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Abstract. The Knuth-Morris-Pratt (KMP) pattern-matching algorithm
guarantees both independence from alphabet size and worst-case exe-
cution time linear in the pattern length; on the other hand, the Boyer-
Moore (BM) algorithm provides near-optimal average-case and best-case
behaviour, as well as executing very fast in practice. We describe a sim-
ple algorithm that employs the main ideas of KMP and BM (with a
little help from Sunday) in an effort to combine these desirable features.
Experiments indicate that in practice the new algorithm is among the
fastest exact pattern-matching algorithms discovered to date, perhaps
dominant for alphabet size 8 or more.

1 Introduction

Since 1977, with the publication of both the Boyer-Moore [1] and Knuth-Morris-
Pratt [16] pattern-matching algorithms, there have certainly been hundreds, if
not thousands, of papers published that deal with exact pattern-matching, and in
particular discuss and/or introduce variants of either BM or KMP. The literature
has had two main foci:

– reducing the number of letter comparisons required in the worst/average
case (for example, [3–5, 7, 10, 11]);

– reducing the time requirement in the worst/average case (for example, [6, 8,
13, 14, 21]).

This contribution resides in the second of these categories: in an effort to reduce
processing time, we propose a mixture of Sunday’s variant [21] of BM [1] with
KMP [16, 19]. Our goal is to combine the best/average case advantages of Sun-
day’s algorithm (BMS) with the worst case guarantees of KMP. Experiments
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suggest that our new algorithm (FJS) is among the fastest in practice for com-
putating all occurrences of a pattern p = p[1..m] in a text string x = x[1..n] on
an alphabet Σ of size k. Based on Θ(m+k)-time preprocessing, it also guarantees
that matching requires at most 3n−2m letter comparisons and O(n) time.

Several comparative surveys of pattern-matching algorithms have been pub-
lished over the years [9, 14, 17, 18, 20] and a useful website [2] is maintained that
gives C code for the main algorithms and describes their important features.

In this paper we first introduce, in Section 2, the new algorithm, establish its
asymptotic time and space requirements in the worst case, and demonstrate its
correctness. Then in Section 3 we describe experiments that compare Algorithm
FJS with algorithms that, from the available literature, appear to provide the
best competition in practice; specifically: Horspool’s algorithm (BMH) [13], Sun-
day’s algorithm (BMS) [21], Reverse Colussi (RC) [6], and Turbo-BM (TBM)
[8]. Finally, in Section 4, we draw conclusions from our experiments.

2 The New Algorithm

Algorithm FJS combines two well-known pattern-matching ideas:

(1) In accordance with the BM approach, FJS first compares p[m], the rightmost
letter of the pattern, with the letter in the corresponding text position i′.
If a mismatch occurs, a “Sunday shift” is implemented, moving p along x
until the rightmost occurrence in p of the letter h = x[i′+1] is positioned
at i′+1. At this new location, the rightmost letter of p is again matched
with the corresponding text position. Only when a match is found does FJS
invoke the next (KMP) step; otherwise, another Sunday shift occurs.

(2) If p[m] = x[i′], KMP pattern-matching begins, starting (as KMP does) from
the lefthand end p[1] of the pattern and, if no mismatch occurs, extending
as far as p[m−1]. Then, whether or not a match for p is found, a KMP shift
is eventually performed, followed by a return to step (1).

The pseudocode for Algorithm FJS is shown in the figure below.
As discussed in [15], the real rationale for the algorithm lies in the avoidance

of Markov effects combined with efficient shifting: a match of p[m] with x[i′] can
in most circumstances be regarded as independent of a match (or mismatch) with
p[1], where KMP matching begins; if p[m] �= x[i′], then the Sunday shift provides
an efficient mechanism for sliding p across x. Viewed from one perspective,
FJS just performs KMP matching in a slightly different order: position m of
p is compared first, followed by 1, 2, . . . , m−1. Indeed, since the KMP shift is
also employed, the number of worst-case letter comparisons required for FJS is
bounded above, as we show below, by 3n−2m, compared with KMP’s 2n−m.

