
Discrete Applied Mathematics 217 (2017) 488–494

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bannai et al. method proves the d-step conjecture for strings
Antoine Deza ∗, Frantisek Franek
Advanced Optimization Laboratory, Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 30 April 2015
Received in revised form 19 September
2016
Accepted 27 September 2016
Available online 20 October 2016

Keywords:
Strings
Runs
Lyndon root
d-step approach

a b s t r a c t

Inspired by the d-step approach used for investigating the diameter of polytopes, Deza and
Franek introduced the d-step conjecture for runs stating that the number of runs in a string
of length n with exactly d distinct symbols is at most n − d. Bannai et al. showed that
the number of runs in a string is at most n − 3 for n ≥ 5 by mapping each run to a set
of starting positions of Lyndon roots. We show that Bannai et al. method proves that the
d-step conjecture for runs holds, and stress the structural properties of run-maximal
strings. In particular, we show that, up to relabelling, there is a unique run-maximal string
of length 2dwith d distinct symbols. The number of runs in a string of length n is shown to
be at most n − 4 for n ≥ 9.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A run in a string x[1..n] is a succinct notion of a maximal repetition. A run is usually encoded by in a triple (s, e, p) such
that the substring x[s..e] has a minimal period of p, x[s..s+ p− 1] is primitive, s+ 2p− 1 ≤ e and so x[s..s+ p− 1] repeats
at least twice, and either s = 1 or x[s − 1] ≠ x[s + p − 2] and either e = n or x[e − p] ≠ x[e + 1], i.e. the periodicity can
be extended neither to the left nor to the right. Thus, s encodes the start of the run, e the end of the run, and p its period.
The substring x[s..s + p − 1] is the root of the run. For example, in the string aabababaa, the underlined run is encoded by
(2, 8, 2), and its root ab is repeated 4 times, with the last repeat being incomplete. Runs, equal up to translation, may occur
more than once in a string. For example, in the string aabababaaaaaabababaa, the underlined runs encoded by (2, 8, 2) and
(13, 19, 2) are both counted.

Crochemore [4] showed in 1981 that the order of the number of maximal repetitions in a string of length n is O(n log n).
In 1999, Kolpakov and Kucherov [18] showed that the order of the largest number ρ(n) of runs over all strings of length n is
O(n), without exhibiting an explicit constant, and conjectured that ρ(n) ≤ n. Rytter [23,24] determined such a constant in
2006, and the following years witnessed a tightening of the lower and upper bounds for the limit of ρ(n)/n, see [5,6,14–16,
19,21,20,22]. In 2015, the conjecture was proven by Bannai et al. [3] who showed that ρ(n) ≤ n − 1, and ρ(n) ≤ n − 3 for
n ≥ 5, by using starts of specific Lyndon roots of each run; that is by mapping all runs to mutually disjoint subsets of the
string indices.

Deza and Franek investigated the largest number ρd(n) of runs over all strings of length n with exactly d distinct
symbols. Similarities between ρd(n) and the largest diameter ∆(d, n) over all polytopes of dimension d having n facets
triggered the formulation of the d-step conjecture for strings stating that ρd(n) ≤ n − d, see [8]. The proposed d-step
approach proved that the following statements are equivalent {ρd(n) ≤ n − d for all d and n}, {ρd(2d) ≤ d for all d}, and
{ρd(2d) is achieved for all d by a, up to relabelling, unique string }. Considering binary strings, Fischer et al. [12] showed that
ρ2(n) ≤ ⌈22n/23⌉. While it is widely believed that ρd+1(n) ≤ ρd(n), and thus that ρ(n) = ρ2(n), no such results are known.
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Some properties concerning maximal strings are rather counterintuitive. For example, consider the largest number σd(n) of
distinct primitively rooted squares over all strings of length nwith exactly d distinct symbols. It was similarly believed that
the binary case is the key one; i.e. that σd+1(n) ≤ σd(n), and thus that σ(n) = σ2(n), till a counterexample was provided for
n = 33 with σ3(33) > σ2(33), see [9].

This paper aims at combining the Bannai et al. and d-step approaches in order to highlight the structural properties of
run-maximal strings. Besides strengthening by one the upper bound to ρ(n) ≤ n − 4 for n ≥ 9, these structural properties
may provide preliminary substantiation for the hypothesis that ρ(n) ≤ n−⌈log2 n⌉. For more details and additional results
concerning runs in strings we refer to [3] and references therein. Before presenting the main results in Section 2, we briefly
recall the Bannai et al. and d-step approaches in the remainder of this section.

