Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-06

What is This Course About?

o Calendar description:

What Not?

Introduction to logic and proof techniques for practical reasoning:
propositional logic, predicate logic, structural induction; rigorous
proofs in discrete mathematics and programming.

o Calculus is the mathematics of continuous phenomenaphysical sciences, traditional
engineering — used for specifying bridges; used for justifying bridge designs.
@ Discrete Mathematics is
o the math of data— whether complex or big
o the math of reasoning— logic
o the math of some kinds of Al— machine reasoning
o the math of specifying software
o Logical Reasoning is
o used for justifying software designs
o used for proving software implementations correct

Goals and Rough Outline
@ Understand the mechanics of mathematical expressions and proof
— starting in a familiar area: Reasoning about integers
@ Develop skill in propositional calculus
o “propositional”: statements that can be true or false, not numbers
o “calculus”: formalised reasoning, calculation — B, -, A, v, =, ...
@ Develop skill in predicate calculus
o “predicate”: statement about some subjects. — ¥, 3
@ Develop skill in using basic theories of “data mathematics”
@ Sets, Functions, Relations
o Sequences, Trees, Graphs
o ... skill development takes time and effort ...
@ Introduction to reasoning about (imperative) programs
o Encounter mechanised discrete mathematics
o Introduction to mechanised software correctness tools
— Formal Methods: increasingly important in industry

Textbook: “LADM”

“This is a rather extraordinary book, and deserves to
be read by everyone involved in computer science
and — perhaps more importantly — software engi-
neering. I recommend it highly [...]. If the book is
taken seriously, the rigor that it unfolds and the clarity
of its concepts could have a significant impact on the
way in which software is conceived and developed.”

— Peter G. Neumann
(Founder of ACM SIGSOFT)

The Importance of Proof in CS

ACM'’s Computer Science Curricula recognize proofs as one of several areas of
mathematics that are integral to a wide variety of sub-fields of computer science:

...an ability to create and understand a proof — either a formal symbolic proof or a less
formal but still mathematically rigorous argument — is important in virtually every
area of computer science, including (to name just a few) formal specification, verification,
databases, and cryptography.

ACM/IEEE: Computer Science Curricula 2013, p. 79

“Mathematically rigorous” — “if I really needed to formalise it, I could.”
@ Rigorous (informal) proofs (e.g. in LADM)
strive to “make the eventual formalisation effort minimal”.
o There is value to readable proofs, no matter whether formal or informal.
o There is value to formal, machine-checkable proofs,
especially in the software context,
where the world of mathematics is not watching.

Strive for readable formal proofs!

COMPSCI 1DMS3 Final 1(a)

Lemma “F1@)": (-4 A (p =) = ~p Lemma “F1@)": (~q A (p = q)) = ~p

Proof:
(qgrp=q)=-p
= (“Material implication”)
~gaGpva) -y
(“De Morgan”)
gV (GmpASD Y ap
(“Double negation”)

Proof:
(=gn(p=q)=-p
= (“Material implication”)
(cqan(Gpva)=-p
(“Absorption”)
(=g A-p) = -p
(“De Morgan”)

~@@vp) = -p qvpA-qv-p
= (“Contrapositive”) = (“Absorption”)
p=aqvp qvpy-p
= (“Weakening ") = (“Excluded middle”)
true q v true
=("Zeroofv")
true

COMPSCI 1DMS3 Final 1(b)

Lemma “F1(b) ":
Proof:
(@xeP = Q)
= (“Material implication”)
(3xe-PvQ)
(“Distributivity of 3 over v”)
(3x e =P) v (Ix e Q)
(“Generalised De Morgan ")
-(VxeP)v (IxeQ)
= (“Material implication”)
(VxeP)= (3xeQ)

(3xeP=0Q) = (YxeP) = (3xs0Q)

First Tool: CaLcCHECK
@ CALcCHECK: A proof checker for the textbook logic
@ CALCCHECK analyses textbook-style presentations of proofs
@ CALCCHECKweb: A notebook-style web-app interface to CALCCHECK
@ You can check your proofs before handing them in!
@ Will be used in exams!

— initially with proof checking turned off...
... but syntax checking left on
o Will be used in exams
— as far as possible...
You need to be able to do both:
o Write formalisations and proofs using CALCCHECK
o Write formalisations and proofs by hand on paper
(Firefox and Chrome can be expected to work with CALCCHECKyp-
Safari, Edge, IE not necessarily.)

From the LADM Instructor’s Manual
Emphasis on skill acquisition:

@ “a course taught from this text will give students a solid understanding of what
constitutes a proof and a skill in developing, presenting, and reading proof.”

@ “We believe that teaching a skill in formal manipulation makes learning the other
material easier.”

@ “Logic as a tool is so important to later work in computer science and mathematics
that students must understand the use of logic and be sure in that understanding.”

@ “One benefit of our new approach to teaching logic, we believe is that students
become more effective in communicating and thinking in other scientific and
engineering disciplines.”

o “Frequent but shorter homeworks ensure that students get practice”

Consciously departing from existing mechanised logics:

@ “Our equational logic is a “People Logic”, instead of a

"o

“Machine Logic”. o CALCCHECK mechanises this “People Logic”

CaLcCHeck: A Recognisable Version of the Textbook Proof Language

(115) S={x | xeS:x}
According to axiom Extensionality (11.4), it suffices to prove thatve S=ve {x | xeS:x},
for arbitrary v. We have,

ve{x | xeS:x} Theorem (11.5): S ={x | X €S * x }
_ L . Proof:
- { Definition of membership (11.3) } Using “Set extensionality” (11.4):
(3x | xeS:v=x) For any “v':

_ . N VE{X|XES=*x}
= (Trading (9.19), twice) = (“Set membership” (11.3))
(3x | x=v:x¢5)

(3 x 1 x€ESev=x)
= { One-point rule (8.14))

= { “Trading for 3” (9.19))
(Ax I x=vexEe€ES
veS = { “One-point rule for 3” (8.14), substitution)
vV ES

Note:
1. The calculation part is transliterated into Unicode plain text
(only minimal notation changes).
2. The prose top-level of the proof is formalised
into Using and For any structures in the spirit of LADM

From the LADM Instructor’s Manual: “Some Hints on Mechanics” From the LADM Instructor’s Manual: “Some Hints on Mechanics” (ctd.)

@ “We have been successful (in a class of 70 students) with occasionally writing a few o “There is no substitute for practice accompanied by ample and timely feedback”
problems on the board and walking around the class as the students work on them.”

o COMPSCI&SFWRENG 2DM3: ~240 students in 2016, 360 in 2020 o Most “timely feedback” is provided by interaction with CALCCHECKwep

o COMPSCI 2LC3: Over 180 students in 2021: over 200 in 2023 e Autograding for homework and assignments produces some additional feedback

o Tutorials normally have 2040 students and use this approach, with o CALCCHECK is intentionally a proof checker, not a proof assistant

students working on their computers e Providing ample TA office hours (and now a “Course Help” channel) helps
— this still worked with online course delivery students overcome roadblocks.
o “Frequent short homework assignments are much more effective than longer but @ “We tell the students that they are all capable of mastering the material (for they are).”

less frequent ones. Handing out a short problem set that is due
the next lecture forces the students to practice the material
immediately, instead of waiting a week or two.”

o ...and CALCCHECK homework makes more of them
actually master the material.

e Since 2018, giving homework up to twice per week

o Only feasible due to online submission and autograding

o Clear improvement in course results

Organisation Schedule

@ Schedule Mon Tue | Wed | Thu Fri

o Grading 8:30_—10:20 T3 s m
10:30-11:20 T2

o Exams
11:30-12:20 | Lecture Lecture T2

o Avenue 13:30-14:20 | Lecture

Office hour
@ Course Page: http://www.cas.mcmaster.ca/~kahl/CS2LC3/2023/ 14:30-16:20
— check in case of Avenue and MSTeams outage! 16:30:18:20 T4

Lectures: attend!, take notes!

— See the Outline (on course page and on Avenue)

2-hour Tutorials (starting Thursday, September 7):
- Discuss student approaches to “Exercise” questions.
TA office hours: TBA
Studying and Homework: About 2-3 hours per lecture
— reading the textbook , writing proofs in CALCCHECKyyp,

— Read the Outline!

Grading Exams
o Homework, from one lecture to the next — in total: 10% @ Exercise questions, assignment questions, and the questions on midterm tests, and
o The weakest 2 or 3 homeworks are dropped (see outline) on the final —

o MSAFs for homework are not processed — will be somewhat similar. ..

o Roughly-weekly assignments — in total: 16% o All tests and exams are closed-book.
o The weakest 1 or 2 assignments are dropped (see outline) — The main difference to open-book lies in how you prepare...
o MSAFs for assignments are not processed — Knowledge is important:
@ 2 Midterm Tests, closed book, on CALCCHECKy}, / on paper, each: Without the right knowledge, you would not even know what to look up where!

o 15% if not better than your final

o . You need to be able and prepared to do both:
® 20% if better than your final —in total at least: 30% o Write formalisations and proofs using CALCCHECK
ot at east ’ o Write formalisations and proofs by hand on paper

— in total up to: 40%
o Deferred midterms may be oral o Know your stuff!
o Final (closed book, 2.5 hours, on CALCCHECKyyp / - ..) 34%—44% — .- and not only in the exams ...
= 100% — ... and not only for this term ...
@ Possible bonus assignments and other bonus marks — ... similar to learning a new language

— only count if you passed the course

The Language of Logical Reasoning

The mathematical foundations of Computing Science involve language skills and . . .
knowledge: Logical Reasoning for Computer Science

@ Vocabulary: Commonly known concepts and technical terms COMPSCI 2L.C3
@ Syntax/Grammar: How to produce complex statements and arguments
@ Semantics: How to relate complex statements with their meaning McMaster University, Fall 2023

@ Pragmatics: How people actually use the features of the language

Wolfram Kahl
Conscious and fluent use of the
langl'lage of logicahl reasoning 2023-09-06
is the foundation for
precise specification and rigorous argumentation Part 2: Expressions and Calculations
in Computer Science and Software Engineering.
7.8 The Answer Calculational Proof Format
=(Fact'8 =7+ 1)
7-(7+1)

=(Fact'7 =10 - 3") E
(10 - 3) - (7 + 1) 0
= (“Distributivity of - over +”) = (Explanation of why Eg = E1)
(10-3) -7+ (10 - 3) - 1
= (“Distributivity of - over - ") E
10-7-3-7+10-1-3-1 = (Explanation of why E; = E>)
= (“Identity of -” — twice) E
10-7-3-7+ 10 - 3 2
=(Fact3 -7 = 21") = (Explanation of why E; = E3)
10-7- 21 + 10 - 3
=(Fact*10 - 7 = 70") Es
720 - 21+ 10 - 3
=(Fact’'10 - 3 = 7")
70 - 21 + 7
= (Fact'21 + 7 = 28)
70 - 28
=(Fact'70 - 28 = 42°)
42

This is a proof for:

H1 Starting Point

Eg=Es

Calculational Proof Format

Eo

= (Explanation of why Ey = E;)
Eq

= (Explanation of why E; = E3)
E;

= (Explanation of why E; = E3)
Es

The calculational presentation as such is conjunctional: This reads as:
Eo=E; A E1=E; A Ey =E3
Because = is transitive, this justifies:

Eg=Es

Syntax of Conventional Mathematical Expressions
LADM1.1,p.7

o A constant (e.g., 231) or variable (e.g., x) is an expression
o If E is an expression, then (E) is an expression

@ If o is a unary prefix operator and E is an expression, then oE is an expression, with
operand E.

For example, the negation symbol — is used as a unary prefix operator, so — 5 is an
expression.

o If ® is a binary infix operator and D and E are expressions,
then D ® E is an expression, with operands D and E.

For example, the symbols + and - are binary infix operators,
so1+2and (- 5) - (3 +x) are expressions.

Syntax of Conventional Mathematical Expressions

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If o is a unary prefix operator and E is an expression, then oE is an expression, with
operand E.

If ® is a binary infix operator and D and E are expressions, then D ® E is an
expression, with operands D and E.

Why is this an expression?
2-3+4

o If ® is a binary infix operator and D and E are expressions, then D ® E is an
expression, with operands D and E.

@ or the application of some binary infix operator to two simpler expressions

The intention of this is that each expression is at least one of the following alternatives:
o either some constant
@ or some variable
@ or some simpler expression in parentheses
@ or the application of some unary prefix operator
to some simpler expression

or the application of some binary infix operator
to two simpler expressions

InfixApp InfixApp
InfixApp Op Const Const Op InfixApp
Const Op Const + 4 2 - Const Op Const
SR b

Which expression is it? Why?

== The multiplication operator - has higher precedence
than the addition operator +.

Table of Precedences

o [x:=e] (textual substitution) (highest precedence)
o . (function application)

@ unary prefix operators +, —, -, #, ~, P

@ k%

° / + mod gcd

@+ - U N x o e

CI

o #

LI

= < > e c ¢ > 2 (conjunctional)
eV A

0= <«

e = (lowest precedence)

All non-associative binary infix operators associate to the left,
except xx, <, =, -, which associate to the right.

Why are these expressions? Which expressions are these?
Q5-6+7

InfixApp InfixApp
InfixApp Op Const Const Op InfixApp
T \ \ \ T
Const Op Const + 7 5 - Const Op Const
I Lo
5 - 6 6 + 7
Q@a+b-c
InfixApp InfixApp
InfixApp Op Var Var Op InfixApp
T~ | I g
Var Op Var - ¢ a + Var Op Var
o o
a + b b - ¢

The operators + and — associate to the left, also mutually.

Associativity versus Association

o If we write a + b + ¢, there appears to be no need to discuss whether we mean
(a+b)+c or a+ (b+c), because they evaluate to the same values:
(a+b)+c=a+(b+c) “+” is associative
o If we writea —b-c, wemean (a-b) -c:

9-(5-2)#(9-5)-2

“~" associates to the left ‘

o If we write 2, we mean a(*):

‘ exponentiation associates to the right ‘ 200 £ (23)2

o If we write a #* b *# c, we mean a *x (b *x ¢):

“x*” associates to the right ‘

An Equational Theory of Integers — Axioms (LADM Ch. 15)

(15.1) Axiom, Associativity: (a+b)+c=a+(b+c)

(a-b)-c=a-(b-c)

(15.2) Axiom, Symmetry: a+b=b+a
a-b=b-a

(15.3) Axiom, Additive identity: O+a=a

a+0=a

(15.4) Axiom, Multiplicative identity: la=a
a-l=a
(15.5) Axiom, Distributivity: a-(b+c)=a-b+a-c

(b+c)-a=b-a+c-a

o If we write a= b = ¢, wemeana = (b = c): (15.13) Axiom, Unary minus: a+(-a)=0
“=" associates to the right ‘ F=(T=F)* (F=T)=F (15.14) Axiom, Subtraction: a-b=a+(-b)
An Equational Theory of Integers — Axioms (CALcCHECK) Calculational Proofs of Theorems — (15.17) —(-a)=a

Declaration: Z : Type

Declaration: _+_:Z - Z > Z

Declaration: _-_ :Z - Z — Z

Axiom (15.1) (15.1a) “Associativity of +”: (a + b) + c = a + (b + ¢)
Axiom (15.1) (15.1b) “Associativity of -”: (a - b) - c =a - (b - ¢)
Axiom (15.2) (15.2a) “Symmetry of + :a + b = b + a

Axiom (15.2) (15.2b) “Symmetry of -”:a - b = b - a

Axiom (15.3) “Additive identity ” “Identity of +”: 0 + a = a

Axiom (15.4) “Multiplicative identity ” “Identity of -:1 - a = a
Axiom (15.5) “Distributivity of -over+”:a - (b +¢) =a-b+a-c
Axiom (15.9) “Zeroof -":a - 0 = 0

Declaration: —_ :Z - 7Z

Declaration: _—_:Z - Z - Z

Axiom (15.13) “Unary minus ”:a + (-a) = 0

Axiom (15.14) “Subtraction”:a — b = a + (- b)

[(153) Identity of + 0+a=a | (1513) Unary minus _a+(-a) =0 |

LADM: CaLcCHECK:
Theorem (15.17) “Self-inverse of unary minus ”:
Theorem (15.17): —(-a) =a —(-a) =a
Proof: Proof:
~(-a) - (-a)
= (Identity of + (15.3)) = (“Identity of +")
0+—(-a) 0+ - (-a)
= (Unary minus (15.13)) = (“Unary minus”)

a+(-a)+—-(-a)
= (Unary minus (15.13))

a+ (-a)+ - (-a)
= (“Unary minus ")

a+0 a+0
= (Identity of + (15.3)) = (“Identity of +")
a a

7.8 The Answer
=(Fact'8 =7 + 1)

‘E 7.(7+1)
=(Fact'7 =10 - 3")
o= { o Work through Homework 1
) (10 = 3) - (7 + 1) 8
o = (“Distributivity of - over + ") @ Submit by 12:30 on Friday, Sept. 8
(10 -3) -7+ (10 - 3) - 1 .
50 - { “Distributivity of - over - ”) o Tutorials start tomorrow, Thursday,
= 10-7-3-7+10-1-3-1 Sept. 7!
R = (“Identity of - — twice) o If you are in the Thursday tutorial,
) 10-7-3-7+ 10 - 3
— ~(Fact'3 - 7 - 21') work through H1 before that!
© 10-7- 21 + 10 - 3
C"F) =(Fact*10 - 7 = 70°) @ Get started working on Exercises 1.*
_ (?act ‘10 2} 3+_ ;0) -3 @ Go to your tutorial to continue
E N 70 - 21 ; 7 working on Ex1 — bring your laptop!
=(Fact'21 + 7 = 28')
70 - 28
=(Fact'70 - 28 = 42°)
42

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08

Expressions and Substitution

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08

Part 1: Syntax of Mathematical Expressions (ctd.)

Term Tree Presentation of Mathematical Expression
P<n<(b+1)?
PP<n A n<(b+1)?

</A\<
/7\ /7

/N
+ 2

N\
b 1

N\
b 2

We write strings, but we think trees.

All the rules we have for implicit parentheses
only serve to encode the tree structure.

Recall: Syntax of Conventional Mathematical Expressions
Textbook 1.1, p. 7

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If o is a unary prefix operator and E is an expression, then oE is an expression, with
operand E.

For example, the negation symbol — is used as a unary prefix operator, so -5 is an

Recall: Syntax of Conventional Mathematical Expressions

@ A constant (e.g., 231) or variable (e.g., x) is an expression
If E is an expression, then (E) is an expression

If o is a unary prefix operator and E is an expression, then oF is an expression, with
operand E.

If ® is a binary infix operator and D and E are expressions, then D ® E is an
expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:

expression @ either some constant
P ' @ or some variable
o If ® is a binary infix operator and D and E are expressions, ¢ orsome 511T1p1‘er expression in parent'heses
then D ® E is an expression, with operands D and E. o or the application of some unary prefix operator
. o to some simpler expression
For ex;mpée, t};e sy;nbols +and - are'bmary infix operators, o or the application of some binary infix operator
so1+2and (-5)- (3 +x) are expressions. to two simpler expressions
Why is this an expression? Table of Precedences
2.3+4 o [x:=e] (textual substitution) (highest precedence)
o If ® is a binary infix operator and D and E are expressions, then D ® E is an e (funch(?n application)
:) @ unary prefix operators +, -, -, #, ~, P
expression, with operands D and E. ° xx
- e- / + mod gcd
@ or the application of some binary infix operator to two simpler expressions 0+ — U N x o e
ol 1
Which expression is it? o #
+ .
el D
. SN 4 = < > € c ¢ o 2 (conjunctional)
/N eV A
2 3 0= <«
Why? e = (lowest precedence)

— The multiplication operator - has
higher precedence than the addition operator +.

All non-associative binary infix operators associate to the left,
except *%, <, =, -, which associate to the right.

Why are these expressions? Which expressions are these?
Q@ n-k-1

SN,
/N
n k
Q@5-6+7
.
/N
- 7

VAN
5 6

Qa+b-c
PN
+ c
/N N\
a b

The operators + and - associate to the left, also mutually.

Precedences and Association — We write strings, but we think trees
All the rules we have for implicit parentheses only serve to encode the tree structure.

