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•  Introduction of the problem of maximum
   number of runs in a string

•  A brief history of results on bounds 

•  The current best  upper bound by
    Crochemore and Ilie

•  A key lemma in Crochemore-Ilie  and its
   simpler proof using a different approach.

•  Conclusion 
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A run in a string is a leftmost maximal 
(possibly fractional) repetition:

abbaabba abbaaba….….b

generator
must be
primitive

period p

exponent e > 1 
tail t, may be empty 

cannot be extended right 

cannot be extended left

Naturally encoded as a 4-tuple  (s,p,e,t)

start s  
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An important (for computational reasons) and a 
natural question is how many runs in a string?

1981  Crochemore: There are O(n log n) integer 
runs (tails zero), attained on Fibonacci strings.

1989  Main: gave a linear-time algorithm to find all 
leftmost occurrences of runs.

1997  Iliopoulos, Moore, & Smyth: the number of 
runs in Fibonacci strings is linear.

2000  Kolpakov & Kucherov: the number of runs in 
strings is linear, however only existence of a linear 
constant was given, not its magnitude.
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2003/04  Smyth at al: several conjectures about ρ(n)

r(x) = number of runs in a string x

ρ(n) = max { r(x) : |x| = n }

1.       ρ(n) < n

          1a.     

2.       0 ≤ ρ(n+1) - ρ(n) ≤ 2

3. ρ(n) is attained by a binary cube-free string of
          length n

ρ(n)
nlim

n ∞
   3
1+   5

   n = 0.927 n=
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2006  Rytter: ρ(n) < 5n  later improved to 
ρ(n) < 3.48n  by Puglisi, Simpson, & Smyth, and 
again by Rytter to  ρ(n) < 3.44n .

2007  Crochemore & Ilie: ρ(n) < 1.6n and hinted 
how to lower it, may be to as low as 1.18n .

As for  the lower bound:

2003  Franek, Simpson, & Smyth: presented a 
recursive construction of a sequence of binary 
strings {xn} such that r(xn)

xnlim
n ∞

   3
1+   5

=
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2007 Franek & Yang:    3
1+   5

n - ε

is an asymptotic lower bound for ρ(n) for any ε

Crochemore-Ilie method relies on two key theorems:

1.  On average, there is at most one center of a δ-run
     (2δ ≤ period ≤ 3δ) in each interval of length δ.

2. There are < n runs with periods ≤ 9 in a string of 
    length n.
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This leads to a formula (for suitably selected intervals):

ρ(n) ≤ n + n
δi∑

i=10

∞
= n + ∑

i=0

∞
2
3(  )i 2

10(        )  n

ρ(n) ≤  n + 0.6 n = 1.6 n

The proof of the second theorem (Lemma 2 in the 
paper) is a complex combinatorial analysis comprising 
512 cases of which only one is presented in the paper.



LSD+LAW 2008, LONDON, UK, January 2008 9

We present a simpler and a more straightforward proof
of Lemma 2. However, it relies on a key fact that must
be verified by computer.

Why can’t we estimate ρ(n) by recursion?

     (a) # of runs can decrease
          concatenating two strings may “glue” two or
          more runs together

aabaaaabaa
I

aabaaaabaa
I

aabaaaabaa
I

aabaaaabaa
I I
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     (b) # of run can increase
          concatenating two strings may “glue” two
          fractions together, thus creating one or more
          new runs

baab baab

baabbaab
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We would like to use induction and take a string,
break it into two and apply the induction hypothesis
to the shorter fragments. For estimating an upper bound, 
we do not care about the runs that get broken into two
separate runs (case a),  but we must consider the runs
that are destroyed by the breaking of the original string
(case b). 

