
A Way to Incorporate Neural Networks into Exper t Systems

F. Franek and I. Bruha
Dept. of Comp. Sci. and Systems

McMaster University
Hamilton, Ont.

L8S 4K1 Canada

Abstract

It is well known that both major directions of AI research Neural
Networks and Expert Systems exhibit their strengths and weaknesses in almost
complementary way. While neural networks are not good in higher-level
reasoning (mainly for lack of proper representation as well as proper training
methods), they are very good in imprecise classification and recognition. Expert
systems on the other hand are reasonably good in higher-level reasoning, but
they are fundamentally weak in handling imprecise and uncertain knowledge
and data.

This weakness of expert systems in handling uncertainty has been
addressed by many researchers and many methods have been proposed to deal
with it. We have also contributed towards the solution of this problem by
designing and building a software tool McESE to help create expert systems.
We had had several objectives on our mind while designing the system, but one
of them was to give the knowledge engineer a possibility to deal with uncer-
tainty in different and more flexible ways and not to be "locked" in any single
approach.

McESE knowledge base consists of a set of rules in the form
 T

1
 & T

2
 & T

3
 & ... & T

n
 =F=> T .

CVPF (certainty value propagation function) F takes as arguments the certainty
values of T

1
, ... , T

n
 and returns the certainty value to be assigned to T. Thus,

each rule contains not only a declarative knowledge, but also a procedural
knowledge (the cvpf F) of how to handle and propagate uncertainty within the
rule. F can be a program written by the knowledge engineer, or it can be any of
the predefined functions for emulating standard methods. Each rule can have its
own cvpf, or several rules can share one.

While experimenting with McESE and building sample expert systems,
we had realized that it was always easier to state the declarative part of a rule
than to give the corresponding cvpf. As a solution we are presenting a way to
incorporate neural networks in McESE-built expert systems to emulate the
cvpf's. This combination separates and preserves the strong aspects of both
methods, and complements them in their weak aspects, i.e. the rules are still
used to capture the high-level relationships for reasoning, but the knowledge
engineer is freed from the detail bother of the dealing with uncertainty, while the
neural networks involved do not have to be trained for high-level tasks, but they
are trained to "fuzzyfy" the terms in the rules.

1. Introduction

It is well known that both major directions of AI research Neural
Networks and Expert Systems exhibit their strengths and their weaknesses in
almost complementary way. While neural networks are not good in higher-level
reasoning (mainly for lack of proper representation as well as proper training
methods), they are very good in imprecise classification and recognition. Expert
Systems on the other hand are reasonably good in higher-level reasoning (we are
taking the liberty to call the explicit interpretation of rules usually done by
inference engines of expert systems reasoning), but they are fundamentally
weak in handling imprecise and uncertain knowledge and data.

This weakness in handling uncertainty has been addressed by many
researchers and many methods have been proposed and implemented to deal
with this problem (see e.g. [HH], [G], [J], [P], [W]). We have also contributed
a bit towards the solution of the problem of handling uncertainty. Our approach
was more practical than theoretical, mainly because most of the main methods
are rigorous on its surface only, in a sense they are more ad-hoc methods than
well-founded theories (see [J]). We have designed and built a software tool to
help create expert systems, so-called McESE (McMaster Expert System
Environment) which we presented at the Zurich conference on Expert Systems
in June 1989 (see [FB1], [FB2], [F]). We had had several objectives on our mind
while designing the environment, but one of them was to give the knowledge
engineer a possibility to deal with uncertainty in a more flexible fashion and be
able to select the most suitable approach for the problem at hand, rather than to
be "locked" in any single approach.

McESE knowledge base consists of a set of rules in the form

 T
1
 & T

2
 & T

3
 & ... & T

n
 =F=> T

where T
1
, ... , T

n
 and T are so-called McESE terms, which for the sake of brevity

of the introduction can be described as predicates. CVPF (certainty value
propagation function) F takes as arguments the certainty values of T

1
, ... , T

n
,

and returns the certainty value to be assigned to T. Thus, each rule contains not
only a declarative knowledge (the relations among different terms), but also a
procedural knowledge (the cvpf F) of how to handle and propagate uncertainty
within the rule. F can be a program written by the knowledge engineer, or it can
be any of the predefined functions for emulating standard methods (see [J]).
Each rule can have a different cvpf, or several rules (or all rules) can share one.