1.1. Preliminaries

Strings are indexed starting with 1, i.e. a string x of length n can be written either as x[1..n] or x[1]x[2] . . . x[n]. The
alphabet of a string x is the set of all symbols occurring in x. A (d, n)-string refers to a string of length nwith exactly d distinct
symbols. A string x is a rotation of a string y if there are u and v such that x = uv and y = vu, and the rotation is trivialwhen
either u or v is the empty string. Let ≺ be a total order over the alphabet of a string x. The string x is Lyndon with respect to ≺

if x is lexicographically strictly smaller than any of its non-trivial rotations or, equivalently, if x is lexicographically strictly
smaller than any of its suffixes. The lexicographic order of strings is induced in the usualmanner by the order of the alphabet.
Note that ρ1(1) = 0 and ρ1(n) = 1 for n ≥ 2. Thus, we can assume that both d and n are at least 2 in the remainder of the
paper.

1.2. A d-step approach for polytopes and its continuous analogue

We briefly recall the d-step approach used to investigate the Hirsch bound for the diameter of polytopes, and its
continuous analogue, and provide some basic references.
A d-step approach for diameter-maximal polytopes

A polyhedron is the intersection of finitely many closed half-spaces, and a polytope is a bounded polyhedron. A
(d, n)-polytope is a polytope of dimension dwith n facets. The diameter δ(P) of a polytope P is the smallest integer such that
any pair of vertices of P can be connected by an edge-path of length at most δ(P). Let ∆(d, n) denote the largest diameter
over all (d, n)-polytopes. The Hirsch conjecture, posed in 1957, states that ∆(d, n) ≤ n − d. The values for ∆(d, n) are
usually listed in a (d, n − d) table where d is the index for the rows and n − d the index for the columns. The following
properties can be checked: ∆(d, n) ≤ ∆(d, n + 1), ∆(d, n) < ∆(d + 1, n + 2), ∆(d, n) ≤ ∆(d + 1, n + 1) for n ≥ d;
and ∆(d, n) = ∆(d + 1, n + 1) for 2d ≥ n ≥ d. In other words, the maximum of ∆(d, n) within a column is achieved on
the main diagonal and all values below a value on the main diagonal are equal to that value. The role played by the main
diagonal of the (d, n − d) table was underlined by Klee and Walkup [17] who showed the equivalency between the Hirsch
conjecture and the d-step conjecture stating that ∆(d, 2d) ≤ d for all d. The Hirsch conjecture was disproved by Santos [25]
by exhibiting a violation on the main diagonal with (d, n) = (43, 86); that is, Santos constructed a polytope in dimension
43 with 86 facets and a diameter of at least 44. Note that the d-cube is a (d, 2d)-polytope having diameter d and therefore
∆(d, 2d) ≥ d for all d. The string a1a1a2a2 . . . adad is a (d, 2d)-string with d runs and therefore ρ(d, 2d) ≥ d for all d. While
there is no obvious way to map the n facets of a (d, n)-polytope and the n characters of a (d, n)-string in general, one may
map the d squares aiai of the string a1a1a2a2 . . . adad and the d pairs of disjoint facets of the d-cube.
A d-step approach for curvature-maximal polytopes

Considering links between the currently most computationally successful algorithms for linear optimization; i.e., the
simplex and central-path following primal–dual interior point methods, Deza et al. [11] proposed a continuous analogue of
the Hirsch conjecture. The value of ∆(d, n) provides a lower bound for the number of iterations of simplex methods for the
worst case behaviour. The curvature of a polytope, defined as the largest total curvature of the associated central path, can
be regarded as the continuous analogue of its diameter. Considering the largest curvature Λ(d, n) over all (d, n)-polytopes,
Deza et al. [11] proved the following continuous analogue of the equivalence between the Hirsch conjecture and the d-step
conjecture: if Λ(d, 2d) = O(d) for all d, then Λ(d, n) = O(n). Using a tropical linear optimization setting, Allamigeon
et al. [1] constructed an exponential counterexample to the continuous analogue of the polynomial Hirsch conjecture by
exhibiting a (d, 3d/2)-polytope with a curvature of at least 2d/2.