(We use underscores to denote operator argument positions.
So _®_ is a binary infix operator, and &_ is a unary prefix operator.)

a®boc=(a®b)oc

® has higher precedence than _©_ means aoboc-a0(bec)

® has higher precedence thane_ means =2a®b=8(®Db)

B_ has higher precedence than_®_ means B8a4®b=(24)®b

® associates to the left means a®b®c=(a®b)®c

® associates to the right means a®b®c=a® (bec)

® mutually associates to the left
with (same prec.) _o_

® mutually associates to the right
with (same prec.) _©_

means a®boc=(a®b)oc

means a®boc=a® (boc)

Associativity versus Association

o If we write a + b + ¢, there is no need to discuss whether we mean (a +b) +c or
a+ (b+c), because they are the same:
(a+b)+c=a+(b+c) “+” is associative
o If we writea —b-c, we mean (a-b) -c:

9-(5-2)#(9-5)-2

u_n

associates to the left ‘

o If we write 2, we mean a(*):

‘ exponentiation associates to the right ‘ 200 £ (23)2

o If we write a #x b %+ c, we mean a *x (b *x ¢):

“x*” associates to the right ‘

o If wewritea= b = ¢, wemeana = (b = ¢):

“=" associates to the right ‘ F=(T=F)*# (F=T)=F

Conjunctional Operators
Chains can involve different conjunctional operators:

1<i<j<5=k “o\\\
— conjunctional operators) &

1<i A i<j A j<5 A 5=k ve‘

= (“Reflexivity of =" x = x

= (“Reflexivity of =" — A haslower precedence)
(1<i) A (i<j) A (j<5) A (5=k) (°4
o
x<5eScT

= (“Reflexivity of ="
x<5 A 5eS A ScT

— conjunctional operators)

= (“Reflexivity of =" — A haslower precedence)
(x<5) A (5€S) A (ScT)

Mathematical Expressions, Terms, Formulae ...

“Expression” is not the only word used for this kind of concept.
Related terminology:

@ Both “term” and “expression” are frequently used names
for the same kind of concept.

o The textbook’s “expression” subsumes both “term” and “formula” of conventional
first-order predicate logic.
Remember:
@ Expressions are understood as tree-structures
— “abstract syntax”
@ Expressions are written as strings
— “concrete syntax”

o Parentheses, precedences, and association rules
only serve to disambiguate the encoding of trees in strings.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-08

Part 2: Substitution

Plan for Part 2
@ Substitution as such: Replaces variables with expressions in expressions, e.g.,
(x+2-y)[x,y:=3-a,b+5]
= (Substitution)
3-a+2-(b+5)

o Applying substitution instances of theorems and making the substitution explicit:

2y + -2y
= (“Unary minus”a + —a = 0" with'a = 2.y")
0

Textual Substitution
Let E and R be expressions and let x be a variable. We write:

E[x:=R] or Ex

to denote an expression that is the same as E but with all occurrences of x replaced by (R).
Example 1:
(x+y)[x:=2+2]
= (Substitution — performing substitution)
((z+2)+y)
= (“Reflexivity of =” — removing unnecessary parentheses)
zZ+2+y

Textual Substitution
Let E and R be expressions and let x be a variable. We write:

E[x:=R]

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 2:
(r-y)lx=z+2]
= (Substitution)
((z+2)-y)
(“Reflexivity of =” — removing unnecessary parentheses)
(z+2)-y

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 3:
(O+a)a:=-(-a)]

= (Substitution)

O+(=(-a)))

(“Reflexivity of =” — removing (some) unnecessary parenth.)
0+ -(-a)

Textual Substitution
Let E and R be expressions and let x be a variable. We write:

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 4:

x+y[x=z+2]

= (“Reflexivity of =” — adding parentheses for clarity)
x+ (y[x=z+2])

= (Substitution)
x+(y)

= (“Reflexivity of =” — removing unnecessary parentheses)
X+y

Note: Substitution [x := R] is a highest precedence postfix operator

Textual Substitution
Let E and R be expressions and let x be a variable. We write:
E[x:=R] or Ex

R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Unnecessary
Examples: parentheses
Expression Result removed
x[x:=z+2] (z+2) z+2
(x+y)[x:=2z+2] ((z+2)+y) Z+2+y
(x-y)[x:=2+2] ((z+2)-y) (z+2)-y
x+y[x=z+2] xX+y xX+y

Note: Substitution [x := R] is a highest precedence postfix operator

Sequential Substitution

(x+y)[x:=y-3][y:=2+2]
= (“Reflexivity of =” — adding parentheses for clarity)
(c+y)lx=y-3])ly=2+2]
= (Substitution — performing inner substitution)
(y=3)+y)ly=2+2]
(Substitution — performing outer substitution)
((((z +2)-3)+(z+ 2)))

= (“Reflexivity of =” — removing unnecessary parentheses)

z+2-3+z+2

On CALCCHECKwep: Exercise 2.2: Substitutions

Simultaneous Textual Substitution

If Risalist Ry,..., R, of expressions
and x is a list xq, ..., x, of distinct variables, we write:

to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Example:
(x+y)[x,y:=y-3,z+2]
= (Substitution — performing substitution)
((y-3)+(z+2))
= (“Reflexivity of =” — removing unnecessary parentheses)
y-3+z+2

Simultaneous Textual Substitution

If Risalist Ry, ..., R, of expressions
and x is a list x1, ..., x,, of distinct variables, we write:

to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Examples: Unnecessary
parentheses
Expression Result removed
x[x,y:=y-3,z+2] (y-3) y-3

(y+x)[x,y:=y-3,z+2]| (z+2)+(y-3))|z+2+y-3
(x+y)xy=y-3,z+2]| (y-3)+(z+2))|y-3+z+2

x+y[x,y=y-3,2+2] |x+(z+2) X+z+2

Simultaneous Substitution:
(x+y)[xy=y-3,z+2]
= (Substitution — performing substitution)
(1-3)+(+2)
= (“Reflexivity of =” — removing unnecessary parentheses)
y-3+z+2

Sequential Substitution:

(rey)le=y-3lly=2+2]

= (“Reflexivity of =” — adding parentheses for clarity)
(+plr=y-3))y=2+2]

= (Substitution — performing inner substitution)
(-3)+n)ly=2+2]

= (Substitution — performing outer substitution)
(((z+2)-3) + (z+2)))

= (“Reflexivity of =” — removing unnecessary parentheses)
Z+2-3+2z+2

Recall: An Equational Theory of Integers — Axioms (LADM Ch. 15) Calculational Proofs of Theorems — (15.17) -(-a)=a
(15.1) Axiom, Associativity: (a+b)+c=a+(b+c) [(153) Identity of + 0+a=a [(15.13) Unary minus_a+(-a)=0] o\
(a-b)-c=a-(b-c) Theorem (15.17) “Self-inverse of unary minus”: - (-a)=a 6“ ¢
(15.2) Axiom, Symmetry: a+b=b+a Proof: &e
a-b=b-a —(-a) Q@
(15.3) Axiom, Additive identity: O+a=a = (Identity of + (15.3)) w\e%
a+0=a 0+-(-a) '}{{b
(15.4) Axiom, Multiplicative identity: ~ 1-a=a - (Unary minus (15.13)) &Q
a-1=a <
. o a+(-a)+-(-a) &Q;‘
(15.5) Axiom, Distributivity: a-(b+c)=a-b+a-c = (Unary minus (15.13)) 8\%
(b+c)-a=b-a+c-a
15.13) Axiom, Unary minus: a+(-a)=0 axo ‘Q‘z
o oy nanymins: - (dentityof + 153))
(15.14) Axiom, Subtraction: a-b=a+(-b)
a
Calculational Proofs of Theorems — (15.17) — Renamed Theorem Variables Details of Applying Theorems — (15.17) with Explicit Substitutions I
[(153x) Identity of + 0+ x = x | (15.13y) Unary minus _y+ (- y) =0 | . [(15.3x) Identity of +_0+x=x | (15.13y) Unary minus_y+(-y) =0 |
Theorem (15.17) “Self-inverse of unary minus”: - (-a)=a " o "Il;heofr.em (15.17) “Self-inverse of unary minus”: - (-a) =a
Proof: UMY ' roo: a)
Mo T
-(-a) W - (Identity of + (1539 with x = - (-a)) [Q+x=0)lx=-(-a)] = (0+-(-a)=-(-a))]
= (Identity of + (15.3x)) x@“ﬂ 0+-(-a)
0+-(-a) ‘@o = (Unary minus (15.13y) withy :=a) ‘(y+(f y)=0)[y:=a] = (a+ (- a):O)‘
= (Unary minus (15.13y)) &40 a+ (-a)+-(-a)
a+(-a)+-(-a) ‘6’0 = (Unary minus (15.13y) with y:= —a) ‘(y+(—y):0)[y::—a] = (-a+ (- (—a)):O)‘
= { Unary minus (15.13y)) -{{& a0
b = (Identity of + (15.3x) withx:=a) ‘(0+x:x)[x::a)] = (0+u:a‘
a+0 ee .
= (Identity of + (15.3x)) (g‘&
a

Details of Applying Theorems — (15.17) with Explicit Substitutions IT

‘ (15.3) Identityof + O+a=a ‘ (15.13) Unary minus a+ (-a) =0 ‘

Theorem (15.17) “Self-inverse of unary minus”: - (-a)=a
Proof: ,&
-(-a) o
= (Identity of + (15.3) witha:= - (- a)) \Qfo
0+ —(-a) '-dgo
= (Unary minus (15.13) witha:=a) A’b’
\
a+ (-a)+-(-a) QJ'Q

= (Unary minus (15.13) witha:= - a) ‘&}

a+0 6&
= (Identity of + (15.3) witha:=a)&&e

a

Specifying Substitutions for Theorem Application in CaLcCHEck

Theorem (15.19) “Distributivity of unary minus over +”: - (a + b) = (-a) + (-b)
Proof:
—(a +b)
=((15.20) with*a :==a + b")
(=1) - (a + b)
= (“Distributivity of - over +” with*a, b, ¢ :== - 1, a, b") Theorem (15.20):

(-1)-a+ (<1) - b

= ((15.20) witha := b) a=(-1)-a
(-1)-a+ -b

=((15.20) with*a := a*)
(-a) + (-b)

Backquotes enclose math embedded in English. (Markdown convention)
Substitution notation as in LADM: variables := expressions
“:=" reads “becomes” or “is/are replaced with”

“:=" is entered by typing “\:=" or “\becomes”!

The variable list has the same length as the expression list.

No variable occurs twice in the variable list.

CALCCHEGKwe, notebooks “with rigid matching” require all theorem variables to be substituted.
“Rigid matching” means: The theorems you specify need to match without substitution.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-11
Part 1: Foundations of Applying Equations in Context

Plan for Today
@ Anatomy of calculation based on Substitution (LADM 1.3-1.5):
o Inference rule Substitution: Justifies applying instances of theorems:
2y + -2y
= (“Unary minus”a + —a = Owith‘a := 2-y")
0
o Inference rule Leibniz: Justifies applying (instances of) equational theorems deeper
inside expressions:
2-x+3-(y - 5-(4-x+7))
= (“Subtraction”a — b = a + —-bwith‘a,b := y,5-(4-x+7)")
2:x+3-(y + - (5:-(4-x+7)))
o LADM Chapter 2: Boolean Expressions
e Meaning of Boolean Operators
o Equality versus Equivalence
o Satisfiability and Validity
@ Starting with LADM Chapter 3: Propositional Calculus
o Equivalence, Negation, Inequivalence

What is an Inference Rule?

premise, . premise,
conclusion

If all the premises are theorems,

then the conclusion is a theorem.

A theorem is a “proved truth”
— either an axiom,
— or the result of an inference rule application.

Inference rules are the building blocks of proofs.

The premises are also called hypotheses.

The conclusion and each premise all have to be Boolean.

Axioms are inference rules with zero premises

Inference Rule: Substitution

E “If E is a theorem,

(1.1) Substitution: E[x:=R] then E[x := R] is a theorem as well”

Example:
If a+0=a isatheorem,

“Identity of +”

“Identity of +” with ‘a:=3 - b’

then 3-b+0=3-b isalsoa theorem.

__ a+0=a _a+0=a
(a+0=a){a:=3-b] 3:b+0=3-b

Inference Rule Scheme: Substitution

E “If E is a theorem,

(1.1) Substitution: E[x:=R] then E[x := R] is a theorem as well”

Really an inference rule scheme:
works for every combination of
@ expression E,
@ variable x, and
@ expression R.

a+0=a

Example: 35+0-37

If a+0=a isatheorem,
then 3-b+0=3-b isalsoa theorem.

@ expressionEis a+0=a
o the variable x substituted intois 4
o the substituted expression Ris 3-b

Inference Rule Scheme: Substitution — Also for Simultaneous Substitution

(1.1) Substitution:

Really an inference rule scheme:
works for every combination of
@ expression E,
@ variable list x, and

@ corresponding expression list R.

Example:
If x+y=y+x isatheorem,
then b+3=3+b isalsoa theorem.

@ expressionEis x+y=y+x
@ variable list xis x,y
@ corresponding expression list Ris b,3

Logical Definition of Equality

Two axioms (i.e., postulated as theorems):

Using Leibniz’ Rule in (15.21)

Given: (1520) -a=(-1)-a X=Y

@ (1.2) Reflexivity of =: x=x E[z:=X]=E[z:=Y]
o (1.3) Symmetry of =: (x=y)=(y=x) Proving (1521) (-a)-b=a-(-b):
. (=a)-b
Two inference rule schemes: X-Y Y=z = ((15.20) — via Leibniz (1.5) with E chosen as z-b)
o (1.4) Transitivity of =: — =z ((-1)-a)-b
= (Associativity (15.1) and Symmetry (15.2) of -)
- ((-1)-b
o (1.5) Leibniz: ___X=y a-(=1)-b)
E[z:=X] =E[z:=Y] = ((15.20))
a-(-b)
— the rule of “replacing equals for equals”
Using Leibniz together with Substitution in (15.21) Combining Leibniz’ Rule with Substitution
X=Y
Given: (1520) -a=(-1)-a X=Y (1.5) Leibniz: e (15.20) —a=(-1)-a
E[z=X] = E[z:= Y] E[Z;X]'E[Z" Y]
Proving (1521) (-a)-b=a-(-b): (1) Substitution: - o=
(-a)-b - —— p
Using Leibniz: || Using them together: Example:
= ((15.20) — via Leibniz (1.5) with E chosen as z- b)
((-1)-a)-b E[z:=X] E[z:=X[v:=R]] a-((-1)-b)
= (Associativity (15.1) and Symmetry (15.2) of -) = (X=Y) = (X=Y) = ((15.20) witha:=b—Eisa-z)
a-((-1)-b) E[z:=Y] E[z:=Y[v:=R]] a-(-b)
= ((15.20) with a := b — via Leibniz (1.5) with E chosen asa-z)
L Justification:
a-(-b) X_y o
Y Substitution (1.1)

[v:=R]

Leibniz (1.5)

Automatic Application of Associativity and Symmetry Laws

Axiom (15.1) (15.1a) “Associativity of + " (@a+b)+c = a+({b+o)
Axiom (15.1) (15.1b) “Associativity of - ”: (@a-b)y-c = a-(b-0)
Axiom (15.2) (15.2a) “Symmetry of +”: a+b = b+a
Axiom (15.2) (15.2b) “Symmetry of - ": a-b = b-a

@ You have been trained to reason “up to symmetry and associativity”

@ Making symmetry and associativity steps explicit is
o always allowed
o sometimes very useful for readability

o CALCCHECK allows selective activation of symmetry and associativity laws

— “Exercise .../ Assignment ...: [...] without automatic associativity and
symmetry”

— Having to make symmetry and associativity steps explicit can be tedious. ..

(15.17) with Explicit Associativity and Symmetry Steps
‘ (15.3) Identity of + a+(-a)=0 ‘

O+a=a ‘ (15.13) Unary minus

Proving (15.17) - (-a)=a:

~(-a)

= (Identity of + (15.3))
0+-(-a)

= (Unary minus (15.13))
(@+(-a)+-(-a)

= (Assodiativity of + (15.1))
a+((-a)+- (- a))

= (Unary minus (15.13))
a+0

= (Symmetry of + (15.2))
O+a

= (Identity of + (15.3))

a

Some Property Names

Let ® and @ be binary operators and 0 be a constant.
(© and ® and O are metavariables for operators respectively constants.)

XY = yox

(xoy)oz =x0(yoz)

o “® is mutually associative with & (from the left)”:

(xoy)oz = xo(yoz)

o “o is symmetric”:

@ “© is associative”:

For example:

e + is mutually associative with —:
(x+y)-z = x+(y-2z)

e - is not mutually associative with +:
(5-2)+3+5-(2+3)

Some Property Names (ctd.)

Let ® and @ be binary operators and 0O be a constant.
(© and ® and 0 are metavariables for operators respectively constants.)

“® is idempotent”: XOx =x
“O is a left-identity (or left-unit) of ©”: 00x =X
“0O is a right-identity (or right-unit) of ©”: xXeo = x
“0 is a identity (or unit) of ©”: 0ex = x = x00
“Ois a left-zero of ©”: 0ex =0
“Ois a right-zero of ©”: xeo =0

“Ois azeroof ©”: DOx =0 =x00
xo(yez) = (xoy)e(xoz)
(yoz)ox = (yox)@(zox)
© distributes over & from the left and
© distributes over & from the right

“® distributes over @ from the left”:
“® distributes over @ from the right”:

“© distributes over &”:

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-11

Part 2: Boolean Expression

Truth Values
Boolean constants/values: false, true
The type of Boolean values: B
— This is the type of propositions, for example: (x=1) : B

— For any type t, equality _=_ can be used on expressions of that type: =_:t >t —>B

Boolean operators:

@ -_:B—-B —negation, complement, “logical not”, \1not

o _A_:B->B-B — conjunction, “logical and”, \1and

o _v_:B-B-B — disjunction, “logical or”, “inclusive or”, \lor

o _=_:B->B->B —implication, “implies”, “if ... then...”,\=>, \implies
o = :B->B->B —equivalence, “if and only if”, “iff”, \==, \equiv

o _# :B->B—->B —inequivalence, “exclusive or”, \nequiv

Table of Precedences

o [x:=e] (textual substitution) (highest precedence)
o . (function application)

@ unary prefix operators +, —, -, #, ~, P

@ k%

° / + mod gcd

@+ - U N x o e

CI

o #

LI

= # < > € c € o 2 (conjunctional)
eV A

0= $H <« <

@ = (lowest precedence)

All non-associative binary infix operators associate to the left,
except xx, <, =, -, which associate to the right.

Binary Boolean Operators: Conjunction

Args.

A
F F|F The moon is green, and 2 +2 = 7.
F T |F The moon is green, and 1 +1 = 2.
T F|F 1+1 =2, and the moon is green.
T T |1 1+1 =2, and the sunis a star.

Binary Boolean Operators: Disjunction

Args.
v
F F |F The moon is green, or 2 +2 =7.
F T |1 The moon is green, or 1 +1 = 2.
T F|T 1+1 =2, or the moon is green.
T T|1 1+1 =2, or the sun s a star.
This is known as “inclusive or” — see textbook p.34.

Binary Boolean Operators: Implication

Args.

=
F F |1 If the moon is green, then2+2 =7.
F T |1 If the moon is green, then 1+1 = 2.
T F|F If 1+ 1 = 2, then the moon is green.
T T |1 If 1+1 =2, then the sun is a star.

p=q = -pvq
-p=q = ——pVvq
—p=4q = pvyq

If you don’t eat your spinach,
I'll spank you.

You eat your spinach,
or I'll spank you.

Binary Boolean Operators: Consequence

Args.

P
F F |1 The moon is green if 2+2 =7.
F T |F The moon is green if 1 +1 = 2.
T F|T 1+1 =2 if the moon is green.
T T |1 1+1=2if the sun is a star.

P<=q = pv—q

Binary Boolean Operators: Equivalence

Equality of Boolean values is also called equivalence and written =
(In some other places: <)

p=q canbereadas: pisequivalenttoq

or: p exactly when g
or: p if-and-only-if q
or: piffq

p g |p=qg

false false | true
false true | false
true false | false

The moon is green iff 2 +2 =7.
The moon is green iff 1 +1 = 2.
1+ 1 =2 iff the moon is green.

true true | true 1+1 =2 iff the sun is a star.

Binary Boolean Operators: Inequivalence (“exclusive or”)

Args.

#
F F|F Either the moon is green, or2+2 =7.
F T |1 Either the moon is green, or 1 +1 = 2.
T F|T Either 1 +1 =2, or the moon is green.
T T|F Either 1 +1 =2, or the sun is a star.

Table of Precedences

o [x:=e] (textual substitution) (highest precedence)
e . (function application)

@ unary prefix operators +, —, -, #, ~, P

@ %k

° / + mod gcd

@+ - U N x o e

ol 1

o #

edq D> 7

@e= # < > € c € o 2 (conjunctional)
eV A

0= $H <= <

o= ¢# (lowest precedence)

All non-associative binary infix operators associate to the left,
except %%, <, =, -, which associate to the right.

