
Reconstructing a Suffix Array

F. Franek & W. F. Smyth

Algorithms Research Group
Department of Computing & Software

McMaster University
Hamilton, Ontario
Canada L8S 4K1

e-mail: franek@mcmaster.ca, smyth@mcmaster.ca

Abstract. For certain problems (for example, computing repetitions and re-
peats, data compression applications) it is not necessary that the suffixes of a
string represented in a suffix tree or suffix array should occur in lexicographical
order (lexorder). It thus becomes of interest to study possible alternate order-
ings of the suffixes in these data structures, that may be easier to construct or
more efficient to use. In this paper we consider the “reconstruction” of a suffix
array based on a given reordering of the alphabet, and we describe simple time-
and space-efficient algorithms that accomplish it.

Keywords: suffix array, suffix tree, lexicographic order, alphabet, string

1 Introduction

We use a small example to introduce the main ideas. Consider the string

1 2 3 4 5 6

x = a b a a b $

whose suffix tree Tx is shown in Figure 1 (the conventional sentinel $ is a lexico-
graphically least letter introduced to ensure that every suffix of x is represented as a
leaf node of Tx).

n
�

�
�

�
�

�
�

P
P

P
P

P
P

PP

0
$ a b

6 n n1 1
�

�
�

H
H

H

ab$ b

3 n2

�
�

�

H
H

H

$ aab$

5 2
�

�
�

H
H

H
$ aab$

4 1

Figure 1: The suffix tree Tx of x = abaab

1

Paper Submitted to PSC

Ignoring the sentinel suffix, a preorder traversal of Tx allows the suffix array of x

to be read off in lexorder from the leaf nodes:

1 2 3 4 5

pos = 3 4 1 5 2
(1)

with the lengths (lcps) of the corresponding longest common prefixes (LCPs) read
off from the internal nodes:

lcp = 0 1 2 0 1. (2)

Let us call the usual suffix array (for example, (1)) the lexicographical suffix array

of x (LSA(x)), of course unique and well-defined for every string x on an ordered
alphabet. More generally, we may define a valid suffix array of x (VSA(x)) to be
any reordering of LSA(x) that can be obtained by reordering the subtrees of Tx, then
reading off the terminal nodes (except the sentinel suffix) in a preorder traversal. For
our example string x = abaab, there are actually 16 VSAs of x:

34152, 34125, 31452, 31425

41352, 41325, 14352, 14325

52341, 25341, 52314, 25314

52413, 25413, 52143, 25143

Observe that of course for a string x = x[1..n] of length n, there are altogether n!
permutations of LSA(x); in our example 16 out of the 5! = 120 permutations are
actually VSAs. Note that if all the letters of x are distinct, then there will be n!
distinct VSAs of x.

Finally we define a consistent suffix array of x (CSA(x)) to be a VSA that
is determined by an ordering (reordering) of the alphabet. In our example, there are
just two CSAs of x:

34152 (for $ < a < b) and 52413 (for $ < b < a).

In this paper we present algorithms to compute the CSA(x) determined by a specified
ordering of the alphabet, given the LSA. As explained below, we think of this research
as an initial step in gaining an understanding of how to compute a CSA or a VSA
directly, without intermediate steps that depend on the LSA or the suffix tree.

Suffix arrays (LSAs) were introduced in 1990 [MM90, MM93] as a more space-
efficient alternative to suffix trees; at the same time an O(n log n) algorithm was
described for their construction. In 1997 a linear-time suffix tree construction algo-
rithm was proposed [F97], effective in the normal case that the alphabet is indexed

— that is, essentially, a finite integer alphabet. In 2003, based on [F97], three differ-
ent groups of researchers independently discovered linear-time recursive algorithms to
compute the LSA [KA03, KS03, KSPP03], also on an indexed alphabet. It turns out,
however, that, largely as a consequence of their recursive nature, these algorithms are
generally slower in practice [PST05] than two other classes of LSA construction algo-
rithms whose worst-case behaviour is supralinear: direct comparison algorithms
and prefix doubling algorithms. Direct comparison algorithms make use of a pointer
copying method introduced in [BW94] to efficiently sort suffixes one letter at a time

