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INDEPENDENT FAMILIES IN COMPLETE BOOLEAN ALGEBRAS
BY
B. BALCAR AND F. FRANEK

ABSTRACT. We present a proof (without any set-theoretical assumptions) that every
infinite complete Boolean algebra includes a free subalgebra of the same cardinality.
It follows that the set of all ultrafilters on an infinite complete Boolean algebra B has
power 2/

1. Problems and results. Let B be a Boolean algebra and St(B) its Stone space, i.e.
the set of all ultrafilters on B with the usual topology. If B is finite, then obviously
| S{(B) |= log, | B| ' see [Ma]. The classical result due to Hausdorff [H] and Pospiil
[P1] states that for a power set Boolean algebra B = P(k) for any infinite cardinal «;-
| St(B)|= 2% = 2/%, The key role in their proof is played by the notion of an
independent family of sets and the fact that there is such a family of subsets of k of
size 2". The very natural problem of whether this can be generalized for all infinite
complete Boolean algebras was first formulated (as far as we know) by Efimov [E].
Partial positive solutions were known from works of Kesl'yakov [K], Koppelberg
[Ko], Monk [M] and Blaszczyk [Bla]. A short historical survey of this problem can be
found in [Bla]. Independent systems in complete Boolean algebras are studied in
Vladimirov’s book.

We shall present proofs (in ZFC only) of the following theorems.

THEOREM A. In every infinite complete Boolean algebra B there is an independent
family % C B so that |5|=|B| .

THEOREM B. If B is an infinite complete Boolean algebra homogeneous in sat, then B
is well semifree.

(For precise definitions see §3.)

Although many partial results concerning Theorem A have been achieved, e.g.
Monk proved Theorem A under a hypothesis slightly weaker than GCH, we are
offering a general approach covering all results obtained so far.

It is not surprising that notions and results about filters and ultrafilters on power
set algebras can be translated to ones on complete Boolean algebras. We shall give
one such example concerning good ultrafilters. Kunen’s proof, see [Kul, Ch,K], of
the existence of good ultrafilters on a power set algebra, can be pushed through in
this more general situation as well.
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At this point we would like to express our thanks to F. D. Tall and P. Simon for
stimulating discussions and other help in completing this paper.

2. Corollaries. Let us summarize some well-known consequences of Theorems A
and B with sketches of proofs. In what follows B and C denote infinite complete
Boolean algebras, X and Y denote infinite extremally disconnected compact spaces,
while w( X) and w(Y) denote their weights.

COROLLARY 1. | St(B)|= 2%, or equivalently | X |= 2",
PRrROOF. See Corollary 2.

COROLLARY 2. There are 2B ultrafilters on B which have character (i.e. the least
cardinality of a set of generators) equal to | B | .

PrOOF. Let {{X,(0), X,(1)}: « <| B|} be an independent family of partitions of
size 2 on B. For any f: | B|— 2 the system

= (K@) a<IB1) U (= A (/604 € 181°)

is centered and thus generates a filter G, on B. Let f # g be maps from | B| to 2.

Then G; # G, and every ultrafilter extending G, is not generated by fewer than | B |

elements and is distinct from every ultrafilter extending G, (compare [Kul]).
Corollaries 1 and 2 solve problems raised by Efimov [E].

COROLLARY 3. Let | C|<|B| . Then there is a homomorphism f. B — C onto C, or
equivalently if w(X) = w(Y), then there is an embedding of Y into X.

PrROOF. Let G be a set of free generators of a free subalgebra F of B with
| G|=| B| . Then every surjection f: G — C can be extended to a surjective homo-
morphism g: F — C. By injectivity of C, there is a homomorphism from B onto C
extending g.

COROLLARY 4. There is a continuous surjective map f: X — 2*%,

ProoF. This is a topological version of the fact that the complete Boolean algebra
B, which by Stone duality corresponds to X, includes a free subalgebra of size | B| .
There is a continuous map from X = St(B) onto St(F) = 22/, But since B is
infinite, w( X) = w(St(B)) =| B| .

Corollary 4 solves problem 5 of Ponomarev and Shapiro [P, S].

COROLLARY 5. The space X includes a copy of itself as a nowhere dense subset (so X
is not homogeneous, see [FJ).