However, there are places in a string where the analysis 
of the number of strings that get destroyed by the breaking 
is amenable to computer analysis.
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The core of a run r = (s,p,e,t) in a string x consists of all 
those positions i so that neither x[s..i] is a run nor
x[(i+1)..(s+ep-1)] is a run.
In simple terms, breaking the string x[1..n] into two
fragments x[1..i] and x[i+1..n] for any i from the core
of r will destroy r and all its subruns.

x = aabcdabaababbabbabbabbabbadacd   the core is empty

x = aabcdabaababbabdacd   the core is the “whole” run

x = aabcdabaababbabbadacd    the core is a part of the run

Any run with e > 3 has an empty core. A run with e = 3 has
a non-empty core only if p > 1. Any run with e = 2 has a 
non-empty core.
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In essence,  the core of a run is the intersection of the 
first and the last square of the run with the last element 
removed. 

Lemma: There are at most  n-8  runs of period ≤ 9
               in a string x of length n ≥ 35.

For n=35 verified computationally:
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For higher n we continue by induction: 

In the following, a small run means a run with period ≤ 9, 
rs(x) denotes the number of small runs in a string x.
Let  x be a string of length n ≥ 35. 

If there is a position i in x that is not covered by a core of 
a small run, then rs(x[1..n]) ≤ rs(x[1..i]) + rs(x[i+1..n])

If both fragments are of size ≥ 35, then by induction 
hypothesis, rs(x[1..n]) ≤ i - 8 + (n - i) - 8 = n - 16.
Otherwise one of the fragments is of size ≥ 35 and the 
other is of size < 35 . 
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WLOG assume that rs(x[1..n]) has size ≥ 35 . Then by 
induction hypothesis and the computational results, 
rs(x[1..n]) ≤ i - 8 + ρ9(n-i) ≤ i - 8 + (n - i) = n - 8.

Assume that there is a position i that is covered only by
a core of a single small run. Then 
rs(x[1..n])-1 ≤ ρ9(n-1) ≤ (n-1)-8. Hence rs(x[1..n]) ≤ n-8 .

So we must assume that every position i is covered by 
cores of at least two small runs.
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                                      R-cover
If we order all small runs by their starting positions, and if 
they have the same starting position, by their period (the 
bigger goes first), we can cover string x by a sequence of 
squares {ri} so that 

      •    for any small run in x, its first square is a square in
           some ri . 

         •    the intersection of ri and ri+1 is non-empty. 

r1 r2
rk-
1 r

k

x
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Since |x| ≥ 35, the r-cover ends with three squares:

Computer is used to analyze number of small runs 
“crossing” c1 or being to the right of c1, C1. For most of 
the configurations r2 and r3, C1 ≤ K1. 
This is possible due to many constraints that limit the 
number of possibilities. For instance, if  ρ(|r3|) ≤ K1,
it is automatically true and does not have to be 
considered. Also, only two squares need to be considered, 
r3 and r2.

K1

r1 r2 r3

c

2

c

1
K2
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For the few configurations of r2 and r3 for which C1  
exceeds K1, we add the third square r1, and check C2, 
the number of squares crossing c2 or to the right of c2. 
It turns out to be always ≤ K2.
Now we can finish the proof of the induction step:

Case 1: C1 ≤ K1

       rs(x[1..n]) ≤ rs(x[1..c1])+C1 ≤ c1- 8 + K1 ≤ n - 8

Case 2: C2 ≤ K2

       rs(x[1..n]) ≤ rs(x[1..c2])+C2 ≤ c2- 8 + K2 ≤ n - 8
                                                                                   QED
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                       CONCLUSION

•   The “improved” bound does not meaningfully
     improve the Crochemore-Ilie upper bound for ρ(n)
     ( from 1.6n to 1.6n - 8 ).
•   It simplifies the proof of Lemma 2, however relies
    on computer analysis.
•   We conjecture that the computer verified observation
     that either C1 ≤ K1 or C2 ≤ K2   holds for any bounded
     size of periods (not just 9).
•    The consequence of the conjecture will be a theorem
      For any q, there are < n runs with periods  ≤  q in a
      string of size n. 
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