While experimenting with McESE and building sample expert systems,
we had realized that it was always easier to state the declarative part of a rule
(i.e. the relationship among terms) than to give the corresponding cvpf. As a
solution we proposed to incorporate neural networks in McESE-built expert
systems to emulate the cvpf's. This combination separates and preserves the
strong aspects of both methods, and complements them in their weak aspects,
i.e. the rules are still used to capture the high-level relationships among terms
for reasoning, but the knowledge engineer is freed from the detail bother of the
dealing with uncertainty, while the neural networks involved do not have to be
trained for high-level tasks, but they are trained to "fuzzyfy" the terms in the
rules.

The project is now in its initial phase, when a complete McESE-built
expert system (with cvpf's and all) is used as the "teacher" to a "student" expert
system having the same rules, but without the cvpf's. As the "teacher", an expert
system to play a card game Canasta was chosen for many reasons. Firstly we
needed a non-trivial expert system with enough "impreciseness" to guarantee a
broad use of cvpf's. Secondly, as usual, we needed a domain with dedicated
human experts at hand (in this case it is us). And thirdly, we needed a lot of
input data for training of neural networks - repeated runs of the "teacher" expert
system generate as much input data as we desire.

During the first phase the "student" expert system is collecting numbers
(certainty values) produced for each rule by the "teacher" expert system during
the games, and when the "teaching" phase (i.e. all games) is over, neural
networks of the "student" expert system are trained using the numbers collected.
The main goal of this stage is to determine the optimal values of various
parameters (like initial weights range, gain term, number of hidden layers,
number of nodes in a hidden layer) of neural networks involved, since there is
not enough theoretical knowledge to preset them before the actual games, and
certain heuristics must be used (see e.g. [B], [BM], [H]).

The next phase follows a different strategy of learning for the "student"
expert system. At this point the morphology of the neural networks of the
"student" expert system as determined during the first stage is fixed. The
"student" expert system collects not the certainty values as produced by the
"teacher" expert system, but just relative ranking of terms (conclusions)
involved. After the training games are over, the "student" expert system has
collected a set of inequalities with variables and numbers - they represent
rankings of different terms (conclusions) produced during the games. Linear
programming technique is used by the "student" expert system to find a solution
for the set of inequalities. Note, that this set of inequalities has a solution,
namely the numbers as produced by the "teacher" expert system. Thus, we are
assured at this stage of successfully resolving the set of inequalities and the
solution is then used to train the neural networks as in the first stage.

The third phase is a modified phase two, where the "student" expert
system is not able to "watch" the "teacher" expert system rule by rule firing, but
has got only the final conclusion of the "teacher" available at each move. The
"student" will try to match the "teacher"'s conclusion by adjusting mutual
relations of the interim values of its conclusions on lower levels and its
competing conclusions. This way a consistent ranking of "student"'s conclusions
is produced, similarly as in phase two. The solution of the corresponding set of
inequalities and subsequent training of the neural networks is exactly the same
as in phase two.

Certainly, there would be no sense in "training" expert systems using
complete expert systems as "teachers". We could use the "teacher" expert
systems and not to bother with the "student" expert systems. Thus, the first three
phases are preliminaries for the phase four, where a human player is used as a
teacher. There is no problem to produce relative ranking of terms (conclusions)
at each move throughout the games based on the actual moves by the human
player. The problem we shall have to resolve, though, is the fact that unlike
"teacher" expert system, the human teacher may be inconsistent (i.e. imperfect
teacher) and thus produce an impossible ranking through the many games
played.

Because at this stage we have no definite answer how to deal with the
inconsistency of human teachers, we have been concentrating mainly on the first
three stages in order to establish the viability and practicality of our method of
incorporating neural networks in McESE-built expert systems.

2. Uncer tainty and McESE

In McESE the outside world is described by n-ary (n � 0) predicates,
which can be negated. Thus, for example, P denotes a nullary predicate, P(x)
denotes an unary predicate, P(x,y) denotes a binary predicate and so on. ~P or
-P denote the negation of P. Predicates are used in McESE as basic statements
about facts and objects in the domain in which the corresponding expert system

is supposed to be applied (usually their names are used in mnemonic fashion to
indicate the meaning of the predicate): no_response is a nullary predicate, and
hence a proposition, tall(peter) is an unary predicate with its variable
instantiated with the "object" peter , and thus again a proposition,
loves(peter ,mary) is a binary predicates with its variables instantiated with
"objects" peter and mary, and thus again it is a proposition. When variable(s)
of a predicate is (are) instantiated, the predicate becomes a proposition and thus
it is valid to ask what is its truth-value, true or false. In McESE, similarly as in
fuzzy logic, a real number between 0 (false) and 1 (true) is assigned to a
predicate with its variable(s) instantiated. This represent the so-called certainty
value of the predicate for the given instantiation.

