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We present a combinatorial structure consisting of a special cover of a string by squares.
We characterize the covering property of run-maximal strings, i.e. strings achieving the
maximal number of runs. The covering property leads to a compression scheme which is
particularly efficient for run-maximal strings. It also yields a significant speed improvement
in the computer search for good run-maximal string candidates. The implementation of the
search and preliminary computational results are discussed.
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1. Introduction

The concept of run, a maximal fractional repetition in a string, was introduced in 1989 by Main [15]. The term run was
coined by in 1997 by Iliopoulos, Moore, and Smyth [12]. Though there may be at most O (n log n) repetitions in a string
[1], it was hoped that the more concise notation of runs would eliminate the need to list all repetitions. Kolpakov and
Kucherov [14] showed in 1999 that there are at most O (n) runs in a string.

Let r(x) denote the number of runs in a string x, and let ρ(n) = max{r(x): |x| = n}. Several authors formulated conjec-
tures on the behavior of ρ(n) and the nature of run-maximal strings, i.e. strings of length n achieving ρ(n): (i) ρ(n) � n
[14], (ii) ρ(n + 1) � ρ(n) + 2 [8], and (iii) there is a binary string x of length n so that ρ(n) = r(x) for any n > 2 [22].
These conjectures are substantiated by computational results including the determination of run-maximal binary strings
up to length 60 by Kolpakov and Kucherov [13], and for all strings up to length 33 by Puglisi [18], and 35 by Franek and
Smyth [9]. Though none of these conjectures have been settled yet, the lower and upper bounds for ρ(n) have come asymp-
totically quite close following a series of tightenings of the upper bound [2,4,19,20] and lower bound [8,10,17]. The current
best lower and upper asymptotic bounds are 0.944575n � ρ(n) � 1.029n, see [3,21]. Additional upper bounds for microruns,
i.e. runs with a bounded period, can be found in [2,4,6,11].

The aim of this note is to describe strings that admit the maximum number of runs for their length in structural and
combinatorial terms. We show that a run-maximal string has either an R-cover or exactly one single weak point, and satisfies
the density conditions. This approach yields an effective compression scheme for strings with R-covers, in particular for run-
maximal strings, and can be used to achieve a significant reduction of the search space in the computer search for good
run-maximal string candidates.

Definitions and notions which are used in the proof of Theorem 1, given in Section 3, are introduced in Section 2.
Section 4 discusses the compression/decompression scheme for R-covered strings, while Section 5 expands on this to give
a simple description of a search strategy for good candidates for run-maximal strings. A C++ implementation of the search
program and the results are discussed. Section 6 gives a conclusion and discusses future research directions.
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2. Definitions and preliminaries

The alphabet of a string x is the set of symbols occurring in x and is denoted by A(x). A triple (s, p, e) encodes a
repetition in x if x[s + i] = x[s + p + i] = · · · = x[s + (e − 1)p + i] for 0 � i < p and e � 2. In this encoding, s is the starting
position, p is the period, e is the exponent or power, and x[s..s + p − 1] is the generator of the repetition. A maximal repetition
is such that its generator is irreducible, i.e. not a repetition, and can be extended neither left nor right, i.e. (s− p, p, e+1) and
(s, p, e + 1) are not repetitions respectively. Note, that in the literature the term primitive is also used instead of irreducible
and such repetitions are then referred to as primitively rooted.

The quadruple (s, p, e, t) encodes a run in a string x if (i) for every 0 � i � t , (s+ i, p, e) is a maximal repetition, (ii) either
s = 1 or x[s − 1] �= x[s + p − 1], and (iii) either s + ep + t > n or x[s + t] �= x[s + ep + t]. The symbols s, p, e, and the generator
are defined as they are in repetitions, while 0 � t < p is the tail, the length of the proper prefix of the generator at the end
of the run. The leading square of the run (s, p, e, t) refers to the first two copies of the generator, the repetition (s, p,2), and
the trailing square of the run refers to the repetition (s + (e − 2)p + t, p,2). Note that in a common abuse of language, we
do not distinguish between the encoding of a repetition or run, and the string it represents.