Preprocessing

The algorithm uses two arrays: Sunday’s array ∆ = ∆[1..k] computable in Θ(m+
k) time, and the KMP array β′ = β′[1..m+1], computable in Θ(m) time.
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Algorithm 1 (Hybrid Matching)

Find all occurrences of p = p[1..m] in x = x[1..n]

if m < 1 then return
i′ ← m; j ← 1; m′ ← m−1
while i′ ≤ n do

— BM (Sunday) shift if p[m] fails to match
if p[m] �= x[i′] then

repeat
i′ ← i′+∆

[
x[i′+1]

]

if i′ > n then return
until p[m] = x[i′]
j ← 1

— KMP matching if p[m] matches
if j ≤ 1 then

i← i′−m′; j ← 1
while j < m and x[i] = p[j] do

i← i+1; j ← j+1

— Restore invariant i′ = i+m−j for next shift
if j = m then

i← i+1; j ← j+1; output i−m
j ← β′[j]; i′ ← i+m−j

The hth position in the ∆ array is accessed directly by the letter h of the
alphabet, and so we need to make the assumption required by all BM-type al-
gorithms, that the alphabet is indexed [20] – essentially, that Σ = {1, 2, · · · , k}
for some integer k fixed in advance. Then for every h ∈ 1..k, ∆[h] = m−j′+1,
where j′ is the position of rightmost occurrence of the letter h in p, if it exists;
zero otherwise. Thus in case of a mismatch with x[i′], ∆

[
x[i′ + 1]

]
computes

a shift that places the rightmost occurrence j′ of letter x[i′ + 1] in p opposite
position i′+1 of x, whenever j′ exists in p, and otherwise shifts p right past
position i′+1.

To define the β′ array, consider first an array β[1..m+1] in which β[1] = 0
and for every j ∈ 2..m+1, β[j] is one more than the length of the longest border
of p[1..j−1]. Then β′[j] is defined as follows:

If j = m+1, β′[j] = β[j]. Otherwise, for j ∈ 1..m, β′[j] = j′ where j′−1
is the length of the longest border of p[1..j−1] such that p[j′] �= p[j]; if
no such border exists, β′[j] = 0.

See [2] for C code and [9, 20] for further discussion of the preprocessing arrays.

The Algorithm

The KMP part of the algorithm needs to compare position i of x with position
j of p, where j may be the result of a partial match with p[1..j−1] or of an



A Simple Fast Hybrid Pattern-Matching Algorithm 291

assignment j ← β′[j]. On the other hand, the BMS part needs to compare
position

i′ = i+m−j (1)

of x with position m of p. Thus (1) is maintained as an invariant by FJS. Since
the assignment j ← β′[j] may actually set j to zero, (1) may not hold if j = 0
and p[m] = x[i′] at the next match; it is for this reason that the assignment
j ← 1 is made for j ≤ 1 at the beginning of the KMP section.

Correctness

The correctness of Algorithm FJS is a consequence of the correctness of BMS
and KMP. Note that a sentinel letter needs to be added at position n+1 of x to
ensure that ∆

[
x[i′+1]

]
is well defined for i′ = n. If this is undesirable, the final

alignment at x[n−m + 1..n] can be tested as a special case outside of the main
loop.

Letter Comparisons

In the worst case there may be as many as n−m+1 executions of the BM-type
match in Algorithm FJS. Then KMP-type letter comparisons could take place
on the remaining m−1 positions of the pattern over a text string of length n−1
(the final letter of x would never be subject to KMP-type matching). It is well
known (see, for example, [20]) that Algorithm KMP performs at most 2n′−m′

letter comparisons to find matches for a pattern of length m′ in a string of length
n′. Substituting n′ = n−1, m′ = m−1, we find the largest possible number of
letter comparisons by Algorithm FJS is

2(n−1)− (m−1) + (n−m+1) = 3n−2m.

It is straightforward to verify that this bound is in fact attained by p = am−2ba,
x = an. Thus

Theorem 1 Algorithm FJS requires at most 3n−2m letter comparisons in the
worst case, a bound attained by p = am−2ba, x = an. �

We see that, in terms of worst-case letter comparisons, there is a slight price to
be paid for the improved average-case efficiency of FJS.