2

Reconstructing a Suffix Array

[IT99, S00, MF04]; although their worst-case time requirement can therefore be as
much as Θ(n2 log n), they generally have low space requirements and execute very fast
in practice. On the other hand, prefix doubling algorithms make use of a technique
introduced in [KMR72] to roughly double the length of the suffixes sorted at each
step [MM93, LS99, BK03]; their worst-case time bound is thus only O(n log n) and
they also tend to execute quickly in practice. Of the algorithms tested in [PST05],
that of Manzini & Ferragina [MF04] appears to hold an advantage, both in the use
of space and time, over that of Burkhardt & Kärkkäinen [BK03] in second place, but
algorithms more recently described [SS05, M05] may be still more efficient.

The curious (to us, at least) fact is that to date the most efficient known way to
compute any VSA is to first compute the LSA(x). In [FSXH03] we have described
algorithms that essentially compute VSAs, but these algorithms are not as fast as the
best LSA construction algorithms, even though LSA construction in general requires
fewer conditions to be satisfied. It seems to us that VSA construction should be in
some sense easier than LSA construction, but as things stand the opposite is true.

In this paper we will suppose that LSA(x) has been computed for x = x[1..n]
based on an ordering (A, <) of the alphabet A. Then we show how to construct

CSA(x) = LSA′(x)

determined by a reordering (A, <′) of A. In Section 2 we describe two Θ(n)-time
algorithms to handle a special case that arose in a recent paper [FS05]: reverse

lexorder, where for any letters λ, µ ∈ A,

λ < µ⇐⇒ µ <′ λ. (3)

Section 3 presents an efficient algorithm for the general case: an arbitrary permutation
of the order of the alphabet. Finally, Section 3 presents conclusions and outlines future
work.

2 Reversing the Order of the Alphabet

As discussed in the Introduction, we assume that (3) holds, and we use LSA[1..n]
to denote the suffix array corresponding to (A, <), LSA′[1..n] for the suffix array
corresponding to (A, <′). Recall that a border of a string x is any proper prefix of x

that is also a suffix. We define the right border array β = β[1..n] of x as follows:
for every i ∈ 1..n, β[i] = j ⇐⇒ j is the length of the longest border of x[i..n]. β can
be computed in Θ(n) time and constant space using a straightforward variant of the
standard (left) border array algorithm [S03, ex. 1.3.10]. Observe that β[i] is the lcp
not only of u = x[nβ[i]+1..n] and v = x[i..n], but also of every suffix w of x that
lies between u and v in lexorder.

For technical reasons to simplify the presentation of the following lemmas and
algorithms, we modify slightly the array β: β[i] 6= 0 is not the length of the longest
border of x[i..n], but the index of the suffix of x that is the longest border, i.e.
β[i] = j 6= 0 if and only if x[j..n] is the longest border of x[i..n] (see Figure 2).

The algorithms for reverse lexorder are then a consequence of the following lem-
mas:

3

Paper Submitted to PSC

β[1]← 0;
for i← 1 to n−1 do

if β[n−i+1] = 0 then
c← 0

else
c← n+1−β[n−i+1]

while c > 0 and x[n−i] 6= x[n−c]
if β[n−c+1] = 0 then

c← 0
else

c← n+1−β[n−c+1]
if x[n−i] = x[n−c] then

β[n−i]← n−c
else

β[n−i]← 0

Figure 2: Computing β[1..n] for input string x[1..n]

Lemma 1 Let j = LSA[i] for some i ∈ 1..n.

