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Crochemore and Rytter introduced in 1995 a structural lemma on three squares starting 
at the same position. This influential lemma has been used by many researchers in the 
field of periodicities in strings. In particular, Fraenkel and Simpson used it in 1998 to 
obtain a universal upper bound for the maximum number of distinct squares occurring 
in a string. We present a generalization of Crochemore and Rytter’s lemma by exploiting 
the combinatorics of two squares starting at the same position.

© 2015 Published by Elsevier B.V.

1. Introduction

Crochemore and Rytter [3] introduced in 1995 the following Lemma 1.

Lemma 1. (See [3].) Let u2 �= v2 be proper prefixes of w2 and let u, v, and w be primitive, then |u| +|v| ≤ |w|.

Lemma 1 has been used by many researchers including Kolpakov and Kucherov [9], Stoye and Gusfield [12], Fan, Puglisi, 
Smyth, and Turpin [5], Simpson [11]. Lemma 1 was essential for the 1998 result by Fraenkel and Simpson [7] giving a 
universal upper bound of 2n for the number of distinct squares in a string of length n. Note that for the problem of distinct 
squares, every type of square is only counted once, i.e. the types, rather than the occurrences, are counted. For illustration, 
aabaab contains the following three underlined squares aabaab, aabaab and aabaab while the number of distinct squares 
is 2: aa and aabaab. Ilie [8] provided in 2005 an alternate proof of the main theorem of [7] not directly using Lemma 1. 
Noticing that the proof of Lemma 1 by Crochemore and Rytter only requires the primitiveness of the shortest square, 
Fraenkel and Simpson [7] proposed the following strengthening referred to as Three-prefix-square Lemma in [2] where 
additional context and references can be found.

Lemma 2. (See [7].) Let u2 �= v2 be proper prefixes of w2 and let the shorter of the two strings u and v be primitive, then |u| +|v| ≤ |w|.

Fraenkel and Simpson illustrated the necessity of the primitiveness for the shortest square with the following example: 
u = a2, v = a4, and w = a5. We present a further strengthening based on the recently investigated structural properties of 
two squares starting at the same position, see [1,4]. The proof of Lemma 3 is given in Section 3 not to impede the clarity 
of the exposition.
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Lemma 3. Let u2 �= v2 be proper prefixes of w2 , then |u| +|v| ≤ |w| unless u, v, and w have the same primitive root.

Note that Lemma 3 implies that if |u| +|v| > |w|, then u, v , and w have the same primitive root r and thus u = ri , v = r j , 
and w = rk where 1 ≤ i < j < k and k < i + j. In other words, the type of the example given by Fraenkel and Simpson is 
essentially unique. The following Corollary 4 illustrates that Lemma 3 is a generalization of Lemma 2.

Corollary 4. Let u2 �= v2 be proper prefixes of w2 and at least one of u, v or w be primitive, then |u| +|v| ≤ |w|.

Proof. Let us assume by the way of contradiction that |u| +|v| > |w|. For the sake of simplicity assume that |u| < |v|. Then 
by Lemma 3, u, v , and w have the same primitive root r. Thus, u = ri for some i ≥ 1, v = r j for some j > i ≥ 1 as |v| > |u|, 
and w = rk for some k > j ≥ 2 – and therefore k ≥ j +1 – as |v| < |w|, and k < i + j as |w| < |u| +|v|. Therefore, neither v nor 
w is primitive, and so u must be primitive forcing i = 1. It follows that k < i + j = 1 + j but also k ≥ j +1, a contradiction. �
2. Preliminaries and notations

For a string x, we use the indexing from 1, i.e. x[1] refers to the first symbol of x, x[2] the second symbol of x etc. The 
string x = x[1 . . n] is a sequence of n symbols and the length, also called size, of a string x is denoted by |x|. The same range 
notation is used for substring, also called factor, i.e. x[i . . j] refers to the string consisting of x[i]x[i +1] . . . x[ j]. The string of 
length 0 is called the empty string. Given a string x = x[1 . . n] and 1 ≤ i ≤ n, the substring x[1 . . i], respectively x[i . . n], is 
called a prefix, respectively suffix, of x and we speak of a proper prefix, respectively proper suffix, if i �= n, respectively i �= 1. 
For an integer n ≥ 2, the nth power of a string x, denoted xn , is a concatenation of n copies of x. In particular, x2 is referred 
to as a square. A string x is primitive if it is not a power of at least 2 of some non-empty string. For a string x, the unique 
shortest primitive u so that x = uk for some integer k ≥ 1 is called the primitive root of x. For two substrings y and z of x, 
lcs(y, z) refers to the length of the longest common suffix of y and z, while lcp(y, z) refers to the length of the longest 
common prefix of y and z.