1.3. A d-step approach for strings

A d-step formulation for strings was proposed in [8] where it was shown that ρd(n) and ∆(d, n) exhibit similarities and,
in particular, that ρd(n) ≤ ρd(n + 1), ρd(n) < ρd+1(n + 2), ρd(n) ≤ ρd+1(n + 1) for n ≥ d; and ρd(n) = ρd+1(n + 1)
for 2d ≥ n ≥ d. Consequently, the value of ρd(n) is presented in a (d, n − d) table where d is the index for the rows and
n − d the index for the columns, see Table 1 for a 20 × 20 portion of the (d, n − d) table for ρd(n). These properties noted
in [8] show that the maximum of ρd(n) within a column is achieved on the main diagonal and all values below a value on
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Table 1
(d, n − d) table for ρd(n) with 2 ≤ d ≤ 20 and 2 ≤ n − d ≤ 20 with the various fonts illustrating Proposition 5.

n − d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d

2 2 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16
3 2 3 3 4 5 6 6 7 8 9 10 11 11 12 13 14 15 16 16
4 2 3 4 4 5 6 7 7 8 9 10 11 12 12 13 14 15 16 17
5 2 3 4 5 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17
6 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14 14 15 16 17
7 2 3 4 5 6 7 7 8 9 10 10 11 12 13 14 15 15 16 17
8 2 3 4 5 6 7 8 8 9 10 11 11 12 13 14 15 16 16 17
9 2 3 4 5 6 7 8 9 9 10 11 12 12 13 14 15 16 17 17

10 2 3 4 5 6 7 8 9 10 10 11 12 13 13 14 15 16 17 18
11 2 3 4 5 6 7 8 9 10 11 11 12 13 14 14 15 16 17 18
12 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 16 17 18
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 16 17 18
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 17 18
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 18
16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19
20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

the main diagonal are equal to that value. The main results and conjectures yielded by the d-step approach for strings are
given in Proposition 1 and Conjecture 2.

Proposition 1 ([8]). Let ρd(n) be the largest number of runs over all strings of length n with exactly d distinct symbols, then

(i) ρd(n) ≤ n − d for all d and n ⇐⇒ ρd(2d) ≤ d for all d,
(ii) ρd(2d) = ρd(2d+ 1) H⇒ the string a1a1a2a2 . . . adad is, up to relabelling, the unique run-maximal string of length 2d with

exactly d distinct symbols,
(iii) ρd(2d + 1) = ρd(2d + 2) = ρd(2d + 3).

Conjecture 2 ([8]). A string of length n with exactly d distinct symbols has at most n − d runs; that is, ρd(n) ≤ n − d.

Note that the d-step formulation was used in [2] to determine ρd(n) for previously intractable values of d and n. In
particular, the largest number of runs has been determined for binary strings of length up to 74.

1.4. Bannai et al. method for strings

A key idea of Bannai et al. method is to map the runs of a string to mutually disjoint subsets of its indices. Given a total
order≺ of the alphabet of a string, let≺−1 denote the reverse order. Consider a run t = (i, j, p) in a string x. For i ≤ k ≤ j−p,
all the substrings x[k..k + p] are primitive, and at least one of them is Lyndon with respect to ≺, and at least one of them is
Lyndon with respect to ≺

−1. This observation motivated the notion of L-roots for a run t = (i, j, p):

Case 1: j = n or x[j − p + 1] ≻ x[j + 1]; then every substring x[k..k + p], i < k ≤ j − p, that is Lyndon with respect to ≺, is
necessarily a maximal Lyndon substring and is referred to as an L-root of t .

Case 2: j < n and x[j − p + 1] ≺ x[j + 1]; then every substring x[k..k + p], i < k ≤ j − p, that is Lyndon with respect to
≺

−1, is necessarily a maximal Lyndon substring and is referred to as an L-root of t .

Note that x[j−p+1] ≠ x[j+1] as otherwise t could be extended by one position to the right, contradicting the maximality
condition for a run. Thus, exactly one of the two cases holds. If the considered order is clear from the context, we simply use
the term L-root. Note a slightmodification of Bannai et al. terminology: our definition of L-roots excludes Lyndon substrings,
of the length of the period of t , starting at the beginning of the run t . A run t is mapped to the set Beg(t) of the starting
positions of all its L-roots. Bannai et al. [3] showed that Beg(t1) ∩ Beg(t2) = ∅ for distinct runs t1 and t2; that is, the L-roots
of two distinct runs never start at the same position—recall that L-roots of a run never start at the beginning of a run. This
mapping implies that the number of runs of a string is at most its length. In addition, since no L-root starts at position 1, the
number of runs of a string is strictly less than its length.