(a) If β[j] > 0, then x

[

β[j]..n
]

<′
x[j..n];

(b) otherwise, if β[j] = 0, then

x[j..n] <′ min
1≤h<i

x

[

LSA[h]..n
]

. (4)

Proof If β[j] > 0, then x

[

β[j]..n
]

is a proper prefix of x[j..n], so that x

[

β[j]..n
]

<′

x[j..n]. If β[j] = 0, then for every h ∈ 1..i1, there exists a least nonnegative integer
qh ≤ min{nj +1, nLSA[h]+1} such that x

[

LSA[h]+qh

]

6= x[j +qh]. Thus by the
definition of LSA, x

[

LSA[h]+qh

]

< x[j+qh], and so, by the definition of <′, x[j+qh] <′

x

[

LSA[h]+qh

]

. Hence (4) holds. 2

Observe that every border of every suffix is represented by an entry in β and
so will be covered by Lemma 1. Observe further that the quantities qh introduced
in the proof for β[j] = 0 are actually lcp values for each pair of suffixes x[j..n] and
x

[

LSA[h]..n
]

.

Lemma 2 Let j1 = LSA[i1], j2 = LSA[i2], 1 ≤ i1 < i2 ≤ n. If β[j1] = β[j2] > 0,
then

x[j2..n] <′
x[j1..n].

Proof Since i1 < i2, x[j1..n] < x[j2..n]; since neither of these strings can be a prefix
of the other, the result follows. 2

Figure 3 shows the simplest algorithm that computes LSA′. The algorithm illus-
trates the fundamental idea of the process in a clear and simple way. We suppose
that the array β was computed in preprocessing, while the array NEXT[1..n] emu-
lates a singly-linked list equivalent to LSA′ that is constructed as the input LSA is

4

Reconstructing a Suffix Array

start← LSA[1];
for i← 2 to n do

j ← LSA[i]
if β[j] = 0 then

— by Lemma 1 (b) j goes to start of list
NEXT[j]← start; start← j

else
— by Lemmas 1 (a) & 2, insert j next to β[j]

j′ ← β[j]; temp← NEXT[j′]
NEXT[j′]← j; NEXT[j]← temp

Figure 3: Algorithm 1 — Computing LSA′ for Reversed Alphabet

scanned from left to right (in increasing lexorder): we will consistently use the word
transform to refer to the computation of NEXT from LSA (and vice versa). We
omit the straightforward for loop that transforms NEXT into LSA′.

— transform LSA into NEXT
start← LSA[1]
for i← 1 to n−1 do

NEXT[LSA[i]]← LSA[i+1]
NEXT[LSA[n]]← 0
compute β using memory storage of LSA
— reorder NEXT

prev ← start; cur ← NEXT[prev]
while cur 6= 0 do

if β[cur] = 0 then — cur goes to front
NEXT[prev]← NEXT[cur]; NEXT[cur]← start
start← cur

else — cur goes next to β[cur]
if NEXT[β[cur]] = cur then

prev ← cur
else

NEXT[prev]← NEXT[cur]; i← NEXT[β[cur]];
NEXT[β[cur]]← cur; NEXT[cur]← i

— transform NEXT to LSA′ using memory storage of β
i← 1; j ← start
for i← 1 to n do

LSA[i]← j; j ← NEXT[j]

Figure 4: Algorithm 2 — Computing LSA′ for Reversed Alphabet

Algorithm 1 has the disadvantage of using 2|x| words of working memory (the
arrays β and NEXT) for the input string x. Algorithm 2 (see Figure 4) is a bit more
elaborate; however, it is based on the same principles as Algorithm 1 and uses only
|x| words of working memory (for NEXT).
Thus

5

Paper Submitted to PSC

Theorem 1 Given LSA(x) for a string x = x[1..n], Algorithm 2 computes LSA′(x)
for a reversed alphabet in Θ(n) time using n words of working memory.

Proof By induction. Clearly for i = 1 the entries in NEXT are in <′ order. Suppose
that for arbitrary i ∈ 1..n1, the entries are in <′ order. By Lemmas 1 and 2, the
entries must still be in <′ order after LSA[i+1] has been processed. 2

We note that essentially the same algorithm applies to a morphism σ : A → B
from one ordered alphabet to another provided that for every distinct λ, µ ∈ A,
λ < µ⇐⇒ σ(µ) <′ σ(λ).

