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Background

kt(G) the number of cliques of order t in a graph G

ct(G) =
kt(G) + kt(G)(|G|

t

)
ct(n) = min {ct(G) : |G| = n}

ct = lim
n→∞

ct(n)

A 1962 conjecture of Erdös related to Ramsey’s theorem states
that

ct = 21−( t
2)
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Background

The motivation for the conjecture:

trivially true for t = 2 (edges)
from Goodman’s (1957) work follows for t = 3 (triangles)
true for random graphs

(1987) Shown false by A. Thomason for all t ≥ 4 by providing
upper bounds:

c4 < 0.976 · 2−5

c5 < 0.906 · 2−9

ct < 0.936 · 21−( t
2), for t > 5
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Background

(1993) F. and Rödl using a computer search provided a
simpler counterexample for t = 4 with the same bound

(1996) Jagger, Št’ovíček, Thomason: c5 ≤ 0.8801·2−9

(2002) F.: c6 ≤ 0.744514·2−14

(1968) The only known lower bound is due to Giraud :
c4 >

1
46
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Preliminaries

Quasirandom and nearly quasirandom graphs

It was known that ct(G) ∼ 21−( t
2) whenever G is a quasirandom

graph.

Quasirandom graphs - the graphs “that behave like random
graphs" - were introduced and studied by F.R.K. Chung, R.L.
Graham, R.M. Wilson, and A. Thomason.

The aim of this presentation is to show that for t = 4, ct(G) ≥
21−( t

2), if G is a nearly quasirandom graph, i.e. a graph arising
from quasirandom by a small perturbation.
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Preliminaries

Quasirandom and nearly quasirandom graphs

Quasirandom graphs are defined as graphs with the property
that

|N(v)| ∼ 1
2 |V |, and

|N(u) ∩ N(v)| ∼ 1
4 |V | for almost all v ∈ V and almost all

pairs u, v ∈ V .
where N(v) denotes the neighbourhood of vertex v .

For any fixed t , kt(R) + kt(R) ∼ 21−( t
2)
(|V |

t

)
for any sufficiently

large quasirandom graph R with vertex set V .
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Preliminaries

Quasirandom and nearly quasirandom graphs

A quasirandom sequence of graphs R = {Rn}∞n=0

for all but o(|V (Rn)|) vertices u ∈ V (Rn), d(u) = |N(u)|

satisfies

∣∣∣∣∣d(u)− |V (Rn)|
2

∣∣∣∣∣ < o(|V (Rn)|), and

for all but o
((|V (Rn)|

2

))
pairs of vertices u, v ∈ V (Rn), the

size d(u, v) of their common neighbourhood N(u) ∩ N(v)

satisfies

∣∣∣∣∣d(u, v)− |V (Rn)|
4

∣∣∣∣∣ < o(|V (Rn)|).
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Preliminaries

Quasirandom and nearly quasirandom graphs

Theorem (Chung,Graham,Wilson,Thomason)

Let R = {Rn} be a quasirandom sequence of graphs, then
there exists a sequence of positive reals {εn} so that εn → 0 as
n→∞ and so that for every V ⊂ V (Rn), |V | ≥ εn|V (Rn)|,(

1
2 − εn

)(|V |
2

)
< e <

(
1
2 + εn

)(|V |
2

)
, where the e is the number

of edges of Rn induced on a set V .
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Preliminaries

Quasirandom and nearly quasirandom graphs

For a graph D = (V ,E) and U ⊂ V let δD(U) = E∩[U]2

(|U|
2 )

denote

the edge density of the subgraph induced on U.

For a sequence D = {Dn} and 0 < p ≤ 1 let

pD = {pDn} be any sequence with the following property:

Vn = V (pDn) = V (Dn), and there exists εn → 0 such that∣∣∣∣δpDn(U)− pδDn(U)

∣∣∣∣ < εn as n→∞ for any U ⊂ Vn,

|U| > εn|Vn|.
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Preliminaries

Quasirandom and nearly quasirandom graphs

We can think of pD as a graph obtained from the graph D by
flipping a p-biased coin for each edge of D to decide to remove
it or to leave it. (p remove it, (1−p) leave it)

D = {Dn} an arbitrary sequence of graphs
R = {Rn} a quasirandom sequence

p(R,D) = {p(Rn,Dn)} = {Rn4pDn}
4 denotes symmetric difference
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Preliminaries

Quasirandom and nearly quasirandom graphs

p(R,D) = {p(Rn,Dn)} has the following property:

there exists a sequence {εn} of positive reals such that εn → 0
and for every U ⊂ Vn, |U| > εn|Vn|,
|δp(Rn,Dn)(U)− δRn−Dn(U)− (1−p)δRn∩Dn(U)− pδDn−Rn(U)| < εn.

So the farther we go in the sequence, the more it looks like the
diagram
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Preliminaries

Quasirandom and nearly quasirandom graphs

dH(G) = iH(G)+iH(G)
2 , where iH(G) is the number of isomorphic

copies (not necessarily induced) of H in G.

Z = K4 less one edge

d(G) = dZ (G).

For G = {Gn}, d(G) = lim inf d(Gn).
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Main Result

Theorem 1

Theorem

Let G be a sequence of graphs. Then d(G) ≥ 3
8 and equality

holds if and only if G is a quasirandom sequence.

