
Sorting suffixes of two-pattern strings

Frantisek Franek W. F. Smyth ∗

Algorithms Research Group

Department of Computing & Software

McMaster University

Hamilton, Ontario

Canada L8S 4L7

April 19, 2004

Abstract

Recently, several authors presented linear recursive algorithms for

sorting suffixes of a string. All these algorithms employ a similar

three-step approach, based on an initial division of the suffixes of x

into two sets: in step 1 sort the first set using recursive reduction

of the problem, in step 2 determine the order of the suffixes in the

second set based on the order of the suffixes in the first set, and in

step 3 merge the two sets together. To optimize such an algorithm

either for space or time, it may not be sufficient to optimize one of

the three steps, since in doing so, one might increase the resources

required for the others to an unacceptable extent.

Franek, Lu, and Smyth introduced two-pattern strings as a gen-

eralization of Sturmian strings. Like Sturmian strings, two-pattern

strings are generated by iterated morphisms, but they exhibit a much

richer structure.

In this paper we show that the suffixes of two-pattern strings can

be sorted in linear time using a variant of the three step approach

outlined above. It turns out that, given the order of the suffixes in a

two-pattern string, one can almost directly list in linear time all the

suffixes of its expansion under a two-pattern morphism.

∗also Department of Computing, Curtin University, Perth WA 6845, Australia.

1



1 Introduction

Ever since Manber and Myers in [MM93] introduced suffix arrays as data
structures comparable to suffix trees for most pattern matching tasks in
strings, yet requiring significantly less memory, the search was on for a lin-
ear time algorithm for their construction. Such an algorithm for suffix tree
construction had been known since 1997 [F97]. In 2003 to our knowledge
three different groups of researchers independently proposed linear recursive
algorithms to sort string suffixes: [KA03, KSPP03, KS03]. Though different,
all three algorithms employ three steps, based on a separation of the suffixes
into two sets. In step 1 the first set is ordered using recursive reduction of the
problem, in step 2 the suffixes of the second set are sorted based on the order
of the suffixes in the first set, and in step 3 both ordered sets are merged
together. The fact that all three algorithms follow this basic approach, yet
use a completely different separation into sets, a different way of ordering the
second set based on the first set, and a different merge technique, points to
some common fundamental aspect of these algorithms. To optimize such an
algorithm either for space or time, it may not be sufficient to optimize one of
the three steps, since in doing so, one might increase the resources required
for the others to an unacceptable extent.

Two-pattern strings were introduced in [FLS03] as a generalization of
Sturmian strings. Like Sturmian strings, two-pattern strings are generated
by iterated morphisms, but they exhibit a much richer structure. It was
shown in [FLS04] that the iterated construction of these strings could be
used to compute all the repetitions and near-repetitions in time linear in
string length.

This paper was motivated by our investigation of the three different linear
suffix sorting algorithms discussed above and our desire to fully understand
the underlying phenomena. Thus, we investigated whether the recursive
nature of two-pattern strings could be used in sorting of the suffixes in the
approach of the three algorithms mentioned. As it turned out, the “natural”
recursive reduction of two-pattern strings can be used for step 1, and then
steps 2 and 3 can be simplified into a single step: from having the suffixes
of the reduced string ordered, one can almost directly list the suffixes of the
two-pattern string in the right order.

For the sake of completeness, let us recall the definition of a two-pattern
string [FLS03]. Throughout this paper, a binary string means a string over
the alphabet {a, b}.

2



Definition 1.1 An ordered pair (p, q) of nonempty binary strings is said to
be suitable if and only if

• p is primitive (that is, p has no nonempty border);

• p is not a suffix of q;

• q is neither a prefix nor a suffix of p;

• q is not p-regular.

Definition 1.2 A binary string q is said to be p-regular if and only if
q = upvu for some choice of (possibly empty) substrings u and v.

Definition 1.3 σ = [p, q, i, j]λ is an expansion of scope λ, if (p, q) is
suitable, |p| ≤ λ, |q| ≤ λ, and 1 ≤ i < j are integers.