3 Permuting the Order of the Alphabet

In this section we describe an algorithm to compute LSA′(x) in the case of an arbitrary
reordering (A, <′) of the alphabetA. Alternatively, we may think of this reordering as
a permutation π : A → A where for every distinct λ, µ ∈ A, λ < µ⇐⇒ π(λ) <′ π(µ).

Essentially, our algorithm uses LSA(x) (in fact, as we shall see, any VSA(x) will
do) to simulate a reordering of the subtrees of the suffix tree Tx that is determined by
the reordering of the alphabet. In the simple example of Figure 1, the only possible
reordering (since |A| = 2, necessarily a reversal) would result from interchanging two
paths in the subtree represented by a and b as well as in the subtree represented by
aab$ and ab, yielding LSA′(x) = 52413.

It is instructive to consider the relationship between reversal and arbitrary re-
ordering. In Lemma 1, if we suppose that β[j] > 0, it is true also in the general case
that x

[

β[j]..n
]

<′
x[j..n]; however, Lemmas 1 (b) and 2 no longer hold, since it is

no longer possible to infer the order of x[j1..n] and x[j2..n] from the order in which
they occur in LSA(x). In other words, the set of suffixes that have the same LCP
x

[

β[j]..n
]

cannot simply be placed to the right of x

[

β[j]..n
]

— they must now be
sorted in <′ order based on positions β[j]+1, β[j]+2, . . . in each suffix.

Similarly, in the case that β[j] = 0, (4) no longer holds: we must relocate suffixes
by sorting in <′ order the ones that have the same LCP (occur in the same subtree
of Tx).

These comments imply that the array β is no longer useful in the general case,
whereas the lcp array (for example, (2)) becomes critical. Fortunately, like β, the lcp
array lcp[1..n] can be computed in linear time, either from the LSA [KLAAP01] or as
a byproduct of LSA construction: thus we assume throughout this section that it is
available. In fact, as noted above, since in the general case the LSA ordering provides
no information about the LSA′ ordering, the algorithm described in this section will
work just as well using any VSA(x) together with its corresponding (permuted) lcp
array.

Our algorithm reorders the suffixes of x beginning with those that share the
greatest lcp values, thus equivalent to a traversal of the suffix tree Tx upwards from
the deepest lcp nodes. We first outline the control structure that our algorithm uses
to accomplish this traversal, then go on to describe the details of its implementation.

The input LSA(x) (VSA(x)) and its corresponding input lcp array LCP1 are being
traversed from left to right in order to identify families. In simple terms, a family
is a set of nodes in the lis NEXTthat corresponds to a set of links to nodes that are

6

Reconstructing a Suffix Array

immediate children of an internal node of the corresponding suffix tree. These links
can be permuted provided that the links in all subtrees have been already sorted. If
the internal node that is the root of the subtree corresponds to lcp ℓ, we call the family
an ℓ-family. A stack STACK for tracking families is maintained by the algorithm;
if a value ℓ is on top of the stack, then an LCP[NEXT[ℓ]]-family starts at position
NEXT[ℓ] (for technical reason we do not store the beginning of the family on the
stack, but rather the previous node).

— input: x - string

— input: LSA- its suffix array

— input: LCP1- lcp array for LSA
— input: permutation p of the alphabet

NEXT[] — auxiliary array
STACK — stack for keeping track of families
Transform LSA to NEXT
Transform LCP1 to LCP using memory of LSA for LCP
use memory of LCP1 as memory for TAIL and initialize it
Initialize STACK and variables
while multipop()

Identify and Extract a family (using STACK)
Sort the family (using p)
Flatten the family
Verticalize the family

Sort the final 0-family
Flatten the final 0-family
Transform NEXT to LSA
Transform LCP to LCP1
— output: LSA sorted according to p
— output: LCP1 lcp of LSA