PROOF. It is well known that there is a homeomorphism f from X into 2**) and
onto a nowhere dense D C 2¥®. By Corollary 4 there is a continuous surjection g:
X - 2"X)_ Let Y C X be such that 4 = gt Y is an irreducible map onto 2**). Then
Z = h (D) is nowhere dense in Y, and hence in X. Since X is extremally
disconnected and 4 is irreducible, Z is homeomorphic to X.

Corollary 5 solves problem 4 of [P, S].
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COROLLARY 6. Let B be well semifree. Then there are 2/ good ultrafilters on B.
PrOOF. (Compare [Ch, K].)
SUBLEMMA 1. Let (G, ¥) be independent ( for G C B,  C Part(B)) means that
(Vn < w)(VP,,...,P, €EF)(Vu, €EP,) --- (Vu, €EP,)
(Vu € G)uNugN -+ Au, # 0p).

Let (G, %) be independent. Let G be closed under finite intersections (CUFI). Let
b € B — {0p}. Then there is a CUFI G* D G, | G* |< max(w, | G|) and there is an
G* CF, |F— F*|< w so that (G*, F*) is independent and either b € G* or (-b) €
G*:

PrROOF OF SUBLEMMA 1. Let G[X] be the closure under finite intersections of
G U {X}.

(a) Let (G[b], ¥ ) be independent. Then G* = G[b], T* = F.

(b) Let (G[b], %) be not independent. Let u € G, P,,...,P, €EF, u, € P,,...,u,
€ P, witness this fact. Then G* = G[-b] and F* = F — {P,,...,P,}.

SUBLEMMA 2. Let k < sat(B). Let G C B be CUFI. Let % C Part(B). Let P € F
and | P|= k. Let (G, %) be independent. Let U be the filter generated by G. Let f:
[k]=° = U be monotonic. Then there is a multiplicative refinement g of f so that

(G*, F*) is independent where G* is the closure under finite intersections of G U rng(g)
and §* = 5 — {P}.

PROOF OF SUBLEMMA 2. Let P = {p,: a <k}. Let [«]=* = {a,:

« @ <k}. Define
h,: [k]=“ > Bby

h ( )_ f(aa)/\pa ifsQaa’
e 0p otherwise.

Then 4, is multiplicative. Define g: [k]=° — B by g(s) = V ... h(s). Then g(s) <
f(s) for each s and g is multiplicative. It is easy to verify that (G*, *) is
independent.

PROOF OF COROLLARY 6. Since B is well semifree | B|~**®) =|B|. So let
B={b,: a<vw}. Let &= {f: (3k <sat(B)) (f is a monotonic function with
domain [k]™“ and range C B)}. Let & = {f,: a <} so that each f is enumerated
cofinally many times.

By induction we shall get for each & < » and each ¢: @ — {-1,1} a filter U, on B
generated by a CUFI G, and a good family %, C Part(B) so that

()¢, C ¢~ U, C U,

(2) ¢y, ¢, incompatible — U, U U, is not centered,

(3) dom(¢) = a = | G, |< max(|a|, u) for some p < sat(B),

(4) dom(¢) < a - (G, 9, ) is independent,

(5) dom(¢) = a + 1 - b, € G, or (-b,) € G, and

(6) if rng( f,) C U, & dom(¢) = a, then there is a multiplicative refinement g, of
Jo such that rng(g,) C U, for every ¢ i ¢.
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Since B is well semifree, there is a good independent family % C Part(B) of size
|B]|.
Picka PEY, |P|= w. Let P = {p,: n <w}. Let G, = {V o« p,: k <w). Let
U, be generated by G,. Let 5, = ¥ — {P).
Use Sublemmas 1 and 2 to get the induction step from a to a + 1.
Limit stage: Let ‘& = Fl,_, %, for ¢: a> {-1,1} define G, = U
U,=U p<a Uy Iz
Now final claim: Let x: » » {-1,1}. Then D, = U__, U, is a good ultrafilter on
B. Since x, # x, yields D, # D, , there are 2/"/= 2” good ultrafilters on B.

Gy p»

B<a

3. Notation and basic definitions. For a Boolean algebra B and C C B, let
C*T = C — {04). If u € B" then B} u is the partial subalgebra of B with the universe
{x € B: x < uj}.

(i) P C B is a partition on B (or a partition of 1) if it is a maximal disjoint
collection of nonzero elements. Part( B) denotes the set of all partitions on B.

(i) F C Part(B) is an independent family of partitions if for any finite subset
{P,,...,P,) C Fand anyselector'E M, By 1 2, fl) 105

(iii) C C B is an independent family if for any x € C, —x & C and {{x,-x}:
x € C} is an independent family of partitions.

