
Verifying a Border Array in Linear Time

Frantǐsek Franěk Weilin Lu P. J. Ryan W. F. Smyth∗

Yu Sun Lu Yang

Algorithms Research Group

Department of Computing & Software

McMaster University

Hamilton, Ontario

Canada L8S 4L7

August 19, 1999

Abstract

A border of a string x is a proper (but possibly empty) prefix of x that
is also a suffix of x. The border array β = β[1..n] of a string x = x[1..n]
is an array of nonnegative integers in which each element β[i], 1 ≤ i ≤ n,
is the length of the longest border of x[1..i]. In this paper we first present
a simple linear-time algorithm to determine whether or not a given array
y = y[1..n] of integers is a border array of some string on an alphabet
of unbounded size. We state as an open problem the design of a corre-
sponding and equally efficient algorithm on an alphabet of bounded size
α. We then consider the problem of generating all possible distinct bor-
der arrays of given length n on a bounded or unbounded alphabet, and
doing so in time proportional to the number of arrays generated. A pre-
viously published algorithm that claims to solve this problem in constant
time per array generated is shown to be incorrect, and new algorithms
are proposed. We state as open the design of an equally efficient on-line
algorithm for this problem.

1 Introduction

The classical method for computing the border array β = β[1..n] of a given
string x = x[1..n] is the so-called “failure function” algorithm [AHU74], that ex-
ecutes in Θ(n) time. A recent paper [MSM99] introduces the idea of b-equivalent
strings — that is, strings with the same border array — and shows how to con-
struct b-canonical strings that are the unique representatives of each b-equivalent
class. The paper then describes an algorithm to generate all possible border ar-
rays of length n together with their corresponding b-canonical strings in time

∗communicating author (smyth@mcmaster.ca); also at School of Computing, Curtin Uni-
versity, Perth WA 6845, Australia.

1

proportional to the number of arrays generated. If bn denotes the number of
distinct border arrays of length n, the sequence

B = {b1, b2, }

= {1, 2, 4, 9, 20, 47, 110, 263, 630, 1525, }

is shown to be a new integer sequence [SP95].
In this paper we extend the results of [MSM99] in two ways:

(1) We describe a Θ(n)-time algorithm that determines whether or not a given
array y[1..n] of integers is a border array of some string (on an unbounded
alphabet).

(2) We show that the [MSM99] algorithm to generate all possible border arrays
is actually incorrect, in the sense that it requires more than constant time
per string generated. We then describe a time- and space-optimal algo-
rithm that generates all border arrays of length at most n (on a bounded or
unbounded alphabet) without the need to store the underlying b-canonical
strings. These arrays constitute a new infinite class of integer sequences.

We state as open problems the design of a modified algorithm (1) that executes
on an alphabet of bounded size α while achieving the same time complexity as
the original, and the design of an on-line algorithm (2) that achieves the same
time complexity as the original.

2 Identifying Valid Border Arrays

This paper deals with arrays y = y[1..n] of nonnegative integers. For these
arrays it will be convenient to make use of the notation y1[i] = y[i] for every
i ∈ 1..n, while

yj [i] = y
[

yj−1[i]
]

for every j > 1 such that yj−1[i] ∈ 1..n. It follows from the definition of
border that for a border array β, 0 ≤ β[i] < i for every i, so that the sequence
i, β[i], β2[i], . . . is monotone decreasing to zero, hence finite. We state a well-
known result [AHU74]:

Lemma 2.1 For some integer n ≥ 1, let x = x[1..n] denote a string with border
array β. Let k be the integer such that βk[n] = 0. Then

(a) for every integer j ∈ 1..k, x
[

1..βj [n]
]

is a border of x[1..n];

(b) for any choice of letter λ, every border of x[1..n+1] = x[1..n]λ has a length
that is an element of the following set:

Sn = {Sn
0 , Sn

1 , . . . , Sn
k }

=
{

0, β[n]+1, β2[n]+1, . . . , βk[n]+1
}

. 2

2

The set Sn defined in Lemma 2.1(b) is called the admissible set of the border
array β[1..n], and each of its elements Sn

j , j = 0, 1, . . . , k is called an admissible
extension of β. Thus the lemma tells us that the only possible border arrays
β[1..n+1] = β[1..n]m are those for which m is an admissible extension. To see
that the converse is not true — that is, that not all admissible extensions give
rise to border arrays — consider the following example (n = 11):