Definition 1.4 A binary string x is a two-pattern string of scope λ

if there exists a sequence {σ1, σ2, . . . , σm} of expansions of scope λ so that
x = σ1 ◦ · · · ◦ σm(a).

It was mentioned at the end of [FLS03] that if the definition of p-regularity
were made more restrictive, a larger class of two-pattern string could be ob-
tained. The more restrictive definition, sufficient to give two-pattern strings
all their desired properties, contained a few typographical errors as it was
given in [FLS03], and so we provide a corrected definition here:

Definition 1.5 A binary string q is said to be p-regular (p a binary string)
if and only if there exist (possibly empty) strings u, v together with nonneg-
ative integers n1, n2, . . . , nk, k ≥ 1, r ≥ 1, such that

• the integers ni assume at most two distinct values — that is,

∣

∣{ni : i ∈ 1..k}
∣

∣ ≤ 2;

• q = (uprvpn1)(uprvpn2) · · · (uprvpnk)u for some u, v, r ≥ 0, where
v = ε if r = 0.

3



It was shown in [FLS03] that complete two-pattern strings can be recog-
nized in linear time: the recognition algorithm outputs an essentially unique
sequence of expansions. So in the following we can assume that not only do
we have a complete two-pattern string, but also the sequence of expansions
that iteratively generates the string.

In the next section we describe the principles underlying the algorithm for
sorting suffixes of a two-pattern string. In Section 3 we provide an overview of
the algorithm itself, while Section 4 gives proofs of some of the main lemmas
on which the algorithm is based.

2 The Principles Underlying the Algorithm

For the sake of clarity and brevity, we introduce several symbols: we use the
symbol u < v for strings u, v to express that u is lexicographically smaller
than v. We use the symbol u ≺ v (or u � v) to express the fact that u < v

yet u is not a prefix of v (or v < u yet v is not a prefix of u). Note that
u < v iff (u ≺ v or u is a prefix of v). We use the symbol u �≺ v to indicate
that either u ≺ v or u � v.

For a given expansion σ = [p, q, i, j]λ, we will write u instead of σ(u) if
it causes no confusion. Note that we define ε = ε.

For a binary string u, we will use û to denote its ones-complement; that
is, the string formed by interchanging a’s and b’s in u.

In accordance with [FLS03], if x, y are complete two-pattern strings, σ

an expansion, and y = σ(x), then the occurrences of copies of p and copies
of q in the concatenation of blocks piq and pjq as defined by σ(x) are called
restrained copies. Any other occurrence of p or q is referred to as free.
A consecutive sequence of restrained copies of p’s and/or q’s will also be
referred to as a restrained configuration or a restrained substring of
y.

Throughout the following discussion we assume that the scope λ is fixed
and that y = σ(x), where x is a complete two-pattern string of scope λ and
σ = [p, q, i, j]λ an expansion of scope λ. Moreover we assume that all suffixes
of x are lexicographically sorted: ρ1 < · · · < ρ|x|. We then describe how to
order the suffixes of y. We may assume further that q < p: if it were not,
then q̂ < p̂, we sort all of the suffixes of ŷ = σ̂(x), where σ̂ = [p̂, q̂, i, j]λ, and
reversing the order, we get all suffixes of y ordered properly (by Lemma 4.2).

Since q < p, by Lemma 4.1, for any suffixes ρ1, ρ2 of x, if ρ1 < ρ2, then

4



ρ1 < ρ2.

We put all the suffixes of y into disjoint buckets of five types A–E:

• For δ a suffix of p, we define

– Aδ,k
= {δpkqρ : ρ a proper suffix of x or ρ = ε}, 0 < k < i;

– Aδ,i
= {δpiqρ : ρ a proper suffix of x or ρ = ε}, δ a suffix of q;

– Aδ,i
= {δpiqρ : bρ a proper suffix of x, ρ can be empty}, δ not

a suffix of q;

– Aδ,k
= {δpkqρ : bρ a proper suffix of x, ρ can be empty}, i <

k < j.