3 Experimental Results

As mentioned in Section 1, we conducted a number of experiments to compare
Algorithm FJS with four competitors (BMH, BMS, RC, TBM) known to be
among the fastest in practice1.
1 Colussi presents two versions of RC. We used the first version, which is faster on

average but requires Θ(mn) time in the worst case; a second version matches in
worst-case Θ(n) time but is typically slower. Tests of the second version did not
produce significantly different results relative to FJS.
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Our implementations were adapted from [2], which provides well-tested C
code for many pattern-matching algorithms. This gave us a standard to mimic for
FJS, ensuring fairness and consistency. A significant change was the replacement
of calls to the C library functions memcmp() and memset(), made by a few of the
implementations, with equivalent loops. The library calls, which are optimized
for large memory regions, were four to five times slower for our tests.

Timing made use of the high-frequency hardware clocks available on modern
computers. Each test was repeated 20 times and the fastest time was kept. This
is closest to a true minimum independent of external effects such as cache misses.
All times include both preprocessing and matching.

The results presented here were taken from the test system with the most
precise timing – an AMD Athlon 2500+ PC with 512MB RAM, running Win-
dows 2000 (SP4) and using Microsoft C/C++ 12.00.8168. However, the resulting
trends were highly stable across eight environments using a variety of hardware,
operating system, and compiler vendor combinations.

Test Data
The primary corpus was drawn from a set of 1000 randomly selected texts from
Project Gutenberg [12], an online source of public domain documents. The cor-
pus contained a total of 446 504 073 letters, with individual texts ranging from
10 115 to 4 823 268 letters in length.

A second corpus was constructed using the Human Genome Project’s map of
the first human chromosome. A string of 210 992 564 nucleotides was transformed
into a bit string by mapping A, T , C, and G to 00, 01, 10, and 11, respectively.
Random substrings were then used to make texts of varying alphabet size.

Frequency of Occurrence
We constructed high- and moderate-frequency pattern sets to observe the effect
of match frequency on performance. To obtain comparable results, we fixed the
number and length of the patterns in both sets. As both values must be kept
fairly small to construct a meaningful high-frequency pattern set, we settled on
sets of seven patterns of length six.

The high-frequency set was selected by finding the seven most frequent length
six substrings in a random sample of 200 texts from our primary corpus. The
resulting set, with representing the space symbol, is as follows:

of th of the f the that , and this n the

These patterns occur 3 366 899 times in the primary corpus. Figure 1 graphs
performance on this set. The execution time for each text is the total time taken
for all patterns, where the time for each pattern is determined as described
above.

For the moderate frequency set, we constructed a set of 7 words of at least
length six sharing an expected frequency of 4 instances per 10 000 words (long
words were truncated to six letters). The actual match frequency may vary since
patterns may occur often within other words, but this tends to occur in practice
as well. After restricting all members to at most six letters the resulting set is:
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TBM BMH RC BMS FJS

Fig. 1. Execution Time versus Text Length for High-frequency Pattern Set

TBM BMH RC BMS FJS

Fig. 2. Execution Time versus Text Length for Moderate-frequency Pattern Set
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better enough govern public someth system though

These patterns occur 266 792 times in our corpus. Figure 2 graphs the results.

Pattern Length

Pattern sets were constructed consisting of nine patterns for each pattern length
from three to nine. These were selected using a similar process to the one de-
scribed above, but with an expected frequency of 2–3 times per 10 000 words.
The reduced frequency was needed to allow sufficient candidates of each length.