1 2 3 4 5 6 7 8 9 10 11

β = 0 0 1 1 2 3 2 3 4 5 6

Here the border array β corresponds to a string x = abaababaaba, for example.
In fact, it is easy to see that, up to an isomorphism on the alphabet, this string
is the only one that corresponds to β. ¿From Lemma 2.1(b) we see that the
admissible extensions m of β are

m =

0
β[11]+1 = 7

β2[11]+1 = β[6]+1 = 4

β3[11]+1 = β2[6]+1 = β[3]+1 = 2

β4[11]+1 = β3[6]+1 = β2[3]+1 = β[1]+1 = 1

Of these five admissible extensions, only three (m = 0, 7, 4) can actually be used
to extend β to a border array 00112323456m; these extensions correspond to
appending the letters c, b, a, respectively, to x. The extensions m = 1, 2 do not
yield valid border arrays because, even though they give the lengths of borders
of x[1..12] = x[1..11]a and x[1..11]b, respectively, they do not give the lengths
of the longest borders.

In order to characterize those values of m that can be used to extend a
border array β[1..n] to a border array β[1..n]m, we make use of the following
definition:

A nonzero admissible extension m of a border array β is said to be
invalid if and only if there exists an admissible extension m′ of β

such that m = β[m′]. Any other admissible extension of β is said
to be a valid extension.

It follows from this definition that for n ≥ 1 the admissible extensions

Sn
0 = 0, Sn

1 = β[n]+1

are always valid. We shall see in Theorem 2.2 that every valid extension deter-
mines a distinct border array; thus bn ≥ 2n−1, as in fact we have seen in the
sequence B whose first ten terms were given in the Introduction.

Observe that this definition implicitly assumes an unbounded alphabet. For
example, the border array

β[1..15] = 001012301234567

3

corresponds to a string
x = abacabadabacaba

and has five valid extensions m = 0, 8, 4, 2, 1 that result from appending the
letters e, d, c, b, a, respectively, to x. However, if the alphabet size were limited
to α = 4, we would presumably not wish to regard m = 0 as “valid”. The
following theorem provides a justification for our use of this term.

Theorem 2.2 For every n ≥ 1, an integer array y = y[1..n] is a border array if
and only if y[1] = 0 and each y[i] is a valid extension of y[1..i−1], i = 2, 3, . . . , n.

Proof The result is trivially true for n = 1, and so we may suppose n ≥ 2.
To prove necessity, suppose that for some i ∈ 1..n−1,

y[1..i] and y[1..i+1] = y[1..i]m

are both border arrays, and let x = x[1..i+1] denote a string with border array
y[1..i+1]. By Lemma 2.1(b), m must be an admissible extension of y[1..i]. We
suppose however that m is invalid and derive a contradiction.

Since m is invalid, there exists an admissible extension m′ > m of y[1..i]
such that y[m′] = m. Then m′ = yr[i]+1 for some integer r ≥ 1, and the
following statements are true:

(1) x[1..m] = x[i−m+2..i+1] since y[i+1] = m;

(2) x[1..m] = x[m′−m+1..m′] since y[m′] = m;

(3) x[1..m′−1] = x[i−m′+2..i] since m′−1 = yr[i].

¿From (1) and (2) we conclude that

x[m′] = x[m] = x[i+1],

so that (3) can be extended to

x[1..m′] = x[i−m′+2..i+1].

Thus x[1..i+1] has a border of length m′ > m, contradicting the assumption
that y[1..i+1] = y[1..i]m is a border array. We conclude that m must be valid,
as required.

To prove sufficiency, let y = y[1..n] be an array such that y[1] = 0 and each
y[i] is a valid extension of y[1..i−1], i = 2, 3, . . . , n. We show by induction that
y is a border array of some string.

Since y[1] = 0, the result holds for n = 1. Suppose then that for n ≥ 2 and
some i ∈ 2..n, y = y[1..i−1] is a border array of some string x[1..i−1]. We show
that therefore y[1..i] must be a border array.