Predicates which are never used on the right hand side of any rule in the
rule-base are so-called level 0 predicates, and they represent basic facts and
observations about the given domain. Their certainty values are assigned to
them by so-called service procedures, which are a part of the expert system.
These values reflect subjective "ranking" of facts and observation by the
knowledge engineer designing the expert system. Consider, for example, a level
0 unary predicate high_fever(temperature). Its service procedure would return
the certainty value for any given value of the temperature. Of course, there is no
other reason but the subjective view of the knowledge engineer for assigning .7
to the temperature of 39 degrees centigrade, rather than .8 . In short, the
certainty values of the facts and observations as represented by the level 0
predicates are set by the knowledge engineer. Level 1 predicates are predicates
which occur on the right hand side of some rule where all the predicates on the
left hand side are level 0 predicates. They represent conclusions based on facts
and observations. Level 2 predicates then represent conclusions based on facts
and observations and level 1 conclusions, and so on. Predicates on level 1 and
up have their certainty values determined by rules.

McESE rules do not use just plain predicates, but so-called McESE
terms to allow capturing of more complex relations among objects and facts in
the domain: a term is an expression of the form

 weight * negation predicate_name (variables) threshold_directive.

weight is a real number between 0 and 1. It represents the weight of certainty
value of the term. When omitted, value of weight is assumed to be 1. negation
is also optional and has value ~ or - , and when used indicates the negation of
the subsequent predicate. predicate_name is the symbolic name of the predicate
and must be present. (variables) indicate the arity of the predicate, no variables
indicate a nullary predicate, one variable indicates an unary predicate, two
variables indicate a binary predicate, and so on. threshold_directive is optional
and is used to turn the certainty value of the term to boolean values 0 and 1
based on the given threshold. The form of threshold directive is [op val], where
op is one of the relational operators >, �, =, <, and �, and val is a real value
between 0 and 1. The certainty value of an instantiated term (i.e. all variables of
its predicate must be instantiated) is determined from the certainty value of its
predicate. If the predicate is negated, 1�the value of the (instantiated) predicate
is used, otherwise the value of the (instantiated) predicate is used. If this value
satisfies the relation given by the threshold directive (if used), the value of the
term is changed to 1, otherwise is changed to 0. If the threshold directive is not
used, the value is left unchanged. Then the value is multiplied by the weight.
This is then the certainty value of the whole term. The McESE rule has the
following syntax:

 RULEID: T
1
 & T

2
 & T

3
 & ... & T

n
 =F=> T

where T
1
, ... , T

n
 and T are McESE terms, and RULEID is the rule's id, it

consists of an identifier followed by a threshold directive, which is optional.
When this rule is to be fired, the certainty values of the left hand side terms v

1
,

... , v
n
 are calculated from the certainty values of corresponding predicates. Then

the cvpf F is applied to them to produce a certainty value v. If the rule's id
includes a threshold directive, then the value v is compared with it, and if the
threshold directive is not satisfied, the rule does not fire. If the threshold
directive is satisfied, or if the threshold directive is not used in the rule's id, then
the right hand side term T is assigned the value v. The certainty value of the
right hand side (instantiated) predicate is computed from the value of the term
T. If T includes threshold directive, then if the threshold directive is satisfied
by v, then v is changed to 1, otherwise to 0. If threshold directive is not used, v
remains unchanged. If the right hand predicate is negated, v is changed to 1-v.
Finally v is multiplied by the corresponding weight. This is the certainty value
assigned to the predicate on the right hand side.

McESE-built expert systems allow for both, forward chaining as well
as backward chaining. When the knowledge base of such an expert system is
queried about a certainty value of a predicate in backward chaining mode, the
variables of the predicate must be instantiated, and this instantiation is
propagated through the knowledge base down to level 0, and then the evaluation
is carried back to the predicate the knowledge base was queried about. In
forward chaining mode, variables of a given set of predicates on level 0 must be
instantiated, and subsequent evaluation is carried to a specified level. With each
predicate a procedure can be associated which is triggered automatically
whenever the predicate value satisfies a given condition.