(iv) B is semifree if there is an independent family in B of size | B | (see [K]).

(v) ¥ C Part(B) is k-good (for a cardinal k <sat(B), k >2) if (Vy Ex —2)
({P €F:|P|=7v}|=|F|. Fis said to be good if it is sat( B)-good.

(vi) B is well semifree if there is an independent good family of size | B| of
partitions on B.

(vii) D C Bt isdensein Bif (Vb € B")3d € D)(d <b).

(viii) Density of B, d(B) = min{| D | : D is dense in B}.

(ix) Saturatedness of B, sat(B) = min{k € card: (V P € Part(B)) (| P |< «)}.

(x) B is homogeneous in d if (V u € B* )(d(Bt u) = d(B)). B is homogeneous in sat
if (V u € B" )(sat(B u) = sat(B)).

(xi) An ultrafilter G on B is k-good (for k < sat(B)) if it is countably incomplete
and for every cardinal A < k and every monotonicf: [A]™ = {X CA: [ X|<w} = G
(i.e. s Ct — f(s) = f(¢)) there is a multiplicative refinement g: [A]=“ — G of f (i.e.
g(s) < f(s) for each s and g(s U 1) = g(s) /A g(¢)). G is said to be good if it is
sat( B)-good.

REMARKS. Since in general d(Btu)<d(B)v) and sat(B u) < sat(B| v)
whenever u < v, there is a P € Part(B) such that all Bt u’s are homogeneous in d
and sat, for all u € P. If B is complete and P € Part(B) then f: B >l ., Bt u
defined by f(x)(u) = x A uis a bijection and hence B =1[ ., B} u.

Recall a well-known result of Erdos and Tarski [E, T], that if B is an infinite
Boolean algebra, then either sat(B) = k" for some infinite cardinal k, or sat(B) is a
weakly inaccessible uncountable cardinal.

There is another definition of a good ultrafilter on a Boolean algebra due to
Benda (see [Be]), which gives sufficient and necessary conditions for an ultrafilter so
that the corresponding Boolean ultrapower is saturated. Our definition is a formal
analogue of Keisler’s definition concerning power set algebras (see [Ch, K]). Our
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definition is apparently stronger than Benda’s for it implies that even the Boolean
valued model of set theory modulo a k-good ultrafilter is k-saturated. For power set
algebras it does not make any difference since any Boolean valued model of set
theory modulo an ultrafilter is isomorphic to the Boolean ultrapower.

4. Combinatorial facts. Here we state all facts needed to prove the main theorems.
They form five groups: 4.1 contains results enabling the whole business to start, i.e.
how to get initial independent families of partitions. 4.2 deals with methods which
allow one to enlarge a given independent family. 4.3 is devoted to methods for
making partitions in an independent family bigger. In 4.4 it will be shown how to get
an independent family in the whole algebra using independent families in partial
subalgebras. Finally in 4.5 we shall show that some special types of algebras are well
semifree.

In the entire §4, B stands for an infinite complete Boolean algebra.

4.1.

LEMMA 1 [V; M]. Let § C Part(B). For P €, let PY = (VR:RC PYi-Let
FVN= (A pegf(P): fENlpcgP"}. If for every u € UF the set {x<u: x €
(5 V)" ) is not dense in Bt u, then there is a Q € Part(B), Q = {4(0), g(1)} such
that for any v € U, g(0) N\ v # 05 and g(1) A v 7 0p.

PROOF. Let u € UF. Since {x <u: x €(F )"} is not dense in Bt u there is
an x(u) € (Bt u)* such that for any z € (¥ ¥")", z < x(u). Define y(u) =
A pes(V{v € P: v A x(u) # 0p)). Then x(u) <y(u) <u. Pick some 7' C U%
such that {y(u): u € T} is a maximal pairwise disjoint subsystem of {y(u):
u € UF). Let ¢(0) = V ,erx(u) and g(1) = 15 — ¢(0). Then Q = {q(0), g(1)}. If
u € U then by maximality of T, there is a v € T such that y(u) A y(v) # 0p. So
u A x(v) # 05 and thus u A g(0) ¥ 0. For the same v, y(u) N (y(v) — x(v)) # 0,
otherwise x(v) = y(v) A y(u), which is an element of (5 Y")", contradicting the
definition of x(v). Thus u A g(1) = u A —g(0) = u N\ (y(v) — x(v)) # 0p.