2. Bannai et al. method and the d-step conjecture for strings

The authors contacted Hideo Bannai in the summer of 2014 to point out the d-step conjecture for runs, and a proof of
ρd(n) ≤ n − dwas subsequently added to [3] in January 2015, along with ρd(n) ≤ n − d − 1 for n ≥ 2d + 1 which implies
ρ(n) ≤ n − 3 for n ≥ 5. Besides providing alternative proofs for Lemmas 9 and 10, we show additional properties and
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strengthen by one the bound to ρd(n) ≤ n − d − 2 for n ≥ 2d + 5 which implies ρ(n) ≤ n − 4 for n ≥ 9. We wish to point
out related results by Crochemore andMercaş [7] and Fischer et al. [12] that both build up on Bannai et al. method to bound
the number of runs. Note the overlap between the notions ofmultiplicities of Lyndon roots for cubic runs in [7], of overloaded
in [12] and what we call redundant.

2.1. Main results

The following propositions are obtained by combining the d-step and Bannai et al. approaches. Proposition 3 strengthens
by one the upper bound for the number of run in a string of length n, Proposition 4 illustrates that, in contrastwith polytopes,
the d-step conjecture holds for strings and the uniqueness of run-maximal stings whose length is twice its number of
symbols, and Proposition 5 deals with strings whose length is at most twice its number of symbols plus 10.

Proposition 3. Let ρ(n) be the largest number of runs over all strings of length n, then ρ(n) ≤ n − 4 for n ≥ 9.

Proof. Proposition 3 is a direct corollary of Lemmas 9, 10, and 11. �

Proposition 4. The string a1a1a2a2 . . . adad is, up to relabelling, the unique run-maximal string of length2dwith exactly d distinct
symbols.

Proof. Proposition 4 is a direct corollary of items (ii) of Propositions 1 and 5. �

Proposition 5. Let ρd(n) be the largest number of runs over all strings of length n with exactly d distinct symbols, then
(i) ρd(n) = n − d for 2d ≥ n,
(ii) ρd(2d + 1) = ρd(2d + 2) = ρd(2d + 3) = ρd(2d + 4) = n − d − 1,
(iii) ρd(2d+5) = ρd(2d+6) = ρd(2d+7) = ρd(2d+8) = ρd(2d+9) = ρd(2d+10) = n−d−2, except for (d, n) = (2, 13)

as ρ2(13) = 8.

Proof. The fact that ρd+1(d + 2) > ρd(n) and ρ2(4) = 2 implies that ρd(2d) ≥ d. Thus, Lemma 9 implies that ρd(2d) = d;
that is, item (i) holds as ρd(n) = n − d for 2d ≥ n since ρd(n) = ρd+1(n + 1) for 2d ≥ n ≥ d. Similarly, the fact that
ρd+1(d + 2) > ρd(n) and ρ2(8) = ρ2(7) + 1 = ρ2(6) + 2 = ρ2(5) + 3 = 5 implies that ρd(n) ≥ n − d − 1 for
2d + 4 ≥ n ≥ 2d + 1. Thus, Lemma 10 implies that ρd(n) = n − d − 1 for 2d + 4 ≥ n ≥ 2d + 1; that is, item (ii) holds.
The proof for item (iii) is almost the same as for item (ii) except that Lemma 11 is used instead of Lemma 10 and the base
values are ρ2(14) = ρ3(14) + 1 = ρ2(12) + 2 = ρ2(11) + 3 = ρ2(10) + 4 = ρ2(9) + 5 = 10. �

See Table 1 for an illustration of Proposition 5 where the main diagonal corresponding to n = 2d is in bold, the diagonals
corresponding to 2d < n ≤ 2d+ 4 are in italic, and the diagonals corresponding to 2d+ 4 < n ≤ 2d+ 10 are in bold italic.
Note that these values are computationally intractable for non-trivial (d, n); i.e. to compute the largest numbers of runs over
all strings of length 35 with exactly 15 symbols is beyond current computational means while Proposition 5 shows that this
number is 18.