Length Matches Pattern Set
3 586 198 air, age, ago, boy, car, I’m, job, run, six
4 346 355 body, half, held, past, seem, seen, tell, week, word
5 250 237 death, field, money, quite, seems, shall, taken, whose,

words
6 182 353 became, behind, cannot, having, making, moment,

period, really, result
7 99 109 already, brought, college, control, federal, further,

provide, society, special
8 122 854 anything, evidence, military, position, probably,

problems, question, students, together
9 71 371 available, community, education, following, necessary,

political, situation, sometimes, therefore

Figure 3 graphs the results from this test. The time at each length is the total
time for all nine patterns in the relevant set over the entire primary corpus. As
the trends of FJS and BMS suggest that they are asymptotically the same, an
additional experiment was performed testing 90 patterns with lengths from 25 to
175, randomly selected from the corpus. FJS and BMS became indistinguishable
from about m = 100 onward. RC was burdened by its O(m2) preprocessing time,
placing last from m = 30 on. At m = 175, it was more than an order of magnitude
slower than its nearest competitor.

Alphabet Size

These tests used the secondary corpus of DNA-derived texts. This corpus con-
tained 6 texts of 500 000 letters, each over an alphabet of a different size. Each
text was searched with 20 random substrings of length 6. The results, seen in
Figure 4, suggest that Algorithm FJS may be a poor choice for k < 8 – thus,
perhaps, not optimal for DNA sequences (|Σ| = 4), but suitable for proteins
composed of amino acids (|Σ| = 20).

Pathological Cases

Periodic strings can induce theoretical worst-case behaviour in pattern-matching
algorithms. For FJS in particular, x = an, p = aba maximizes the comparison
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count. We compared performance on these strings for values of n from 10 000 to
100 000 at 10 000 letter intervals. The rank order, from fastest to slowest, was
RC, BMH, BMS, FJS, TBM; RC timed 41% faster than FJS on average.

On the other hand, patterns of the form x = an, p = am (and in particular,
m = �n/2�) maximize comparisons for many non-linear BM variants, including
BMH and BMS. Fixing the text as x = a100000, we timed the five implementa-
tions for p = a3 through p = a9. The results showed FJS to be an average of
36% faster than second-place TBM, the only Θ(n) competitor.

The worst case for the original BM algorithm can be triggered with x =
(akb)r, p = ak−1bak−1. As in the previous case, both the pattern and the text
are highly repetitive. We performed two tests on string pairs of this kind. In the
first test, we held r at 100 000 and varied k from 2 through 20. In the second test,
we held k at 10 and varied r from 100 000 through 500 000. Both experiments
indicated an advantage to FJS by 15–20% over BMS and RC and by a large
margin over all others.

4 Discussion and Conclusion

We have tested FJS against four high-profile competitors (BMH, BMS, RC,
TBM) over a range of contexts: pattern frequency (C1), pattern length (C2),
alphabet size (C3), and pathological cases (C4).

Over contexts (C1) and (C2) for English text, FJS was uniformly 10% or
so faster than BMS and RC, its closest adversaries. For very long patterns, the
Sunday skip loop dominates and FJS and BMS are interchangeable.

In terms of (C3), for small alphabets the expected incidence of p[m] = x[i′]
is high: KMP will be invoked often, slowing FJS with respect to BMS and RC.
For k ≥ 8, FJS regains its 10% or so advantage.

The overall speed advantage of FJS probably relates to its efficient average-
case processing of the most common case (initial mismatch) resulting from the
use of the skip loop to avoid repeated settings of j = 1 and Markov independence
of position m and position j in the pattern p. As discussed in [15], the first factor
appears to be the more important.

For FJS the pathological cases (C4) are those in which the KMP part is forced
to execute on prefixes of patterns where KMP has no advantage (no nonempty
borders). On the other hand, FJS performs well on periodic patterns, precisely
because of its KMP component.

The advantage of FJS over TBM seems to be related to the extra time in-
volved in TBM’s shift logic; while the advantage over BMH seems to be a com-
pound of an improved shift methodology together with the effect of the KMP
component.

In summary: we presented the hybrid algorithm FJS which combines the
benefits of KMP and BMS. It requires Θ(m+k) time and space for preprocessing,
and finds all matches in at most 3n− 2m letter comparisons. We also compared
FJS with some of the fastest algorithms available. The results suggest that FJS
is competitive with these algorithms in general, and that for k ≥ 8 it is the
algorithm of choice.
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