Expression Evaluation (LADM 1.1 end)
02.-3+4
0 2-(3+4)
02-y+4
A state is a “list of variables with associated values”. E.g.:

s1=[(x,5), (,6)] — (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”:

Evaluation of Boolean Expressions
Example: Using the state ((p,false), (q,true), (r,false)):
pv(gn-r)
(replace variables with state values)
false v (true A —false)
= (—false = true)
false v (true A true)

= true Atrue = true)
false v true

o x—y+2instates; = falsev true = true)
— 5-6+2 — (5-6)+2 — (-1)+2 — 1 true g 2
o x-2+y A + vV g - <= - &
F F|F FFFFFFFTTTTTTTT
o x-(2+y) F T\F FFFTTTTF FFFFTTTT
T FIF FTTTFTFTTTFFTTFTFTT
°x:(z+y) TTFTFTFTFTEFTETFTET
Evaluation of Boolean Expressions Using Truth Tables Validity and Satisfiability
A v(qA-p) @ A boolean expression is satisfied in state s Pl 7P pv(anr-p)
P 1 P qr=p pvignr-p iff it evaluates to true in state s. FF T F F
FF T F F F T| T T T
F T T T T @ A boolean expression is satisfiable T F F F T
T O E F T iff there is a state in which it is satisfied. T T E F T
T T F F T @ A boolean expression is valid
iff it is satisfied in every state.
® Identify variables @ A valid boolean expression is called a tautology.
o Identify subexpressions
o Enumerate possible states (of the variables) @ A boolean expression is called a contradiction
i X iff it evaluates to false in every state.
o Evaluate (sub-)expressions in all states

@ Two boolean expressions are called logically equivalent
iff they evaluate to the same truth value in every state.

These definitions rely on states / truth tables: ~Semantic concepts

Modeling English Propositions 1

@ Henry VIII had one son and Cleopatra had two.

Henry VIII had one son and Cleopatra had two sons.

Declarations:

h = Henry VIII had one son

¢ := Cleopatra had two sons
Formalisation:
hnac

Modeling English Propositions — Recipe

o Transform into shape with clear subpropositions
@ Introduce Boolean variables to denote subpropositions
@ Replace these subpropositions by their corresponding Boolean variables

o Translate the result into a Boolean expression, using (no perfect translation rules are
possible!) for example:

and, but becomes

or becomes

not becomes -

it is not the case that becomes -

if p then g becomes p=¢q

Ladies or Tigers

Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:

[..] the king explained to the prisoner that each of the two rooms contained
either a lady or a tiger, but it could be that there were tigers in both rooms, or
ladies in both rooms, or then again, maybe one room contained a lady and the
other room a tiger.

In the first case, the following signs are on the doors of the rooms:

1 2
In this room there is a lady, In one of these rooms there is a
and in the other room there is| |lady, and in one of these rooms
a tiger. there is a tiger.

We are told that one of the signs is true, and the other one is false.

“Which door would you open (assuming, of course,
that you preferred the lady to the tiger)?”

Ladies or Tigers — The First Case — Starting Formalisation
Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:
[...] the king explained to the prisoner that each of the two rooms contained either a lady

or a tiger, but it could be that there were tigers in both rooms, or ladies in both rooms, or
then again, maybe one room contained a lady and the other room a tiger.

RI1L := Thereis alady in room 1
RIT := Thereis a tiger in room 1
R2L := Thereis alady in room 2

R2T := Thereis a tiger in room 2

[...] We are told that one of the signs is true, and the other one is false.

S1 := Signlistrue

Sy = Sign2istrue

“u_n u_n

Equality versus Equivalence

The operators = (as Boolean operator) and =
@ have the same meaning (represent the same function),
o but are used with different notational conventions:
o different precedences (= has lowest)

o different chaining behaviour:

o =is associative:

(p=q=r) = (p=p=r) = (p=@=n)

@ =is conjunctional:

(x=y=2) = ((x=y) ~ (y=2))

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-11

Part 3: LADM Propositional Calculus: =, -, #

Propositional Calculus

Calculus: method of reasoning by calculation with symbols
Propositional Calculus: calculating

@ with Boolean expressions

@ containing propositional variables
The Textbook’s Propositional Calculus: Equational Logic E

@ aset of axioms defining operator properties

o four inference rules:

= Ne cz s equalities
o (1.5) Leibniz: X=Y We can apply equalities

E[z:=X]=E[z:=Y] inside expressions.

X=Y Y=Z .
o (1.4) Transitivity: %z We can chain equalities.
o (1.1) Substitution: .WL can can use substitution
E[x:=R] instances of theorems.
— =Y X .
o Equanimity: ¥ —Thisis...

Theorems — Remember!
A theorem is
@ either an axiom
@ or the conclusion of an inference rule where the premises are theorems
@ or a Boolean expression proved (using the inference rules) equal to an axiom or a
previously proved theorem. (“— This is ...")

Such proofs will be presented in the calculational style.

Note:
o The theorem definition does not use evaluation/validity
@ But: e All theorems in E are valid
o All valid Boolean expressions are theorems in E
o Important:

o We will prove theorems without using validity!
o This trains an essential mathematical skill!

Equivalence Axioms

(3.1) Axiom, Associativity of =: ‘ ((p=q)=r)=(p=(q=1)) ‘

(3.2) Axiom, Symmetry of =:

Can be used as:

° (p=q9)=(q=p)
op=(q=9=p)
°(p=q=q)=p

Example theorem — shown differently in the textbook:
Proving p=p=q=q:
p=p=q9=4q
= ((3.2) Symmetry of =, withp, q := p, g=q)
p=qg=q=p — Thisis (3.2) Symmetry of =

Equivalence Axioms — Example Proof with Parentheses

(3.1) Axiom, Associativityof =: |((p=q)=r)=(p=(q=71)) ‘

(3.2) Axiom, Symmetry of =:

Can be used as:
o (p=g)=(1=p)
op=(1=9=p)
° (p=q=q)=p
Example theorem — shown differently in the textbook:
Proving p=p=q=q:
p=(p=(@q=0)
= ((3.2) Symmetry of =, withp, q := p, (9=q))
p=((g=q)=p) — Thisis (3.2) Symmetry of =

Equivalence Axioms — Introducing frue

(3.1) Axiom, Associativity of =: ‘ ((p=q)=r)=(p=(@=r))

(32) Axiom, Symmetry of =:

Can be used as:

° (p=q)=(q=p)
°op=(q=9=p)
°(p=q=q)=p

(3.3) Axiom, Identity of =:

Can be used as:
o (true=q)=¢q
o true=(q=q)

Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of =: ‘ ((p=q)=r)=(p=(q=r))

(3.2) Axiom, Symmetry of =:

(33) Axiom, Identity of =:

Can be used as: true = (g =q)

The least interesting theorem:

Proving (3.4) true:

true

(Identity of = (3.3), with q := true)

true = true

= (Identity of = (3.3), withg:=¢q)
true=q=q — This is Identity of = (3.3)

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of =: ‘ ((p=q)=r)=(p=(q=1))

(3.2) Axiom, Symmetry of =:

(33) Axiom, Identity of =:

Theorems and Metatheorems:

(3.4) true

(3.5) Reflexivity of =: p=p

(3.6) Proof Method: To prove that P = Q is a theorem,
transform P to Q or Q to P using Leibniz.

(3.7) Metatheorem: Any two theorems are equivalent.

Negation Axioms

(3.8) Axiom, Definition of false:
(3.9) Axiom, Commutativity of - with =: -(p=q)=-p=9q

(LADM: “Distributivity of - over =”)

Can be used as:

°o-(p=q) = (-r=9)
o (=(p=q)=-p) = q
o (-(p=q)=q) = -p

(3.10) Axiom, Definitionof#: |(p#4q)=-(p=1q)

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator o that is defined in terms of another,
say e, expand the definition of o to arrive at a formula that contains e; exploit
properties of e to manipulate the formula, and then (possibly) reintroduce o us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry
(3.16) Symmetry of #: (pEg)=@#p)

Proving (3.16) Symmetry of #:
p#4q

((3.10) Definition of #)
~(p=1q)

((3.2) Symmetry of =)
~(q=p)

((3.10) Definition of #)
q#p

e Unfold

- Fold

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-13

Part 1: Correctness of Assignment Commands

Plan for Today

@ Reasoning about Assignment Commands in Imperative Programs (~ LADM 1.6):
o Correctness of programs with respect to pre-/post-condition specifications
@ Reasoning using “Hoare logic”

o Continuing Propositional Calculus (LADM Chapter 3)
o Negation, Inequivalence
e Disjunction
o Conjunction

States as Program States
LADM 1.1: A state is a “list of variables with associated values”. E.g.:
s1=[(%.5), (¥:6)]

— (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”

o In logic, “states” are usually called “variable assignments”
o States can serve as a mathematical model of program states

o Execution of imperative programs induces state transformation:
[(x,5), (v.6)]
~ | X:i=Xx+yYy)
[(x11), (v.6)]
~ (0 y=a-y)
[(x11), (v.5)]

State Predicates

@ Execution of imperative programs induces state transformation:

[(x,5), (v.6)] mmarme “x <37 holds
~ Xi=x+y)

[(x,11), (y.6)] mmm Yy <1 does not hold
~(yi=x-y)

[(x,11), (v,5)] mmm Yy <1 does not hold

@ Boolean expressions containing variables can be used as state predicates:

P “holds in state s” iff P evaluates to true in state s

Precondition-Postcondition Specifications

@ Program correctness statement in LADM (and much current use):
{Pyc{Q}

This is called a “Hoare triple”.

@ Meaning: If command C is started in a state in which the precondition P holds,
then it will terminate only in a state in which the postcondition Q holds.

o Hoare’s original notation:
P{C}Q
o Dynamic logic notation (will be used in CALCCHECK):

P={C]Q

Correctness of Assignment Commands
Recall: Hoare triple: {P}C{Q}

@ Dynamic logic notation (will be used in CALCCHECK): P={C]Q
@ Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.

o Assignment Axiom: { Q[x:=E] }x:=E{Q} ‘Q[ﬁ(i: E] ={x:=E] Q‘

o Example:
o (x=5)[x:=x+1] ={x:=x+1] x=5
o (x+1=5) S{x:=x+1] x=5

x+1=5

(Substitution)
(x=5)[x:=x+1]
={x:=x+1] (Assignment)

x=5
Substitution “:=":
° One Unicode character;
type “\:="

’.

Assignment “:="
Two characters;
type “:="

Correctness of Assignment Commands — Longer Exanéple
® Recall: Hoare triple: {P}C{Q}

@ Dynamic logic notation (will be used in CALCCHECK):
P={C]Q
@ Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.
o Assignment Axiom: { Q[x:=E]}x:=E{Q} ‘Q[x =E] ={x:=E] Q‘
o Longer example (these proofs are developed from the bottom to the top!):
true

(Zero of v')
1=0vtrue

(Reflexivity of =)
1=0vl=1

(Substitution)
(x=0vx=1)[x:=1]
={x:=1] (Assignment)
x=0vx=1

Example Proof for a Proof: 5
. x =
Sequence of Assignments = (“Cancellation of +” }
x+1=5+1
=(Fact5+1=6)
x+1=6
Lemma (4): Sy j(); +5 1s = (Substitution)
it v =6y =x+1]
yry =fy:=x+1] (“Assignment”)
x=12 y=6 Yo oo
= (“Cancellation of - ” with Fact*2 # 0")
2-y=2-6

= (Evaluation)
(1+1)-y=12

= (“Distributivity of - over +”)
1-y+1-y=12
(“Identity of -)

y+y=12
Read and write = (Substitution)
such “_=[_]_” proofs (x - 12)[x = y’fAy]‘ »
from the bottom to the top! éfxx:' e ¥] (“Assignment”)

Sequential Composition of Commands

Primitive inference rule “SEQ”
HPra{Q)r, {Q}G{RY}

Primitive inference rule “Sequence ":

P=[C]1Q, Q=[CG]R

(P)Ci; G {RY

P =fC;G]R

@ Activated as transitivity rule
o Therefore used implicitly in calculations, e.g., proving P ={C; ; C2]R by:

P
Gl ()
Q
~{C] (..)
R

@ No need to refer to this rule explicitly.

Logical Reasoning for Computer Science
COMPSCI 21L.C3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-13

Part 2: Propositional Calculus: -, #, v, A

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of =: ‘ ((p=q)=r)=(p=(q=1) ‘

Negation Axioms

(3.8) Axiom, Definition of false: | false

(3.2) Axiom, Symmetry of =: — Can be used as:
o (p=g)=(g=p) (3.9) Axiom, Commutativity of - with =: =q
(33) Axiom, Identity of = °p=(q=q=p) (LADM: “Distributivity of - over =”)
Theorems and Metatheorems: o (p=q=q)=p Can be used as:
(3.4) true e ~(p=q) = (-p=q)
(3.5) Reflexivity of =: p=p o (=(p=m)=-r) = 4
(3.6) Proof Method: To prove that P = Q is a theorem, o (=(p=q)=q) = -p
transform P to Q or Q to P using Leibniz.
(3.7) Metatheorem: Any two theorems are equivalent. (3.10) Axiom, Definition of #: |(p#4)=-(p=9)
Proof Method Equanimity: To prove P, prove P = Q
where Q is a theorem. (Document via “— Thisis ...".)
Special case: To prove P, prove P = true.
Negation Axioms and Theorems Inequivalence Theorems
(3.8) Axiom, Definition of false: | fals true
(3.16) Symmetry of #: (p#q) = @ip)
(3.9) Axiom, Commutativity of - with=: |-(p=q)=-p=¢q (3.17) Associativity of #: (i) = (#@#n)
(3.10) Axiom, Definitionof#: |(p#q)=-(p=¢q) (3.18) Mutual associativity: ((p#q)=r) = (#(g=r)
(3.19) Mutual interchangeability: p#q=r = p=q#r

Theorems:
(B11) ~-p=q=p=—q
— can be used as “- connection”:

(-p=q)=(p=-9)

— can be used as “Cancellation of =" (-p=-q) = (p=q)

(3.12) Double negation: -—p=p

(3.13) Negation of false: —false = true
(3.14) (p#q9) = -p=q
(3.15) Definition of ~via=: -p =p = false

Note: Mutual associativity is not (yet...) automated!
(But omission of parentheses is implemented, similar to
@ k-m+n
e k+m-n
o k-m-n
— None of these has m — n as subexpression!
— But the second one is equal to k+(m-n) ...)

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator o that is defined in terms of another,
say e, expand the definition of o to arrive at a formula that contains e; exploit
properties of e to manipulate the formula, and then (possibly) reintroduce o us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry

(3.16) Symmetry of #: (P#q)=(@#p)

Proving (3.16) Symmetry of #:
P#q

((3.10) Definition of #)
~(p=1q)

((3.2) Symmetry of =)
~(q=p)

((3.10) Definition of #)
q#p

s Unfold

weee Fold

Disjunction Axioms

(3.24) Axiom, Symmetry of v:
(pvg)vr=pvigvr)

(3.25) Axiom, Associativity of v:

(3.26) Axiom, Idempotency of v:

(3.27) Axiom, Distributivity of v over =:

(3.28) Axiom, Excluded Middle:

The Law of the Excluded Middle (LEM)
Aristotle:

must either affirm or deny any one predicate. ..

...there cannot be an intermediate between contradictories, but of one subject we

Bertrand Russell in “The Problems of Philosophy”:

Three “Laws of Thought”:
1. Law of identity: “Whatever is, is.”
2. Law of noncontradiction: “Nothing can both be and not be.”
3. Law of excluded middle: “Everything must either be or not be.”

These three laws are samples of self-evident logical principles. ..

(3.28) Axiom, Excluded Middle:

— this will often be used as: pv-p = true

Disjunction Axioms and Theorems

Heuristics of Directing Calculations

(3.33) Heuristic: To prove P = Q, transform the expression with the most structure

(either P or Q) into the other.

Proving (3.29) p v true = true: Proving (3.29) p v true = true:

(3.24) Axiom, Symmetry of v: pvg=qvp
(3.25) Axiom, Associativity of v: (pvq)vr=pv(gvr)
(3.26) Axiom, Idempotency of v: pvp=p
(3.27) Axiom, Distr. of v over =: pv(g=r)=pvg=pvr
(3.28) Axiom, Excluded Middle: pv-p

Theorems:
(3.29) Zero of v:

pVtrue = true

pVfalse=p

(3.30) Identity of v:
(3.31) Distrib. of v over v:
(3.32) (3.32)

pv(gvr)=(pvg)v(pvr)
pvq=pv-q=p

pVtrue true

= (Identity of = (3.3)) = (Identity of = (3.3))
pv(a=q) pvp=pvp

= (Distr. of v over = (3.27)) = (Distr. of v over = (3.27))
pvg=pvq pv(p=p)

= (Identity of = (3.3)) = (Identity of = (3.3))
true pVtrue

(3.34) Principle: Structure proofs to minimize the number of rabbits
pulled out of a hat — make each step seem obvious, based on
the structure of the expression and the goal of the manipula-
tion.

-~

(3.21) Heuristic

Identify applicable theorems by matching the structure of expressions or subex-
pressions. The operators that appear in a boolean expression and the shape of its
subexpressions can focus the choice of theorems to be used in manipulating it.

Obviously, the more theorems you know by heart and the more practice you have in
pattern matching, the easier it will be to develop proofs.

Textbook, p. 47

The Conjunction Axiom: The “Golden Rule”

(3.35) Axiom, Golden rule: pAq = p=gq

pvq

Can be used as:

epng = (p=q = pvg) — Definition of A
°o(p=q) = (prqg = pva)
o ...
Theorems:
(3.36) Symmetry of A: pPAq = qAp
(3.37) Associativity of A: (prg)ar = pa(gar)
(3.38) Idempotency of A: pAp = p
(3.39) Identity of A: pAtrue = p
(3.40) Zero of A: pAfalse = false
(3.41) Distributivity of Aover A: pA(gar) = (pagq)A(par)
(3.42) Contradiction: pa-p = false

Conjunction Theorems: Symmetry
(3.36) Symmetry of A: (prg)=(qnp)

Proving (3.36) Symmetry of A:

pArg

= ((3.35) Definition of A (Golden rule)) — Unfold
p=q = pvq

= ((3.2) Symmetry of =, (3.24) Symmetry of v)
qg=p = qvp

= ((3.35) Definition of A (Goldenrule)) — Fold
qnp

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-15

¢ Natural Induction
e Propositional Calculus: A

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-15

Part 1: Natural Numbers, Natural Induction

What is a natural number?

How is the set N of all natural numbers defined?
(Without referring to the integers)

(From first principles. ..)

Natural Numbers — N
o The set of all natural numbers is written N.
o In Computing, zero “0” is a natural number.

o If n is a natural number, then its successor “suc n” is a natural number, too.

o We write

e “1” for “suc 0”
“2" for “suc 1”
“3” for “suc 2"
“4” for “suc 3”

o In Haskell (data constructors start with upper-case letters):

data Nat = Zero | Suc Nat

Natural Numbers — Rigorous Definition

o The set of all natural numbers is written N.

@ Zero “0” is a natural number.

e If n is a natural number, then its successor “suc n” is a natural number, too.
@ Nothing else is a natural number.

@ Two natural numbers are equal if and only if they are constructed in the same way.

Example: sucsucsucQ # sucsucsucsuc0
This is an inductive definition.

(Like the definition of expressions...)

Every inductive definition gives rise to an induction principle
— a way to prove statements about the inductively defined elements

Natural Numbers — Induction Principle

o The set of all natural numbers is written N.
@ Zero “0” is a natural number.

o If nis a natural number, then its successor “suc n” is a natural number, too.

Induction principle for the natural numbers:
e if P(0)

If P holds for 0

and if P(m) implies P(suc m),
‘ and whenever P holds for m, it also holds for suc m

2

then for all m : N we have P(m).
‘ then P holds for all natural numbers. ‘

Natural Numbers — Induction Proofs
Induction principle for the natural numbers:
e if P[m:=0]
@ and if we can obtain P[m := suc m] from P,
‘ and whenever P holds for m, it also holds for suc m \,

If P holds for 0

o then P holds. ‘ then P holds for all natural numbers. ‘

An induction proof using this looks as follows:

Theorem: P p
Proof: :
By induction on m: N: P[m:=0] P[m = suc m]
Base case: P

Proof for P[m :=0]
Induction step:
Proof for P[m := suc m]
using Induction hypothesis P

Factorial — Inductive Definition
The set of all natural numbers is written N.
zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.
Two natural numbers are only equal if constructed in the same way.

Nis an inductively-defined set.

The factorial operator “_!"” on N can be defined as follows:

o The factorial of a natural number is a natural number again:
_'N->N
e 0!=1
@ For every n: N, we have:
(sucn)!= (sucn)-(n!)

_!is an inductively-defined function.

Proving properties about inductively-defined functions on N
frequently requires use of the induction principle for N.

Even Natural Numbers — Inductive Definition
@ The predicates even and odd are declared as Boolean-valued functions:
Declaration: even, odd: N - B
@ Function application of function f to argument a is written as juxtaposition: f a
@ The definitions provided in Homework 5.1 are inductive definitions:
Axiom “Zeroiseven”: even(======read thisas: even 0 = true

Axiom “Even successor ”: even (sucn) = - (evenn)

even is an inductively-defined function.