From the brief exposition to McESE we can see that the user of McESE
has two mechanisms of dealing with uncertainty: cvpf's and threshold directives.
The user does not have to use any, or he may use one, or the other one, or both.
These mechanisms are flexible enough that emulation of any of standard
techniques for dealing with uncertainty: probabilistic, evidential, fuzzy logic,
ad-hoc (like certainty factors of MYCIN), and heuristic, is possible, and in fact,
built-in the system (see [J]). Since McESE knowledge base is compiled into data
structure resembling a generalized tree, the reasoning with it is in run time
reduced to annotation (evaluation) of such a tree, and hence is executed quite
fast. The speed of reasoning with McESE rules was also one of the objectives
on our mind when we were designing the environment.

Though the software of McESE is entirely written in the programming
language C, a form of McESE extension of FranzLISP (see [F]) was used in
Expert System Architecture courses (4th year and graduate level courses) for the
student projects. Thus a variety of small expert systems using McESE have been
built in a few years, ranging from medical diagnostic consultation system for
childhood diseases to card game Canasta player. The overwhelming feeling of
all students involved had been that it was always more straight forward and
simpler to state the declarative part of rules than to specify the corresponding
cvpf's. In fact, they usually tried to create a set of rules in boolean form, i.e. to
suppress uncertainty involved as much as possible. Even though it ought to be
so, we started to thing about the problem of reducing this unpleasant task of the
knowledge engineer. In numerous discussions we found that the task of
knowledge transfer (i.e. designing a knowledge base) would be much easier if
the knowledge engineer were relieved from designing explicit cvpf's.

3. Emulation of CVPF's by neural networks

One of possible solutions to the problem of explicitly stated cvpf's is to
use neural networks to replace the cvpf's, and train them for the task. On the one

hand this relieves the knowledge engineer from the drudgery of specifying
explicit cvpf's and allows him to concentrate on the relevant high-level relations
among objects and facts in the domain and capture them in the rules, but on the
other hand it raises the problem of proper morphology of the neural networks
used and their proper training.

4. The setup of the project

Two McESE-built expert systems programmed in C to play a card game
Canasta are used. The first expert system called "teacher" has a complete rule
base (by this we mean a rule base with McESE rules including cvpf's), the
second one called "student" is identical, but it lacks cvpf's, which are replaced
by neural networks. A program in C called "dealer" facilitates playing of two
players, be it two humans, or one human and a program, or two programs. A
special program also written in C called "TA" facilitates the "learning" of the
"student". Since for every game the "dealer" randomly shuffles the deck of
cards, this setup can produce in reasonable time any required number of
(significantly) different games, and hence provide a sufficient amount of input
data for the training of the "student". This alleviates the problem of preparing
reliable training patterns for a number of neural networks. Note that in the
canasta player, about a hundred rules and thus about a hundred neural networks
are used. The level of success of the training is then verified in a number of
games of the "teacher" against the "student".

5. Phase one of the project

While a game between the "teacher" and a copy of the same expert
system is played (another option is that a human plays against the "teacher", but
it does slow the generation of input data), the "TA" collects the certainty values
as produced for each rule firing by the "teacher". Precisely, if a rule
T

1
 & T

2
 & ... & T

n
 =F=> T of the "teacher" is fired with values v

1
, ... ,v

n
 of the

left hand side terms, and value v is produced by F for the right hand side term
(i.e. v = F(v

1
, ... ,v

n
)), then the "TA" stores the feature vector (v

1
, ... v

n
) with its

desired output v in the training set for the neural network associated with the
same rule in the "student" knowledge base. When all games are finished, the
neural networks are then trained using their respective training sets as created
by the "TA".

The main goal of this phase is to determine the viability of the
approach, how many games should be sufficient, how the important parameters
of neural networks used should be set. The parameters estimated at this stage
are: the general morphology of the network (i.e. how many hidden layers), how
many nodes in a hidden layer, what value of the gain term (learning rate) should
be used, and how strong the error signal should be. As usual, the aim is it to
minimize the number of learning sweeps. The back propagation learning
algorithms of [RHW] is used.