A right shift by one position of a substring x[i . . j] is the substring x[i +1 . . j +1]. The shift is referred to as cyclic, if 
x[i] = x[ j +1]. In such case, we say that the substring x[i . . j] can be cyclically shifted one position to the right or right cyclically 
shifted by one position. A substring x[i . . j] can be cyclically shifted right by k positions if each of the substrings x[i . . j], . . . , 
x[i +k −1 . . j +k −1] can be cyclically shifted by one position to the right. For instance, for x[1 . . 5] = abaaa, the substring 
x[1 . . 2] = ab can be cyclically shifted right by 1 position, but not by 2 positions; similarly x[1 . . 3] = aba can be cyclically 
shifted right by 1 position, but not by 2 positions; if x[1 . . 5] = aabaa, then x[1 . . 3] = aab can be cyclically shifted by 2 
positions to the right while x[1 . . 2] cannot be cyclically shifted by 3 positions.

Similarly, a left shift by one position of a substring x[i . . j] is the substring x[i −1 . . j −1]. The shift is referred to as 
cyclic, if x[i −1] = x[ j]. In such case we say that the substring x[i . . j] can be cyclically shifted one position to the left or left 
cyclically shifted by one position. A substring x[i . . j] can be cyclically shifted left by k positions if each of the substrings x[i . . j], 
. . . , x[i −k +1 . . j −k +1] can be cyclically shifted by one position to the left. Strings x and y are conjugates if x = uv for 
some strings u and v and y = vu. Equivalently, x is a rotation of y or that y is a rotation of x. If either |u| = 0 or |v| = 0, 
we speak of a trivial rotation. Note that a left cyclic shift of x[i . . j] is a rotation of x[i . . j], i.e. they are conjugates, similarly 
for a right cyclic shift.

The notion of double squares and their factorization can be traced to Lam [10], and was further investigated and gener-
alized by Deza, Franek, and Thierry [4] and by Bai, Franek, and Smyth [1].

Definition. A double square (u, v) consists of a square u2 that is a proper prefix of a square v2. A double square (u, v) is 
balanced if u and v are proportional; that is, if |v| < 2|u|.

Lemma 5 (Two-square factorization lemma). (See [1].) Given a balanced double square (u, v), there is a unique primitive string u1
such that u = ue1

1 u2 and v = ue1
1 u2ue2

1 where u2 is a unique, possibly empty, proper prefix of u1 and e1, e2 are unique integers such 
that e1 ≥ e2 ≥ 1. Moreover,

(a) if |u2| = 0, then e1 > e2;
(b) |u2| > 0 if and only if v is primitive;
(c) if u is primitive, then |u2| > 0;
(d) if v2 is a prefix of a string x and there is no other occurrence of u2 in x, then |u2| > 0.

Given a balanced double square (u, v), the unique 4-tuple (u1, u2, e1, e2) yielded by Lemma 5 is referred to as the 
canonical factorization of the double square (u, v) and is denoted by (u, v : u1, u2, e1, e2). See the following illustration of 
Lemma 5 and [1] for a proof.
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Lemmas 6 and 7 are considered folklore and are both consequences of the Periodicity Lemma [6], and thus presented here 
without a proof. However, the interested reader may find their proofs in [1] and a more detailed treatment in [2]. Lemmas 6
and 7 are among the key tools to deal with the canonical factorizations of balanced double squares.

Lemma 6 (Synchronization principle). The primitive string x occurs exactly p times in x2xp x1 where p is a non-negative integer and 
x1 is a proper prefix of x and x2 a proper suffix of x.

Thus, a primitive string is its only conjugate and is not equal to any of its non-trivial rotations. In addition, any rotation 
or right or left cyclic shift of a primitive string is also primitive.

Lemma 7 (Common factor lemma). Consider strings x and y where x1 is a proper prefix of x, x2 a proper suffix of x, y1 is a proper prefix 
of y, and y2 a proper suffix of y. If for non-negative integers p and q, x2xp x1 and y2 yq y1 have a common factor of length |x| +|y|, 
then the primitive root of x and the primitive root of y are conjugates.