– Bδ = {δqρ : ρ a proper nontrivial suffix of x}.

• For δ a suffix of q, we define

– Cδ = {δpiqρ : aρ a proper suffix of x, ρ can be empty}, δ not
a suffix of p;

– Dδ = {δpjqρ : bρ a proper suffix of x, ρ can be empty}.

• Finally we define

– E = {δq : δ a suffix of p} ∪ {δ : δ a suffix of q}.

(where the term proper suffix refers to a suffix that is not equal to the whole
string and the term trivial suffix refers to the empty suffix).

It is easy to check that any suffix of y belongs to one of the buckets A–E.
We are going to order the suffixes in buckets A–D based on the ordering of
the suffixes for x (Step 1), then merge in the suffixes from E (Steps 2 & 3);
since |E| ≤ 2λ, this will not destroy the linearity of the algorithm. Note that
the order within each bucket is determined by the order of suffixes of x:

in the bucket Aδ,k
: δpkqρ1 < δpkqρ2 if ρ1 < ρ2;

in the bucket Bδ: δqρ1 < δqρ2 if ρ1 < ρ2;
in the bucket Cδ: δpiqρ1 < δpiqρ2 if ρ1 < ρ2;
and in the bucket Dδ: δpjqρ1 < δpjqρ2 if ρ1 < ρ2.

Thus, it is straightforward to list the suffixes in each bucket in the correct
order, given the order of the suffixes of x.

5



We make use of the following notation: if X, Y are sets of suffixes of y,
we write X � Y iff (∀x ∈ X)(∀y ∈ Y )(x < y). The major observation our
algorithm is based on is that the buckets are ordered by �; that is, pairwise
orderings can be made between bucket pairs of types

AA, AB, AC, AD, BB, BC, BD, CC, CD, DD, (1)

based on five mutually exclusive (and exhaustive) conditions on any pair δ1,
δ2 of suffixes of p and/or q:

(C1) δ1 ≺ δ2;

(C2) δ1 � δ2;

(C3) δ1 a proper prefix of δ2;

(C4) δ2 a proper prefix of δ1;

(C5) δ1 = δ2 = δ.

Observe that, given δ1 and δ2, to determine which of these conditions holds
requires at most λ letter comparisons (since |δ1| ≤ λ, |δ2| ≤ λ).

Thus, for example, two A buckets can be ordered as follows:

(C1) Aδ1,k1

� Aδ2,k2

.

(C2) Aδ2,k2

� Aδ1,k1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1:

(a) if δ′
1 ≺ p, then Aδ2,k2

� Aδ1,k1

;

(b) otherwise, Aδ1,k1

� Aδ2,k2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2:

(a) If δ′
2 ≺ p, then Aδ1,k1

� Aδ2,k2

;

(b) otherwise, Aδ2,k2

� Aδ1,k1

.

(C5) (a) If k1 < k2, then Aδ,k1

� Aδ,k2

;

(b) if k1 = k2, then Aδ,k1

= Aδ,k2

;

6



(c) if k1 > k2, then Aδ,k2

� Aδ,k1

.

It is not hard to prove that this ordering is correct. The demonstration
for cases (C1), (C2) and (C5) is straightforward. For (C3), observe that we
are comparing δ1p

k1q· · · with δ2p
k2q· · ·, hence pk1q· · · with δ′

1p
k2q· · ·. Since

δ′
1 is a suffix of δ2, it is also a suffix of p and so cannot be a prefix of p. It

follows that either δ′
1 ≺ p or δ′

1 � p, and the result follows. The proof for
(C4) is exactly analogous.

Furthermore the AA ordering is efficient, since the cases (a) and (b) in
(C3) and (C4) can be processed in at most λ constant-time steps in addition
to the λ steps that may be required to identify which condition holds: thus
a total of at most 2λ steps altogether.