Figure 5: Outline of Algorithm 3 — General Reordering

The families are identified simply during the scan: as long as the values of LCP
increase, they are pushed on the stack as they represent beginnings of families. A
decreasing value indicates the end of the innermost family (i.e. the one on the top of
the stack). After the family is sorted, it is “verticalized”, so it is now represented as a
single node in the family it is nested in and the scan can continue. One would expect
to pop the stack once the innermost family is processed. However, the situation is a bit
more complex, and thus multipop() is employed to decide whether or not the stack
should be popped. The control stucture of the algorithm is shown in Figure 5. The
individual steps are described in detail below, making use of the following standard
routines: Push(s) pushes s on top of STACK, Pop() pops STACK, Top() obtains the
value on the top of the stack STACK without popping it, Top1() obtains the value
next to the top of STACK without popping it.

The data structures and variables

As shown in Figure 5, three arrays are used in addition to x, two of them input, only
one auxiliary. NEXT[1..n] emulates a singly-linked list of nodes, where each node

7

Paper Submitted to PSC

stores an integer value k representing the suffix x[k..n]. A variable start marks the
beginning of NEXT[]. For instance,

5 23 14

2 0 1 3 4
1 2 3 4 5

NEXTstart = 5 and represent

The array TAIL[n] represents the “verticalized” part of the list of nodes. For instance,

5

6

9

10

23

11

8

14

7

2 0 1 3 4
1 2 3 4 5

NEXT

start = 5 and

represent

6 7 8 9 10 11
9 0 11 10 0 0

0 0 8 7 6TAIL 10 7 11 0 0 0

The end of each “vertical” tail is reachable in two steps: TAIL[TAIL[k]] is the very
last member of the “vertical” tail starting at the node k. Other auxiliary variables
used are: cur for a “pointer” to the current node in NEXT[], prev for a “pointer” to
the previous node (if prev = 0, it means that cur = start). LE (left end) represents
the node to which the head of a family is attached (LE = 0 means that the head of
the family is start), RE (right end) represents the node to which the last member of
a family will point to (RE = 0 means that the last member of a family is the last
member of the NEXT list). Finally a variable type describes the type of family we
are processing, i.e. the lcp of all memebers of the family.

Transform input LSA to NEXT

Traverse LSA and fill in the entries in NEXT:
start← LSA[1];
for i← 1 to n−1 do

NEXT[LSA[i]]← LSA[i+1]
NEXT[n]← 0

Transform input LCP1 to LCP

Normally, LCP[i] represents the lcp of two neighbouring suffixes, x[LSA[i−1..n]] and
x[LSA[i]..n]]. But since during the sorting the mutual positions of suffixes can change,
we modify the usual meaning to: LCP[i] represents the lcp of x[LSA[i]..n]] and its
right neighbour. Thus, we traverse LCP1 and “shift” the values one position to the
left. Since LSA is no longer needed, we use its memory for LCP:

8

Reconstructing a Suffix Array

LCP[start]← LCP1[1];
for i← 1 to n−1 do

LCP[LSA[i]]← LCP1[i+1]
LCP[n]← 0

Initialize TAIL

Since LCP1 is no longer needed, we use its memory for TAIL. Since at the beginning
we have no “vertical” tails, all entries must be initialized to 0:

for i← 1 to n do
TAIL[i]← 0

Initialize STACK and variables

Start the traversal of NEXT and LCP. Keep traversing as long as LCP has value 0.
Push on STACK prev of the first non-zero node.

prev ← 0; cur ← start
while LCP[i] = 0

prev ← cur; cur ← NEXT[cur]
Push(prev)
type← LCP[cur]

Identify and Extract a family

Note that we are now inside a loop (see Figure 5), and thus the use of the term
continue means to transfer the flow of control to the top of the loop.

if LCP[cur] = type then
prev ← cur; cur ← NEXT[cur]; continue

if LCP[cur] > type then — a new family starts
Push(prev)
prev ← cur; cur ← NEXT[cur]; continue

if LCP[cur] < type then — a family ends
LE ← Top(); RE ← NEXT[cur]; NEXT[cur]← 0

Thus we have just identified an innermost family of type LCP[cur] starting at
NEXT[LE] and ending at cur. Note that we “severed” the link between cur and
RE (we “extracted” the family from the list NEXT).