Remark 6. A generalization of the proof of Lemma 11 to higher values of n − 2d may substantiate the hypothesis that
ρd(2d + k) − d is a step function independent of d. Proposition 5 might be considered as a preliminary substantiation that
the number of runs in a string of length nwith d symbols is atmost n−d−⌈log2⌈(n+4−2d)/4⌉⌉ for n ≥ 2d as hypothesized
in [8]. Assuming that run-maximal strings include binary ones and thus setting d = 2 in the previous inequality, the number
of runs in a string of length nwas hypothesized in [8] to be atmost n−⌈log2 n⌉. A d-step approachwas introduced for distinct
primitively rooted squares in strings as well as hypothesized upper bounds [8]. We recall that the bound of Fraenkel and
Simpson [13] was strengthened in [10] to: the number of distinct squares in a string of length n is at most ⌊11n/6⌋.

2.2. Observations and auxiliary lemmas

Observation 7. Given a string x over the alphabet {a1, . . . , ad},
(i) no L-root starts at position 1,
(ii) if an L-root of a run t starts at the position of a symbol ai:

case (1) there is a farther occurrence of ai and x = . . . (uaiv)(uaiv) . . . (uaiv)µ . . . and for any ν ∈ u, v,
ai ≼ ν if µ ≺ u[1] (i.e. ≺ is used)
ν ≼ ai if µ ≻ u[1] (i.e. ≺

−1 is used)
where ai is the farther copy of ai, the L-root is underlined, and ( )( ) . . . ( ) indicates the rightmost repetition of
the run t containing ai in its root,

case (2) there is a previous occurrence of ai and x = . . . (aiw)(aiw) . . . (aiw)µ . . . and for any ν ∈ w,
ai ≼ ν if µ ≺ ai (i.e. ≺ is used)
ν ≼ ai if µ ≻ ai (i.e. ≺

−1 is used)
whereai is the previous copy of ai, the L-root is underlined, and ( )( ) . . . ( ) indicates the rightmost repetition of
the run t starting withai,
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Fig. 1. Illustration of Definition 8.

(iii) if a symbol ai occurs only once, no L-root starts at the position of ai,
(iv) if a symbol ai occurs exactly twice, at most one L-root starts at the positions of the occurrence of ai since they belong to at

most one run,
(v) if a symbol ai occurs exactly three times, at most two L-root start at the positions of the occurrences of ai since they belong

to at most two runs.

Observation 7 leads to the following notion of redundancy: if a run has k ≥ 2 L-roots, we consider that k− 1 of them are
redundant. For example, ak+1

i has k L-roots and k− 1 of them are redundant. The number r(x) of runs in a string x is at most
the number of its non-redundant L-roots.

Definition 8. Given a string x containing the symbols {a1, . . . , ad} ordered by ≺, the string is ≺-labelled if:

(i) a1 ≺ a2 ≺ · · · ≺ ad−1 ≺ ad,
(ii) x = uda

rd
d ud−1a

rd−1
d−1 . . . u2a

r2
2 ar11 where uk does not contain any symbol from {ak+1, . . . , ad} and rk ≥ 1 for k = 1, . . . , d,

(iii) x[bk − 1] ≺ ak for k = 1, . . . , d− 1, and x[bd − 1] ≺ ad if d > 1, where bk = 1+ (|uk| + · · · + |ud|) + (rk+1 + · · · + rd)
for k = 1, . . . , d.

Note that bk is the position of the beginning of the block of last occurrence of ak, i.e. a
rk
k . Note also that |uk| may be possibly

zero and that rk is maximal as x[bk − 1] ≺ ak implies that the preceding symbol, if any, differs from ak, see Fig. 1 for an
illustration of Definition 8. Any string x can be ≺-labelled by a simple act of relabelling the alphabet symbols. The structure
of the ≺-labelled strings indicates places where an L-root cannot start and where redundant L-roots might occur. The first
places to look for positions with no L-roots are, of course, the beginnings of the blocks, i.e. the bk’s.

Lemma 9. Let ρd(n) be the largest number of runs over all strings of length n with exactly d distinct symbols, then ρd(n) ≤ n−d
for n ≥ 2d.