6. Phase two of the project

As in phase one, the same configuration of the "teacher" expert system,
the "student" expert system, and the "dealer" is used. The "TA" program,
though, is different. It does not collect the vectors of values, but "builds" a set
of inequalities. Let us illustrate the method on a simple example.

Teacher:

R1: P1 & P2 & P3 =F=> P4

Student:

R1: P1 & P2 & P3 ==> P4

R2: P5 & P6 =G=> P7
R3: P4 & P7 =H=> P8
R4: P9 & P10 =I=> P8

R2: P5 & P6 ==> P7
R3: P4 & P7 ==> P8
R4: P9 & P10 ==> P8

Thus, P1, P2, P3, P5, P6, P9, and P10 are level 0 predicates, while P4 and P7
are level 1 predicates, and P8 is a level 2 predicate. Let us call the neural
network associated with R1 of the "student" to emulate F NF, the one associated
with R2 of the "student" to emulate G NG, and so on.

Let us assume that evaluation of P8 was requested. The "teacher" first
fires the rule R1. Let value of P1 (as returned by its corresponding service
procedure as described above; note, both the "teacher" and the "student" have
the same service procedure for level 0 predicates) be .4, the value of P2 be .6,
and value of P3 be .8. The "TA" will store the feature vector (.4,.6,.8) and the
desired output (symbol) v

1
 in the training set of NF and remember the value of

v
1
 (i.e. v

1
 = F(.4,.6,.8)). Then the "teacher" will fire the rule R2. Let value of P5

be .8, and let value of P6 be .7. Then the "TA" will store the feature vector (.8,.7)
and the desired output (symbol) v

2
 in the training set of NG and remember the

value of v
2
 (i.e. v

2
 = G(.8,.7)). Then the "TA" stores in its permanent storage

either v
1
 < v

2
, or v

1
 > v

2
, or v

1
 = v

2
, whatever the case might be and forgets the

values of v
1
 and v

2
. Then the "teacher" fires R3. The "TA" will store the feature

vector (v
1
,v

2
) and the desired output v

3
 in the training set of NH and remembers

the value of v
3
. Finally, the rule R4 is fired by the "teacher". Let the value of P9

be .9, and the value of P10 be .5. The "TA" will store the feature vector (.9,.5)
and the desired output v

4
 in the training set of NI and remember the value of v

4
.

Then the "TA" stores in its permanent storage v
3
 < v

4
, or v

3
 > v

4
, or v

3
 = v

4
,

whatever the case might be, and forgets the values of v
3
 and v

4
.

When the training games are over, the training sets of neural networks
of the "student" contain feature vectors and corresponding desired output
consisting of variables v

1
, v

2
, and so on, and numbers, while the permanent

storage of the "TA" contains a set of inequalities or equalities of the variables
v

1
, v

2
, and so on. These inequalities definitely have a solution, namely the

original values of v
1
, v

2
, ... as produced by the "teacher" and forgotten by the

"TA". Linear programming is used by the "TA" to find a solution for the set of
inequalities. Then the variables v

1
, v

2
, ... in the training sets of neural networks

of the "student" are replaced by the values of the solution produced by the "TA".
Then the training of neural networks follows in the same fashion as in phase
one. Note, that because the "TA" forgets the values of the variables v

1
, v

2
, ... and

remembers only the mutual relations of the variables, in fact it only deals with
a relative ranking of conclusions of the knowledge base.

7. Phase three of the project

This phase is a modification of phase two. Unlike in the first two stages,
the "student" becomes more involved during the training games. The "TA" does
not have access to all firings of the "teacher" to produce the feature vectors with
desired outputs (to be stored in the training sets of neural networks of the
"student") and to construct the set of inequalities (to be solved later). After the
"teacher" made its move, the "student" must adjust the mutual relations of
variables v

1
, v

2
, ... (that stand temporarily for the values of conclusions of the

knowledge base as described in the previous paragraph) as to arrive to the same
conclusion as the "teacher". Thus, the resulting set of inequalities is created by
the mutual collaboration of the "TA" and the student. The solution of the set of
inequalities, their substitutions in the training sets, and subsequent training of
neural networks is as in phase two.

Though the "TA" and the "student" have no access to the rules of the
"teacher" and can only "guess" how to arrive to the correct conclusions, the fact
that the "student" reasons along the same lines as the "teacher" (after all it
contains the same rules in its knowledge base) simplifies the task of providing
a consistent ranking of conclusions in order to facilitate a solution of the
resulting set of inequalities.