Sort the family

Note that sorting the family according to the letter at position type is the same as
sorting links of an internal node of a suffix tree. We will discuss the actual sorting
separately. We are assuming that from refers to the head of the family, while to to its
last member. Prior to sorting the family, we must remember the LCP[to] value, thus
last← LCP[to]. After the sorting of the family, we must modify the LCP accordingly:

for i← from to to
if LCP[i] < type then

LCP[i]← type
LCP[to]→ last

9

Paper Submitted to PSC

Flatten the family

As indicated, some nodes in the NEXT list might have “vertical” tails. At this stage
we “flatten” the family so there are no “vertical” tails any more. The process is simple:
if NEXT[a] = b, then we make NEXT[a] to be the first element in the “vertical” tail,
while NEXT[c]← b, where c is the last element in the “vertical” tail. Thus:

for i← from to to
if TAIL[i] 6= 0 then

b← NEXT[i]; NEXT[i]← TAIL[i]
NEXT[TAIL[TAIL[i]]]← b
TAIL[TAIL[i]]← 0; TAIL[i]← 0

Verticalize the family

To prevent resorting or retraversing the family which just has been flattened during
the subsequent sort (of the family this family is nested in), we leave only the head of
the family in the NEXT list, and make the rest of the family into a “vertical” tail of
the head. Thus, in all subsequent sorts only the head will be used and thus further
traversal of the family is prevented.

TAIL[from] = NEXT[from]
NEXT[from]← 0
TAIL[TAIL[from]]← to

multipop()

As a technicality, in its first invocation multipop() returns true . Thus, we can
assume, that we just finished processing a family of type type. We have to decide
if we continue with the scan, pop the stack, or process another family. The role of
multipop() is to make all these decisions. It returns true if the scan is to continue,
or false if the scan is to terminate.

What situations can happen is best visualized on the suffix tree — the grey triangle
represents the family of links that was just sorted. There are 7 possible cases that
we denote A1, ..., A4, and B1, ..., B3. Cases A1, ..., A4 concern situations when
only one item is on the stack (representing the family we just sorted), while cases B1,
..., B3 concern situations when more than one item are on the stack. The schematic
depiction of the cases follows:

0

n

Case A1

0

Case A2

n

10

Reconstructing a Suffix Array

0

n

Case A3

m

n

Case A4

k

m

n

Case B1

k

n

Case B2

m

represents either an internal node of the suffix tree,
or a leaf.

m

n

Case B3

k

The variable famend represents the “pointer” to the very last element in the family
just processed.

Cases A1, ..., A3
These are treated alike and recognized alike. The recognition is based on the fact
that the stack has only one item and LCP[famend] = 0. The action is to pop the
stack, forward the scan and then the scan is continued:

11

Paper Submitted to PSC

Pop(); prev ← cur; cur ← NEXT[cur]
if cur=0 then return false
type← LCP[cur]
while type = 0 do

prev ← cur; cur ← NEXT[cur]; type← LCP[cur]
if type=0 then

prev ← cur; return false
Push(prev)
return true

Case A4
The recognition is based on the fact that the stack has only one item and
LCP[famend] > 0. The action is not to pop the stack (as the n-family just processed
starts at the same position as the m-family to be processed), the scan is forwarder
and then the scan is continued, but the type is decreased accordingly (to m):

type← LCP[famend]
prev ← cur
cur ← NEXT[cur]
return true

For cases B1, ..., B3 we have to determine type1, the type of the family that is on the
top of the stack:

if Top1() = 0 then
type1← LCP[start]

else
type1← LCP[NEXT[Top1()]]