Proof. Consider a ≺-labelled run-maximal (d, n)-string x, i.e. x is a ≺-labelled string with ρd(n) runs. We show that the
number of L-roots of x = uda

rd
d ud−1a

rd−1
d−1 . . . u2a

r2
2 ar11 is at most n − d, and thus ρd(n) ≤ n − d, by remarking that no

L-root starts at bk for any k ∈ 1..d. Assume by contradiction that an L-root starts at bk0 for some k0. The L-root cannot
correspond to case (ii)(1) of Observation 7 as there is no farther occurrence of ak0 past the block a

rk0
k0

. Thus, the L-root must
correspond to case (ii)(2). Since x[bk0 − 1] ≺ x[bk0 ], the ≺

−1 order must be used, but ak0 does not precede any symbol past
a
rk0
k0

—hence a contradiction. �

Another natural place to look for no L-root is the beginning of the string, and allwe need to guarantee is that bd, the beginning
of the first block a

rad
ad , does not coincide with the beginning of the string—which is guaranteed by a condition on its length.

Lemma 10. Let ρd(n) be the largest number of runs over all strings of length n with exactly d distinct symbols, then ρd(n) ≤

n − d − 1 for n ≥ 2d + 1.

Proof. Consider a ≺-labelled run-maximal (d, n)-string x, that is x is a ≺-labelled string with ρd(n) runs. We need to show
that, besides the d positions corresponding to the bk’s, there is at least one position with no or a redundant L-root. The
consider the following two cases. Case (i) |uk| = 0 for k = 1, . . . , d. Then x = ardd ard−1

d−1 . . . ar22 ar11 and since n ≥ 2d + 1,
there is a k0 such that rk0 ≥ 3 and so at least one L-root is redundant. Case (ii) |uk0 | ≥ 1 for some k0. We show that without
loss of generality we can assume that k0 = d. Assume otherwise that |ud| = 0; that is, x = ardd ud−1a

rd−1
d−1 . . . u2a

r2
2 ar11 . Since

r(x) = r(x[rd + 1..n]x[1..rd]), we can move ardd to the end of the string and relabel the symbols and repeat this process until
we run into the first k0 such that |uk0 | ≥ 1. Thus, we have a run-maximal string with non-empty ud and so bd > 1 and so
the number of positions with no L-roots is at least d + 1. �

Lemma 11. Let ρd(n) be the largest number of runs over all strings of length n with exactly d distinct symbols, then ρd(n) ≤

n − d − 2 for n ≥ 2d + 5.

Proof. Consider a ≺-labelled run-maximal (d, n)-string x, that is x is a ≺-labelled string with ρd(n) runs. Besides the d
positions bk’s, we need to exhibit at least two additional positions with no or redundant L-roots.
The case when |uk| = 0 for k = 1, . . . , d. Then is x = ardd ard−1

d−1 . . . ar22 ar11 and since n ≥ 2d + 5, there are k0, k1, k2, k3 and k4
such that rk0 + rk1 + rk2 + rk3 + rk4 ≥ 15 and so at least 5 L-roots are redundant.
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The case when |uk0 | ≥ 1 for some k0. As in the proof of Lemma 10, we can assume that k0 = d; that is |ud| ≥ 1, and thus
1 < bd < bd−1 < · · · < b2 < b1 are positions with no L-roots. Therefore, to complete the proof, we need to exhibit one
additional position with no or a redundant L-root.
We can assume that rk ≤ 2 for k = 1, . . . , d as otherwise one additional L-root would be redundant and the proof would be
completed. Definem as the smallest k such that |uk| ≥ 1, i.e. x = uda

rd
d . . . umarmm arm−1

m−1 . . . ar22 ar11 —note that suchm ≤ dmust
exist as |ud| ≥ 1. Let aℓ the last symbol of um and note that ℓ ≤ m − 1: if ℓ > m, then aℓ would be occurring past the block
of its last occurrence arℓℓ which is to the left of um, which is not possible; if ℓ = m, then it should be a part of the block armm .
Thus, x = . . . µai

ℓa
rm
m arm−1

m−1 . . . arℓ+1
ℓ+1 a

rℓ
ℓ arℓ−1

ℓ−1 . . . ar22 ar11 for some µ ≠ aℓ and some i ≥ 1. Since i ≥ 3 would give at least one
redundant L-root in one of the positions of ai

ℓ, we can assume that i is at most 2.
We show that either there is no L-root at the beginning of ai

ℓ or there is a position before the beginning of ai
ℓ with no L-root.