LEMMA 2 [B, V). Let B be homogeneous in sat. Let v be a cardinal so that
v+ < sat(B). Then for each family {u(a): a <v} C B there is a disjoint refinement,
i.e. {v(a): @« <v} C B such thatif a < B < thenv(a) < u() and v(a) N v(B) =
0p.

PrOOF. For a detailed proof see [B, V]. For the sake of completeness here is a
sketch of the proof: If P is a family of pairwise disjoint elements of B and x € Bes
define P[x] = {u € P: u /\ x # 0}. If we have a disjoint family P C B* such that
| P[u(a)]|= v for every a < v, we can get a disjoint refinement by a straightforward
recursion. The family P we shall also construct by recursion. So suppose B <,
U s Ply)C B* is a disjoint family and for every a <, | (U, _z P(Y))u(a)]|=»
or = 0. In the first case set P(8) = & ; otherwise pick a partition Q of u(f) such
that |Q|=»" and set P(B) = Q — U{Q[u(a)]: « > B & | Q[u(a)]|<r}. Then
| P(BYu(B = »* .

LEMMA 3. Let B be homogeneous in sat and let sat(B) = k be weakly inaccessible.
Then there is a good independent family of partitions on B that has size k.
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PROOF. By recursion we shall construct an independent family & of size k such
that sup{| P|: P € ¥} = k. It is easy to get a good independent family from %. So
suppose I is an independent family of partitions on B, | J(|< k. Given 7 < k. Let T
be the closure of U JC under finite intersection and let 7" = {u(a): a < »} for some
v. Since k is weakly inaccessible and |JC|< k, »* <. So by Lemma 2 there is a
disjoint refinement {v(a): a < »} of T . By homogeneity of B in sat, every v(a) can
be split into 7 disjoint elements, say {v(a, 8): B <}. For >0 define x(B) =
V. <y 0(a, B), and x(0) = 15 — V. g-p<.x(8). Then P = {x(B): B < 7} € Part(B)
and 9C U {P} is independent, | P|= 7. This procedure allows us to carry out the
whole recursion.

4.2.

DEFINITION. Let { X(i): i € I} be a system of sets. A set S CII,e, X(i) is called a
finitely distinguished family (FDF for short) if for any finite 5, C & there is an iy € 1
so that | { f(io): [ € 8§} | =] ] -

LEMMA 4. If all X(i)’s are infinite, then there is an FDF & C 11, ; X(i) of full size,
i.e. of power |Il,c; X(i)| .

PROOF. (a) Let I be finite. Then |II,.,; X(i) |=| X(j) | for some j € I. So & can be
any family of functions distinct at the jth coordinate.

(b) Let I be infinite, | I|= k. We shall proceed by induction over |/|. Assume
that the assertion holds for all I of size < k. Let < be a well-ordering of I such that
i <j implies | X(i)|<| X(j)| . Let y be the order type of (I, < ). Without loss of
generality assume I = y and < =< . It is obvious that k <y < k™.

Casel. Va<y)(|y—a|= k).

Then there is an injection ¢: [y]=“ — y such that ¢(s) = max(s) for each
s € [y]™“, and there is an injection ¥ II,c, X(i) = X(¢(s)) since |II,c, X(i)|<
| X(¢(s))| . Define

e {xps(h(s)) if (s) =1,

an arbitrary element of X(i) otherwise.
x is an injection from II;c,II,c, X(i) into II,c, X(i), where 4 = [y]™* — {2 }.
Define an injection n: II,c, X(i) = [, 4 II;, X(i) by n(f)(s) = (f(i): i Es).
Then § = (x © n)(II,c, X(¢)) is an FDF of desired size.

Case 1I1. Case I does not hold.

So @a<y)|y— a|<k). Let a, be the least such a. Clearly a, =« and
| ag — a|= k for all @ < &,. By Case I there is an FDF &g C Il;eq, X(i) of full size
and by the induction assumption an FDF &, C I, X(i) of full size (where
A =y — a). Since either |II,c, X(i)|=|Il;c;X(i)| (so &, can be extended to an
FDF § C II,c, X(i) of the same size), or |II;c, X(i)|=|II,c, X(i)| (so &, can be
extended to an FDF § C II,c, X(7) of the same size), we are done.

