

Inside the Java Intelligent Tutoring System Prototype:
Parsing Student Code Submissions with Intent Recognition

 Edward R. Sykes

School of Applied Computing and Engineering Sciences,
Sheridan College

1430 Trafalgar Road, Oakville, Ont.,
Canada, L6H 2L1

+1 (905) 845-9430 Ext. 2490
ed.sykes@sheridanc.on.ca

Franya Franek
Department of Computing and Software,
Faculty of Science, McMaster University

1280 Main Street W., Hamilton, Ont.,
Canada, L8S 4L8

+1 (905) 525-9140 Ext. 23233
franek@mcmaster.ca

ABSTRACT
 The “JavaTM Intelligent Tutoring System” (JITS)
research project involves the development of a
programming tutor designed for students in their first
programming course in JavaTM at the College and
University level. This paper describes recent progress on
the work presented at the last WBE IASTED conference.
The previous paper, entitled “A Prototype for an
Intelligent Tutoring System for Students Learning to
Program in JavaTM”, presented an overview of the
architectural design including state-of-the-art web-based
distributed architecture, the AI techniques used, and the
programmer-optimized user interface. This paper delves
further into the mechanism of the JavaTM Tutor which is
responsible for the syntax and semantic analysis of the
code that the student submits for a programming problem.
The ultimate goal of this inner-component of JITS is to
understand the ‘intent’ of the student by carefully
analyzing the student’s code.

KEY WORDS
Web-Based Education, Programming Tutors, e-Learning,
Intelligent Tutoring Systems.

1. Introduction

 Based on Cognitive Science and Artificial Intelligence
(AI), Intelligent Tutoring Systems have proven their worth
in domains including Physics, Mathematics, Language
Development, and many other disciplines [1, 2].
 Currently, the demand for ITS is growing at an amazing
rate [3]. ITS are gaining such strong acceptance and
popularity due to the following reasons: i) higher student
performance, ii) deepened cognitive development, and iii)
reduced acquisition time for the student [1, 2, 4].
 The current research goal is to bring together recent
developments in the fields of Intelligent Tutoring

Systems, Cognitive Science, and AI to construct an
effective intelligent tutor to help students learn to program
in JavaTM. In addition to contributing to the
understanding of programming learning processes, it is
hoped that this research will have a positive impact on
professors teaching JavaTM. This research is significant
since there are a growing number of students wishing to
learn programming despite the fact that personalized
instruction is decreasing [3, 5]. Additionally, since there
are a growing number of institutions investing in e-
learning, this research will play a significant role in
providing appropriate methods of teaching this key
subject to students learning remotely.

2. JITS Model Overview

 This section presents the key components of intent
recognition within the JavaTM Intelligent Tutoring System.
JITS is designed with two distinct mechanisms of
functionality:

2.1. A-Type JITS Functionality

 In many Intelligent Tutoring Systems, the process of
authoring involves a professor to provide a set of
problems, their specifications, and corresponding
solutions. In JITS, this type of functionality is provided
for very straight-forward programming problems.
 The ‘A’-type functionality is solved by a DPA edit-
distance algorithm. See figure 1 to see a pictorial
representation of how JITS performs pattern-matching to
produce modified string of the student’s code. This topic
is discussed in detail in the extended version of “A
Prototype for an Intelligent Tutoring System for Students

Figure 1. ‘A’-Type JITS Functionality

Learning to Program in JavaTM” found in Special Issue of
the IJCA Journal 2004.

2.2. B-Type JITS Functionality

 The second mechanism of functionality that JITS
provides is a consequence of the limitations from ‘A’-type
functionality described above. In many programming
problems there are often many solutions. A professor
may provide one solution to a problem but there may be
many other solutions that are equally as suitable. As a
result, the most reasonable approach is to request the
professor to author only the problem, the problem
specification, and the output (i.e., desired results) – JITS
needs to determine the rest.
 The B-type functionality requires much more rigor in
terms of attempting to ascertain the ‘intent’ of the student
by analyzing the code. The difficulty in these types of
problems is that there is no coded solution from which
JITS can use as a comparison. As a result, a specialized
intent recognition scanner-parser algorithm prototype has
been developed as a means of determining the intent
behind the student’s submission. This algorithm is
described in greater detail in the following sections.