The results for the other pairs listed in (1) are similar: the details vary
slightly from one case to another. The main result is that any of the pairs
can be processed in at most 3λ steps, a constant. To avoid distracting the
reader with unnecessary and uninteresting detail, we do not include the other
cases here. For those details, please access

http://www.cas.mcmaster.ca/˜franek/web-publications.html

3 The High-Level Logic of the Algorithm

We describe only the recursive step (Step 1) that takes us from x and its
sorted suffixes to the corresponding sorted suffixes of y = σ(x), where σ =
[p, q, i, j]λ. Recall that we assume q < p.

1. Create names (A, δ) for every suffix δ of p. (This requires at most λ

steps.)

2. Sort the names according to the order described in the previous section
for mutual comparison of the four A buckets. (This requires at most
2λ3 steps as we are sorting λ names and each comparison requires ≤ 2λ
steps.)

3. Replace every name (A, δ) by a sequence of names (A, δ, k), 1 ≤ k < j.
Let us call the resulting sequence BUCKETS. (Now we have the names
of A buckets in the proper order. This requires at most |y| steps as the
size of BUCKETS is ≤ |y|.)

7



4. Create names (B, δ) for every suffix δ of p. (This requires at most λ

steps.)

5. Merge into BUCKETS all names (B, δ) according to comparisons as
described in comparing A buckets to B buckets. (This requires at
most |BUCKETS|3λ2 steps, as we are merging in λ names and each
comparison requires ≤ 3λ steps, hence at most |y|3λ2 steps.)

6. Create names (C, δ) for every suffix δ of q that is not a suffix of p.
(This requires at most λ2 steps.)

7. Merge into BUCKETS all names (C, δ) according to comparisons as
described in comparing A buckets to C buckets and B buckets to C

buckets. (This requires at most |BUCKETS|3λ2 steps, hence at most
|y|3λ2 steps.)

8. Create names (D, δ) for every suffix δ of q. (This requires at most λ

steps.)

9. Merge into BUCKETS all names (D, δ) according to comparisons as
described in comparing A buckets to D buckets, B buckets to D buck-
ets, C buckets to D buckets. (Now we have all bucket names in the
proper order. This requires at most |BUCKETS|3λ2 steps, hence at
most |y|3λ2 steps.)

10. Traverse BUCKETS and replace each name by a sequence of suffixes
according to the sequence of suffixes of x. Let us call this sequence
SUFFIXES. (Now we have all suffixes from buckets A–D in proper
order. This requires at most |y| steps as the size of SUFFIXES is
≤ |y|.)

11. Merge into SUFFIXES the suffixes from the bucket E. (This requires
at most |SUFFIXES|4λ2 steps, as we are merging in 2λ suffixes, each
of length ≤ 2λ, hence at most |y|4λ2 steps.)

SUFFIXES now contains the sorted list of all suffixes of y and it took less
than α|y| steps, where we set α = 2λ3 +14λ2 +3λ+2. Since every reduction
of a complete two-pattern string at least halves its length, altogether the
algorithm with all iterative steps included took less than αn+αn

2
+αn

4
+· · · <

2αn steps, where n is the size of the input string.

8



4 The Supporting Lemmas

The first lemma establishes that the ordering of suffixes is invariant under
an expansion σ.

Lemma 4.1 Let σ = [p, q, i, j]λ be an expansion and q < p. Let x and y be
two-pattern strings of scope λ and let y = σ(x). Let ρ1, ρ2 be suffixes of x

so that ρ1 < ρ2. Then σ(ρ1) < σ(ρ2).

Proof Since ρ1 < ρ2, either

1. ρ1 ≺ ρ2 and so there exists k such that (∀1 ≤ m < k)(ρ1[m] = ρ2[m])
and ρ1[k] = a and ρ2[k] = b. Let |σ(ρ1[1..k−1])| = |σ(ρ2[1..k−1])| = n,
and let r = n+i|p|. Then

σ(ρ1[1..r]) = σ(ρ2[1..r]),

σ(ρ1[r+1..r+|q|]) = q, and σ(ρ2[r+1..r+|p|]) = p. Since q < p,
it follows that q ≺ p and thus σ([1..r+|q|]) ≺ σ([1..r+|p|]), so that
σ(ρ1) ≺ σ(ρ2).

or

2. ρ1 is a prefix of ρ2, hence σ(ρ1) a prefix of σ(ρ2), so that σ(ρ1) < σ(ρ2).

