehension, we present the algorithm in two stages. The
first stage, FSX15 (with space requirement 15mn bytes), exhibits all impor-
tant procedural and control aspects of our algorithm without the compli-
cations of memory multiplexing and virtualization. Then the second stage,
FSX10, incorporates the changes required by memory multiplexing and vir-
tualization to reduce the space requirement to 10mn. Finally, we present
some rough results of computer runs that compare the time and space re-
quirements of our approach with those of a standard implementation of
Crochemore’s algorithm.

A SPACE-EFFICIENT IMPLEMENTATION OF CROCHEMORE’S ALGORITHM 3

2. DATA STRUCTURES FOR FSX15

Recall that for each p = 1, 2, . . . , Crochemore’s algorithm acts on a given
string x = x[1..n] to compute equivalence classes {i1, i2, . . . , ir}, where for
every 1 ≤ j < h ≤ r,

x[ij ..ij+p−1] = x[ih..ih+p−1].

The positions ij in each class are maintained in increasing sequence: ij <

ij+1, 1 ≤ j < r. At each step of the algorithm, each class cp that is not
a singleton is decomposed into a family of subclasses; of these subclasses,
the one of largest cardinality is called big, the others are small. A straight-
forward approach to this decomposition would require order n2 time in the
worst case, but Crochemore’s algorithm reduces this time requirement by
carrying out the decomposition from level p to level p+1 only with respect
to the small classes identified at step p. Since each position can belong to
a small class only O(log n) times, it follows that the total time requirement
is O(n log n). As remarked in the introduction, we may assume that the
classes corresponding to p = 1 have initially been computed in O(n log n)
time. Note that the version of Crochemore’s algorithm discussed here does
not explicitly compute repetitions; we will be interested only in reducing
each of the equivalence classes to a singleton.

We will use an integer array of size n to represent the classes computed at
step p. We have several requirements:

◦ we need to keep the elements of the classes in ascending order;

◦ we need an efficient way to delete any element (so that we need to
represent each class as a doubly-linked list);

◦ we need an efficient way to insert a new element at the end of a class
(and hence we need a link to the last element of the class);

◦ we need efficient access to the size of a class;

◦ we need efficient access to a class (and hence we need a link to the first
element of the class);

◦ last but not least, we need an efficient way to determine to which class
a given element belongs.

To satisfy all these requirements, we use six integer arrays of size n:

◦ CNext[1..n] emulates forward links in the doubly-linked list. Thus
CNext[i] = j > i means that j is the next element (position) in the
class that i belongs to. If there is no position j > i in the class, then
CNext[i] = null.

◦ CPrev[1..n] emulates backward links in the doubly-linked list. Thus
CPrev[i] = j < i means that j is the previous element (position) in the
class that i belongs to. If there is no position j < i in the class, then
CPrev[i] = null.

4 F. FRANEK, W.F. SMYTH, X. XIAO

◦ CMember[1..n] keeps track of membership. Thus CMember[i] = k

means that element i belongs to the class with index k (i ∈ ck), while
CMember[i] = null means that at this moment i is not member of any
class.

◦ CStart[1..n] keeps links to the starting (smallest) element in each
class. Thus CStart[k] = i means that the class ck starts with the
element i, while CStart[k] = null means that at this moment the
class ck is empty.

◦ CEnd[1..n] keeps links to the final (largest) element in each class.
Thus CEnd[k] = i means that the class ck ends with the element i; the
value of CEnd[k] is meaningful only when CStart[k] 6= null.

◦ CSize[1..n] records the size of each class. Thus CSize[k] = r means
that the class ck contains r elements; the value of CSize[k] is meaning-
ful only when CStart[k] 6= null.

Suppose that there exists a class c3 = {4, 5, 8, 12}, indicating that the sub-
strings of length 3 beginning at positions 4, 5, 8, 12 of x are all equal. Then
c3 would be represented as follows:

CNext[4] = 5, CNext[5] = 8, CNext[8] = 12, CNext[12] = null;

CPrev[12] = 8, CPrev[8] = 5, CPrev[5] = 4, CPrev[4] = null;

CMember[4] = CMember[5] = CMember[8] = CMember[12] = 3;

CStart[3] = 4; CEnd[3] = 12; CSize[3] = 4.

We need to track the empty classes, and for that we need a simple integer
stack of size n, CEmptyStack, that holds the indexes of the empty (and hence
available) classes. This stack, as well as all other list structures used by
Crochemore’s algorithm, is implemented as an array that requires mn bytes
of storage. Such an approach saves time by allowing all space allocation
to take place only once, as part of program initialization. We introduce
two operations on the stack, CEmptyStackPop() that removes the top
element from the stack and returns it, and CEmptyStackPush(i) that
inserts the element i at the top of the stack.

We shall process classes from one refinement level p to the next level p+1
by moving the elements from one class to another, one element at a time.
We view the classes as permanent containers and distribute the elements
among them, so that at any given moment we need at most n classes. This
means that the configuration of classes at level p is destroyed the moment
we move a single element. But, as we shall see, we do not really need to
keep the old level intact if we preserve an essential “snapshot” of it before
we start tinkering with it.