3. JITS Overview and Framework

 This section describes JITS framework from a high-
level perspective. Figure 2 presents a flowchart of how
JITS processes the student’s submission. Particular
emphasis is placed on the Intent Recognition (IR) module.
Due to the complexity involved with scanning and parsing

Student’s source code

Submit complete code to the Java parser

yes

no
Intent

Recognition
Module

Construct the Java Parse Tree

Compile and Execute the code

Gather information from Java Parse
Tree, Compiler, and Execution engine

Java Parser
succeed?

Student

Use semantic_decision_tree
to determine feedback

1

1
Is the

problem
solved?

Select next problem or exit

no

yes

1

Use
syntax_decision_tree
to provide feedback

Figure 2. Flowchart of JITS AI Module

JavaTM code, it is necessary to restrict JITS to tutor a small
subset of the JavaTM programming language. The current
area of research focuses on basic JavaTM constructs
including variables, operators, and looping structures.
 To better understand the issues associated with the IR
module an example is presented in Table 1. Although the
problem is trivial, it provides a suitable means of
illustrating the intent recognition scanner-parser (i.e., B-
Type JITS functionality).

Table 1. JavaTM ITS Example Problem

Problem:
Write a program called “Exponentiation” which calculates
2N, where N is a user specified number. For example, if
N were assigned the value 4, then the result would be 24 =
2x2x2x2 = 16.

Program specifications:
This program requires the use of a for-loop structure. A
skeleton structure of the solution is given. Fill in the code
to complete this program.
OUTPUT>Result: 16

Skeleton Program (located in Source Code area):

Solution (one of many):
public class Exponentiation {
 public static void main(String[] args) {
 int prod = 1;
 for (int i = 1; i <= 4; i++) {
 prod *= 2;
 }
 System.out.println("Result: " + prod);
 }
}

 There are limitless possibilities for student responses
and the system cannot simply list incorrect responses
coupled with feedback messages. JITS is designed to be
pedagogically sound and focuses on the methodology by
which a student attempts to solve a problem.
Programming conventions, style, and professional coding
techniques are modeled in JITS. In this fashion effective
tutoring may take place.

 In order for JITS to provide intelligent feedback to the
student the Intent Recognition Module relies on a

collection of information: the problem statement, the
problem specification, student’s code, the established
student model, the expert model, the JavaTM parser, the
syntax decision tree, the semantic decision tree, the JavaTM
Parse Tree, the output from the JavaTM compiler, and the
result from the JavaTM runtime engine [6]. Based on the
context some of this information will not be available.
However, the goal of this module is to carefully scrutinize
all available information so that appropriate feedback may
be generated for the student.

4. JITS Intent Recognition Module

The purpose of the Intent Recognition (IR) module is to
ascertain the most probable submission of code the
student intended. As identified in Figure 2, the IR is
invoked when the standard JavaTM parser fails. The IR’s
responsibility is to systematically employ a minimum
distance error-correcting scanner-parser algorithm with
the goal of remedying the student’s code [7, 8]. The IR
algorithm is explained in the following section.

4.1. Syntax Error Correction Strategy

Let L be a nonempty set of strings over the finite set of

symbols used in the Java programming language (i.e., Σ).
It is assumed that a string not in L may be derived from
some sentence in L by a sequence of error-
transformations. The IR module recognizes four types of
syntax errors:

public class Exponentiation
public static void main(String[]

int prod = 1;

/* student writes code here

i) the replacement of a symbol by another
symbol,

System.out.println("Result:" + prod); ii) the insertion of an extraneous symbol,
} iii) the deletion of a symbol, and

iv) the transposition of two adjacent symbols.