2

The next lemma tells us that interchanging a and b in a binary string
reverses the order of the suffixes.

Lemma 4.2 Let ρ1 < · · · < ρn be the sequence of all suffixes of a binary
string u in an ascending lexicographic order. Then ρ̂1 > · · · > ρ̂n is the
sequence of all suffixes of û in a descending lexicographic order.

Proof Follows by induction from the fact that x < y iff x̂ > ŷ for any two
binary strings x and y. 2

The next three lemmas are technical lemmas required for some of the
proofs (see website referenced above) that the pairs (1) can be processed
correctly in O(3λ) time. Essentially these lemmas tell us that the ordering
of restrained suffixes of y can be accomplished in at most 2λ constant-time
algorithmic steps.

9



Lemma 4.3 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let uqp

be a suffix of a restrained configuration pqp of y and let qp be a restrained
configuration of y. Then uqp �≺ qp and whether uqp≺qp or uqp�qp can
be determined in ≤ 2λ steps.

Proof Arguing by contradiction, we are assuming that uqp �≺ qp does not
hold. Since u is non-empty, it follows that qp must be a prefix of uqp.
Since u is a prefix of p, the last p of qp and the last p of uqp intersect,
contradicting the primitiveness of p. The second part of the claim follows
from the fact that |qp| ≤ 2λ. 2

Lemma 4.4 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let up

be a suffix of a restrained configuration qp of y. Let 1 ≤ k, and let pkq be
a restrained configuration of y. Then up �≺ pkq and whether up≺pkq or
up�pkq can be determined in ≤ 2λ steps.

Proof Arguing by contradiction, we are assuming that up �≺ pkq does not
hold. It follows that up is a prefix of pkq as u is a suffix of q and hence
|u| < |q| and |u| + |p| < k|p| + |q|.

1. if |u| < |p|r, 1 ≤ r ≤ k, r maximal such, then up and the r-th copy of
p from pkq have a non-empty intersection, contradicting the fact that
p is primitive.

2. if |u| = |p|r, 1 ≤ r ≤ k, r maximal such, then p is a suffix of q, a
contradiction.

3. Thus |u| > |p|k. Since u is a suffix of a restrained q, q = (vpk)tw for
some t ≥ 1, w a prefix of vpk.

(a) w = ε. Then p is a suffix of q, a contradiction.

(b) w is a proper prefix of v. Then v = ww′. Then wp is a
prefix of vpkw, hence wp a prefix of ww′pkw, hence p is a
prefix of w′pkw. If w′ were a prefix of p, it would contradict
the primitiveness of p, and so p must be a prefix of w′. Thus
w′ = pw′′ and v = ww′ = wpw′′. It follows that q = (vpk)tw =
q = (wpw′′pk)tw, contradicting the fact that q is not p-regular.

10



(c) w = v makes q = (wpk)tw contradicting the fact that q is not
p-regular.

(d) w = vprp1 for 0 ≤ r < k, p1 a prefix of p. If p1 = ε, then p is a
suffix of q, a contradiction. Thus p1 6= ε. Thus vprp1p is a prefix
of vpkw. Since r < k, we have p a prefix of p1p, contradicting
the primitiveness of p.

Our assumption leads to a contradiction, and so the first part of the lemma
holds. As above, the second part holds since |up| < 2λ. 2

Lemma 4.5 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an
expansion, and y = σ(x). Let u be a non-empty binary string and let upkq,
1 ≤ k, be a suffix of a restrained configuration pk+1q or qpkq of y. Let qp

be a restrained configuration of y. Then upkq �≺ qp and whether upkq≺qp

or upkq�qp can be determined in ≤ 2λ steps.