We consider the structure of strings, and in particular run-maximal ones, in terms of R-covers. The set of squares {Ri =
(si, pi,2): 1 � i � m} is an R-cover of a string x if it satisfies the following 4 conditions:

(i) each Ri is a leading square of a run in x, and
(ii) for every Ri and Ri+1, 1 � i < m, si < si+1 and si + 2pi − 1 < si+1 + 2pi+1 − 1, and si+1 � si + 2pi , i.e. Ri precedes Ri+1

and either the two squares overlap or are adjacent, and
(iii) for any run (s, p, e, t) in x and its leading square (s, p,2), there is an 1 � i � m so that si � s < s +2p −1 � si +2pi −1,

i.e. every leading square of any run is covered, and
(iv) for all 1 � j � n, there exists an 1 � i � m such that si � j � si + 2pi − 1, i.e. every position in the string is covered by a

square of the R-cover.

If a string has an R-cover, it can be found by the following algorithm:

Algo1 Set R1 to the leading square of the run with s = 1 with the longest period. Assume to have {Ri: i � k}. Let D
be the ending of Rk . If D = n, we are done. Assume that position D + 1 is covered by the leading square of some run.
Among all leading squares which contain D + 1, consider those with the leftmost start, and choose the one with the
largest period. Set Rk+1 to this leading square, and repeat.

If Algo1 fails, the string does not have an R-cover. If a position j in a string x is not contained within the leading square
of any run, we term such a position a weak point. It follows that r(x[1.. j − 1]) + r(x[ j + 1..n]) = r(x[1..n]). Thus, a string
without a weak point has an R-cover, and a string with an R-cover does not have a weak point.

3. On the structure of run-maximal strings

In this section we show that a run-maximal string either has an R-cover, or has exactly one weak point and then the
substrings on the left or the right of this weak point either have an R-cover or are empty. In addition a run-maximal string
satisfies the density conditions.

Theorem 1. Let x = x[1..n] be a run-maximal string without an R-cover. Then x has a single weak point at position 1 � j � n and the
substrings x[1.. j − 1] and x[ j + 1..n] have an R-cover or are empty.

Proof. As discussed after the presentation of Algo1, a string has an R-cover if and only if it does not contain a weak point.
So, all we need to prove is that a run-maximal string can contain at most one weak point. Assume a run-maximal string x
with two weak points, j1 < j2. Let C �= D1 �= D2 /∈ A(x) be three distinct new symbols. If x[1.. j1 − 1] is non-empty, replace
in it every occurrence of the symbol x[ j1 − 1] by D1, creating a string u, otherwise set u to ε. Similarly, if x[ j2 + 1..n] is
non-empty, replace in it every occurrence of the symbol x[ j2 + 1] by D2, creating a string v , otherwise set v to ε. It follows
that r(x) = r(ux[ j1.. j2]v) = r(ux[ j1]x[ j1 +1.. j2 −1]x[ j2]v) = r(ux[ j1 +1.. j2 −1]vx[ j1]x[ j2]) = r(ux[ j1 +1.. j2 −1]vCC)−1,
contradicting run-maximality of x. �

There are examples of run-maximal strings containing a weak point. Note that having run-maximal strings of length n
with a weak point is equivalent with ρ(n − 1) = ρ(n). There are several run-maximal strings with weak points at the end
or the beginning, for instance, aababaababbabaababaaa is a run-maximal string of length 21 with 15 runs, see [9], with a
weak point at the last position. There are some run-maximal strings of length at most 5 with weak points in the interior
of the string, e.g. aabaa, but we do not know if there are any longer ones. In the complete set of run-maximal strings [9] of
length up to 35, there no examples of run-maximal strings of length at least 6 with weak points in the interior.
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Fig. 1. Two possible positions of Rk and R j .

Proposition 2. A run-maximal string x = x[1..n] satisfies the density conditions, i.e. for any 1 � k < n, the number of runs starting
at positions 1 . . .k or ending at positions n − k + 1 . . .n must be at least ρ(k).

Proof. The validity of the density condition is straightforward: if removing x[1..k] destroys fewer than ρ(k) runs, we can
replace x[1..k] with a run-maximal string y of length k, giving r(yx[k + 1..n]) > r(x) contradicting run-maximality of x.
Similarly for removing x[n − k + 1..n] from the end. �

Not surprisingly, strings which are believed to be nearly run-maximal frequently have R-covers consisting of few ele-
ments relative to the length of the string. For example, considering such strings given in [16], the string of length 125 has
an R-cover with 4 elements, while the one with length 184 973 has an R-cover with just 18 squares.