Why does this define even for all possible arguments?
Because:

@ cven takes one argument of type N
@ This argument is always either 0, or suc k for some smaller k: N
@ Each clause covers one case completely.

@ The second clause “builds up” the domain of definition of even
from smaller to larger n.

Proving “Odd is not even”

Axiom “Zero is even even(seeses read this as: even 0 = true
Theorem “Odd is not even”: odd n = - (even n) Axiom “Even successor ": even (suc) = (even n)

Axiom “Zero is not odd ”: - odd 0

Axiom “Odd successor ”: odd (suc) = - (odd 1)

An induction proof looks as follows:
Theorem: P
Proof:
By induction on m : N:
Base case:
Proof for P[m := 0]
Induction step:
Proof for P[m := suc m]
using Induction hypothesis P

Proving “Odd is not even”
e . ” Axiom “Zeroiseven”: even(s read thisas: even 0 = true
Theorem “Odd is not even ”: odd n = — (even n) Axiom “Even successor”;_even (Suc) = (even 1)
Axiom “Zero is not odd ”: - odd 0
Axiom “Odd successor “: odd (sucn) = - (odd n)

Proof:
By induction on “n: N*:
Base case:
0dd 0
=(7)
- (even0)
Induction step:
odd (suc n)
(7)
- (odd n)
(Induction hypothesis)
- - (evenn)
(7

- even (suc n)

Natural Number Addition — Inductive Definition

The set of all natural numbers is written N.

zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.

@ Two natural numbers are only equal if constructed in the same way.

N is an inductively-defined set.

Addition on N can be defined as follows:

“

@ The (infix) addition operator “+”, when applied to two natural numbers, produces
again a natural number
+ :N->N->N
For every q: N, we have:
e 0+g=q
o For every n: Nwe have: (sucn) +q=suc (n+q)

+_ is an inductively-defined function.

Proving “Right-Identity of +”
Theorem “Right-identity of +”:m + 0 = m
Proof: An induction proof looks as follows:
By induction on “m : N': Theorem: P
Base case:

040 Proof:

4

- (“Definition of + for 0") By induction on m : N:
0 Base case:

Induction step: Proof for P[m := 0]

sucm + 0 .
S Induction step:
= (“Definition of + for “suc’ ")
suc (m + 0) Proof for P[m := suc m]

= (Induction hypothesis) using Induction hypothesis P

sucm

Proving “Right-Identity of +” — With Details

Theorem “Right-identity of +”:m + 0 = m

Proof: An induction proof looks as follows:
By induction on “m : N*: Theorem: P

Basecase 0 + 0 = 0:

040 Proof:

+

- { “Definition of + for 0") By induction on m : N:
0 Base case:

Induction step sucm + 0 = sucm*: Proof for P[m := 0]

sucm + 0 ;
Induction step:
= (“Definition of + for “suc* ")
suc (m + 0) Proof for P[m := suc m]

= (Induction hypothesis ‘m + 0 = m) using Induction hypothesis P

sucm

Proving “Right-Identity of +” — Indentation!

Theorem “Right-identity of +": m + 0 =m
Proof:
LuBY induction on "m : N':
Base case:
0+0
“Definition of + for 0”)

e
LuLLLLLL
wouuou™
LuLLLLLL
suwwInduction step:

suc m+ 0

“Definition of + for ‘suc™”)
vououuueSUC (M + 0)

voooun={ Induction hypothesis)

suc m

[R[RNTRTRTEINIE)

cuouon=(

[N[RRRTRTETEIE)

Press “Ctrl-Shift-v” to toggle “visible spaces”.

Read Parse Error Messages!

= { Substitution }

— CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked.

{ Parse error: "Cell 12" (line 19, column 16):
unexpected "="
expecting white space, "=====-

"onn
s

, Or = <<cxprcssions»
—

=fy =z-y]{“Assignment” }
CalcCheck: Found “Assignment,

19: (y=42)[y =z - vyl
20: sfy::=2z-y] (“Assignment”)

Submitting parse errors is unprofessional!

Carefully Check Indentation: Each Level > 2 Spaces!

= (Substitution }
— CalcCheck: Due to parse error in the expression below, this calculation step cannot be checked
{ Parse error: "Cell 12" (line 18, column 25):

unexpected "
Sxpectine white space, "======"_or gexpression»
]
16: =(Substitution)
17: (y=2z-y)ly=12z -y
18: W=ty =z -y] (®Assignment”)
19: y = 42

Hint item where the parser expects an expression —

calculation operators need to be aligned
two spaces to the left of calculation expressions!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-15

Part 2: A Look at the Outline

Academic Integrity (see also page 4) — Course-Specific Notes
Academic credentials you earn are rooted in principles of honesty and academic
integrity.

In the context of COMPSCI 2LC3, in particular the following behaviours constitute
academic dishonesty:

. Plagiarism, i.e., the submission of work that is not one’s own or for
which other credit has been obtained.

-

)

. Collaboration where individual work is expected.

You have to produce your submissions for homework and assign-
ment questions yourself, and without collaboration.

For each assignment question there will normally be exercise questions sim-
ilar to it — you are allowed to collaborate on these exercise questions.
(The tutorials are typically not expected to cover all exercise questions.)

e You are not allowed to copy & edit any portion of another student’s work,
nor trom any websites, but you may use material from the course notes.

e You are not allowed to give your solutions (or portions thereof) to another
student.

® You are not allowed to work on your homework or assignment with other
students, nor with friends, parents, relatives, etc..

e You are not allowed to post full or partial homework or assignment solu-
tions on discussion boards or websites (e.g., github, FaceBook, etc..).

e You are not allowed to solicit solutions to the problem on on-line forums
or purchasing solutions from on-line sources,

® You are not allowed to submit a combined solution with a classmate.

had

Copying or using unauthorised aids in tests and examinations.

.

. Accessing another students’ Avenue or other relevant online ac-
count, or providing others access to your accounts.

I

. Accessing or attempting to access midterm or exam material outside
the individually assigned writing time and space.

=3

. Meddling or attempting to meddle with online services used for course delivery.

Note: | If you cheat, you are cheating yourself.

Later in the course, we intend to have individually-generated assignments and tests
and so collaboration or cheating early on in the course will result in hardship during
time-constrained midterms with individualised assignments where collaboration is
no longer feasible and each person must use the allotted time to solve their individual
problems.

You need to solve the Homeworks yourself!

o Assuming that you can pass this course without actually acquiring the expected
reasoning skills is most likely unrealistic.

@ You acquire the skills by doing Homeworks and Assignments yourself!

o If you provide your solutions to others,
o that constitutes academic dishonesty as well!

e If you provide your solutions to others,
o that actually reduces their chances to acquire the skills and pass the course!

@ Large cluster of extremely similar submissions strongly suggest that large groups of
students are not getting the expected learning:
o Ineed to act!

@ If homeworks were to be done with pen and paper, you would submit imperfect
solutions without hesitation. ..

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-15

Part 3: Propositional Calculus: A — Conjunction

The Conjunction Axiom: The “Golden Rule”

(3.35) Axiom, Golden rule: prnqg = p=Eq = pvq

Can be used as:

epng = (p=gq = pvg) — Definition of A
°o(p=q) = (prq = pvg)
° ...

Theorems:

(3.36) Symmetry of A: pPAq = qAp

(3.37) Associativity of A: (pAq)nr = pa(gnar)

(3.38) Idempotency of A: pAp = p

(3.39) Identity of A: pAtrue = p

(3.40) Zero of A: pAfalse = false
(3.41) Distributivity of Aover A: pA(gar) = (pagq)A(par)
(3.42) Contradiction: pAa-p = false

Conjunction Theorems: Symmetry
(3.36) Symmetry of A: (rrg)=(qnp)

Proving (3.36) Symmetry of A:

pArg

= ((3.35) Definition of A (Golden rule)) — Unfold
p=q = pvq

= ((3.2) Symmetry of =, (3.24) Symmetry of v)
q=p = qvp

= ((3.35) Definition of A (Goldenrule)) — Fold
qnrp

Theorems Relating A and v

(3.43) Absorption: pA(pvg) = p
pyvlprg) = p

(3.44) Absorption: pA(=pvq) = pag
pyv(=prq) = pvyq

(3.45) Distributivity of v over A: pv(gar)=(pvq)a(pvr)

(3.46) Distributivity of Aoverv: pa(qvr)=(pag)v(pAar)

(3.47) De Morgan: -(pnrg) =
~(pva) =

“pv-q
“pA-q

Boolean Lattice Duality

A Boolean-lattice expression is
@ either a variable,
@ or true or false
@ or an application of —_ to a Boolean-lattice expression
@ or an application of _A_ or _v_ to two Boolean-lattice expressions.

The dual of a Boolean-lattice expressions is obtained by
@ replacing true with false and vice versa,
o replacing _A_ with _v_ and vice versa.

The dual of a Boolean-lattice equation (equivalence) is the equation
between the duals of the LHS and the RHS.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is valid iff its dual is valid.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is a theorem iff its dual is a theorem.

Theorems Relating A and =

(3.48) (3.48) pAg = pA-q = -p

(3.49) Semi-distributivity of A over = pA(g=r) = pAq = pAr =
(3.50) Strong modus ponens for = pa(g=p) = pAq

(3.51) Replacement: (p=g)a(r=p) = (p=q)r(r=q)

P

Alternative Definitions of = and #

(3.52) Alternative definition of =: r=q (prg)v(-pAr-q)

(3.53) Alternative definition of #: p#q = (~prq)v(pr-q)

Ladies or Tigers: First Case, Formalisation, Long S,
In the first case, the following signs are on the doors of the rooms:

1 2
In this room there is a lady, and in the other In one of these rooms there is a lady, and in
room there is a tiger. one of these rooms there is a tiger.

We are told that one of the signs is true, and the other one is false.

RIL := Thereis alady in room 1 S1 = RILAR2T
R2T := Thereis a tiger in room 2 S, = (R1Lv-R2T)A(-RI1LvR2T)
S1#5
Ladies or Tigers: First Case, Long S,, Solution
RIL := Thereisalady in room 1 S1 = RILAR2T
R2T := Thereis a tiger in room 2 S» = (R1Lv-R2T)A(-R1Lv R2T) : : :

R Logical Reasoning for Computer Science
= (Def. 5,)

(RILAR2T) # ((R1Lv ~R2T) A(-R1Lv R2T)) COMPSCI 2LC3
= ((3.14)p #q=-p=4,(3.35) Golden Rule)

~(RILAR2T) = R1LV -R2T = ~R1Lv R2T = R1Lv ~R2T v =R1Lv R2T McMaster University, Fall 2023
= ((3.28) Excluded Middle, (3.29) Zero of v)
~(RILAR2T) = R1LV -R2T = =R1Lv R2T = true

= ((3.47) De Morgan, (3.3) Identity of =)

—RILV=R2T = R1Lv -R2T = ~R1Lv R2T Wolfram Kahl
= (@32 pvg = pv = p)

-R2T = -R1Lv R2T
= (@32 pvg = pvyq = p) 2023-09-18

-R2T = -R1Lv -R2T = -R1L
= ((3.35) Golden Rule) o Introduction to Quantification (LADM ch. 8)

-R1L A -R2T o Propositional Calculus: Implication =
= (RIT = -R1Land R2L = -R2T)

RIT AR2L

Counting Integral Points (0,n)
. . . How many integral points are in the triangle | AN ?
Logical Reasoning for Computer Science ©0.0) — (n.0)

COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-18

Part 1: Introduction to Quantification (start LADM chapt. 8),
Quantification expansion

Yio(n-x+1)
= (Summing 1 values)
T (T D)
= (Switch to linear quantification notation)
(x| 0<x<ne(Ty | 0O<y<n-xe1))
= (Nesting)
(Xxy | 0<x<nAaO<y<n-xel)
= (Isotonicity of +)
(Txy | 0<x<nAax<x+y<nel)
= (Def. of = (3.60) with Transitivity of <)
(Zxy | O<x<x+y<nel)
= (Switching to N, and 0 is the least natural number)
(SxysN | x+y<nel)

Counting Integral Points

(0,n)
How many integral points are in the triangle | N\ ?
0,0) — (n,0)

(Cxy:N | x+y<n e 1)

How many integral points are in the circle of radius n around (0,0)?

Exy:Z | x-x+y-y<n-ne1)

Sum Quantification Examples
(S k:N | k<5 ek)

@ “The sum of all natural numbers less than five”
(X k:N | k<5 ek-k)

o “For all natural numbers k that are less than 5, adding up the value of k - k”

@ “The sum of all squares of natural numbers less than five”

(X xy:N | xy=120 ¢ 2-(x+y))

@ “For all natural numbers x and y with product 120, adding up
the value of 2 (x +y)”

@ “The sum of the perimeters of all integral rectangles with area 120”

Product Quantification Examples
o “The factorial of n is the product of all positive integers up to n”
factorial : N - N
factorialn = (T k:N | O<k<n e k)

@ “The product of all odd natural numbers below 50.”

(IMMn:N | ~(2|n) An<50emn)
(IMMk:N | 2k+1<50 @ 2:k+1)

(IMMk:N | k<25 e2-k+1)

Sum and Product Quantification
(x| ReE)
@ “For all x satisfying R, summing up the value of E”
@ “The sum of all E for x with R”
(X x:TeE)
@ “For all x of type T, summing up the value of E”
@ “The sum of all E for x of type T”
(ITx | ReE)
@ “The product of all E for x with R”
(NMx:TeE)
@ “The product of all E for x of type T”

General Shape of Sum and Product Quantifications

(X x:ti;y,z:th | ReE)

(MMx:t;y,z:to | Re E)

Any number of variables ¥, y, z can be quantified over

The quantified variables may have type annotations (which act as type
declarations)

@ Expression R : B is the range of the quantification
@ Expression E is the body of the quantification
o E will have a number type (N, Z, Q, R, C)

@ Both R and E may refer to the quantified variables x, y, z

The type of the whole quantification expression is the type of E.

LADM/CaLcCHeck Quantification Notation
n
Conventional sum quantification notation: e = eli:==1]+...+e[i:=n]
i=1
The textbook uses a different, but systematic linear notation:

(Xi| 1<i<n:e) or

We use a variant with a “spot” “e” instead of the colon “:” and only use “big” operators:

(+i] 1<i<n:e)

(il 1l<i<nee) — \sum \with \spot

Reasons for using this kind of linear quantification notation:
o Clearly delimited introduction of quantified variables (dummies)
@ Arbitrary Boolean expressions can define the range
(Xi|1<i<7 neveni e i)=2+4+6

@ The notation extends easily to multiple quantified variables:
(X i,j:Z | 1<i<j<4 eifj)=1/2+1/3+1/4+2/3+2/4+3[4

Meaning of Sum Quantification

Let i be a variable list, R a Boolean expression, and E an expression of a number type.

The meaningof (X i | R e E) instatesis:
@ the sum of the meanings of E
@ in all those states that satisfy R

@ and are different from s at most in variables in i.

Examples:

o (X ij|i=j=i+1ei-j) = 0

o (Xij| O<i<j<4ei-j) 1-2+1-3+2-3

o (X i,j | 1<i<2A3<j<4 ei-j) = 1-3+1-4+2-3+2-4

o Instate [(i,7), (j,11), (k,3)], we have:
(X 4,j | O<i<j<k ei-j) = 1-2

Bound / Free Variable Occurrences
(Xi:N | i<xei+1)=10

Is this true or false? In which states?

example expression

We have: (X i:N | i<xei+1)=10 = x=4
The value of this example expression in a state depends only on x, not on i!
Renaming quantified variables does not change the meaning:

(X i:N | i<xei+l) = (Xj:N | j<xej+1)

@ Occurrences of quantified variables inside the quantified expression are bound

o Non-bound variable occurences are called free

@ Variables of the same name may occur both free and bound
in the same expression, e.g.: 3-i+ (X i:N | i<xe2:i0)

o The variable declarations after the quantification operator
may be called binding occurrences.

Variable Binding is Everywhere! Including in Substitution!

Another example expression: (x+3=5-1)[i:=9] (x+3=5-i)[i=9]

Is this true or false? In which states? = (Substitution, ...)
x=42

The value of (x +3 =5-i)[i:= 9] in a state depends only on x, not on i!

Renaming substituted variables does not change the meaning:

(x+3=5-i)[i:=9] = (x+3=5-))[j:=9]
@ Occurrences of substituted variables inside the target expression are bound
@ The variable occurrences to the left of := in substitutions
may be called binding occurrences.
@ Non-bound variable occurences are called free.
i>0A(x+3=5-i)[i:=7+i]
o Substitution does not bind to the right of := !

Expanding Sum and Product Quantification
Sum quantification (}) is “addition (+) of arbitrarily many terms”:
(Yi]5<i<9ei-(i+1))
(Quantification expansion)
(i-(i+1))[i==5] + (i-(i+1))[i==6] + (i-(@+1)[i:=7] + (i-(i+1))[i==8]
(Substitution)
5-(5+1) + 6-(6+1) + 7-(7+1) + 8-(8+1)

Product quantification ([) is “multiplication () of arbitrarily many factors”:
([Ti] 0<i<3 e5-i+1)
= (Quantification expansion)
(5-i+1)[i:=0] 5-i+1)[i=1]
= (Substitution)
(5:0+1)

(5-i+1)[i=2]

(5:-1+1) - (5-2+1)

Quantification Examples
(i] 0<i<4 ei-8)
= (Quantification expansion, substitution)
0-8+1-8+2-8+3-8

(TTi] 0<i<3 e i+ (i+1))
(Quantification expansion, substitution)
(0+1)-(1+2)(2+3)

(Vi]| 1<i<3 ei-d+6)
= (Quantification expansion, substitution)
1-d+6A2-d+6

(3i] 0<i<6 e bi=0)
(Quantification expansion, substitution)
b0=0vb1l=0vDb2=0vb3=0vb4=0vDb5=0

General Quantification

It works not only for +, A, v ...

Let a type T and an operator = : T x T — T be given.
If for an appropriate u : T we have:

o Symmetry: bxc=cxb
@ Associativity: (bxc)xd=bx (c*d)
o Identity u: uxb=b=bxu

we may use * as quantification operator:

(xx:T1,y:T> | R e E)

o R:Bis the range of the quantification

@ E: T is the body of the quantification

@ E and R may refer to the quantified variables x and y
@ The type of the whole quantification expression is T.

General Quantification: Instances

Let a type T and an operator * : T x T — T be given.
If for an appropriate u : T we have:

o Symmetry: bxc=cxb
o Associativity: (bxc)xd=bx (c*d)
o Identity u: uxb=b=bxu

we may use * as quantification operator: (x x:T1,y: T2 | R o E)

o _v_:BxB - B issymmetric (3.24), associative (3.25),
and has false as identity (3.30) — the “big operator” for v is 3"
Bk:N|k>0ek-k<k+1)
o _A_:BxB — B is symmetric (3.36), associative (3.27),
and has true as identity (3.39) — the “big operator” for A is V":
(VEk:N | k> 2 e primek = - prime (k + 1))
o _+_:7ZxZ — Zis symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) — the “big operator” for +is 3"
(Xn:Z | 0<n<100Aprimen o n-n)

Meaning of General Quantification
Let a type T, and a symmetric and associative operator « : T x T — T with identity u : T be
given.
Further let x be a variable list, R a Boolean expression, and E an expression of type T.

The meaningof («x | R e E) instatesis:
@ the nested application of * to the meanings of E
@ in all those states that satisfy R

@ and are different from s at most in variables in x,

or u, if there are no such states.

Examples:
o (ij | i=j=i+1ei<j) = false
o (Vijli=j=i+1ei<j) = true

o (MMij | i=j=i+leij) = 1

@ (3i,j | 0<i<j<3 eixj) = 121v122v2>2

Logical Reasoning for Computer Science

COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-18

Part 2: Propositional Calculus: Implication =

Implication
(3.57) Axiom, Definition of Implication,

Definition of = from v: p=q = pvg=9q

(3.58) Axiom, Consequence: pe=q = g=p
Rewriting Implication:
(3.59) (Alternative) Definition of Implication,

Material implication: p=q = -pvq
(3.60) (Dual) Definition of Implication,

Definition of = from A: p=q = pAq=p
(3.61) Contrapositive: p=q = -q=>-p

All Propositional Axioms of the Equational Logic E

@ (3.1) Axiom, Associativity of =

@ (3.2) Axiom, Symmetry of =

@ (3.3) Axiom, Identity of =

© (3.8) Axiom, Definition of false

@ (3.9) Axiom, Commutativity of -~ with =
Q (3.10) Axiom, Definition of #

@ (3.24) Axiom, Symmetry of v

@ (3.25) Axiom, Associativity of v

@ (3.26) Axiom, Idempotency of v

@ (3.27) Axiom, Distributivity of v over =
@ (3.28) Axiom, Excluded Middle

@ (3.35) Axiom, Golden rule

@ (3.57) Axiom, Definition of Implication
@ (3.58) Axiom, Definition of Consequence

The “Golden Rule” and Implication

(3.35) Axiom, Golden rule: pAqg = p=q = pvq
Can be used as:

@ pAg (r=q = pvg

e (p=q) = (prqg = pvq)

o ...

o(prg = p = @ = pvg
(3.57) Axiom, Definition of Implication: p=gq = pvg =4
(3.60) (Dual) Definition of Implication: p=g = pag=7p

Some Implication Theorems

(3.62) p=(=r) = prq = par
(3.63) Distributivity of = over =: p=(q=r) = p=>q = p=>r
(3.64) Self-distributivity of =: p=@=r) = (p=q)=>(p=r)
(3.65) Shunting: prg=r1 = p=>(q=>r)
How do start to prove the following? (For example, ...)