Proof If u is suffix of p and if |u| > |q|, then |upk| > |qp|. It follows that
up �≺ qp: otherwise qp is a prefix of up making the last p of qp intersect
with the last p of up, contradicting the primitiveness of p.

If u is suffix of p and if |u| = |q|, then |upk| = |qp|. It follows that
up �≺ qp: otherwise qp = up making u = q and so q is a suffix of p, a
contradiction.

Of course, since up �≺ qp implies that upkq �≺ qp and the proof of the
first part of the statement is completed.

Thus either u is a suffix of p and |u| < |q|, or u is a suffix of q (and so
|u| < |q|). Arguing by contradiction, we are assuming that upkq �≺ qp does
not hold. It follows that u is a prefix of q as |u| < |q|.

1. if |q| < |u|+|p|r, 1 ≤ r ≤ k, then qp and the r-th copy of p in
upkq have a non-empty intersection, contradicting the fact that p is
primitive.

2. if |q| = |u|+|p|r, 1 ≤ r ≤ k, then p is a suffix of q, a contradiction.

3. Thus |q| > |p|k and so q = (upk)tv for some t ≥ 1, v a prefix of vuk.

(a) v = ε. Then p is a suffix of q, a contradiction.

11



(b) v is a proper prefix of u. Then u = vv′. Then vp is a prefix
of upkv, hence vp is a prefix of vv′pkv. If v′ were a prefix of
p, it would contradict the primitiveness of p, and so p must be a
prefix of v′. Thus v′ = pv′′ and u = vv′ = vpv′′. It follows that
q = (upk)tv = q = (vpv′′pk)tv, contradicting the fact that q is
not p-regular.

(c) v = u makes q = (vpk)tv contradicting the fact that q is not
p-regular.

(d) v = uprp1 for 0 ≤ r < k, p1 a prefix of p. If p1 = ε, then p

is a suffix of q, a contradiction. Thus p1 6= ε. Thus uprp1p is a
prefix of upkuprp1p, and so p1p is a prefix of pk−ruprp1. Since
r < k, k−r ≥ 1 and so we have p prefix of p1p, contradicting the
primitiveness of p.

Our assumption leads to a contradiction, and so the first part of the lemma
holds. As above, the second part holds since |up| < 2λ. 2

References

[F97] M. Farach, Optimal suffix tree construction with large
alphabets, in Proc. 38th Annual Symposium on Foundations
of Computer Science, IEEE (1997) pp. 137–143.

[FLS03] F. Franek, W. Lu, and W. F. Smyth, Two-pattern strings
I — a recognition algorithm, J. Discrete Algorithms 1–5/6
(2003) pp. 445–460.

[FLS04] F. Franek, W. Lu, and W. F. Smyth, Two-pattern strings II
— computing all repetitions and near-repetitions, sub-
mitted to J. Discrete Algorithms.

[KA03] P. Ko and S. Aluru, Space efficient linear time construction
of suffix arrays, Proceedings of the 14th Annual Symposium
CPM, LNCS 2676, Springer (2003) pp. 200–210.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, and K. Park, Linear-time
construction of suffix arrays, Proceedings of the 14th Annual
Symposium CPM, LNCS 2676, Springer (2003) pp. 186–199.

12



[KS03] J. Kärkkäinen and P. Sanders, Simple linear work suffix ar-
ray construction, Proceedings of the 30th International Collo-
quium on Automata, Languages and Programming, LNCS 2719,
Springer (2003) pp. 943–955.

[MM93] U. Manber and G. Myers, Suffix arrays: a new method for
on-line string searches, SIAM Journal on Computing 22–5
(1993) pp. 935–948.

Acknowledgements

The first author would like to acknowledge the support and hospitality of
the School of Computing, Curtin University, Perth, Australia during the
research for this paper. The research of both authors was supported in part
by their respective research grants from the Natural Sciences and Engineering
Research Council of Canada.

13