Let m = y[i]. By hypothesis m is a valid extension of y[1..i−1] and so by
Lemma 2.1(b) two cases arise:

4

m = 0 In this case y[1..i] is a border array of a string x[1..i−1]λ, where the
letter λ is chosen to be distinct from every previous letter in x[1..i−1].

m > 0 Here m = yp[i−1]+1 for some integer p ≥ 1, so that by the inductive
hypothesis x[1..m−1] is a border of x[1..i−1]. Then we can choose x[i] =
x[m], so that x[1..m] is a border of x[1..i] — we want to show that it is
the longest border.

If x[1..m] is not the longest border of x[1..i], there must exist a longer
border x[1..m′] such that m = y[m′]. By Lemma 2.1(b), m′ = yr[i−1]+1
for some positive integer r < p. But then by definition m is invalid,
contrary to the original assumption that each y[i] is a valid extension
of y[1..i−1]. We conclude that y[1..i] is the border array of the string
x[1..i] = x[1..i−1]x[m], as required.

2

This theorem makes clear that an extension m = y[i] of a border array
y = y[1..i−1] yields a border array y[1..i] if and only if

(1) m is an admissible extension of y;

(2) there exists no admissible extension m′ > m of y such that y[m′] = m.

The algorithm that determines whether or not a given array is a border array
simply evaluates these two conditions in a straightforward manner for every
position i ∈ 2..n. Thus the outline of the algorithm can be expressed as follows:

— For y[1..n], n ≥ 1, return either n+1
— or the first position i ∈ 1..n
— such that y[i] is invalid.

if y[1] 6= 0 then return 1
else

i← 2
while i ≤ n and also valid

(

i, y[1..i]
)

do

i← i+1
return i

The Boolean function valid returns TRUE if and only if conditions (1) and
(2) are satisfied by m = y[i], as shown in Figure 1. This function assumes that
the admissible extensions Si−1

j are given in the order shown in Lemma 2.1(b),

so that the final one is Si−1

k = 1. Observe that the algorithm described here
makes no reference to any corresponding string x, but bases its determination
of validity entirely on the properties of the given array y.

Thus, based on Theorem 2.2 and this discussion, we may conclude that our
algorithm is correct. To see that it executes in Θ(n) time, we need to show
that the total number of operations performed in the repeat and while loops
of function valid is O(n). But this fact follows from the corresponding result
for the failure function algorithm [AHU74]: in that algorithm the border array

5

function valid
(

i, y[1..i]
)

— Given that y[1..i−1] is a border array,
— return TRUE iff y[i] is valid.

— First determine whether y[i] is admissible.
j ← −1
repeat j ← j+1
until y[i] = Si−1

j or Si−1

j = 1

if y[i] 6= Si−1

j then return FALSE

else

— Next determine whether y[i] satisfies condition (2).
j′ ← 1
while j′ < j and y[i] 6= y

[

Si−1

j′

]

do

j′ ← j′+1
return (j′ ≥ j)

Figure 1: The Boolean Function valid

elements βj [i−1], j = 1, 2, . . . , k, are inspected just as they are in each of the
repeat and while loops. In the failure function algorithm the total number of
inspections is at most n because each inspection reduces the possible length of
the longest border by at least one. In the present algorithm the possible number
of inspections is at most doubled to 2n because essentially the same inspections
are carried out in each of two loops: first j is incremented by steps of one to its
correct value, while at most j values are tested in the while loop. So the result
is still a linear time algorithm, a fact we state formally in the second main result
of this section:

Theorem 2.3 The algorithm presented in this section correctly determines in
time Θ(n) whether or not a given integer array y[1..n] is a border array. 2

To conclude this section, we remark that a version of Theorem 2.2 appears
as Theorem 3.2 in [MSM99]; however, the result as it is given there is much
less clear and its proof depends on an elaborate theory of b-canonical strings
that we have avoided here with a proof that is elementary. We remark also that
while Theorem 2.2 can be modified in an obvious way to hold for an alphabet
of bounded size α, corresponding modification to the algorithm does not seem
to be so straightfoward. The design of the algorithm for a bounded alphabet is
left as an open problem.