This answered a question of Erdös
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Main Result

Theorem 2

Theorem

For every λ > 3
8 there exists pλ, 0 < pλ ≤ 1, such that for every

quasirandom sequence of graphs R = {Rn}, and for every
sequence of graphs D = {Dn} with d(R4D) ≥ λ, if c4(p(R,D))
exists, then c4(p(R,D)) ≥ 1

32+ 1
8(λ− 3

8)p4 whenever
0 < p ≤ pλ.

Loosely speaking: counterexamples to Erdös’ conjecture have
to differ essentially from quasirandom graphs.

We call p(R,D) a nearly quasirandom sequence.
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Basic Ideas for the Proofs

We use t-vectors to represent sequences of graphs.

~x is a t-vector with t2 real valued entries xi,j , 1 ≤ i , j ≤ t and so
that xi,j = xj,i .

Bt = {~x ∈ Rt2
: ~x is a t-vector & |xi,j | ≤ 1 for all 1 ≤ i , j ≤ t}. unit

ball

V ,W disjoint sets of vertices of a graph G are ε-uniform if
|δ(V ,W )− δ(V ′,W ′)| < ε whenever V ′ ⊂ V and |V ′| ≥ ε·|V |,
and W ′ ⊂W and |W ′| ≥ ε·|W |.
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Basic Ideas for the Proofs

t-vector ~x ε-represents a graph G
the vertex set of G can be partitioned into t disjoint classes
A1, ...,At∣∣|Ai | − |Aj |

∣∣ ≤ 1 for all 1 ≤ i , j ≤ t , and
all but t2ε pairs {Ai ,Aj}, are ε-uniform, and

δ(Ai ,Aj) = 1
2(1+xi,j) for all 1 ≤ i , j ≤ t , i 6= j , and

δ(Ai ,Ai) = δ(Ai) for all 1 ≤ i ≤ t .
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Basic Ideas for the Proofs

Basic Ideas for the Proofs

t-vector ~x represents a sequence of graphs G iff there is a
sequence of positive reals {εn} so that εn → 0 and ~x
εn-represents Gn, for every n.

Theorem 1 can be reformulated as: ~x represents a
quasirandom sequence iff ~x = ~o.
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Basic Ideas for the Proofs

C4(~x) =
1

26·t4

∑
1≤i,j,k ,l≤t

[(1+xi,j)(1+xi,k )(1+xi,l)(1+xj,k )(1+xj,l)(1+xk ,l)+

(1−xi,j)(1−xi,k )(1−xi,l)(1−xj,k )(1−xj,l)(1−xk ,l)]

D(~x) =
6

25·t4

∑
1≤i,j,k ,l≤t

[(1+xi,j)(1+xi,k )(1+xi,l)(1+xj,k )(1+xj,l) +

(1−xi,j)(1−xi,k )(1−xi,l)(1−xj,k )(1−xj,l)]
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Basic Ideas for the Proofs

c(~x) = 3
25·t4

(
4t

∑
1≤i,j,k≤t

xi,jxj,k +
∑

1≤i,j,k ,l≤t

xi,jxk ,l

)

b(~x) = 3
25·t4

( ∑
1≤i,j,k ,l≤t

xi,jxi,lxj,kxk ,l + 4
∑

1≤i,j,k ,l≤t

xi,jxi,lxj,lxk ,l

)
a(~x) = 1

25·t4

∑
1≤i,j,k ,l≤t

xi,jxi,kxi,lxj,kxj,lxk ,l
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Basic Ideas for the Proofs

If εn → 0, tn →∞, each tn-vector ~xn ε-represents Gn, then
limn→∞ c4(Gn) = limn→∞C4(~xn)

If t-vector ~x represents a graph sequence G, then d(G) =
D(~x)

For any t-vector ~x , C4(~x) = 1
32 + c(~x) + b(~x) + a(~x)

For any t-vector ~x , D(~x) = 3
8 + 4

(
2c(~x) + b(~x)

)
For any t-vector ~x ∈ Bt , |a(~x)| ≤ 1

32

For any t-vector ~x , c(~x) ≥ 0
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Basic Ideas for the Proofs

The facts established up to here are sufficient to prove
Theorem 1. More facts needed to prove Theorem 2.

D(~x) is strictly minimal for ~x = ~o
For any t-vector ~x , 2c(~x) + b(~x) ≥ 0 The equality is
attained iff ~x = ~o
For any λ > 3

8 there is µλ, 0 < µλ ≤ 1, so that for any
positive integer t and for any ~u ∈ Bt with D(~u) ≥ λ, f~u(µ) =
a(~u)µ6 + b(~u)µ4 + c(~u)µ2 ≥ 1

8(λ− 3
8)µ4 for any µ ∈ [0, µλ]
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Basic Ideas for the Proofs

Szemerédi’s Uniformity Lemma
Given ε > 0, and a positive integer l . Then there exist
positive integers m = m(ε, l) and n = n(ε, l) with the
property that the vertex set of every graph G of order ≥ n
can be partitioned into t disjoint classes A1, ...,At such that
(a) l ≤ t ≤ m,
(b)

∣∣|Ai | − |Aj |
∣∣ ≤ 1 for all 1 ≤ i , j ≤ t ,

(c) All but at most t2ε pairs Ai , Aj , 1 ≤ i , j ≤ t , are ε-uniform.

The facts established up to here are sufficient to prove
Theorem 2.
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Summary

When counting monochromatic copies of Z, the
quasirandom graph attains the minimum ≥ 3

8 answering a
question of Erdös
For counting monochromatic copies of K4, Erdös’
conjecture holds true for nearly quasirandom graphs
though in general the conjecture is not true
Further research will concentrate on pushing down the
upper bounds (cf. presentation by A. Baker).
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