What we need to know about level p will be preserved in two queues,
SElQueue and SCQueue. SElQueue contains all the elements in small classes
in level p, organized so that the elements from the same small class are
grouped together in the queue and stored in ascending order. SCQueue

contains the first element from each small class, thus enabling us to identify

A SPACE-EFFICIENT IMPLEMENTATION OF CROCHEMORE’S ALGORITHM 5

in SElQueue the start of each new class. Therefore, when these queues are
created, we must be careful to process the small classes of level p in the same
order for both of them. For instance, if level p had three small classes,

c3 = {2, 4, 5, 8}, c0 = {3, 6, 7, 11}, c5 = {12, 15},

SElQueue could contain 2, 4, 5, 8, 3, 6, 7, 11, 12, 15 in that order, while the
corresponding SCQueue would contain 2, 3, 12. The order of the classes (c3

followed by c0 followed by c5) is not important; what is important is that
the same order is used to create SElQueue and SCQueue. After the two
queues have been created, we do not need level p any more and we can start
modifying it. Of course we suppose that we have available the usual queue
operations:

◦ SElQueueHead() (remove the first element from the queue and re-
turn it);

◦ SElQueueInsert(i) (insert the element i at the end of the queue);

◦ SElQueueInit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.
When refining class ck in level p using an element i from class ck′ , we might

need to move element i−1 from ck to a new or an existing class. To manage
this processing, we keep an auxiliary array of size n, Refine[1..n]. Initially,
when we start using the class ck′ for refinement, all entries in Refine[] are
null. If a new class ch is created in level p+1 by moving i−1 out of class
ck and into ch as its first element, we set Refine[k] ← h. If later on we
move another element from ck as a result of refinement by the same class
ck′ , we use the value Refine[k] to tell us where to move it to. This requires
that when we start refining by a new class, we have to restore Refine[]

to its original null state. Since we cannot afford to traverse the whole
array Refine[] without destroying the O(n log n) time complexity, we need
to store a record of which positions in Refine[] were previously given a
non-null value. For this we make use of a simple stack, RefStack: every
assignment to Refine[k] causes the index k to be pushed onto the stack
RefStack. As before, we assume that we have available the usual stack
operations RefStackPop() and RefStackPush(i).

Since after completing the refinement of the classes in level p, we must
determine the small classes in level p + 1, we therefore need to maintain
throughout the refinement process certain families of classes (to be more
precise, families of class indexes). As noted above, a family consists of the
classes in level p + 1 that were formed by refinement of the same class in
level p. A family may or may not include the original class from level p

itself (it may completely disappear if we remove all its elements during the
refinement). We need an efficient way to insert a new class in a family (the
order is not important), an efficient way to delete a class from a family,
and finally an efficient way to determine to what family (if any) a class
belongs. These facilities can be made available by representing the families

6 F. FRANEK, W.F. SMYTH, X. XIAO

as doubly-linked lists implemented using arrays, just as we did previously
with the classes themselves. In this case, however, the Size[] and End[]

arrays are not required, so we can get by with only four arrays, as follows:

◦ FNext[1..n] emulates the forward links (as in CNext[]).

◦ FPrev[1..n] emulates the backward links (as in CPrev[]).

◦ FMember[1..n] keeps track of membership (as in CMember[]). When-
ever FMember[i] = null, it means that ci is not a member of any family.

◦ FStart[1..n] gives the first class in each family (as in CStart[]).

Note that classes in families do not need to be maintained in any particualr
order, unlike positions in classes.

To summarize the efforts so far: in order to implement Crochemore’s al-
gorithm, it is sufficient to allocate 15 arrays, each of which provides storage
space for exactly n integers of length m, thus altogether 15mn bytes of stor-
age: CNext, CPrev, CMember, CStart, CEnd, CSize, CEmptyStack, SElQueue,
SCQueue, RefStack, Refine, FStart, FNext, FPrev, and FMember.

3. DATA STRUCTURES FOR FSX10

As the first step in reducing the space complexity further, we are going
to eliminate the CSize[] and CEnd[] arrays. For the very first element
s in a class cj , CPrev[s]= null, while for the very last element e of cj ,
CNext[e]= null. But we have another way to discern the beginning of the
class cj – CStart[j] – so CPrev[s] becomes superfluous. Thus we can store
in CPrev[s] a direct link to the end of the class cj , i.e. CPrev[s]← e. This
yields an efficient means to discern the end of the class cj and hence we
can store in CNext[e] the size of cj instead. Thus CPrev[CStart[j]] takes
on the role of CEnd[j], while CNext[CPrev[CStart[j]]] takes on the role
of CSize[j]. This is straightforward and the code need only be slightly
modified to accommodate it. All we have to do is make sure that when
inserting or deleting an element in or from a class, we update properly the
end link and the size. When traversing a class, we have to make sure that
we properly recognize the end (we cannot rely on the null value to stop
us as in FSX15). We have in fact “virtualized” the memory for CEnd[] and
CSize[], and so reduced the space complexity to 13mn.