The notion of inversion factor was introduced in [4]: let (u, v : u1, u2, e1, e2) be a canonical factorization of a balanced 
double square (u, v) and let u2 denote the suffix of u1 such that u1 = u2u2. The inversion factor is defined as u2u2u2u2. As 
shown in [4], the inversion factor has only two occurrences in v2 as indicated in bold below:

v2 = (u2u2)
e1 u2(u2u2)

e1+e2 u2(u2u2)
e2 =

(u2u2)
e1−1u2u2u2u2u2(u2u2)

e1+e2−2u2u2u2u2u2(u2u2)
e2−1

Moreover, as shown in [4], for a balanced double square (u, v : u1, u2, e1, e2)

0 ≤ lcs(u2u2, u2u2) + lcp(u2u2, u2u2) ≤ |u1|−2.

3. Proof of Lemma 3

Let u �= v , and u2 and v2 are both proper prefixes of w2. Lemma 3 states that
{

u, v and w have the same primitive root
}

or
{ |u|+|v| ≤ |w| }

. (S)

Without loss of generality, we can assume that |u| < |v|.
If 2|v| ≤ |w|, then |v| +|u| < |w| as |u| < |v|, and thus (S) holds. Therefore, we can assume that |w| < 2|v|; that is, (v, w)

is a balanced double square and thus admits a canonical factorization (v, w : v1, v2, p1, p2) by Lemma 5. We consider the 
following cases.

1. Case when u and v are not proportional, i.e. 2|u| ≤ |v|. First we prove that |u| ≤ |v1|: assuming |u| > |v1|, then u2 is a 
prefix of v = v1

p1 v2, and thus u2 and v1
p1 v2 have a common factor of length |u| +|v1|, and by Lemma 7, |u| ≤ |v1|, 

a contradiction with our assumption. Since we just showed that |u| ≤ |v1| and since w = v v1
p2 , it follows that |w| =

|v| +|v1
p2 | ≥ |v| +|v1| ≥ |v| +|u| and thus (S) holds.

2. Case when u and v are proportional, i.e. |v| < 2|u|. Then (u, v) is a balanced double square and thus admits by Lemma 5
a canonical factorization (u, v : u1, u2, e1, e2).
(i) Case when |u2| = 0. Then e1 > e2, u = u1

e1 , and v = u1
e1+e2 . Let us assume that |w| < |u| +|v| = (2e1+e2)|u1|. Then 

w2 and u1
2e1+2e2 have a common factor of length |w| +|u1|, and by Lemma 7 the primitive root of w is a conjugate 

of u1, i.e. equals u1. Thus, u, v , and w all have the same primitive root, and thus (S) holds.
(ii) Case when |u2| > 0. Let w[1] refer to the first occurrence of w and w[2] to the second. First, we have to show that 

w[1] does not end in the first u1 of u1
e1+e2 . If it did, then it would contradict Lemma 6 as w[1] and hence w[2] has 

the primitive u1 as a prefix as indicated by the following diagram: 

Thus, w[1] must end somewhere past the first u1 of u1
e1+e2 :
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As a consequence, w[1] contains the first inversion factor of u1
e1 u2u1

e1+e2 u2u1
e2 exactly at a distance of |u1

e1−1u2|
from the beginning. It follows that w[2] must contain an occurrence of the inversion factor at exactly the same 
distance from the beginning. If it were the second inversion factor, then the length of w would be exactly |v|
as it is the distance between the two occurrences of the inversion factor in w2, a contradiction. Thus, it must 
be an occurrence of the inversion factor past the second one. The first possible start of another occurrence of 
the inversion factor is the suffix u2 of u1

e1 u2u1
e1+e2 u2u1

e2 . If e1 = e2, then it is the case that w[1] = w[2] =
u1

e1−1(u2u2u2u2)u2
e1+e2−1u2 (see below) and then 

|w| = |u| +|v| as |u| = |u1
e1 u2| and |v| = |u1

e1+e2 u2|, thus (S) holds. If e1 > e2, then the occurrence of the inversion 
factor in w[2] must be at a distance u1

e1−1u2 from the beginning. By Lemma 6, the prefix u1
e1−1u2 of w[2] must 

align with u1
e2 or start in the last u1 of u1

e2 , and so w[1] must have u1
e1 u2u1

e1+e2 u2 as a prefix, again yielding 
|w| ≥ |u| +|v| (see below), thus (S) holds. 

or 

or

4. Conclusion

We presented a generalized version of the Crochemore and Rytter’s lemma on three squares starting at the same position. 
The generalization relaxes the condition on the shortest among u, v and w being primitive to a more general one, namely, 
that all three u, v and w do not have the same common primitive root. In particular, |u| +|v| ≤ |w| if at least one of u, v
or w is primitive. The proof is based on a different approach than the one used by Crochemore and Rytter – an approach 
using recent insights into the combinatorics of double squares.
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