LEMMA 5. Let F,, %, C Part(B), P € Part(B). Let %, be infinite and (Y Q € %)
(|Q|=»), »=2. Let F, U %, U {P)} be independent. Then there is a family GEE
Part(B) such that (Y R € )| R |=»), | F; |=|F, |" and G, U F; is independent.
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PROOF. By Lemma 4 there is an FDF § C 3, of full size, i.e. |§|=|F,|”l. Pick
f €S, u € P. Then f(u) € 9, and hence | f(u)|= ». Let f(u) = {q(f, u, @): a <r}.
For all « < v define R(f, @) = V ,cp(q( f, u, @) A u).

(i) Fora < B <v,

R(f,a)/\R(f,B): \/P(q(f, u,a)/\u)/\ vp(q(f’v’ﬁ)/\v)
= Vp(q(f,u,a)/\q(f,u,p)/\u/\u):OB;
u,veE

if u 5 v, then u A\ v = 0p, and if u = v, then ¢q( f, u, @), q( f, v, B) are two distinct
elements of f(u), and hence disjoint.

(i)
VR(f,e)=V V (q(f,u,a) N\u)
a<y a<v uepP
=V V(g(fiu,a) Nu)= V u=1,.
ueEP a<v uepP

Thus R(f) = {R(f,a): a <w} is a partition on B of size ». Let %) = {R(f):
fE€S). Then ¥, C Part(B) and |F, |=|%,|"!. To show that ¥, U &, is indepen-
dent, pick n,m<w. Pick P,,...,P,EF,, R(f),....R(f,) EF,. Pick v, €
P,,...,0, € P,, R(fy, ay) € R(fy),-..,R([,, @,,) € R(f,)- Since & is an FDF, there
is a u, € P such that f,(u,) # f,(u,) whenever i # j < m. Then

No,ANR(foe))= NogA NV (q(fi,u, ;) Nu)

i=n i<m i<n i=m u€EP
= No AN (q(fi,“w“i)/\uo)
i=n i=m
= No, AN q(f,, up, a;) Nug#0p
i=n i=m

since (for i =n) v, € P, € %, (for i = m) q(f;, uy, ;) Ef(44y) €%,, uy € P and
%, U %, U {P} is independent.

4.3.

LEMMA 6. Let F,, F, C Part(B). Let (VP € %,)(| P|=2), | %, |
be independent. Then there is an ¥, C Part(B) so that |9, |=|
(| P|= w) and F, U F, is independent.

w, and let 5, U %,
|

=
F,| and (VP € F

2

PROOF. Let | %, |= » = w. Let 5, = {P(a): a <7}. Let P(a) = { p(a,0), p(a, 1)}.
There is a system of mutually disjoint sets {A45: B < v} such that » = U,_, 45 and
| Ag |= w. Let By be the least subalgebra of B containing { p(a,0): @ € 4,}. Clearly
sat(By) = w,. Pick some R, € Part(B;) of size w. Pick some ug € R;. Define
RE = (Rp — {up}) U (upg vV "\/RB)' Then R} € Part(B) and has power . Finally
define &, = {R}: B <v}. Then |, |=» and (VP € %)(| P|= w). So it remains to
show that %, U %] is independent.

Pick anyiit; ms<"6-04, 050,°E Iy, u5 &€ Ot . [ u G0 B0l B, Smvj €

By Um € R . For each i < m there is a finite set D, C {p(a,0): a € 4} U
{p(a,1): @ € Ay} such that v; = /A D, # 0p, since { p(a,0): a € Ay} generate By
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Hence

/\ui/\ /\ v, = /\ui/\ VAN /\DI.#:OB

i<n i=m i<n i=sm
for all D,’s are disjoint (as all A,’s are disjoint) and elements of D,’s are elements of
partitions from %,, and %, U ¥, is independent.

LemMa 7. Let 5,,%,, 5, C Part(B). Let | F,|= w and (VP € &)(|P|= 1), 7= w.
Let (Y Q € )| Q|= w). Let F, U %, U F; be independent. Then there is an g e
Part(B) of size | F, | so that (YR € 9;)(| R|= 1) and ¥, U ¥, is independent.

PrOOF. Let %, = {Q(n): n < w} and Q(n) = {q(n,y): y <T}. Let %, = {R(B):
B <v} and R(B) = {r(B, n): n<w)}. Define for every B <», y <, s(B,y) =

V <u(g(n, ¥) A r(B, n)), and S(B) = {s(B,v): v <7}.
(i) Since %, U %, is independent, s(8, y) # Op forall B <»,y <.