8. Phase four , the final stage of the project

As indicated in the introduction, phase four of the project does not have
a definite form yet. Phase three was meant as a prerequisite for this phase, for
the "TA" and the "student" in that phase are also dealing with a relative ranking
of conclusions of the knowledge base. The simplified setup of phase three
makes more likely that the set of inequalities as created by the "TA" and the
"student" from the ranking of conclusions as produced by the "teacher" has a
solution. In phase four, the teacher will be a human, i.e. a game will be played,
between two humans, or a human and a program, and the "TA" and the "student"
will be "looking over the shoulder" of the human player this time. But, since the
"student" will not reason in a similar fashion as the human, and since the human
may be (and often will be) inconsistent, it may cause the "student" and the "TA"
to produce an impossible ranking, i.e. a set of inequalities without a solution. At
this stage of our effort, we have not arrived to a satisfactory resolution of this
problem.

9. Conclusion

The paper is describing a possible way to incorporate neural networks
into McESE-built expert systems to emulate so-called cvpf's (certainty value
propagation function). The four distinctive stages of the project are described
and discussed in their particulars. The preliminary results concerning phase one
and partially phase two that have been carried so far by us and graduate students
indicate that the approach as described in the paper is viable, and that a three
layer perceptron is a suitable configuration for the neural networks for
emulation of cvpf's for a particular expert system to play Canasta. Despite the
fact that we have not got a satisfactory solution for the problem of inconsistency
of human teachers (as discussed in phase four of the project), the method seems
interesting and viable enough for us to continue with the project along the
stages described here. The rewords of a successful "marriage" of neural
networks and expert systems are too enticing.

As a final note, since a McESE knowledge base in its compiled form is
a data structure resembling a tree, and since at each node a neural network is
"attached" to emulate the cvpf, one can view the whole data structure as a
"cascade of neural networks", which leads to the problem of a learning
algorithm for such a "cascade of neural networks". If a satisfactory algorithm for
training a "cascade of neural networks" were found, the whole project described
in this paper would be unnecessary. That would represent a real and significant
"fusion" of neural networks and expert systems.

Acknowledgement

This research has been supported by NSERC operating research grants A8034
(I. Bruha) and OGP0025112 (F. Franek).

References

[B] I. Bruha, Neural Nets: Survey and Application to Waveform
 Processing, Intern. Summer Conf. on Art. Intelligence,

Dubrovnik, Sept. 1990 (to appear).
[BM] I. Bruha, G.P. Madhavan, Combined Syntax-Neural Net
 Method for Pattern Recognition of Evoked Potentials, in

Computing and Information, North-Holland, 1989.
[F] F. Franek, McESE-FranzLISP: McMaster Expert System

Extension of FranzLISP, in Computing and Information,
 North-Holland, 1989.
[FB1] F. Franek, I. Bruha, An environment for extending conven

tional programming languages to build Expert System
 Applications, Proceedings of IASTED Conference on Expert
 Systems, Zurich, 1989.

[FB2] F. Franek, I. Bruha, McESE - McMaster Expert System
Environment, in Computing and Information, North
Holland, 1989.

[G] W.A. Gale, Artificial Intelligence & Statistics, Addison-
Wesley Publ. Comp., 1986.

[H] R. Ho, A Neural Network System for Recognition of
Evoked Potentials, M.Sc. Thesis, , Dept. of Comp. Sci.
& Systems, McMaster University, 1989

[HH] S.J.Henkind, M.C.Harrison, An Analysis of Four
Uncertainty Calculi, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 18, No. 5, Sept./Oct. 1988

[J] Z. Jaffer, Different treatments of uncertainty in Expert
Systems and their emulation in McESE, M.Sc. thesis,
Dept. of Comp Sci. & Systems, McMaster University,
1990.

[P] J. Pearl, Probabilistic Reasoning in Intelligent Systems,
Morgan Kaufmann Publ., Palo Alto, 1988.

[RHW] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal
Representation by Error Propagation, in D.E. Rumelhart,
J.L. McCelland (Eds.), PDP: Exploration in the Microstructure
of Cognition, Vol. 1: Foundations, MIT Press, 1986.

[W] J. Weber, Principles and Algorithms for Causal
Reasoning with uncertainty, Tech. rep 287, Univ. of
Rochester, 1989.