Case B1
The recognition is based on the fact that the stack has more than one item and
LCP[famend] > type1. The action is not to pop the stack (as the n-family just
processed starts at the same position as the m-family to be processed), the scan is
forwarded and then the scan is continued, but the type is decreased accordingly (to
m):

type← LCP[famend]
prev ← cur
cur ← NEXT[cur]
return true

Case B2
The recognition is based on the fact that the stack has more than one item and
LCP[famend] = type1. The action is to pop the stack, decrease the type, forward
the scan and then the scan is continued:

Pop()
type← type1
prev ← cur
cur ← NEXT[cur]
if cur = 0 then return false
return true

12

Reconstructing a Suffix Array

Case B3
The recognition is based on the fact that the stack has more than one item and
LCP[famend] < type1. The action is to pop the stack, decrease the type, without
moving forward the scan and then the scan is continued:

Pop()
type← type1
return true

This concludes the description of the algorithm. It is rather straighforward to
check that the algorithm (without the actual sorting of the families) requires O(n)
steps. The additional memory requirements are n words for the array NEXT[] and
≤ n words of memory for STACK. Of course, some additional memory will be
required for the actual sorting of the families: if the number of distinct characters in
the input string is ≤ n/2, then we need ≤ 3n/2 words of memory for STACK and for
sorting (n for STACK and ≤ n/2 for sorting). If the number of distinct characters
in the input string is > n/2, then we need ≤ 3n/2 words of memory for STACK and
sorting (< n/2 for STACK, and ≤ n for sorting). Thus, the algorithm presented
requires in total ≤ 2.5n words of working memory for the process and the
sorting.

C code for Algorithms 1–3 and powerpoint illustration of Algorithms 2–3 are
available at [F05].

From the presentation of the algorithm it is clear that sorting the suffix array
is as complex as sorting links in the corresponding suffix tree. Thus, the following
discusion applies to both suffix trees and suffix arrays. When we are to sort a family
of size k (or k links of an internal node in the suffix tree), no matter what permutation
is given, it can be sorted in O(n) time using a bucket sort. However, this may lead
to non-linear sorting time for the whole array (or the whole tree). If the alphabet is
fixed, of course the sorting will be linear. But also for some “mild” permutations the
sorting will be linear as well. This leads us to investigate an interesting computational
property of permutations that we call the suborder complexity of the permutation:

The suborder complexity β of a permutation p of n, denoted β(p), is defined to
be the minimal β such that for any 2 ≤ k ≤ n, it takes at most βk steps to order
any subset of n of size k. Note that β(p) ≤ log n as any subset of n of size k can be
sorted in ≤ k log k ≤ k log n steps.

It follows that

Theorem 2 For any permutation with suborder complexity β, the suffix array of a

string can be re-ordered by Algorithm 3 in O(βn) time, where n is the length of the

input string.

Conclusions and Further Research

An interesting question that arises is what kind of permutations have small suborder
complexity. Here are some examples:

• The inversion has suborder complexity 1.

13

Paper Submitted to PSC

• Any rotation has suborder complexity 1.

• Any permutation with β transpositions has suborder complexity β.

• Let p be a “mild” permutation, i.e. |p(i) − i| ≤ β. Then p has suborder
complexity 2β.

• Let p1 on n1 have suborder complexity β1 and let p2 on n2 have suborder com-
plexity β2, then p1

⊕

p2 has suborder complexity max(β1, β2) (where p = p1

⊕

p2

is defined on n1+n2 by p(i) = p1(i) for 1 ≤ i ≤ n1, and p(i) = n1+p2(i−n1) for
n1 < i ≤ n1+n2).

So the class of permutations with small suborder complexity seems quite interest-
ing and rich enough to warrant further investigation.

Acknowledgements

The research was supported in part by the authors’ research grants from the Natural
Sciences and Engineering Research Council of Canada.