(i) s(B, v1) N s(B, v,) = Ogif v, # v,. For
S(B’YI)AS(B9Y2): \/ (q(n’Yl)/\r(B’n))/\ \/ (q(msYZ)/\r(ﬁ’m))

=V (qln ) Ar(B.m) Aglm, 1) A r(B,m) =0y
since if n = m then g(n, y,’)n /\wq(m, y,) = 0, and if n # m then r(B, n) A r(B, m)
)
VS(B)= V s(B1) =V V (aln1) Ar(B.n)
=V [HBm AV g = V ((B.) A L,)
=V r(p.n) =1,

Thus %] = {S(B): B <} is a family of partitions of size » =| %, | , each partition is
of size 7.

To show &, U 97 is independent, pick n, m < «, Py,...,P, € ¥}, v, € F,...,0,
EP,, Byre-sBn <7 Yor-+-+Ym < 7. We must show that N, 0; A N\, (B, vi)
=0,

AT TTANA s(B;,v;) = No, AN Vv (q(ni’Yi)/\r(Bi’ni))

i=n i=m i=n i=smn<w
= Ao, AN (q(n,v) Ar(Bis 7;)) # Op
i<n i=m
since §, U %, U %, is independent (and 7,,.. .,7,, are chosen pairwise distinct).

44.

LEMMA 8. Let P € Part(B). Let there be for every u € P an infinite k-good
independent family %, of partitions on B} u, k > 2. Then there is a x-good independent
family & C Part(B) of size Il ,cp|F,| -
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ProoF. Let &, = U,_. . %, foreveryu € P,and |%,|=|9,  |= 7, LetF, =
{P,(@): «<w,} and P, (a) = {p, (a B): B<v}. Pick an FDF & C 1l ¥, of
full size (by Lemma 4). Pick an f € S. For 8 <y, 2 <7y <k, define B & 8=
V e Pur(fu), B). Let P(f) = {P,(f, B): B<7} and F, = {P,(f): € 5}. Fi-
nallylet¥= U,_ _ F.

(i) If B, # B, then P.(f, B)) N\ P(f, B,) = Op. For
P(f,B)AP(f,B) =V py(f(u). B) AV p,(f(0),B,)

uepP vEP
= vP(pu,Y(f(u),Bl) Ap,.(f(©), B,)) =04

since if u = v then p, (f(u), B)) N\ p, ,( f(v), B;) = Op as they are distinct elements
of P, (f(u)),ifu # vthenp, (f(u), B;) <uandp, (f(v),B,) <vandu /v =0,
(i) VP(f) = 1. For

VE(f)= N B(1.B)= V VP (fu),B= Vu=1;.

b% B<y ueP ueP

Therefore &, is a family of partitions of size y on B, | ¥, |=|%F|=|5]|. So Fis a
k-good family. We shall show that % is independent.

Pick n; m < o Piek iy svacly = K, Joo- v vsln =5 Bo= Yps-vxBs = ¥o WeE Shall
show that /\,_, /\jgm P,(f; B;) # 0p. Pick u € P so that all f(u)’s are distinct

(possible since f € & and S is an FDF). Then

/\ /\ PY,(f}’Bi) = /\ /\ pu.y,(fj’ Br) 5’&OB

i=sn j<sm i<n j<=m

since %, is independent.
4.5.

LeEMMA 9 [E, K]. Let B be atomic. Then B is well semifree.

PROOF. Let sat(B) = k* = w,. Then B = P(k). Since every set of size k can be
split into k disjoint sets of size k, it is easy to get (by induction) a countable
independent family of partitions on B, each of size k. Denote this family %. Then
thereisa PEF, %, C Fsothat = (P} U %,, | P|=« and | %, |= w. By Lemma 5
there is a family %, C Part(B) of size | %, |”!= w* = 2 =| B| such that (VR € %))
(| R|= ) and % is independent. Now it is easy to get a k-good independent family
from %.

LEMMA 10. Let B be homogeneous in sat and d. Let sat(B) = k be weakly
inaccessible. Then B is well semifree.