4. A compression/decompression scheme for strings with R-covers

The R-covers allow for an effective compression scheme with an estimated 40–50% or better reduction rate. The com-
pression scheme somehow resembles Lempel–Ziv coding, but it is not meant to be a general compression scheme and
would fail for many strings. The estimation of the reduction rate is based simply on the fact that we only record half of
each square, and often even less.

The compression consists of pairs (x, y) where x is an integer in the range 1 . . .n and y is either a string or an integer in
the range 1 . . .n. Consider a string x and its R-cover {Ri = (si, pi,2) | 1 � i � m}. We mark R1 as processed and set x1 = 1
and y1 = the generator of R1. Let us suppose that we have already processed R1 . . . Rk and have built a partial compression
{(x1, y1) · · · (xr, yr)}. If k = m we stop. Otherwise we find the maximal j so that k < j � m and s j � sk + 2pk , mark all
squares Rk+1 . . . R j as processed, set xr+1 = s j and determine yr+1. If the whole generator of R j is a substring of Rk , as
shown in the left diagram of Fig. 1, we set yr+1 = p j to the length of the generator of R j . If the generator is not determined,
as in the right diagram of Fig. 1, we set yr+1 to the suffix of the generator of R j that is not covered by Rk , i.e. the shaded
part of the diagram.

For example, consider the binary string aabaababaababbabaababaababbabaababb, of length 35. The R-cover is built from
the runs (1,3,2,1), (2,13,2,7), (19,8,2,1), and (34,1,2,0). The compression of the string is calculated through the fol-
lowing 5 steps:

(i) the first period is 3, and the generator is aab. So we have {(3,aab)},
(ii) the start of the second square is 2, which is recorded. In the generator abaababaabbabb of the second square, the first

5 characters are determined, so only abaababb is needed. The compression reads {(3,aab), (2,abaababb)},
(iii) the third square starts at position 19 and its period is 8. As the entire generator is covered by the previous square, the

compression is {(3,aab), (2,abaababb), (19,8)},
(iv) the final square starts at position 34. Since its period is 1, once again its generator is completely covered by the previous

square, and so the compression stands at {(3,aab), (2,abaababb), (19,8), (34,1)},
(v) there are no more squares, so the compression is complete and given by {(3,aab), (2,abaababb), (19,8), (34,1)}.

The decompression scheme is simply the reversal of this process. At each step, we create an initial part of the next generator
from the pre-existing string, fill it with the completion if it is not already determined, and extend the generated string.

It is easy to incorporate into the above compression/decompression scheme a single weak point. Thus the compression/
decompression scheme for strings with at most one weak point can be applied in particular to run-maximal strings.

5. An efficient search strategy for good candidates for run-maximal strings and its implementation

We can exploit the R-cover property and the density conditions of run-maximal strings to search for promising candi-
dates for run-maximal strings in an incremental fashion. Let us assume that we know ρ(i) for i � n. Our goal is to generate
quickly and efficiently a sufficiently small and complete pool of candidates for run-maximal strings of length n + 1. By
complete we mean a set of strings that contains all run-maximal strings of length n + 1, and by sufficiently small we mean a
set that is of the same size magnitude as the set of the run-maximal strings.
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(i) Consider all possible lengths for the period p1 of R1 = (1, p1,2), 1 � p1 � n+1
2 . For each of these lengths, we must

generate all possible irreducible generators, which we then use to build the first square of the partial R-cover.
(ii) If the union of all squares in the R-cover generated so far has the desired length, we output it if it satisfies the density

conditions for the last square of the R-cover (for the previous squares in the R-cover the density conditions are satisfied
by the virtue of the construction of the R-cover).
Otherwise, assume squares Ri for 1 � i � k have been handled. sk+1, the start of the next square Rk+1, must fall within
the range sk < sk+1 � sk + 2pk . We consider each such position where 1 . . . (sk+1 − 1) satisfies the density conditions.