References

[BK03] S. Burkhardt & J. Kärkkäinen, Fast lightweight suffix array con-
struction and checking, Proc. 14th Annual Symp. Combinatorial Pat-

tern Matching, LNCS 2676, Springer-Verlag (2003) 55-69.

[BW94] M. Burrows & D.J. Wheeler, A Block-Sorting Lossless Data Compression

Algorithm, Research Report 124, Digital Equipment Corporation (1994)
18 pp.

[F97] M. Farach, Optimal suffix tree construction with large alphabets,
in Proc. 38th Annual Symp. Foundations of Computer Science, IEEE
(1997) 137–143.

[F05] F. Franek, C code + illustration:

http://www.cas.mcmaster.ca/˜franek/web-publications.html

[FS05] F. Franek & W. F. Smyth, Sorting the suffixes of a two-pattern
string, Internat. J. Foundations of Computer Sci. (2005) to appear.

[FSXH03] F. Franek, W. F. Smyth, X. Xiao & J. Holub, Computing quasi suffix
arrays, J. Automata, Languages & Combinatorics 8–4 (2003) 593–606.

[IT99] H. Itoh & H. Tanaka, An efficient method for in memory construc-
tion of suffix arrays, Proc. String Processing & Information Retrieval

Symp., IEEE (1999) 81–88.

14

Reconstructing a Suffix Array

[KLAAP01] T. Kasai, G. Lee, H. Arimura, S. Arikawa & K. Park, Linear-time
longest-common-prefix computation in suffix arrays and its ap-
plications, Proc. 12th Annual Symp. Combinatorial Pattern Matching,
LNCS 2089, Springer-Verlag (2001) 181-192.

[KA03] P. Ko & S. Aluru, Space Efficient Linear Time Construction of
Suffix Arrays, Proc. 14th Annual Symp. Combinatorial Pattern Match-

ing, LNCS 2676, Springer-Verlag (2003) 200–210.

[KMR72] R. M. Karp, R. E. Miller & A. L. Rosenberg, Rapid identification of
repeated patterns in strings, trees and arrays, Proc. 4th Annual

ACM Symp. on Theory of Computing (1972) 125–136.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, & K. Park, Linear-time Construc-
tion of Suffix Arrays, Proc. 14th Annual Symp. Combinatorial Pattern

Matching, LNCS 2676, Springer-Verlag (2003) 186–199.

[KS03] J. Kärkkäinen & P. Sanders, Simple Linear Work Suffix Array Con-
struction, Proc. 30th International Colloqium on Automata, Languages

and Programming, LNCS 2719, Springer-Verlag (2003) 943–955.

[LS99] N. Jesper Larsson & K. Sadakane, Faster Suffix Sorting, Technical Re-
port LU-CS-TR:00–214, Lund University (1999) 20 pp.

[MM90] U. Manber & G. Myers, Suffix Arrays: A new method for on-
line string searches, Proc. First ACM-SIAM Symp. on Discrete Algs.

(1990) 319–327.

[MM93] U. Manber & G. Myers, Suffix Arrays: A new method for on-line
string searches, SIAM J. Computing 22 (1993) 935–948.

[M05] M. Maniscalco, MSufSort:

http://www.michael-maniscalco.com/

[MF04] G. Manzini & P. Ferragina, Engineering a lightweight suffix array
construction algorithm, Algorithmica 40 (2004) 33–50.

[PST05] S. J. Puglisi, W. F. Smyth & A. Turpin, The performance of linear
time suffix sorting algorithms, Proc. Data Compression Conf. ’05

(2005) to appear.

[S00] J. Seward, On the performance of BWT sorting algorithms, Proc.

Data Compression Conf. ’00 (2000) 173–182.

[SS05] K. Schürmann & J. Stoye, An incomplex algorithm for fast suf-
fix array construction, Proc. 7th Workshop Algorithm Engineering &

Experiments (2005) to appear.

[S03] B. Smyth, Computing Patterns in Strings, Pearson Addison-Wesley
(2003) pp. 423.

15