PrOOF. Let d(B) = A. Then w < k < A. Notice that | B|= A~" = sup{A": y < k}.
For pick a dense subset D C B of size A. Since every element of B can be expressed
as a sum of fewer than k elements from D, |B|<\~" If 7 <k, there is a
P € Part(B) of size 7. Since B is complete, B = I, » Bt u. By homogeneity of B in
d, foreachu € P, | Bt u|= d(B1 u) = d(B) = A. Hence | B|= X'. Since this is true

forallT <k, |B|=A~"
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Now let pu be the least cardinal so that A=" = p~". Then if 7 <p, 77" <A
(otherwise 7= = (7=*)=*=A~")and p = 2 or p > 2~".

If p = 2, then by Lemma 3 there is a good independent family & C Part(B) of size
k = w. If p > 25" then a good independent family of size k given by Lemma 3 can
be extended by recursion to a good independent family & C Part(B) of size p.

Sketch of the recursion: Suppose we have JC = {P(a): a C 7}, an independent
family so that sup{| P(«)|: @ <7} = k and k <7 < p. Then | P(a)" |< 2" since
| P(a)|< k. Thus | U,_, P(a)¥|=» < p. Therefore |3 "|=»=" <A =d(B) =
d(Bt u) for every u € UJ(. So all assumptions of Lemma 1 are fulfilled and hence
there is a P(7) € Part(B) so that { P(a): a < 7} is independent.”

Thus in both cases (u =2 or p>2~") we have a good independent family
 C Part(B) of size max(p, k). Let ¥= U,_. _ ¥ and | ¥ |=|F|= max(p, ) and
(VP € G,)(| P|= v)- By recursion using Lemma 5, every ¥, can be replaced by % of
size max(p, k)=* such that ' = U,_ _, ¥ is independent and good. The size of G’
is k=2 275 = u=* =N =|B| Gf p=2) or pT* =A™  =|B| (if u>27"), so
| 5" |=| B| . Thus B is well semifree.

LEMMA 11. Let B be homogeneous in sat and d. Let sat(B) = k" . Then B is well
semifree.

PROOF. Let d(B) = A. Notice that | B|= X* (see proof of Lemma 10). Let p be the
least cardinal such that p* = X. Thenif r <p,7* <Aand p =2 or p > 2",

One can easily obtain an independent countable family of partitions on B, each of
size k, denote it &,. If p > 2", then as in the previous proof we can extend (by
recursion) &, by a family %, of size p such that (VP € %,)(| P|= 2). By Lemma 6
there is a family %, C Part(B), |%, |=| %, |= u such that (VP € %)(| P|= w) and
%, U 9, is independent. By Lemma 7 there is a family & C Part(B) of size | %, |
such that (V P € 9/)(| P|= «) and 9] is independent. Thus in every case we have a
good independent family % C Part(B) of size max(p, k). Hence ¥ = U,_. _, ¥, and
| F|=19%, |= max(g, «), and (VP € G, )(| P|= v). Now, by recursion using Lemma
5, each %, can be replaced by a family %] of size max(p, k)" such that el Ol U
is independent and hence good and of size max(p, k)* =| B| . So B is well semifree.

5. Main theorems.
THEOREM A. Let B be an infinite complete Boolean algebra. Then B is semifree.

PrOOF. Let 4 be the set of all atoms of B. Let u = VA, v = —u. Then B =Bt u
X B v.

If | B|=| Bt u|, we are done, since Bt u is atomic and by Lemma 9 there is a
good independent family in B} u of full size, i.e. of size | B | . One can easily obtain a
good independent family of size | B | in B.

So assume that | B|>| Bt u|. Then | B|=| Bt v|. Denote B} v by C. Since C is
atomless, there is a P € Part(C) so that for every w € P, Ct w is homogeneous in

2 Using Lemmas 6 and 7 we obtain a good independent family of size p.
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sat and d. C =][,,c, Ct w for C is complete. By Lemmas 10 and 11 every C} w is
well semifree, hence semifree. By Lemma 8 C is semifree, since all independent
families in Ct w’s generate an independent family in C of size [, ,| Ct w|=| C|
since C is complete. Thus B is semifree, too.

THEOREM B. Let B be an infinite complete Boolean algebra homogeneous in sat.
Then B is well semifree.

PROOF. Since B is homogeneous in sat, B is atomless. Thus there is a P € Part( B)
such that for each u € P, B u is homogeneous in d (and in sat, also). By Lemmas 10
and 11 all B u’s are well semifree. Let %, witness well-semifreeness of Bt u. By
Lemma 8 there is a good independent family % in B of size

II19.1=II |Bru|=| Il Bru|=|B|
uepP uepP |uerP
since B is complete. Hence B is well semifree.
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