(iii) At each position sk+1, we consider the periods pk+1 such that sk + 2pk < sk+1 + 2pk+1 � n + 2. If the generator of the
new square is completely covered by Rk , we check whether the second copy can be placed without a conflict with the
previously generated part of the string. If a part of the generator is not covered, we consider all possible extensions
such that the full generator is irreducible.

Steps (ii) and (iii) of the process repeat until some Rk exactly fits the required string length. The resulting string x is a
candidate for being run-maximal of length n + 1. Note, that by the virtue of applying the density conditions during the
construction it is guaranteed that r(x) � ρ(n).

Before we can add another square to a partial R-cover, we must make sure that this does not create an intermittent
square that would destroy the R-cover property. Let us illustrate this problem with a partial R-cover aa starting at position
1, babbab at position 3, and abab at position 7, and we want to add bb at position 10. This would create a string aababbababb
with an intermittent square ababbababb at position 2. Thus we must not allow adding bb as the resulting set of squares
would not be an R-cover. On the other hand, consider aaabaaab and a new square aba we would like to add at position 7.
This would create a string aaabaaabab with an intermittent square aabaaaba at position 2. This time it is alright, as this
intermittent square is a right-shift of the first square aaabaaab and thus the R-cover property is not violated.

The starting position of a new square to be added to a partial R-cover vis-à-vis its last square is a key issue. The starting
position must be controlled by the density condition: let x be the string obtained by unification of all the squares in the
partial R-cover. Let cut be the first position of x in which the density condition fails. It is clear, that for a hopeful extension
of the partial R-cover with a new square, this new square must start before or at the cut . This approach yields a very
significant reduction of the search space due to the pruning of the possible continuation branches of the search based the
conditions described above.

We implemented this search strategy in C++. The program and additional information can be found at [5]. For fast
computation of runs in a string, we used crochB7 available at [5] and discussed in [7].

Since all run-maximal strings of size up to 35 are available at [9], for illustration and as a proof of concept we used
the program to generate all potential candidates for run-maximal binary strings of length 35, assuming to know ρ(n) for
n � 34. The program was compiled using Visual C++ 2008 Express Edition and generated the set of candidate
strings in 19 minutes and 5 seconds on a 32-bit Intel Core2 Duo CPU E7400 running at 2.80 GHz with 2 GB memory under
Windows 7. The generated set of candidates contained 36 strings all of which exhibit at least ρ(34) runs by the virtue of the
generating procedure as described above. Not surprisingly, the set contained all 18 run-maximal strings of length 35. Thus
a simple search through this space identifies easily all the run-maximal strings. This speed underscores the very significant
speedup this search technique provides, as essentially a brute force approach used to compute all run-maximal strings of
length up to 35 in [9] entailed many weeks of computations.

The proposed search scheme could also be used to investigate the conjectured bound ρ(n) � n. For instance, let us
consider the conjecture for binary strings: r(x) � |x|. Consider n0, the length of a shortest run-maximal string x such that
r(x) > n0. It follows that x cannot have a weak point as otherwise r(x) could be expressed in terms of substrings of x
the weak point would separate and, since these substrings satisfy the conjecture, we would have r(x) � n0. Thus x must
have an R-cover. Moreover, the R-cover could not have two adjacent squares, as again we could reduce it to shorter strings
satisfying the conjecture. Thus this approach could be used to further computationally substantiate the conjecture, or exhibit
a counterexample, if any, with the additional speedup of not allowing adjacent squares in the R-cover.

6. Conclusion and further research

We showed that run-maximal strings are completely covered with a single R-cover, or two disjoint R-covers separated by
a single weak point. This leads to an efficient compression scheme, in particular for run-maximal strings, and an improved
method of searching for good candidates for run-maximal strings. The implementation of the search indicates a highly
significant reduction of the search space and the consequent speedup of the search. The preliminary computations for
strings of length up to 35 indicate that the size of the set of R-covered strings satisfying the density condition is quite
close to the size of the set of run-maximal strings, contains all the run-maximal strings, and hence is a good pool of the
candidates.

We hope that the R-cover structure may be further refined, and hypothesize that sufficiently long run-maximal strings
never contain a weak point in their interiors. Further research includes a parallelization of the search algorithm and the
determination of ρ(n) for higher entries.
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