(B66) pa(p=q) = pnrg (oo prg=p)
G67) pa(g=p) = p (- prg=p)
(3.68) pv(p=4q) = true (.. -pva)
669 pvig=p) = g=p (oo pva=q)
(3.70) pvg=prq = p=q (... GoldenRule ...)

Additional Important Implication Theorems

(3.71) Reflexivity of =: p=p = true
(3.72) Right-zero of =: p=true = ftrue
(3.73) Left-identity of =: true=p = p
(3.74) Definition of - from = p=false = -p
(3.15) Definition of - from =: -p = p=false
(3.75) ex falso quodlibet: false=p = true
(3.65) Shunting: praqg=r = p=(g=r)
(3.77) Modus ponens: pA(p=q9) = ¢
(3.78) Case analysis: (p=r)A(g=r) = (pvq=r)

(3.79) Case analysis: (p=r)A(-p=r) =1

Weakening/Strengthening Theorems

“p=q” can be read “p is stronger-than-or-equivalent-to q”

“p=q” can be read “p is at least as strong as g”

(3.76a) p =>pvqg
(3.76b) pAq =p
(3.76c) png =>pvq

(8.76d) pv(gar) =pvg
(8.76e) pPnq =palgvr)

Implication as Order on Propositions

“p=q"” can be read “p is stronger-than-or-equivalent-to g”
— similar to “x <y” as “x is less-or-equal y”
— similar to “x > y” as “x is greater-or-equal y”

“p=q"” can be read “p is at least as strong as q”

— similar to “x <y” as “x is at most y”
— similar to “x > y” as “x is at least y”
(3.57) Axiom, Definition of = from disjunction: p=4q = pvg =4
— defines the order from maximum: p=g = ((pvq) = q)
—analogousto: x<y = ((x T y) = y)
—analogous to: k | n = ((lem(k,n) = n)
(3.60) (Dual) Definition of = from conjunction: p=q = pAq =p
— defines the order from minimum: p=¢q = ((prgq) = p)
—analogous to: x<y = ((x | y) = x)
—analogous to: k | n = ((ged(k,n) = k)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20

Implication as Order, Replacement, Monotonicity

Plan for Today

o Continuing Propositional Calculus (LADM Chapter 3)
o Implication as order, order relations
o Leibniz as axiom, and “Replacement” theorems

o Transitivity Calculations, Monotonicity

@ (Coming up: LADM chapter 4, and then chapters 8 and 9.)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-20

Part 1: Implication as Order, Order Relations

Recall: Weakening/Strengthening Theorems

“p=q" can be read “p is stronger-than-or-equivalent-to g”

“p=q"” can be read “p is at least as strong as q”

(3.76a) P =>pvqg
(3.76b) p1q =p
(3.76¢c) prgq =pvq

(376d) pv(qar) =pvq
(3.76e) prq =pa(qvr)

Implication as Order on Propositions

“p=q” can be read “p is stronger-than-or-equivalent-to q”
— similar to “x <y” as “x is less-or-equal y”
— similar to “x > y” as “x is greater-or-equal y”

“p=q” can be read “p is at least as strong as q”

— similar to “x <y” as “x is at most y”
— similar to “x > y” as “x is at least y”
(3.57) Axiom, Definition of = from disjunction: p=q = pvq =g
— defines the order from maximum: p=g = ((pvq) = q)
—analogousto: x<y = ((x 1 y) = y)
—analogous to: k | n = ((lem(k,n) = n)
(3.60) (Dual) Definition of = from conjunction: p=¢g = pAgq =p
— defines the order from minimum: p=4q = ((pArq) = p)
—analogous to: x<y = ((x | y) = x)
)

One View of Relations
@ Let Ty and T, be two types.

@ A function of type Ty - T - B can be considered as one view of a relation from T} to T,
o We will see a different view of relations later ...
e ... and the way to switch between these views.
o With such a way of switching, the two views “are the same” in colloquial mathematics
o Therefore we will occasionally just use the term “relation” also for functions of types
T, -T,-B

@ A function of type T — T — B may then be called a relation on T.

@ Some relations you are familar with: _=_ :T->T - B
= :Z-7Z-B
= :N-N-B
< :N->N->B
= :B-B->B
=_:B-B->B

—analogous to: k | n = ((gcd(k,n) = k
Order Relations
o Let T be a type.
o Arelation _<_ on T is called:
o reflexive iff x<x isvalid
e transitive iff x<y A y<z = x<z isvalid

e antisymmetric iff x<y A y<x = x=y isvalid
e an order (or ordering) iff it is reflexive, transitive, and antisymmetric

o Orders you are familiar with: =_: T - T - B
< Z - Z - B
> Z - Z - B
< N - N - B
> : N > N -B
l N - N - B
= B - B - B
= : B - B - B
c:setT>setT > B

Order Properties of Implication in LADM Chapter 3

(3.71) Reflexivity of =: p=p

(3.80b) Reflexivity wrt. Equivalence: (p=q)=(p=q)
(3.80) Mutual implication: (p=g)A(g=p) = p=q
(381) Antisymmetry: (p=g)A(g=p) = (p=q)
(3.82a) Transitivity: (p=q)A(g=71) = (p=7)

(3.82b) Transitivity: (p=q)A(qg=r) = (p=7)

(3.82c) Transitivity: (p=q)A(g=r) = (p=7r)

Some Order-Related Concepts

An order _<_ on T may have (or may not have):
o aleast element denoted b: A constant b such that b < x is valid
<:Z -7~ B hasno least element
<:N->N- B hasleastelement 0
>:N->N- B hasno least element
|:N->N- B hasleastelement 1

@ a greatest element denoted #: A constant f such that x < t is valid
< :N->N- B hasno greatest element
> :N->N- B has greatest element 0
|:N—->N- B has greatest element 0

o have binary maxima: An operation _i_ such that x Uy is
the least element that is at least x and also at least y

@ have binary minima: An operation _n_ such that x ny is
the greatest element that is at most x and also at most y

Monotonicity, Isotonicity, Antitonicity
@ Let_< beanorderonT

o Letf:T — T be a functionon T
@ Then f is called

e monotonic iff x<y = fx<fy is a theorem
o isotonic iff x<y = fx<fy is a theorem
o antitonic iff x<y = fys<fx is a theorem

@ Examples:

e suc _:N - Nis isotonic

e pred : N — N is monotonic, but not isotonic

o _+_:N— N Nisisotonic in the first argument:

X<y = x+z<y+z is a theorem

o _+_:N - N - Nis isotonic in the second argument:
Yy = z+x<z+y is a theorem
:N - N - N is monotonic in the first argument:
y = x-z<y-z is a theorem

=
o

=
LN

:N > N - Nis antitonic in the second argument:
= z-y<z-x is a theorem

=
I
<

Monotonicity and Antitonicity Theorems for =

(42) Left-Monotonicity of v: (p=q) = (pvr=4gvr)

(4.3) Left-Monotonicity of A: (p=4q) = pAr = qnr

— We'll be getting to LADM chapter 4 on Wednesday.

— But you can prove these already in the context of chapter 3!

Tutorials and Exercise Notebooks

@ Doing the Homework (yourself) is necessary — but not sufficient!

The Exercise notebooks have content that you are expected to know as well!
@ Some of that content may be new to you... (e.g., Ex3.3, Ex3.4...)

o The tutorials will explain that content, and help you tackle related problems.

@ Exercise 3.1 (Implication) builds on Ex2.5-2.7 (Equiv., Neg., Disjunction, Conjunction).
Questions in this direction will be on Midterm 1.

You are expected to know the theorems you will need to use, and to know also the
names of these theorems.

You will need practice using these theorems. If you haven't started yet: Start now!
Best practice: Produce different proofs for the theorems in Ex2.7 and Ex3.1.

Without that practice, Midterm 1 will probably be infeasible for you.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20

Part 2: Leibniz as Axiom, Replacement Theorems

Leibniz’s Rule as an Axiom
Recall the inference rule (scheme):
X=Y

(1.5) Leibniz: m

Axiom scheme (E can be any expression, and z any variable):
(3.83) Axiom, Leibniz: (¢=f)=(E[z:=e]=E[z:=f])

What is the difference?
@ Given a theorem X = Y and an expression E,
the inference rule (1.5) produces a new theorem E[z := X] = E[z:= Y]
@ (3.83) is a theorem
o (e=f)=(E[z:=e] =E[z:=f])) = true
Can be used deep inside nested expressions
— making use of local assumptions (that are typically not theorems)

Leibniz’s Rule as an Axiom — Examples
Recall the inference rule (scheme):
X=Y
1.5) Leibniz: _—
(1.5) Leibniz =X Ez Y]
Axiom scheme (E can be any expression, and z any variable):
(3.83) Axiom, Leibniz: (e =f)=(E[z:=¢]=E[z:=f])

Examples
oen=k+l=n-(k-1)=(k+1)-(k-1)
en=k+l=(z-(k-1))[z:=n]=(z-(k-1))[z:=k+1]

° (n=k+1=n-(k-1)=k*-1) = true
= (>5=>m=k+1=n-(k-1)=k-1))
= (n>5=true)

Leibniz’s Rule Axiom, and Further Replacement Rules

Axiom scheme (E can be any expression; z,e,f : f can be of any type t):
(3.83) Axiom, Leibniz: (e =f) = (E[z:=e] = E[z:=f])

— Axiom (3.83) is rarely useful directly!

— Allmost all applications are via derived “Replacement” theorems

Replacement rules: (P can be any expression of type B)

(3.84a) “Replacement”: (e=f)AP[z:=¢] = (e=f)AP[z:=f]

(3.84b) “Replacement”: (e=f)=Plz==e] = (e=f)=Plz:=f]
(3.84c) “Replacement”: ga(e=f)=Plz:=¢] = ga(e=f)=P[z:=f]

Using a Replacement (LADM: “Substitution”) Rule
Replacement rule: (P can be any expression of type B)
(3.84a) “Replacement”: (e=f)aPlz=e] = (e=f)AP[z:=f]
Textbook-style application:

k=n+1 A k-(n-1)=n*>-1
= ((3.84a) “Replacement”)
k=n+1 A (n+1)-(n-1)=n*>-1

Not so fast! — CALCCHECK cannot do second-order matching (yet):

k=n+1 A k-(n-1)=n-n-1
(Substitution)
k=n+1 A (z-(n-1)=n-n-1)[z:=k]
((3.84a) “Replacement”)
k=n+1 A (z-(n-1)=n-n-1)[z:=n+1]
= (Substitution)
k=n+1 A (n+1)-(n-1)=n-n-1

Some Replacements
(x>F5) = (r<g?) A ((Fx<gy) = (x>f5))
(A
(x>F5) = r<g?) A ((Fx<gy) = (y<g7)

((F5) = (gy)) A~ ((fx<gy) =x>(f5))
(72)
((F5) = (gy)) A~ ((fx<gy) =x>gy))

((x>f5) = (y<g7)) ~ ((fx<gy) = p(x-1)v(x>f5))
=(2)
((x>f5) = (y<g7) ~ ((fx<gy) = plx-1)v(y<g7))

Replacements 1 & 2

((x>f5) = (y<g7)) ~ ((fx<gy) = (x>f5))
= ((3.51) “Replacement” (p=q)A(r=p) = (p=q)n(r=q))
((x>f5) = (y<g7)) ~ ((fxsgy) = (y<g7)

((F5) = ©m) A ((fxsgy) = x>(f5))
= (Substitution)
((F5) = @y) ~ ((fx<gy) = x>2)[z:=(f5)]
(3.84a) “Replacement”
(e=f)APlzi=e] = (e=f)AP[z:=f],

Substitution

((F5) = (gy) ~ ((fx<gy) = x>gy))

Replacement 3

((x>f5) = (y<g7) A (Fx<gy) = p(x-1)v(x>f5))
(Substitution)
((x>f5) = (y<g7) A (Fx<gy) = p(x-1)vz)[z:=(x>f5)]

(3.84a) [“Replacement”
((e=f)nPlz==e] = (e=f)APz:=f],
“Definition of =” (p = q) = (p =), Substitution

((x>f5) = (y<g7) ~ ((fx<gy) = plx-1)v(y<g7))

In CaLcCHECK, = does not match =!

Explicit conversions using “Definition of =” are necessary.

Replacing Variables by Boolean Constants
In each of the following, P can be any expression of type B:

(3.85a) Replace by true: p=Plz:=p] = p=DPlz:= true]
(3.85b) qAp=>P[z:=p] = qAp=>P[z:= true]
(3.86a) Replace by false: Plz:=p]=p = P[z:=false]=p
(3.86b) Plz:=p]=pvq = P[z:=false]=pvq
(3.87) Replace by true: pAP[z:=p] = pAP[z:=true]
(3.88) Replace by false: pVP[z:=p] = pvP|z:=false]
(3.89) Shannon: Plz:=p] = (pAP[z:=true]) v(-p A P[z := false])

Note: Using Shannon on all propositional variables in sequence
is equivalent to producing a truth table.

“Prove the following theorems (without using Shannon or the
proof method of case analysis by Shannon), ...”

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-20

Part 3: Transitivity Calculations, Monotonicity

7-8

(Evaluation)

(10-3)- (12-4)

< (Fact:3<4)
(10-4)- (12— 4)

< (Fact: 4<5)
(10-4)-(12-5)

= (Evaluation)

Recall: Calculational Proof Format

Eo

(Explanation of why Eg = E;)

Eq

(Explanation of why E; = E; — with comment)
Ep

(Explanation of why E; = E3)

Es

67 Because the calculational presentation is conjunctional, this reads as:
= (Evaluation) Ey=E; A Ei=E; A Ey=E3
42 . . N
Because = is transitive, this justifies:
This proves: 7 -8 < 42 Eo=E3
Extended Calculational Proof Format (1) Extended Calculational Proof Format (2)
Ey Eo
< (Explanation of why Eg < E;) < (Explanation of why Eg < E1)
Eq Ey
< (Explanation of why E; < E; — with comment) = (Explanation of why E; = E; — with comment)
Ez EZ
< (Explanation of why E; < E3) < (Explanation of why E; < E3)
E; E;

Because the calculational presentation is conjunctional, this reads as:
Eg<E; A E1<E A E;<Ej

Because the calculational presentation is conjunctional, this reads as:

Eo<E; A E1=E; A Ey<E3

Because < is transitive, this justifies: Because < is reflexive and transitive, this justifies:
Eo<Es Eo<Es
Extended Calculational Proof Format (3) Extended Calculational Proof Format (4)
Eo Eo
= (Explanation of why Eg=E;) < (Explanation of why Eg < E)
Ey Ey
= (Explanation of why E; = E; — with comment) = (Explanation of why E; = E; — with comment)
Ez EZ
= (Explanation of why E; = E3) < (Explanation of why E; < E3)
Es E3

Because the calculational presentation is conjunctional, this reads as:
(Eo=E1) A (E1=Ep) A (E2=E3)
Because = is reflexive and transitive, this justifies:

Eoy=E3

Because the calculational presentation is conjunctional, this reads as:

Eo<Ey A E1=E; A E, <E3

Because < is transitive, and because < is the reflexive closure of <, this justifies:

Eo<E3

Calculational Non-Proofs

Eo
< (Explanation of why Eg < Eq)
E
= (Explanation of why E; = E; — with comment)
Er
> (Explanation of why E; > E3)
Es

Because the calculational presentation is conjunctional, this reads as:
Ei=E; A Ey > E3

This justifies nothing about the relation between Eg and E3 !

Eo<Ey A

Leibniz is Special to Equality
How about the following?

x-3
< (Fact:3<4)
x-4

Remember:
__X=Y
E[z:=X] = E[z:=Y]

]
==

(1.5) Leibniz:

Leibniz is available only for equality

Example Application of “Monotonicity of -”

e _—_:N- N - Nis monotone in the first argument:

X<y = x-z<y-z is a theorem

Theorem “Monotonicity of -”:a <b = a-c < b-c

Calculation:
2 -n
<(“Monotonicity of -” with Fact "12 = 20")
20 - n

This step can be justified without “with” as follows:

Calculation:

12 -n = 20 - n

(“Left-identity of =")

true = (12 - n = 20 - n)
=(Fact '12 = 20")

Modus Pones via with,

Modus ponens theorem: (3.77) Modus ponens: pA(p=7q)=¢q

Modus ponens inference rule: P=Q P f:A-B x:A
e —=— —Elim . Fctapp.
(“Implication elimination” rule) Q (fx):B

A proof for P=Q can be used as a recipe
for turning a proof for P into a proof for Q.

Applying implication theorems:

Q1
c (“Theorem 1” "P=(Q; € Q)" with “Theorem 2" P")
Q

Theorem “Monotonicity of -":a <b = a-c¢c < b-¢

(12=20) - (12-n = 20 -n) Catculation:
— This is “Monotonicity of - =(“Monotonicity of -” with Fact ‘12 = 20")
20 - n
Example Application of “Antitonicity of - Multiplication on N is Monotonic...

Calculation:

o _—_:N - N - Nis antitone in the second argument: 42

X<y = z-y<z-x is a theorem = (Evaluation)
6-7

Theorem “Antitonicityof -”: b <c = a-c <a-1b

Calculation:
m-3
<(“Antitonicity of -"” with Fact "2 = 3")
m- 2

= (Evaluation)
(10 - 4) - (12 - 5)
< (“Monotonicity of - with
“Antitonicity of - with Fact '3 < 4°
)
(10 - 3) - (12 - 5)
< (“Monotonicity of - ” with
“Antitonicity of - ” with Fact *4 < 5°
)
(10 - 3) - (12 - 4)
= (Evaluation)
7-8

with, Works Also With = — Example Using “Isotonicity of +”

e _+_:N - N - Nis isotone in the first argument:

X<y = x+z<y+z is a theorem
Calculation:
2 +n
<(“Isotonicity of +” with Fact ‘2 = 3")
3+n

This step can be justified without “with” as follows:

Calculation:
2+n=3+n
=(“Identity of =")
true = 2+n=3+n
=(Fact '2 =3)
2=<3 = 2+ns=s3+n

— This is “Isotonicity of +”

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023
Wolfram Kahl

2023-09-22

LADM Chapter 4: “Relaxing the Proof Style” — New Proof Structures

Plan for Today

o LADM Chapter 4: “Relaxing the Proof Style” — New Proof Structures
o Transitivity calculations with implication = or consequence <

o Proving implications: Assuming the antecedent

e Proving By cases

o Using theorems as proof methods
@ Proof by Contrapositive
@ Proof by Mutual Implication

o Coming up: LADM chapters 8 and 9.

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22

Part 1: Subproofs, Abbreviated Proofs for Implications

CaLcCheck: Subproof Hint Items
You have used the following kinds of hint items:
@ Theorem name references “Identity of =”
@ Theorem number references (3.32)
o Certain key words and key phrases: Substitution, Evaluation, Induction hypothesis
e Fact Expression
o Composed hint items: “Identity of +” with “Substitution®
“Monotonicity of +” with HintItem

A new kind of hint item: Subproof for *Expression™:

For example, Fact’3=2+1" is really syntactic sugar for a subproof:

Calculation:

3+ X
=(Subproof for '3 =2+ 1":
By evaluation

)
(2 +1) - x

Abbreviated Proofs for Implications

4
= (Why p=gq)
This: q proves:

= (Why g=r)

r

Because:
(p=g)r(g=7)
= ((3.82b) Transitivity of =)

p:»r

This proof style will not be allowed in questions “belonging” to LADM Chapter 3!

(4.1) — Creating the Proof “Bottom-up”
Proving (41) p=(q=p):

= (p(3.76a) Weakening p=pvq) L] Rabbit!
~qvp
= ((3.59) Definition of implication)
q=pr
We have: Axiom (3.58) Consequence:

This means that the < relation is the converse of the = relation.

Theorem: The converse of a transitive relation is transitive again,
and the converse of an order is an order again.

CALcCHECK supports activation of converse properties, enabling reversed presentations
following mathematical habits of transitivity calculations such as the above.