 These four errors can be represented by four
transformations TR , TI , TD , and TS from Σ’ to the
subsets of Σ’ defined as follows. For x and y in Σ’:

i) xby is in TR(xay) for all a b ≠
ii) xay is in TI(xy) for all Σ∈a
iii) xy is in TD(xay) for all Σ∈a
iv) xy is in TS(yx)

 The goal of the IR is to select a sequence of
intermediate strings and error transformations such that
the result is a transformation sequence that produces an
acceptable token for the parser.
 For example, suppose L={cde}. Given a string ddfe,
the first ‘d’ is a replacement error and the ‘f’ is an
insertion error because:

ddfeddecde
IR TT ⎯→⎯⎯→⎯

 Using JavaTM for another example, consider the
following declaration:

 publik status flot TAX=5;

 The IR would construct the following Transformation
Sequence:

publicpublik
RT⎯→⎯

staticstatisstatus
RR TT ⎯→⎯⎯→⎯

floatflot
IT⎯→⎯ , resulting in the correct syntax:

 public static float TAX=5;

4.2. IR Scanner-Parser Algorithm

 This section describes the Intent Recognition Scanner-
Parser Algorithm. The grammar that the scanner and
parser operate under is the most current version of the
J2SE – Sun Microsystem’s Java 1.4.2_02 specification.
 The algorithm is presented as follows.
i) The scanner examines the student’s code and attempts

to extract a token. Let S be the stream of characters to
be validated as a token.

ii) The validation process ensues in which comparisons
are done using the reserved words and keywords of
Java (Table 2), and the symbol table (Table 3).

iii) If the scanner cannot ascertain an appropriate token
then the transformations TR , TI , TD , and TS are
employed in an attempt to convert S into a valid
token (i.e., a reserved word, a keyword, or a new
identifier)

iv) This Transformation Sequence (TS) is recorded by
the scanner in a special table called the
Transformation Sequence Table (TST).

v) After a sufficient number of transformations (i.e., k-
error corrections), a token will be constructed.

vi) The token is submitted to the parser.
vii) The parser asks the question: “In the current context,

has a reasonable token been accepted?”

 if (true) then

parser ‘locks onto’ this token by adding it to
the current parse tree.

else
reject the current form of the token and
communicate this back to the scanner so that
the scanner can make appropriate
modifications to the transformation
sequence, or construct an appropriate token
based on the context. For example, ‘;’,
indicating the end of a statement may need
to be created to meet the needs of the parser
to complete the parse tree.

viii) Repeat i) through vii) until all input from the
student’s source code has been processed, and the
parser has completed the construction of the parse
tree.

Table 2. JavaTM Reserved Words and Keywords
abstract else interface super
boolean extends long switch
break false *** native synchronized
byte final new this
case finally null *** throw
catch float package throws
char for private transient
class goto * protected true ***
const * if public try
continue implements return void
default import short volatile
do instanceof static while
double int strictfp **

Note:
 * indicates a keyword that is not currently used
 ** indicates a keyword that was added for Java 2
 *** true, false, and null are reserved words.

Table 3. Symbol table

Lexeme Token Type
(identifier,
method_name,
reserved_word,
or keyword)

Attribute
Values

int INT keyword
for FOR keyword
foobar IDENTIFIER method_name
prod IDENTIFIER identifier value: 1
true TRUE reserved_word
= ASSIGNMENT
… … … …

4.2.1. IR Scanner-Parser Example 1 – Forward

Processing

Based on the problem described in Table 1, the
following example describes how the IR scanner-parser
algorithm operates. Suppose JITS did not have available
the solution as presented in Table 1. Also consider a
student’s code submission as follows:

For (intt i = 1; i <= 4; i++) {

 prod *= 2;
 }

Based on this scenario, JITS would employ the IR

scanner-parser algorithm. The first string of characters
are extracted as ‘For’. The search commences through
the keywords, reserved words, and symbol table for an
exact string match. This having failed, pattern matching
ensues, by employing the transformation functions (TR, TI,
TD, and TS). The string ‘For’ in the input would be
converted to the keyword ‘for’, and in the scanner’s
Transformation Sequence Table would reside the details
of TR. This token would be passed to the parser which
would ‘lock onto’ it. The scanner then reads the next
symbol (i.e., ‘(‘ left-parenthesis) and passes it to the

parser, which in turn attaches it to the current parse tree.
The string ‘intt’ is read next which undergoes the same
treatment that the ‘For’ encountered. However, instead of
a TR transformation, a TD would be recorded for the
Transformation Sequence. Step by step, the scanner
scrutinizes the input strings and attempts to classify each
into a recognizable token for the parser. Figure 3 presents
a pictorial view of the procedure.

ForStatement
‘for’

ForInit
‘int’

Assignment
Op

‘i = 1‘

Conditional
Expression

‘i <= 4’

ForUpdate
‘i++’

ForBody
Statements

AssignmentOp
‘prod *= 2’

Statement
Expression

Figure 3. IR Scanner-Parser – parse tree construction

4.2.2. IR Scanner-Parser Example 2 – Forward and

Backward Processing

In the previous example no situation arose where the
parser rejected the token submitted by the scanner.
Realistically, there will be times in which the parser
cannot accept the token delivered by the scanner. For
instance, consider the following:

For (intt i = 1; i <= 4 i++ {

 prdo *= 2
 }

The first string of characters would be transformed in the
same manner as in example 1. However, after the scanner
successfully identifies token ‘4’ as an integer, the scanner
would happily submit the next token, identifier ‘i'. It is
here the parser would reject to continue. The last token,
‘i’, does not fit the grammar for the for-statement (i.e.,
for (initialization ; test ; increment)). The parser would
ask the scanner to create, or revise the Transformation
Sequence to satisfy the parser’s needs to complete the
sentence according to the grammar. In this example,
several tokens representing symbols would be created by
the scanner representing ‘;’, ‘)’, and ‘;’ for the three
remaining syntax errors respectively.

4.3. Tutoring Process

 Before the parser ‘locks-on’ to a token from the scanner,
the student is asked specific questions for intent
clarification purposes. In this fashion, only modifications
that the student knows upfront about will be made to the
code.
 So, using example 2 in the previous section, the
following dialogue between JITS and the student would
arise:

For (intt i = 1; i <= 4 i++ {

 prdo *= 2
 }

JITS: “I think you meant the keyword ‘for’. Is this correct?”
Student: Yes
JITS continues processing presenting the modified code below…

for (intt i = 1; i <= 4 i++ {

 prdo *= 2
 }

JITS: “I see ‘intt’. Do you mean the keyword ‘int’ ?”
Student: Yes
Resulting code:

for (int i = 1; i <= 4 i++ {

 prdo *= 2
 }

JITS: “Did you mean to insert a ‘;’ between the ‘4’ and ‘i++’?”
Student: Yes
Resulting code:

for (int i = 1; i <= 4; i++ {

 prdo *= 2
 }

JITS: “There seems to be something missing. I think we are

missing a ‘)’ between ‘i++’ and ‘{’. Do you agree?”
Student: Yes
Resulting code:

for (int i = 1; i <= 4; i++) {

 prdo *= 2
 }

JITS: “I found ‘prdo’ but there is a very similar identifier in this

program named ‘prod’. May I rename ‘prdo’ to ‘prod’?”
Student: Yes
Resulting code:

for (int i = 1; i <= 4; i++) {

 prod *= 2
 }

JITS: “I think we’re missing a ‘;’ at the end of this line. Do
you agree?”

Student: Yes
Resulting code:

for (int i = 1; i <= 4; i++) {

 prod *= 2;
 }

 The tutoring process is dynamic. At any time the
student is able to interject, disagree with JITS’
suggestions, and modify the source code. This results in
JITS having to reiterate the IR scanner-parser algorithm
and the tutoring process begins again.