6

(1, 0)
�

�
�

�
�

Q
Q

Q
Q

Q
(1, 1) (2, 0)

�
�

��

A
A
AA

�
�

��

A
A
AA

(1, 2) (2, 0) (1, 1) (2, 0)

Figure 2: Trie T3 — All Border Arrays of Length k ≤ 3

3 Computing All Border Arrays of Length At

Most n

In [MSM99] all the border arrays of length at most n are generated by growing
a trie Tn of height n in which every simple path of length k ≤ n from the root
spells out both a unique border array β = β[1..k] and the b-canonical string
x[1..k] corresponding to β. Thus each node of Tn may be thought of as being

labelled with an integer pair (i, β), where i denotes the ith smallest letter λi in
an ordered standard alphabet, and β is the value of a corresponding entry in
the border array β. For n = 3, Tn appears as shown in Figure 2, representing
strings

λ1λ1λ1, λ1λ1λ2, λ1λ2λ1, λ1λ2λ2

with corresponding border arrays

012, 010, 001, 000.

The algorithm described in [MSM99] uses the canonical string x[1..k] spelled
out by the path from the root to the current node N as a means of determining
the children of N . Effectively, standard letters λ1, λ2, . . . are appended one-by-
one to x[1..k] yielding new strings x[1..k]λi, i = 1, 2, . . . ; for each new string

formed, the corresponding (k+1)th border array element is computed. The
process terminates when a standard letter, say λr, is appended for which the
corresponding border array value is zero (see Lemma 3.4 in [MSM99]). Thus
for each new node of Tn, one step in the failure function calculation is per-
formed, requiring amortized constant time as discussed in Section 2. Hence
the claim that Tn is constructed in time proportional to the number of nodes;
that is, proportional to the number of border arrays (and corresponding strings)
generated.

But the algorithm described in [MSM99] generates Tn in a breadth-first
or on-line manner: Tk+1 is actually computed from the leaf nodes of Tk for

7

every k ∈ 1..n−1. Since for every node N both the corresponding x[1..k] and
β[1..k] need to be available for the failure function calculation, Θ(k) time will
be required to traverse the path from the root to node N in order to compute
them. Thus the time required to compute each child of node N in a breadth-first
algorithm is not constant, but rather Θ(k/r), where r is the number of children
of N .

The obvious correction to the [MSM99] algorithm is to build Tn in a depth-
first manner that uses two working-storage arrays x = x[1..n] and β[1..n] to
store the path from the root of Tn to the current node N . Then for each node
N , the current values x[1..k] and β[1..k] are known and can be used to compute
the children of N : each extension x[1..k]λi, i = 1, 2, . . . , r, can be formed so that
corresponding extensions β[1..k]λi can be computed using a single constant-time
step of the failure function algorithm. A depth-first recursion that computes all
the children of each N before computing any of N ’s siblings will then lead to the
result claimed in [MSM99]: Tn will be constructed in Θ(bn) time using Θ(bn)
space.

The depth-first approach also enables us to solve efficiently a problem raised
in [MSM99]: the computation of a trie T ′

n whose node labels consist only of
border array values β, omitting the elements of the underlying canonical string
x. This can easily be accomplished by maintaining the working storage array
x[1..n] but not storing the current letter in the current node N : the algorithm
will execute recursively in exactly the same way.

Note that it is straightforward to modify each of these depth-first algorithms
to generate a trie for a given bounded alphabet A of size α: it is necessary only
to replace the number m of children computed at each node by min{r, α}. We
can now state formally the main result of this section:

Theorem 3.1 For any given positive integer n, the two algorithms outlined in
this section compute all possible border arrays of length at most n on either a
bounded or unbounded alphabet in time Θ(bn) and space Θ(bn), where bn is the
number of arrays generated. 2

We remark that the depth-first algorithms described above have the disad-
vantage that they provide no means of efficiently computing Tn+1 (respectively,
T ′

n+1) from Tn (respectively, T ′

n). We leave as an open problem the design of on-
line (breadth-first) algorithms that perform the same computation with equal
efficiency.

References

[AHU74] Alfred V. Aho, John E. Hopcroft & Alfred D. Ullman, The Design &
Analysis of Computer Algorithms, Addison-Wesley (1974).

[MSM99] Dennis Moore, W. F. Smyth & Dianne Miller, Counting distinct

strings, Algorithmica 23 (1999) 1-13.

8

[SP95] N. J. A. Sloane & Simon Plouffe, The Encyclopedia of Integer Se-
quences, Academic Press (1995). See also

http://www.research.att.com/˜ njas/sequences/

Acknowledgements

This work was supported in part by grants from the Natural Sciences & Engi-
neering Research Council of Canada.

9