(4.1) Implicitly Using “Consequence”
Proving (41) p=(q=p):

q=r

= ((3.59) Definition of implication)
~qvp

< ((3.76a) Strenghtening — used as pvg<p)
p

In CALCCHECK, if the converse property is not activated, then < is a separate operator
requiring explicit conversion:

Theorem (4.1): p = (q = p)
Proof:

q=p
=(“Definition of =" (3.59))

— “... propositional logic following LADM chapters 3and 4...” @(ﬂ"gt\r{eggthening" (3.76a), “Definition of <")
p
Recall: Weakening/Strengthening Theorems (4.2) Left-Monotonicity of v
(3.76a) P Spvg [(p=q) = (pvr=qvn)]
(3.76b) prgq =>p pvr=gqvr
(3760) P74 g = (p(i.fz)q]?/iﬁniiionqo\fr: p=q = pvqg = q)

(376d) pv(gar) =pvq

(8.76e) Prq =pa(qvr)

= ((3.26) Idempotency of v)
pvqvr = qvr
= ((3.27) Distributivity of v over =)
(pvag = qvr
= ((3.57) Definitionof = p=q = pvq = gq)
(p=q)vr
<« ((3.76a) Strengthening p=pvq)
p=4q

(4.3) Left-Monotonicity of A

Proving (4.3) (p=4q) = pAr = qarn
PAT = AT
((3.60) Definition of =)
PATAGATEPAT
((3.38) Idempotency of A)
(pAq)Ar=pnar
((3.49) Semi-distributivity of A)
((prg)=p)ar=r
((3.60) Definition of =)
(p=q)Ar=r
((3.60) Definition of =)
r=(p=1)
< (@) p=@=p))

p=q

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22

Part 2: Assuming the Antecedent

Proving Implications...
How to prove the following?
“=-Congruence of +": b=c = a+b=a+c

“We have been doing this via Leibniz (1.5)......”
@ One of the “Replacement” theorems of the “Leibniz as Axiom” section can help.

o It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can
be used again. ..
Assuming the Antecedent:

Lemma “=-Congruence of +":

Proof:
Assuming ‘b = c:
a+b
=(Assumption ‘b = ¢’)
a+c

Assuming the Antecedent
To prove an implication p=gq
we can prove its conclusion g using p as assumption:

Assuming “p*:

Proof of g
possibly using: Assumption “p*

[ustification:

(4.4) (Extended) Deduction Theorem: Suppose adding P;, ..., P, as axioms to proposi-
tional logic E, with the free variables of the P; considered to be constants, allows

Q to be proved.
Then PiA...AP,=Q is a theorem.
That is:

Assumptions cannot be used with substitutions (with ‘a, b := e, f)
— just like induction hypotheses.

“Assuming the Antecedent” is not allowed in questions “belonging to” LADM chapt. 3!

Inference Rule for Proving Implications: =-Introduction

Assuming "P":

One way to prove P=Q: Proofof Q
possibly using: Assumption P

(And can only prove theorems of shape P=--.)

This directly corresponds to an application of the inference rule “=-Introduction”
(which is missing in the Rosen book used in COMPSCI 1DM3):

P’ x: A"

0 =-Intro A-Abstraction

P=

(Ax: £ :A—>B

Proving and Using Implication Theorems: Assuming and with,
“Cancellationof -”: z#0=(z-x=zy = x=y¥)

Theorem “Non-zero multiplication”: a #0 = (b£0=a b +#0)
Proof:
Assuming 'a#0",'b#0":
a‘b#0
=(“Definition of #”)
~(a-b=0)
=(“Zero of)
—“(a-b=a-0)
=(“Cancellation of -” with Assumption ‘a #0")
~(b=0)
=(“Definition of #”, Assumption ‘b # 0")
true

o Hintltem] with Hintltem2 and Hintltem3, Hintltem4 parses as
(Hintltem1 with (Hintltem2 and Hintltem3)), Hintltem4

(4.3) Left-Monotonicity of A (shorter proof, LADM-style)

43) (p=q) = ((pAr) = (Gr1)
PROOE:
Assume p=q (which is equivalent to p Aq = p)
pAr
= (Assumptionpag=p)
pAgAT
= ((3.76b) Weakening)

qnr

How to do “which is equivalent to” in CALcCHECK?
o Transform before assuming
@ or transform the assumption when using it
@ or “Assuming ... and using with ...”

Transform Before Assuming — | Proof for this:

Theorem (4.3) “Left-monotonicity of A" “Monotonicity of A ”:

p=9=(prr)=1(qr71)

Proof:
p=9=prr=(Gnrr)
= (“Definition of = from A")
prgzp)=(prr)=1(rr)
Proof for this:
Assuming'p A g = p*:
pAr
= (Assumptionp A q = p*)
pPAqGAT
= (“Weakening”)

qgnar

Transform Assumption When Used — with;
43) (p=9q) = ((par) = (q11))
PROOF:
Assume p=q (which is equivalent to p Aq = p)

pAr
(Assumptionprg=p)
pAgAT
= ((3.76b) Weakening)

gnar

Theorem (4.3) “Left-monotonicity of A”: (p=q) = (pA T =qAT)
Proof:
Assuming ‘p = q':

pAT

=(Assumption ‘p = q' with “Definition of =" (3.60))
pPAQAT

=(“Weakening”)
qAT

Assuming ... and using with ...
@3) (p=q) = ((prr) = (qA7))
PROOF:
Assume p=q (which is equivalent to pAg =p)
pAr
= (Assumptionpag=p)
pAgAr
= ((3.76b) Weakening)
qAar

Theorem (4.3) “Left-monotonicity of A” “Monotonicity of A”:
(p=0a) = ((pAar)=1(qgnrr))

Proof:
Assuming ‘p = g and using with “Definition of =" (3.60):
pAT
=(Assumption 'p = q°)
AQAT
=(“Weakening” (3.76b))
qATr

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-22

Part 3: Case Analysis and Other Proof Methods

LADM General Case Analysis
4.6) (pvgvr)a(p=s)r(q=s)r(r=s) =s
Proof pattern for general case analysis:

Prove: S
By cases: P, Q, R
(proof of P v Qv R — omitted if obvious)
Case P: (proof of P=S5)
Case Q: (proof of Q=S5)
Case R: (proof of R=S5)

LADM Case Analysis Example: (4.2) (p=¢q) = pvr = qvr

Assume p=¢q
Assumepvr
Prove: gvr
By Cases: p,r — p v r holds by assumption
Casep:
p
= (Assumptionp=q)
q
= (Weakening (3.76a))
qvr
Caser:
r
= (Weakening (3.76a))
qvr

Case Analysis Example (4.2) “Left-Monotonicity of v” in CALcCHECK

Theorem “Monotonicity of v”: (p = q) = (p v r) = (g Vv r)
Proof:
Assuming'p = ¢, 'p v r:
By cases: p", '
Completeness: By assumption 'p v r*
Case p*:
p — This is assumption “p’
= (Assumptionp = ¢)
q
= (“Weakening ")
qvr
Case 'r'*:
r — This is assumption “7*
= (“Weakening ")
qvr

CaLcCheck By cases with “Zero or successor of predecessor”: 1 =0 v n = suc (pred n)

Theorem “Right-identity of subtraction”: m - @ =m
Proof:
By cases: 'm =0", ‘'m = suc (pred m)’
Completeness: By “Zero or successor of predecessor”
Case 'm=0":

m-0=m
=(Assumption 'm = 0")
0-0=0

— This is “Subtraction from zero”
Case 'm = suc (pred m)":

m-0

=(Assumption 'm = suc (pred m)")
(suc (pred m)) - 0

=(“Subtraction of zero from successor”)
suc (pred m)

=(Assumption 'm = suc (pred m)")
m

Case Analysis with Calculation for “Completeness:” ...

By cases: ‘pos b’, "~ pos b’
Completeness:
posb V —posb
=(“Excluded Middle”)
true
Case 'posb':
By (15.31a) with Assumption "pos b’

o After “Completeness:” goes a proof for the disjunction of all cases listed after “By
cases:”
@ This can be any kind of proof.

a1

o Inside the “Case “p”:” block, you may use “Assumption ‘p

Proof by Contrapositive

(3.61) Contrapositive: p=q = -q=>-p

(4.12) Proof method: Prove P = Q by proving its contrapositive -Q = -P

Proving x+y>2 = x>1vy>1:

-(x21vy>1)

(De Morgan (3.47))

~(x21) A =(y21)

(Def. > (15.39) with Trichotomy (15.44))
x<lay<l

= (Monotonicity of + (15.42))

x+y<1l+1

(Def.2)

xX+y<2

(Def. > (15.39) with Trichotomy (15.44))
~(x+y>2)

Proof by Contrapositive in CALcCHECK — Using
Theorem “Example for use of Contrapositive”:x +y>2=x>1Vvy=>1
Proof:

Using “Contrapositive”:
Subproof for '~ (x>1Vvy=>1)=—"(x+y=>2):

“(x=1vy=>1

=(“De Morgan”)
“x=DA(y=1

=(“Complement of <” with (3.14))
x<lAy<l

={ “<-Monotonicity of +”)
x+ty<l+1

=(Evaluation)
x+y<2

=(“Complement of <” with (3.14))
T(xty=2)

e “Using Hintltem1: subproofl subproof2”
is processed as “By Hintltem1 with subproofl and subproof2”
@ If you get the subproof goals wrong, the with heuristic has no chance to succeed. ..

Proof by Mutual Implication — Using
(3.80) Mutual implication: (p=q)Ar(g=p) = p=q
Theorem (15.44A) “Trichotomy — A”:
a<b = a= a >
Proof:
Using “Mutual irpplication”:

Subproof for "fa=b = (a<b = a>b)":
Assuming ‘a = b':
a<b
=(“Converse of <”, Assumption ‘a = b")
a>b
Subproof for “(a<b = a>b)=a=>b":
a<b = a>b
=(“Definition of <”, “Definition of >")

pos (b - a) = pos (a - b)
=((15.17), (15.19), “Subtraction”)
pos (b - a) = pos (- (b - a))
=((15.33c))
a=20
=(“Cancellation of +”)
b-a+a=0+a
=(“Identity of +”, “Subtraction”, “Unary minus”)
a=b

Proof by Contradiction
(3.74) p=false = -p

(4.9) Proof by contradiction: -p=false = p
“This proof method is overused”

If you intuitively try to do a proof by contradiction:
@ Formalise your proof
@ This may already contain a direct proof!
@ So check whether contradiction is still necessary
]

..., or whether your proof can be transformed into one that does not use
contradiction.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-25

Examples of Structured Proofs; General Quantification

Plan for Today

@ Order on Integers via Positivity (LADM chapter 15, pp. 307-308)

— Opportunities for structured proofs

o General quantification, LADM chapter 8

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-25

Part 1: Structured Proofs Example:
Order on Integers via Positivity

LADM Theory of Integers — Positivity and Ordering

(15.30) Axiom, Addition in pos:
(15.31) Axiom, Multiplication in pos: posanposb = pos (a-b)
(15.32) Axiom: - pos 0

(15.33) Axiom: b+#0 = (posb = —pos (-b))

(15.34) Positivity of Squares: b=0 = pos (b-b)

pos aAposb = pos (a+Db)

(15.35) posa = (posb = pos(a-b)
(15.36) Axiom, Less: a<b = pos(b-a)

(15.37) Axiom, Greater: a>b = pos(a-D)

(15.38) Axiom, At most: a<b = a<bva=b

(15.39) Axiom, At least: a>b = a>bva=b

(15.40) Positive elements: posb = 0<b

LADM Theory of Integers — Ordering Properties

(15.41) Transitivity: (a) a<b A b<c = a<c

(b) a<b A b<c = a<c

(¢) a<b A b<c = a<c

(d) a<b A b<c = a<c
(15.42) Monotonicity of +: a<b = a+d<b+d
(15.43) Monotonicityof : 0<d = (a<b = a-d <b-d)
(15.44) Trichotomy: (a<b = a=b = a>b)

-(a<b A a=b A a>b)
(15.45) Antisymmetry of <: a<b A ax2b = a=b

(15.46) Reflexivity of <: a<a

Structured Proof Example from LADM

Theorems for pos
(15.34) b#0 = pos(b-b)

We prove (15.34). For arbitrary nonzero b in D, we prove pos(b-b) by
case analysis: either pos.b or —pos.b holds (see (15.33)).

Case pos.b. By axiom (15.31) with a,b:=b,b, pos(b+b) holds.
Case —pos.b A b# 0. We have the following.

pos(b-b)
= ((15.23), with a,b:=b,b)
pos((—b)+ (b))

< (Multiplication (15.31))
pos(—b) A pos(—b)
= (Idempotency of A (3.38))

pos(—b)
= (Double negation (3.12) —note that b # 0; (15.33))
—pos.b —the case under consideration

The Same Proof in CaLcCHeck

Theorem (15.34) “Positivity of squares”:b # 0 = pos (b - b)
Proof:
Assuming b = 0:
By cases: "pos b", *- pos b’
Completeness: By “Excluded middle ”
Case “pos b':
By “Positivity under - ” (15.31) with assumption “pos b*
Case - pos b:
pos (b - b)
=((15.23)" -a- -b=a-b)
pos ((-b) - (- b))
<« (“Positivity under -” (15.31))
pos (- b) A pos (- b)
(“Idempotency of A”, “Double negation”)
- -pos (-b)
= (“Positivity under unary minus ” (15.33) with assumption b # 0")
-posb — This is assumption *- pos b

”

Case Analysis with Calculation for “Completeness:

By cases: ‘pos b’, "~ pos b’
Completeness:
posb V —posb
=(“Excluded Middle”)
true
Case 'pos b':
By (15.31a) with Assumption "pos b’

o After “Completeness:” goes a proof for the disjunction of all cases
listed after “By cases:”

@ This can be any kind of proof.

o Inside the “Case “p”:” block, you may use “Assumption ‘p

a1

Proof by Contrapositive in CALcCHECK — Using
Theorem “Example for use of Contrapositive”:x +y>2=x>1Vy=>1
Proof:

Using “Contrapositive”:
Subproof for '~ (x>1Vvy>1)=—(x+y=>2)":

“(x=1lvy=1)

=(“De Morgan”)
“x=DA-(y=z1)

=(“Complement of <” with (3.14))
x<1Ay<l

={(“<-Monotonicity of +”)
x+y<l+1

=(Evaluation)
x+y<2

=(“Complement of <” with (3.14))
“(xty=2)

e “Using Hintltem1: subproofl subproof2”
is processed as “By Hintltem1 with subproof] and subproof2”
o If you get the subproof goals wrong, the with heuristic has no chance to succeed. ..

Proof by Mutual Implication — Using
(3.80) Mutual implication: (r=q9)r(g=p) =p=9q

Theorem “Cancellation of unary minus”: —a = - b = a = b
Proof:
Using “Mutual implication ”:
Subproof: === Subproof goals determined by the enclosed proof can be omitted.
Assuming ‘a = b:

-a
= (Assumption’a = ")
-b
Subproof:
Assuming - a = - b
a
= (“Self-inverse of unary minus ")

--a
= (Assumption®—a = - b")
--b
= (“Self-inverse of unary minus”)

b

The CaLcCHeck Language — Calculational Proofs on Steroids

o LADM emphasises use of axioms and theorems in calculations over other inference
rules
Besides calculations, CALCCHECK has the following proof structures:
o By hint — for discharging simple proof obligations,
o Assuming ‘expression': — for assuming the antecedent,
e By cases: ‘expressiony’,.. . ‘expression,' — for proofs by case analysis
@ By induction on ‘var : type': — for proofs by induction
o Using hint: — for turning theorems into inference rules

e For any ‘var : type": — corresponding to Y-introduction

This does not sound that different from LADM —

— but in CALCCHECK, these are actually used!

Proofs Structures Can Be Freely Combined...

Theorem (15.35) “Positivity under positive - ”: posa = (posb = pos (a - b))
Proof:
Assuming "pos a':
Using “Mutual implication ”:
Subproof for 'pos b = pos (a - b)*:
posb = pos (a - b)
<« (“Positivity under -”)
posa — This is Assumption "pos a°
Subproof for pos (a - b) = posb:
Using “Contrapositive ":
Subproof for - posb = -pos (a - b)*:
Bycases:'b = 0°,'b # 0
Completeness: By “Definition of #”, “LEM”
Case’b = 0
-posb = -pos (a - b)
= (Assumption b = 0°, “Zero of -)
-pos0 = - pos0 — This is “Reflexivity of ="
Case'b = 0
- posb
= ((15.33b) with Assumption"b # 0")

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-25

Part 2: General Quantification

Recall: Quantification Examples
(Si] 0<i<4oi-8)
(Quantification expansion, substitution)
0-8+1-8+2-8+3-8

(TTi | 0<i<3 @i+ (i+1))
= (Quantification expansion, substitution)
0+1)-(1+2)(2+3)

(Vi | 1<i<3 ei-d+6)
= (Quantification expansion, substitution)
1-d#6 A2-d+6

(3i] 0<i<6 e bi=0)
= (Quantification expansion, substitution)
b0=0vbl=0vb2=0vb3=0vb4=0vb5=0

Recall: General Quantification
It works not only for +, A, v ...

Let a type T and an operator » : T x T — T be given.
If for an appropriate u : T we have:

o Symmetry: bxc=cxb
o Associativity: (bxc)xd=bx (c*d)
o Identity u: uxb=b=bxu

we may use as quantification operator:
(x»x:Ty,y:T2 | R e E)

@ R:Bis the range of the quantification
E : T is the body of the quantification
E and R may refer to the quantified variables x and y

The type of the whole quantification expression is T.

Recall: General Quantification: Instances

Let a type T and an operator » : T x T — T be given.
If for an appropriate u : T we have:

o Symmetry: bxc=c*b
o Associativity: (bxc)xd=bx (cd)
o Identity u: uxb=b=bxu

we may use * as quantification operator: (x x:T1,y: T2 | R o E)

e _v_:BxB - Bis symmetric (3.24), associative (3.25),
and has false as identity (3.30) — the “big operator” for v is 3”:
(3k:N | k>0ek-k<k+1)
o _A_:B xB — B is symmetric (3.36), associative (3.27),
and has true as identity (3.39) — the “big operator” for A is V”:
(Vk:N | k> 2 e primek = - prime (k + 1))
@ _+_:7x7Z — 7Zis symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) — the “big operator” for +is 3"
(Xn:Z | 0<n<100Aprimen o n-n)

Recall: Meaning of General Quantification

Let a type T, and a symmetric and associative operator »:T x T — T with identity u: T
be given.

Further let x be a variable list, R a Boolean expression, and E an expression of type T.

The meaningof (xx | R e E) instatesis:
@ the nested application of to the meanings of E
@ in all those states that satisfy R

@ and are different from s at most in variables in x,

or u, if there are no such states.

LADM section 8.3 axiomatizes this semantics and makes it accessible to syntactic
reasoning.

Trivial Range Axioms

(8.13) Axiom, Empty Range (where u is the identity of x):

(xx | false « P) = u
(Vx| false @ P) = true
(3x | false « P) = false

(X x| false « P) = 0
(ITx | false « P) = 1

(8.14) Axiom, One-point Rule: Provided -occurs(‘x’, ‘E’),
(*x | x=E e P) = Plx:=E]

Recall: Bound / Free Variable Occurrences
(Xi:N | i<xei+1)=10

Is this true or false? In which states?

example expression

We have:

The value of this example expression in a state depends only on x, not on i!

(Xi:N | i<xei+1)=10 = x=4

Renaming quantified variables does not change the meaning:
(Xi:N | i<xei+1) = (X j:N | j<xej+1)

@ Occurrences of quantified variables inside the quantified expression are bound

@ Non-bound variable occurences are called free

@ Variables of the same name may occur both free and bound
in the same expression, e.g.: 3-i+ (L i:N | i<x e2:i)

@ The variable declarations after the quantification operator
may be called binding occurrences.

The occurs Meta-Predicate

Definition: occurs(‘v’, ‘¢’) means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

occurs(‘i,n’, (L in | 1<i-n<k e n'),(X n | 0<n<k o n')’)
occurs(‘’, ‘(i (5+1))[i=k+2]") x

Substitution is a variable binder, too!

occurs(‘i’,‘(i- (5+1))[i:=i+2])

The -occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule for Y: Provided -occurs(‘x’, ‘E’),

(x| x=EeP) = Plx:=E]
(8.14) Axiom, One-point Rule for []: Provided —occurs(‘x’, ‘E’),
(Mx | x=EP) - Plx=E]
Examples:
o (x| x=1ex-y) = 1y
o (MIx | x=y+1 ex-x) = (y+1)-(y+1)
o (Xx | x=(Zx | 1<x<dex)ex-y) = (Xx]|1<x<d4ex)y = 6-y
Counterexamples:
o (Xx | x=x+1ex) ? x+1 — “=" not valid!
o (Mx | x=2-xey+x) ? y+2-x — “=" not valid!