To do so, we assume that there is an L-root at the beginning of ai
ℓ and find a prior position with no L-root.

Consider that the L-root at the beginning is of ai
ℓ that corresponds to case (ii)(2) of Observation 7. Since the L-root starts

with ai
ℓ followed by am and ℓ < m, and so aℓ ≺ am, it follows that it is Lyndon with respect to ≺, and so the trailing square

of the run must be followed by a symbol smaller than aℓ and so it must reach past the block arℓℓ . If it reached past arℓ−1
ℓ−1 , the

suffix starting with aℓ−1 would be lexicographically smaller than the L-root that starts with aℓ—hence a contradiction. Thus,
it must actually end inside the block arℓ−1

ℓ−1 . Then the suffix starting with aℓ−1 would be lexicographically smaller than the
L-root—hence a contradiction.
Therefore, the L-root must correspond to case (ii)(1) of Observation 7, and there are only 4 possibilities for an L-root to occur
at the beginning of ai

k (the root is underlined):
case (i, rℓ) = (1, 1): x = . .. .(armm arm−1

m−1 . .arℓ+1
ℓ+1 aℓ)(a

rm
m arm−1

m−1 . .arℓ+1
ℓ+1 aℓ)a

rℓ−1
ℓ−1 . .ar22 ar11  

um

case (i, rℓ) = (1, 2): x = . .. .(armm arm−1
m−1 . .arℓ+1

ℓ+1 aℓ)(a
rm
m arm−1

m−1 . .arℓ+1
ℓ+1 aℓ)aℓa

rℓ−1
ℓ−1 . .ar22 ar11  

um

case (i, rℓ) = (2, 1): x = . .. .(aℓa
rm
m arm−1

m−1 . .arℓ+1
ℓ+1 aℓ)(aℓa

rm
m arm−1

m−1 . .arℓ+1
ℓ+1 aℓ)a

rℓ−1
ℓ−1 . .ar22 ar11  

um

case (i, rℓ) = (2, 2): x = . .. .(armm arm−1
m−1 . .arℓ+1

ℓ+1 aℓaℓ)(a
rm
m arm−1

m−1 . .arℓ+1
ℓ+1 aℓaℓ)a

rℓ−1
ℓ−1 . .ar22 ar11  

um

We show that in all four cases, there is no L-root at the beginning of the first arℓ+1
ℓ+1 (denoted in bold). First note that if there

were an L-root, it would have to contain the aℓ that follows the block arℓ+1
ℓ+1 , so the L-root would have to be determined by

≺
−1. This excludes case (ii)(1) of Observation 7 as the next available aℓ+1 is not followed by a bigger symbol. Thus, if there

were an L-root, it would correspond to case (ii)(2) of Observation 7 and then the L-root would have the same length as the
L-root starting at the beginning of ai

ℓ as it would span from the first arℓ+1
ℓ+1 to the next arℓ+1

ℓ+1 , hence they would both belong to
the same run as they overlap—hence a contradiction.
We showed that there cannot be an L-root starting at the beginning of arℓ+1

ℓ+1 . The last step is to show that the beginning of
arℓ+1

ℓ+1 does not coincide with the beginning of the string. The only cases for which the beginning of arℓ+1
ℓ+1 is the beginning of

the string correspond to (i, rℓ) = (1, 1), (1, 2), or (2, 2) and ℓ + 1 = m = d, but these cases cannot occur if n ≥ 2d + 5 as
detailed below:
case (i, rℓ) = (1, 1) and ℓ + 1 = m = d: x = (ardd ad−1)(a

rd
d ad−1)a

rd−2
d−2 . . . ar22 ar11  

ud
implying n = 1 + 2rd + rd−1 + . . . + r1 ≤ 3 + 2d,

case (i, rℓ) = (1, 2) and ℓ + 1 = m = d: x = (ardd ad−1)(a
rd
d ad−1)ad−1a

rd−2
d−2 . . . ar22 ar11  

ud
implying n = 1 + 2rd + rd−1 + . . . + r1 ≤ 3 + 2d,

case (i, rℓ) = (2, 2) and ℓ + 1 = m = d: x = (ardd ad−1ad−1)(a
rd
d ad−1ad−1)a

rd−2
d−2 . . . ar22 ar11  

ud
implying n = 2 + 2rd + rd−1 + . . . + r1 ≤ 4 + 2d. �
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