4.4. Logic Errors

The IR scanner-parser algorithm and tutoring process

previously described does not address issues associated
with logic errors. So, even though the IR algorithm and
tutoring process will result in a source program that will
compile, there is no guarantee that it will satisfy the
program requirements.
 Once the IR scanner-parser has completed the
modification of the submitted code to one that parses,
JITS uses information from the program specifications,
and the JavaTM run-time engine to extract more
information regarding the correctness of the student’s
program. Please see the extended version of “A
Prototype for an Intelligent Tutoring System for Students
Learning to Program in JavaTM” found in the Special
Issue of the IJCA Journal 2004 for a discussion regarding
this issue.

4.5. Efficiency Considerations

 From an efficiency perspective traditional error-
correction strategies in the topic of compiler construction
require time proportional to the cube of the length of input
[8]. That is, O(N3), where N is the number of characters
in the source program. Clearly, this is not an efficient
algorithm. However, JITS is not intended for programs of
any size greater than 50 lines of code. As a result,
considering such small values of N, the time cost would
not be even noticeable to students. The purpose of JITS is
to tutor beginning programming students at the College
and University level and not to compile several hundred
thousand lines of source code.

5. Conclusions

In summary, this research paper presented recent
developments related to the JavaTM Intelligent Tutoring
System Prototype. The Intent Recognition scanner-parser
algorithm is based on sound compiler construction theory
and practices, pattern recognition techniques, and error-
correction strategies. The ultimate goal of the Intent
Recognition module in JITS is to understand the ‘intent’
of the student by carefully analyzing the student’s code
and to effectively tutor the student through programming
problems.

This research is significant since it has the potential to
be applied to many programming courses at the College
and University level. This research is also quite timely
considering the tremendous growth of web-based
educational tools, and that JavaTM has become an
extremely popular programming language everywhere in
the world.

6. References

[1] Anderson, J. R., Corbett, A. T., Koedinger, K. R., &

Pelletier, R. (1995). Cognitive Tutors: Lessons learned.
The Journal of the Learning Sciences, 4, 167-207.

[2] Woolf, B., P., Beck, J., Eliot, C., & Stern, M. (2001).
Growth and maturity of intelligent tutoring systems: A
status report, In K. D. Forbus & P. J. Feltovich (Eds.),
Smart machines in education (pp. 100-144). Cambridge,
MA: MIT Press

[3] Koedinger, K. R., (2003). CIRCLE Summer School.
Lecture Series on Intelligent Tutoring Systems, Carnegie-
Mellon University, PA.

[4] Graesser A. C., Person, N. K., & Harter, D. (2001).
Teaching tactics and dialog in autotutor. International
Journal of Artificial Intelligence in Education, 12, 12-23.

[5] Koedinger, K. R. (2001). Cognitive tutors. In K. D.
Forbus & P. J. Feltovich (Eds.), Smart machines in
education (pp. 145-167). Cambridge, MA: MIT Press.

[6] Sykes, E. R., & Franek, F. (2003). A Prototype for an
Intelligent Tutoring System for Students Learning to
Program in JavaTM, Proceedings of the IASTED
International Conference on Computers and Advanced
Technology in Education, June 30-July 2, 2003, Rhodes,
Greece, 78-83.

[7] Aho, A. V., Sethi, R., & Ullman, J. D., (1988). Compilers:
principles, techniques, and tools. Menlo Park, CA:
Addison-Wesley Publishing.

[8] Aho, A. V., & Peterson, T. G., (1972). A Minimum
Distance Error-Correction Parser for Context-Free
Languages, SIAM Journal of Computing, 1, 305-312.

	Table 1. JavaTM ITS Example Problem
	Table 2. JavaTM Reserved Words and Keywords
	Table 3. Symbol table