The -occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule: Provided -occurs(‘x’, ‘E’),

(xx | x=E e P) = Plx:=E]
(Vx | x=E eP) = Plx:=E]
(3x | x=EeP) = Plx:=E]

Examples:
o (Vx | x=1ex-y=y) = ly=y

o (Ix | x=y+1 e x-x>42) = (y+1)-(y+1)>42

Counterexamples:
o (Vx | x=x+1ex=42) ? x+1=42 —“="not valid!
o (Ix | x=2-x e y+x=42) ? y+2.x=42—“="not valid!

One-point Rule with Example Calculation
(8.14) Axiom, One-point Rule: Provided -occurs(‘x’, 'E’),

(*x | x=EeP) = P[x:=E]

Example:
(X i:Ne5+2-i<7 | 5+7-i)

)
(Ri:Nei=0|5+7-i)

= (One-point rule)

=

(5+7-i)[i:=0]
= (Substitution)
5+7-0

Automatic extraction of -occurs Provisos
(8.14) Axiom, One-point Rule: Provided ﬁoccurs(’x’, 'E’),
(Vx| x=E eP)
(3x | x=EeP) =

Investigate the binders in scope at the metavariables P and E:

il
s>~}
"R
Wi
|

@ P on the LHS occurs in scope of the binder V x
@ P on the RHS occurs in scope of the binder _[x :=...]

Therefore: Whether x occurs in P or not does not raise any problems.

@ E on the LHS occurs in scope of the binder V x
o E on the RHS occurs in scope no binders

Therefore: An x that is free in E would be bound on the LHS,
but escape into freedom on the RHS!

CALCCHECK derives and checks —occurs provisos automatically.

Plan for Today
Loglcal Reasonlng fOI' ComPUter SClence @ More on Command Correctness: Chaining with =; Conditional Commands
COMPSCI 2LC3 = Another example of structured proofs

McMaster University, Fall 2023
@ General Quantification (LADM chapter 8, ctd.)

Wolfram Kahl = Calculating with Quantifications

2023-09-27

Conditional Commands; General Quantification

Recall: Partial Correctness for Pre-Postcond. Specs in Dynamic Logic Notation

@ Program correctness statement in LADM (and much current use):

Logical Reasoning for Computer Science (PyC{Q}
COMPSCI 2LC3 This is called a “Hoare triple”.

. . Partial C t Meaning:
McMaster University, Fall 2023 ¢ tartial Lorreciness Veaning
If command C is started in a state in which the precondition P holds

then it will terminate only in states in which the postcondition Q holds.

Wolfram Kahl @ Dynamic logic notation (used in CALCCHECK):
P={C]Q
2023-09-27
o Assignment Axiom:
Part 1: More Command Correctness — Hoare triple: {Q[x=E]}x=E{Q}
— Dynamic logic notation (used in CALCCHECK): Qx:=E] ={x:=E]Q
Transitivity Rules for Calculational Command Correctness Reasoning What Does this Program Fragment Do?
Primitive inference rule “Sequence ":
P ={G]Q, Q=[G]R Example execution:
Let x and y be variables of type Z.
.
[(x,5), (v,6)]
P =fC;CG IR
X:i= x+Y; ~ Xi=x+y)
Strengthening the precondition: [(x,11), (,6)]
“P1 = P27, ‘P2 =f C1Q yi=x-Vi .
v N ~ A y=a-y)
ProfC O P rery [(11), (15)]

; ition: ={G] (..) U
Wealfemng the pOStC\Dl’ldlth\n. ‘ 0 How can you specify that? ~ Xi=x-y)
P-tClQ, "0:=0Q: [(x.6), (v.5)]

F N N = {..) Can you prove it?
P-EC3Q Q Perhaps the values of x and y are swapped?
C
@ Activated as transitivity rules =c] (R)
@ Therefore used implicitly in calculations, e.g.,
proving P ={C;5C,]R to theright
Specification Pattern “Auxiliary Variables” Conditional Commands —
statement;
. o Frequently, the postcondion needs to refer to o Pascal: else
Let xand y be variables of type Z. values of the state variables “at the time of the statementa
Specifying value swap: precondition”. if condition then
B ~ o With Hoare triples, the standard way to achieve o Ada: el jg‘”em"““'
Y=X ANy =T this is the use of “auxiliary variables”: ;@E?mf‘“t?
= E o “auxiliary variables” (here: xy and yp) do not .

. . occur in the program if (conditiom)
X:=X+Yy; o they may occur in both precondition and e C/Java: el ;gateme'm
yi=x-y; postcondition statements

L e throughout the correctness proof, the “have the —
Xi=x-y ” if condition:

same values o Python: statement;
i o Other formalisms “decorate” variable names: Y ’ eif;tememz

X=Y AY =X o Z:“Primed” postcondition variables:

XY=y A y=x ir condition

You can prove that! o ACSL: Referencing precondition variables as in o sh: N S temen £

the \ old state: : else
- = statement;
x = \old(y) A y = \old(x) o 2
Conditional Rule Fact “Simple COND”: .
true =f if x = 1 theny =42 else x :=1fi] x=1
Proof:
Primitive inference rule “Conditional ”: true
=[if x = 1 then y := 42 else x := 1 fi] (Subproof:
Using “Conditional”:
\BAP:ECle‘, ‘ﬁBAP:ECZjQ\ Subproof for “(true A x = 1) =f y :=42] x=1":
true A x =1
- =(“Identity of A")
N P " N x =1
P =fifBthenCielse C;fi] Q =(Substitution)

(x = 1) [y = 42]
=f y =42] (“Assignment”)
Fact “Simple COND": x =1

true =f if x = 1 theny (=42 else x :=1fi] x=1 Subproof for “(true A = (x =1)) =f x := 1] x=1":
true A = (x = 1)

Proof:
true ={ “Right-zero of =")
=f if x = 1 then y := 42 else x := 1 fi] (Subproof: _ t:ue - "
Using “Conditional”: =(1 Ee{Leany of =")
Subp;oof for “(true A x =1) =fy =421 x=1": =(substitution)
: . N (x =1)[x = 1]
Subp;‘oof for “(true A = (x = 1)) =f x :=11] x=1": =t x :=113 (“Assignment”)
? x =1

))
x =1 x =1

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-27

Part 2: General Quantification

Bound / Free Variable Occurrences — The occurs Meta-Predicate

Renaming quantified variables does not change the meaning:

(Viexii=0) = (Vjexj=0)

@ Occurrences of quantified variables inside the quantified expression are bound

@ Variable occurences in an expression where they are not bound are free
i>0v(Vi| 0<iex-i=0)

@ The variable declarations after the quantification operator may be called binding

occurrences.

Definition: occurs(‘v’, ‘¢’) means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

CALCCHECK derives and checks —occurs provisos automatically.

Textual Substitution Revisited
Let E and R be expressions and let x be a variable. Original definition:
We write: E[x:=R] or E
to denote an expression that is the same as E but with all occurrences of
x replaced by (R).

This was for expressions E built from constants, variables, operator applications only!
In presence of variable binders, such as ¥, [], ¥, 3 and substitution,

@ only free occurrences of x can be replaced

@ and we need to avoid “capture of free variables”:
(8.11) Provided —occurs(“y’, “x,F’),

(y | ReP)[x:=F] = (xy | R[x:=F] o P[x:=F])

LADM Chapter 8:
“x is a metavariable for operators _+_, -, A_, v_"(resp. X,]I, V, 3)
(8.11) is part of the Substitution keyword in CALCCHECK.
Read LADM Chapter 8!

Substitution Examples
(8.11) Provided —occurs(‘y’, “x,F’),

(*y | Re P)xi=F] = (+y | R[xi=F] o Plx:=F])

° (x| 1<x<2ey)|y=y+z]
= (substitution)
(Tx | 1<x<2e0y+2)

° (Tx] 1<x<2ey)|y:=y+x]
= ((8.21) Variable renaming)
(Tz] 1<z<2 0 y)[y=y+x]
= (substitution)
(Zz]1<z<2ey+x)

Substitution Examples (ctd.)

(8.11) Provided —occurs('y’, ‘x,F’),
(*y | ReP)[x:=F] = (xy | R[x:=F] e P[x:=F])

e (Zx] 1<sx<2ey)[x:=y+x]
= ((8.21) Variable renaming)
(Xz]| 1<z<2 0 y)[x:=y+x]
= (Substitution)
(Xz]1<z<2ey)
= ((8.21) Variable renaming)
(Xx] 1<x<2ey)

(8.11f) Provided -occurs(‘x’, ‘E’),

Renaming of Bound Variables
(8.21) Axiom, Dummy renaming («-conversion):
(*x | ReP) = (xy | Rlx=y] e Plx:=y])
(Xi] 0<i<k en')
= (Dummy renaming (8.21), ~occurs(‘j’, ‘0 <i <k, n'))
(Xj10<j<k en)

provided -occurs(‘y’, ‘R, P’).

(Zi|0<i<keni)
? (Dummy renaming (8.21)) X
(Tk|0<k<ken mesmr | captured!

Generally, use fresh variables for renaming to avoid variable capture!

In CALCCHECK, renaming of bound variables is part of “Reflexivity of =,
but can also be mentioned explicitly.

Leibniz Rules for Quantification

X =Y

E[z:=X] Ez=Y] to obtain:

Trytouse x+x=2-x and Leibniz (1.5)

x| 0<x<9ex+x)=(3 x| 0<x<9 e2-x)

@ ChooseEas: (X x | 0<x<9 e 2)

o Perform substitution: (¥ x | 0<x<9 e z)[z:=x+x]
(Zy10<gy<9ex+x)

@ Not possible with (1.5)!
— E[z:= X] = E[z:= Y] renames x!

Special Leibniz rule for quantification:

LADM Leibniz Rules for Quantification

Rewrite equalities in the range context of quantifications:

P = Q
(8.12) Leibniz (xx | E[z:=P] @«S) = (xx | E[z:=Q] ¢ 5)
Rewrite equalities in the body context of quantifications:
R = (P =09
(8.12) Leibniz (xx | ReE[z:=P]) = (xx]| ReE[z:=Q])

(These inference rules will also be used implicitly.)

Important: P=Q, repectively R=(P =Q), needs tobe a theorem!
These rules are not available for local Assumptions!
(Because x may occur in R, P, Q.)

The CALCCHECK versions use universally-quantified antecedents.

P = Q . o
Axiom “Leibniz for ¥’ range”: (Vx ¢ Ry = R x| Ry e E) = X|Ry e E
GCrIReEz=P]) - (~xR<Ez=-Q) l llZ z g”(* Ry 2) = (x| R« E) = (Ex|R e E)
Axiom “Leibniz for Y body”: (Vx e R = E; = E;) = (X x| R e E;) = (L x| R e E)
Formalise: The sum of the first n odd natural numbers is equal to n?

o The sum of the first # odd natural numbers is equal to n?.

Formalise it in a way that makes it easy to prove!

Theorem “0dd-number sum”:
(i :NJli<nesuci+i)=n-n

Theorem “0Odd-number sum”:
(yi:NJi<nesuci+i)=n"-n
Proof:
By induction on "n : N':
Base case:
(i :NJ1i<0-+suci+i)
=(?)

=(?)
0 -0
Induction step:
(i : N1 1i<sucn e suci+ i)
7))

=(

=(7)

suc n - sucn

Empty Range Axioms

(8.13) Axiom, Empty Range:
(X x | false o E)
(IT x | false o E)

The sum of the first n odd natural numbers is equal to n?

Theorem “0dd-number sum”:
(i:NJi<nesuci+i)=n-n
Proof:
By induction on ‘n : N':
Base case:
(i :NJ1i<0-+«suci+i)
=(“Nothing is less than zero”)
(y i : N | false « suc i + i)
=(“Empty range for }")
[¢]
=(“Definition of - for 0”)
Induction step:
(i :NJi<sucnesuci+i)
=(“Split off term at top”, Substitution)
(i :NJi<n-esuci+i) + (sucn+n)
=(Induction hypothesis)
sucn+n+n-n
=(“Definition of - for “suc’”)
suc n+n - sucn
=(“Definition of - for ‘suc™”)
suc n - suc n

Manipulating Ranges
(8.23) Theorem Split off term: For n: N and dummies i : N,
(xi] 0<i<n+1eP) = (xi | 0<i<n e P) x Pli:=n]

(»i] 0<i<n+1eP) = Pli:=0] » (»i | O0<i<n+1 e P)

o Typical uses: Induction proofs, verification of loops
o Generalisation: N — Z, 00— m:Z (withm <n)
The following work both with m,n,i: N and with m,n,i: Z:
Theorem: Split off term from top:

m<n =
(xi | m<i<n+1l e P)=(xi | m<i<n e P) Pli:=n]

Theorem: Split off term from bottom:

m<n =
(#i | m<i<n+1 eP)=Pliz=m] x (xi | m+1<i<n+1eP)

Manipulating Ranges
(8.23) Theorem Split off term: For n: N and dummies i: N,
(Xi] 0<i<n+1eP) = (Xi] 0<i<n e P)+ Pli:=n]

(Xi] 0<i<n+1leP) = Pli:=0] + (X i] O<i<n+1eP)

@ Typical uses: Induction proofs, verification of loops
o Generalisation: N — Z, 0— m:Z (withm <n)
The following work both with nz,1,i: N and with m, n,i: Z:
Theorem: Split off term from top:

m<n =
(Xi| m<i<n+1leP)=(Yi| m<i<n e P) + Pli:=n]

Theorem: Split off term from bottom:

ms<n =
(Xi| m<i<n+1leP)=Pli=m] + (i]| m+1<i<n+1eP)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-29

General Quantification 3, Predicate Logic 1

Plan for Today

o General Quantification (LADM chapter 8) — last part

@ Predicate Logic 1:
Axioms and Theorems about Universal and Existential Quantification
(LADM chapter 9)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-29

Part 1: General Quantification (ctd.)

Distributivity
(8.15) Axiom, (Quantification) Distributivity:
(*x |ReP)x(+x | ReQ)=(+x | RoPxQ).
provided each quantification is defined.
CALCCHECK currently has no way to express or check this proviso —
— it remains in your responsibility!
(Xi:N | i<nefi)+(Xi:N | i<n e gi)
= (Quantification Distributivity (8.15))
(X i:N | i<n e fi+gi)
Note: Some quantifications are not defined, e.g.: (X#n:N o 1)
Note that quantifications over A or v are always defined:
(Vx| RePAQ) = (Vx| ReP)A(Vx | Re Q)
(3x | RePvQ) = (3x | ReP)v(Ix | Re Q)

Disjoint Range Split — LADM

(8.16) Axiom, Range split:
(xx | RvSeP) = (xx| ReP)x(xx]| SeP)

provided R A S = false and each quantification is defined.

(Xx | RvSeP) =

provided RA S = false and each sum is defined.

Yx | ReP)+(Xx | SeP)

(Vx| RvSeP) = (Vx| ReP)A(Vx | SeP)
provided RAS = false.

(3x | RvSeP) = (3x | ReP)v(Ix | SeP)
provided RA S = false.

Disjoint Range Split for 3 (LADM and CaLcCHeck)

(8.16) Axiom, Range Split: (Zx | RvSeP)=(Xx | ReP)+(Xx | SeP)
provided R A S = false and each sum is defined.

CALCCHECK currently cannot deal with “provided each sum is defined”.
But once V is available, Q A R = false does not need to be a proviso:

Theorem “Disjoint range split for) ”:
(VxeRAS = false) =
((Cx|RvSeE)=(Sx|ReE)+ (Xx|SeE))

That is: Summing up over a large range can be done by adding the results
of summing up two disjoint and complementary subranges.

s “Divide and conquer” algorithm design pattern

DIVIDE ET IMPERA
— Gaius Julius Caesar

Range Split “Axioms”
(8.16) Axiom, Range split:
(x| RvS e P) (xx | ReP)x(xx | SeP)
provided RA S = false and each quantification is defined.
8.17) Axiom, Range Split:
(ge Sp
(*x] RvSeP)x(xx | RASeP) = (xx| ReP)x(xx] SeP)
provided each quantification is defined.

(8.18) Axiom, Range Split for idempotent x:
(x| RvSeP) = (xx| ReP)x(xx | SeP)
provided each quantification is defined.
(Vx| RvSeP) = (Vx| ReP)A(Vx | SeP)

(3x | RvS e P) (3x | Re P)v(3x | S P)

Variable Binding Rearrangements

(8.19) Axiom, Interchange of dummies:
(\xIRe(xy[SeP) = (+ylSe(xx|ReP)
provided —occurs(‘y’, ‘R") and -occurs(‘x’,’S"), and each quantification is defined.
(8.20) Axiom, Nesting;:
(+xy | RASeP) = (sx|Re(sy|SeP)
provided -occurs('y’, ‘R’).

(8.21) Axiom, Dummy renaming («-conversion):
(*x |ReP) = (vy | Rxi=y] o Plxi=y))
provided —occurs(‘y’, ‘R, P’).

Substitution (8.11) prevents capture of y by binders in R or P

Permutation of Bound Variables

Apparently not provable for general quantification from the quantification axioms in the
textbook:

Dummy list permutation:
(*xy | ReP) = (sy,x | ReP)
(without side conditions restricting variable occurrences!)

However, the following are easily provable from (8.19) Interchange of dummies —
Exercise:

Dummy list permutation for V:

(Vx,y | ReP) = (Yyx|ReP)
Dummy list permutation for 3:
Bxy | ReP) = (@yx|ReP)

Proving Split-off Term
We have:
(8.16) Axiom, Range Split:
(Xx | RvSeP)=(Xx | ReP)+(Xx | SeP)
provided R A S = false and each sum is defined.

How can you prove theorems like the following?

Theorem “Split off term” “Split off term at top”:
(i :NJi<sucneE)=(yi:NJ]i<nseE)+E[i=n]

@ Use range split first —
= need to transform the LHS range expression i < suc n into an appropriate
disjunction
== the first disjunct should be the range expression i < n from the RHS
o The second range will have one element
— The second sum from the (8.16) RHS has range i = n
= That second sum disappears via the one-point rule

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-09-29

Part 2: Predicate Logic 1

Generalising De Morgan to Quantification
~(3i | 0<i<4 o P)
= (Expand quantification)
~(P[i:=0] v P[i:=1] v P[i:=2] v P[i:=3])
= ((3.47) De Morgan)
-P[i:=0] A =P[i:=1] A =P[i:=2] A =P[i:=3]
= (Contract quantification)
(Vi] 0<i<4 e -P)

(9.18b,c,a) Generalised De Morgan:

-(3x | ReP) = (Vx| Re-P)
(3x | Re-P) = ~(Vx| ReDP)
-(3x | Re-P) = (Vx| ReP)

(9.17) Axiom, Generalised De Morgan:

(3x | ReP) = ~(Vx | Re-P)

“Trading” Range Predicates with Body Predicates in V and 3

Plx:=E] Instantiation for V

(9.2) Axiom, Trading;: (Vx| ReP) = (VxeR=P) = ((8.14) One-point rule)
Trading Theorems for V: (Vx| x=EeP)
(9.3a) (Vx| ReP) = (Vxe-RvP) <= ((9.10) Range weakening for V) VxeP V-Elim
(9.3b) (Vx| ReP) = (¥VxeRAP=R) (Vx| truevx=E o P) Plx:=E]
(9.3¢) (Vx| ReP) = (VxeRvP=P) = ((329) Zeroof v)
(9.4a) (Vx| QAReP) = (Vx| Qe R=P) (Vx| true o P)
Ezfz)) ((vax |I QQ/\AIf .lf)) j ((\j; |I QQ .l;fl\?/ f)R) = (true range in quantification)
- - - (VxeP)
(9.4d) (Vx| QAReP) = (Yx| Qe RvP=P)
This proves: (9.13) Instantiation: (Vx e P) = P[x:=E]
(9.17) Axiom, Generalised De Morgan: (3x | ReP) = (Vx| Re=P) . . e
The one-point rule is “sharper” than Instantiation.
(9.19) Trading for 3: (3x | ReP) = (3xeRAP) Using sharper rules often means fewer dead ends. ..
. rading for 3: Jx AR o = (3x e Rn sharp version obtained via (3.60):
9.20) Trading f R e P RAP A sharp i btained via (3.60)
(VxeP) = (VxeP)AP[x:=E]
Using Instantiation for V Recall: with,
E nstantiation: (Vx e = X = “(a-b=a-
9.13) I iati P Plx:=E (a-b=a-0)
A sharp version of Instantiation obtained via (3.60): (Vx e P) = (Vx e P)AP[x:=E] :(7$§ic(c)l)lanon of * with Assumption *a 20" }
Proving (Yx e x+1>x) = y+2>u:
(Vxex+l>x) In a hint of shape “Hintltem1 with Hintltem2 and Hintltem3”:
{ Instantiation (9.13) with (3.60)) o If Hintltem1 refers to a theorem of shape p =g,
= (Instantiation (9.13) wi X
(Vxex+lox) A y+lsy o then Hintltem2 and HintItem3 are used to prove p
= (Left-Monotonicity of A (4.3) with Instantiation (9.13)) © and g is used in the surrounding proof.
y+1)+1>y+1 A y+1>y Here:
= (Transitivity of > (15.41)) o Hintltem1 is “Cancellation of -”: z#0=(z-x=2z-y = x=y)
y+l+l>y o Hintltem2 is “Assumption a # 0”
= (1+1=2 @ The surrounding proof uses: a-b=a- = =
() Th ding proof b 0 b=0

y+2>y

Monotonicity with ...
y+1l>y
= (Left-Monotonicity of A (4.3) with Instantiation (9.13))
Y+ +1>y+1 A y+1>y

(Vxex+1>x) A

In a hint of shape “HintItem1 with Hintltem2 and HintItem3”:
o If HintItem1 refers to a theorem of shape p =g,
o then HintItem2 and Hintltem3 are used to prove p

@ and g is used in the surrounding proof.
Here:

o Hintltem1 is “Left-Monotonicity of A”: (p=q)=((pAr) = (qrr))
o Hintltem2 is “Instantiation”: (Vxex+1>x)

= (y+1)+1>y+1

@ The surrounding proof uses: (Vxex+1>x) A y+l>y

= (y+D+1>y+1 A y+1>y

withs: Rewriting Theorems before Rewriting
o If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThinA with L » R
e Eg: ‘ Assumption “p= ¢ with (3.60) ‘p=q = prq=q ‘

The local theorem p = g (resulting from the Assumption)

rewrites via: p=q ~ p=pnrq (from (3.60))
too p = png
which can be used for the rewrite: p +~ pagq

Theorem (4.3) “Left-monotonicity of A”: (p = q) = ((p A1) = (q A 1))
Proof:
Assuming 'p = ¢
pAT
= (Assumption *p = ¢ with “Definition of = from A")
pPAGAT
= (“Weakening ")
gAT

Using Instantiation for V
(9.13) = Plx:=E]

A sharp version of Instantiation obtained via (3.60):

Instantiation: (Vx e P)
(VxeP) = (Vx e P)AP[x:=E]

Theorem: (Vx:Z e x <x+1) = y<y+2
Proof:
(Vx:Zex<x+1)
= (“Instantiation ” (9.13) with “Definition of = via A” (3.60) — explicit substitution needed!)
(Vx:Zex<x+1) A (x <x+ 1fx:=y+1]
= (Substitution, Fact™1 + 1 = 2°)
(Vx:Zex<x+1) Ay+1l<y+2
= (“Monotonicity of A" with “Instantiation”)
(x<x+ D=yl ny+1l<y+2
= (Substitution)
y<y+lay+l<y+2
= (“Transitivity of <")
y<y+2

Theorems and Universal Quantification

(9.16) Metatheorem: P is a theorem iff (V x e P) is a theorem.