When we take an element from SElQueue and use it for the purpose of
refinement, at most one new class is created and thus at most one loca-
tion of Refine[] is updated. This simple observation allows RefStack and
SElQueue to share the same memory segment, as long as we make sure that
RefStack grows from left to right, while the queue is always right justified
in the memory segment. The changes in the code required to accommodate
this are not very great — all we have to do is to determine before filling
SElQueue what position we have to start with. In essence, we have “multi-
plexed” the same memory segment and brought the space complexity down
to 12mn.

A SPACE-EFFICIENT IMPLEMENTATION OF CROCHEMORE’S ALGORITHM 7

The number of elements in SCQueue is the same as the number of small
classes, which is less than or equal to the number of non-empty classes; thus
the size of SCQueue plus the size of CEmptyStack at any given moment is at
most n. This simple observation allows CEmptyStack and SCQueue to share
the same memory segment, as long as we make sure that CEmptyStack is
growing from left to right, while the queue is always right justified in the
memory segment. Again, as above, the changes in the code required to
accommodate this are not major. We again have “multiplexed” the same
memory segment and brought the space complexity down to 11mn.

The final memory saving comes from the fact that FPrev[] for the very
first class in a family and FNext[] for the very last class in the same family
are set to null and hence redundant for the same reasons as described
above for CPrev[] and CNext[]. We can thus “virtualize” the memory for
the array Refine[]. We will have to index it in reverse and we will use all
the unused slots in FStart[] (i.e. slots with indexes > FStartTop) as well
as the unnecessary FNext[] slots. The formula is rather simple. Instead of
storing r in Refine[i], we will use

SetRefine(i,r)
j←n-(i+1)
if FStartTop = null OR j > FStartTop then

FStart[j]←r
else

FNext[FPrev[FStart[j]]]←r
end SetRefine

and instead of fetching a value from Refine[i] we will use

integer GetRefine(i)
j←n-(i+1)
if FStartTop = null OR j > FStartTop then

return FStart[j]
else

return FNext[FPrev[FStart[j]]]
end GetRefine

The modification of the code is more complex in this case, since we have to
track the ends of the family lists as we do for class lists; more importantly,
when a new family is created, we have to save the Refine[] value stored
in that so-far-unused slot k that now is going to be occupied by the start
link of the family list, and store k at the end of the list instead. This
“virtualization” of the memory for Refine[] brings the space complexity
down to the final value of 10mn.

4. INFORMATIVE EXPERIMENTAL RESULTS

To estimate the effect of our space reduction on time requirement, we have
implemented two versions of Crochemore’s algorithm:

8 F. FRANEK, W.F. SMYTH, X. XIAO

◦ a näıve array-based version, FSX20, that executes Crochemore’s algo-
rithm using 20 arrays each of length n words:

◦ a version of FSX10 that requires 10 arrays each of length n words.

Thus both of these implementations are word-based: assuming a word-length
of 32 bits, the value of m is actually fixed at 4.

We expect that FSX20 will execute Crochemore’s algorithm about as fast
as it can be executed, but at the cost of requiring exactly 20n words of stor-
age. A version that implemented standard list-processing techniques rather
than arrays to handle the queues, stacks and lists required by Crochemore’s
algorithm would generally require less storage: 11n words for arrays plus a
variable amount up to 13n for the list structures. However, as a result of the
time required for dynamic space allocation, such a version would certainly
run several times slower than FSX20.

We must remark at this point that the experiments performed have only an
informative value, for we conducted them without controlling many aspects
depending on the platform (as memory caching, virtual memory system pag-
ing etc.), nor did we perform a proper statistical evaluation to control for
other factors not depending on the platform (load on the machine, implemen-
tation biases etc.) Thus, we really do not claim any significant conclusions
for the actual algorithms whose implementations were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to
3.8 million bytes): long Fibonacci strings, files from the Calgary corpus, and
others. The results indicate that FSX10 seems to require 20-30% more time
than FSX20, in most cases a small price to pay for a 50% reduction in space.

Acknowledgements

Supported in part by grants from the Natural Sciences & Engineering Re-
search Council of Canada.

References

[1] Calgary Corpus

http://links.uwaterloo.ca/calgary.corpus.html

[2] Crochemore, M. 1981. An optimal algorithm for computing the repetitions in
a word. IPL 12, 5, 244–250.

[3] Manber, U. and Myers, Gene W.. 1993. Suffix arrays: a new method for
on-line string searches. SIAM J. Comput. 22, 5, 935–948.

[4] Ukkonen, Esko. 1992. Constructing suffix trees on-line in linear time. In Pro-

ceedings of IFIP 92. XXXXXXX University, XXXXXXX, XXXXXXX, 484–492.