This is another justification for implicit use of “Instantiation” (9.13)

(VxeP) = Plx:=E]
Theorem: (Vx:Z e x <x+1) = y<y+2
Proof:
Assuming (1)Vx:Z e x < x + 1%:
Y
< (Assumption (1) — implicit instantiation with £ := y)
y+1
< (Assumption (1) — implicit instantiation withE = y + 1)
y+1+1
=(Fact’1 +1=2")
y+2

Implicit Universal Quantification in Theorems 1
(9.16) Metatheorem: P is a theorem iff (V x e P) is a theorem.
(If proving “x + 1 > x” is considered to really mean proving “¥ x e x+1 > x”, then the x in

“x+1>x" is called implicitly universally quantified.)

Proof method: To prove (V x e P),
we prove P for arbitrary x.

That is really a prose version of the following inference rule:

P

V-Intro (prov. x not free in assumptions)
VxeP

In CALCCHECK:
@ Proving (Vv:N e P):

For any ‘v : N
Proof for P

(Non-local assumptions
with free v are not usable.)

Using “For any” for “Proof by Generalisation”
In CALCCHECK:

@ Proving (Vv:N e P): For any ‘v : N:

Proof for P

Proving Vx:N e x<x+1:
For any “x: N
x<x+1
= (Identity of +)
x+0<x+1

= (Cancellation of +)
0<1

= (Fact'1=suc0)
0<suc0

= (Zero is less than successor)
true

Implicit Universal Quantification in Theorems 2

(9.16) Metatheorem: P is a theorem iff (V x e P) is a theorem.

LADM Proof method: To prove (Vx | R o P),
we prove P for arbitrary x in range R.
That is:
o Assume R to prove P (and assume nothing else that mentions x)
@ This proves R=P
@ Then, by (9.16), (V¥ x ¢ R=P) is a theorem.
@ With (9.2) Trading for V, this is transformed into (V x | R e P).

In CALCCHECK:
@ Proving (Vv:N e P):

For any ‘v : N
Proof for P

@ Proving (Vv:N | R e P): |Forany ‘v: N’satisfying ‘R":

Proof for P using Assumption ‘R’

Using “For any ...
In CaLcCHECK:

satisfying” for “Proof by Generalisation”

@ Proving (Vo:N | R e P): For any ‘v : N’ satisfying ‘R”:

Proof for P using Assumption ‘R

Proving Vx:N | x<2 e x<3:
For any “x : N" satisfying “x < 2':
x
< (Assumption *x <2")
2
< (Fact’2<3)
3

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-02

Predicate Logic (2)

Warm-Up

o What does “assuming the antecedent” mean?

@ Give the rule for quantification nesting.

@ State the one-point rule and the empty range axiom.
@ State the quantification distributivity axiom.

@ Give the rule for disjoint range split.

@ Give the rule for substitution into quantification.

@ State the basic trading laws for V and 3.

@ State the theorem of instantiation for V.

Plan for Today

@ Predicate Logic 2:
Selected Important Properties of Universal and Existential Quantifications
(LADM chapter 9)

Coming up:

@ Types (see also LADM section 8.1) and Sets (LADM chapter 11)

Combined Quantification Examples

@ “There is a least integer.”
o “There exists an integer b such that every integer 1 is at least b”.
@ “There exists an integer b such that for every integer 1, we have b < n”.

(3b:Z o (Vn:Z e b<n))

@ “m can be enclosed within rational bounds that are less than any ¢ apart”

o “For every positive real number ¢, there are rational numbers r and s with
r<s<r+eg,suchthatr<mw<s”
(Ve:R | O<e
e (3r,5:Q | r<s<r+ec er<m<s))

Proof Patterns Corresponding to the Elimination and Introduction Rules for V

YxeP i — P YInto (prov.x not free in assumptions
Plx=E] V-Elim VxeD P P)
(9.13) Instantiation: (Vx e P) = P[x:=E]
y+2
< (Assumption'V x:Z e x < x + 1’ —implicit instantiationw. E = y + 2)
y+2+1

(Vx:Zex <x+1)
= (“Instantiation ” (9.13) with “Definition of = via A” (3.60) — explicit substitution needed!)
(Vx:Zex<x+1) A (x <x+1)[x:=y+1]

@ Proving (Vv:N e P): For any “v:N:

Proof for P

(Non-local assumptions
with free v are not usable.)

o Proving (Vo:N | R e P): |Forany ‘v:N satisfying “R™:

Proof for P using Assumption ‘R’

I-Introduction

Recall: (9.13) Instantiation: (VxeP) = Plx:=E]

Dual: (9.28) 3-Introduction: Plx:=E] = (3xeP)

An expression E with P[x := E] is called a “witness” of (3x e P).

Proving an existential quantification via 3-Introduction requires “exhibiting a witness”.

Inference rule:

Plx:=E
L] 3-Intro

JxeP Plx=f] " Elim

Using 3-Introduction for “Proof by Example”

(9.28) 3-Introduction: P[x:=E] = (Jx e P)
An expression E with P[x := E] is called a “witness” of (3x e P).

Proving an existential quantification via 3-Introduction requires “exhibiting a witness”.

(Fx:Nex-x<x+x)
< (3-Introduction)
(x-x<x+x)[x:=1]
= (Substitution)

Using 3-Introduction for “Proof by Counter-Example”

(9.28) 3-Introduction: P[x:=E] = (Jx e P)

-(Vx:Nex+x<x-x)

= (Generalised De Morgan)
(Ix:N e s(x+x<x-x))

< (3-Introduction)
(~(x+x<x-x))[x:=2]

= (Substitution)

~(2+2<2-2)
1-1<1+1 = (Fact™2+2<2-2=false’)
= (Evaluation) ~false
true = (Negation of false)
true
Witnesses LADM Theory of Integers — Axioms and Some Theorems
(9.30v) Metatheorem Witness: If —occurs(‘x’, ‘Q’), then: (15.1) Axiom, Associativity: (a+b)+c=a+(b+c)
(3x | R e P)=Q isatheorem iff (RAP)=Q isatheorem (a-b)-c=a-(b-c)
Theorem “Witness”: (3x | R e P)=Q = (Vx e RAP=Q) prov. -occurs(‘x’,’Q") (152) Axiom, Symmetry: a+b=b+a
Proof: a-b=b-a
Bx | ReP)=Q (153) Axiom, Additive identity: ~ 0+a=a
= ((9.19) Trading for 3) (154) Axiom, Multiplicative identity: ~ 1-a=a
(3x e RAP)=Q (155) Axiom, Distributivity: - (b+c)=a-b+a-c
= ((3.59) p=q=-pvg, (9.18b) Gen. De Morgan)
(Vx o «(RAP))vVQ (15.6) Axiom, Additive Inverse: (Ix e x+a=0)
= ((9.5) Distributivity of v over ¥ — —occurs(‘x’, ‘Q’)) (15.7) Axiom, Cancellation of -: c#0=(c-a=c-b=a=b)
(15.8) Cancellation of +: a+b=a+c = b=c

(Vx e =(RAP)VQ)

(B59)p=q=-pvq)
(Vx e« RAP=Q)

The last line is, by Metatheorem (9.16), a theorem iff (RAP) = Q is.

(15.10b) Unique mult. identity:
(15.12) Unique additive inverse:

a+0=(a-z=a=2z=1)
x+a=0Ay+a=0=x=y

Theorem (15.8) “Cancellation of +": a+b=a+c = b=c
Proof:
Using “Mutual implication”:
Subproof for '"b=c = a+b=a+c":
Assuming ‘b = c':
a+b
=(Assumption ‘b = ¢)
a+c
Subproof for "a + b =a + c
a+b=a+c » b=c
=(“Left-identity of -”, “Additive inverse” with ‘a = a')
. (AIx:Ze+*x+a=0) »= a+b=a+c =» b=c
“Witness”: =(“Witness”, “Trading for v”)
Vx:Z|lx+a=0 ¢« a+b=a+c = b=c
(Hx I R P):>Q Proof for this:
= (Vx e RAP=Q)

For any 'x : Z' satisfying 'x + a = 0":
WA N
prov. ~occurs(‘x’,‘Q

- b=c:

Assuming ‘a + b =a + ¢ :

b
=(“Identity of +")
0+ b

(15.6) Additive Inverse:
=(Assumption ‘x +a =0)
(3x ¢ xa=0) s »
=(Assumption ‘a + b =a + ¢’)
(15.8) Cancellation of +: X +a+c

=(Assumption ‘x + a = 0")
a+b=a+c = b=c 0+ c
=(“Identity of +")

c

"

o
1

o

Theorem (15.8) “Cancellation of +”: a + b =a + ¢
Proof:
Using “Mutual implication”:
Subproof for '"bh=c = a+b=a+c":
Assuming ‘b = c':

(15.6) Additive Inverse a+b
(3x e x+a=0) =(Assumption ‘b = ¢)
a+c

Subproof for 'fa+b=a+c = b=c":

a+b=a+c = b=c

er =(“Left-identity of =", “Additive inverse”)
(Ix:Ze+*x+a=0) = a+b=a+c = b=c

Proof for this:

Assuming witness “x : Z' satisfying "x + a = 0":
Assuming ‘a + b =a + c':
b

(xeP) Rygim

(prov. x not

. =(“Identity of +"
freein R, (El b Y !
assumptions) =(Assumption 'x +a =0)
X+a+b
=(Assumption ‘a + b =a + ¢)
X +a+c

=(Assumption ‘x + a =0")
0

+C
=(“Identity of +")
c

New Proof Strutures: Assuming withess
Assuming witness “x{ : type}”" satisfying ‘P :
@ introduces the bound variable ‘x’
@ makes P available as assumption to the contained proof.
o This proves (3 x : type ¢« P)=R p

if the contained proof proves R,

Assuming witness “x{: type}"" satisfying ‘P" by hint : (3xeP) R J-Elim

R rov. X not
@ introduces the bound variable ‘x* g)ee ‘L,n R
@ makes P available as assumption to the contained proof. assumptions)

@ hint needs to prove (3 x : type o P)
@ This then proves R
if the contained proof proves R
(with the additional assumnption P)
@ This can be understood as providing 3-elimination:
It uses hint to discharge the antecedent (3 x : type o P)
and then has inferred proof goal R.

Theorem (15.8) “Cancellation of +": a+b=a+c = b=c
Proof:
Using “Mutual implication”:
Subproof for '"b=c = a+b=a+c":
Assuming ‘b = c':

(15.6) Additive Inverse a+b N
=(Assumption ‘b = ¢)
(Ix e x+a=0) a+c

Subproof for fa+b=a+c = b=c":

Assuming witness “x : Z' satisfying 'x + a = 0
p by “Additive inverse”:

N Assuming "a + b =a + c':

: b
. . =(“Identity of +”)
M 3-Elim 0+b
R (prov. x not =(Assumption ‘x + a = 0")
X+a+b
=(Assumption ‘a + b =a + ¢)
X+ a+c
=(Assumption ‘x + a = 0")
0+ c
=(“Identity of +"”)
c

free in R,
assumptions)

Recall: Monotonicity With Respect To =
Let _<_beanorderonT,andletf:T — T be a function on T. Then f is called

x<y = fx<fy ,
x<y = fy<fx

(4.2) Left-Monotonicity of v:

@ monotonic iff
o antitonic iff
(p=9q) = (pvr=qvr)
(4.3) Left-Monotonicity of A: (p=q) = prr = gar
(p=4q) =~ = -p

(p=q) = (@q=r) = (p=7)
(p=q) = (r=p) = (=9
Guarded Right-Monotonicity of =: (r=(p=q)) = (r=p) = (r=9)

Antitonicity of —:
Left-Antitonicity of =:
Right-Monotonicity of =:

Transitivity Laws are Monotonicity Laws

Notice: The following two “are” transitivity of =:
o Left-Antitonicity of =: (p=q) = (q=r) = (p=r)
o Right-Monotonicity of =: (p=q) = (r=p) = (r=9)

This works also for other orders — with general monotonicity: Let
@ _<y_ beanorder on Ty, and _<,_ be an order on T,
o f: Ty - T, be a function from T; to T5.
Then f is called
@ monotonic iff xy = fx<fy,
Xy = fy<ofx

o antitonic iff

Transitivity of < is antitonitcity of (_<r) : Z — B:
o Left-Antitonicity of <: (p<q) =(g<r) = (p<r)

¢ Right-Monotonicity of <: (p<q) = (r<p) = (r<q)

Weakening/Strengthening for V and 3 — “Cheap Antitonicity/Monotonicity”

(9.10) Range weakening/strengthening for V: (Vx| QVReP)= (Vx| QeP)

(9.11) Body weakening/strengthening for V: (Vx| RePAQ) = (Vx| ReP)
(9.25) Range weakening/strengthening for 3: (3x | ReP)=(3x | QVR e P)

(9.26) Body weakening/strengthening for 3: (3x | ReP)=(3x | RePvQ)

Recall:
(9.2) Trading for V: (Vx| ReP) = (VxeR=DP)
(9.19) Trading for 3: (3x | ReP) = (IxeRAP)

Monotonicity for ¥

(9.12) Monotonicity of V:
(Vx| ReP;=P)) = ((Vx | ReP;) = (Vx| ReDPy))

Range-Antitonicity of V:
(VxeRp=Ry) = ((VYx | Ry e« P) = (Yx | Ry o P))

(Vx e Ro=>Ry)
= ((9.12) with shunted (3.82a) Transitivity of =)
(Vx o (Ry=P)=(R,=D))
= ((9.12) Monotonicity of V)
(Vx e Ri=P)=(Vx e Ry=P)
= ((9.2) Trading for V)
(Vx| Ry e P)=(Vx | R, o P)

Monotonicity for 3

(9.27) (Body) Monotonicity of 3:
(Vx| RePy=P) = ((3x | ReP)=3x| ReP))

Range-Monotonicity of 3:
(Yx e Ry=Ry) = ((3x | Ry « P) = (3x | Ry o P))

Predicate Logic Laws You Really Need To Know Already Now

(8.13) Empty Range: (Vx | false « P) = true
(3x | false ¢ P) = false

(8.14) One-point Rule: Provided —occurs(‘x’, ‘E’), (Vx | x=E e P) = Plx:=E]
(3x | x=E eP) = Plx:=E]

(9.17) Generalised De Morgan: (3x | ReP) = ~(Vx| Re-P)

(9.2) Trading for V: (Vx| ReP) = (Vx e R=P)

(9.4a) Trading for V: (Vx| QAReP) = (Vx| Qe R=P)

(9.19) Trading for 3: (3x | ReP) = (3xeRAP)

(9.20) Trading for 3: (3x | QAR eP) = (3x | Qe RAP)

(9.13) Instantiation: (VxeP) = Plx:=E]

(9.28) 3-Introduction: Plx:=E] = (3xeP)

...and correctly handle substitution, Leibniz, renaming of bound variables,
monotonicity /antitonicity, For any ...

Sentences: Predicate Logic Formulae without Free Variables

Definition: A sentence is a Boolean expression without free variables.

@ Expressions without free variables are also called “closed”:
A sentence is a closed Boolean expression.
Recall: The value of an expression (in a state) only depends on its free variables.
o Therefore: The value of a closed expression does not depend on the state.
That is, a closed Boolean expression, or sentence,

o either always evaluates to true

o or always evaluates to false
o In other words: A closed Boolean expression, or sentence,

o is either valid
e or a contradiction

@ Also: For a closed Boolean expression, or sentence, ¢
o either ¢ is valid
e or -y is valid
@ This means: For a closed Boolean expression, or sentence, ¢,
only one of ¢ and - can have a proof!

2018 Midterm 2

Prove one of the following two theorem statements — only one is valid. (Should be easy in less than ten

steps.)
Theorem “M2-3A-1-yes”: (I x : Z « Vy : Z * (x-2) -y+1=x-1)
Theorem “M2-3A-1-no”: =~ (I x : Z + Vy : Z + (x-2) -y+1=x-1)

@ For a closed Boolean expression, or sentence, ¢,
only one of ¢ and -¢ can have a proof!

o “Practice with V and 3” starts with H12.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-04

Sequences, Types, Sets

Warm-Up
o What is an order?
@ What does “assuming the antecedent” mean?
@ Give the rule for quantification nesting.
@ State the one-point rule and the empty range axiom.
@ State the quantification distributivity axiom.
@ Give the rule for disjoint range split.
o Give the rule for substitution into quantification.
@ State the basic trading laws for V and 3.
o State the theorem of instantiation for V.
o State the 3-introduction theorem.
@ State monotonicity and antitonicity theorems for ¥V and 3.

@ What can you prove with “For any "x: T" satisfying "R™:"?

Plan for Today

@ Sequences — a brief start (LADM chapter 13)
@ Some remarks about Types (see also LADM section 8.1)

o “A Theory of Sets” (LADM chapter 11)

Coming up:
@ Relations (see also LADM chapter 14)

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-04

Part 1: Sequences

Sequences
o We may write [33,22,11] (Haskell notation) for the sequence that has
e “33” as its first element,
e “22” as its second element,
e “11” as its third element, and
e no further elements.
(Notation “[...]” for sequences is not supported by CALCCHECK. LADM writes “(...)".)
@ Sequence matters: [33,22,11] and [11,22,33] are different!
@ Multiplicity matters: [33,22,11] and [33,22,22,11] are different!
@ We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

€ : Seq A \eps empty sequence
<. A—>Seq A~ Seq A \cons “cons”
< associates to the right.
o Therefore: [33,22,11] = 33<[22,11]

= 334224 [11]
= 33422qll«c¢

Sequences — “cons” and “snoc”

o We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

€ : Seq A \eps empty sequence
a + A->SejA—SeqA \cons “cons”
< associates to the right.
o Therefore: [33,22,11] = 33<[22,11]
= 334224 [11]
= 33<422q1l«¢
@ Appending single elements “at the end”:
>+ SegA->A-SeqA \snoc “snoc”
> associates to the left.
@ (Con-)catenation:
~ : SeqA—SeqA—SeqA \catenate

~ associates to the right.

Sequences — Induction Principle

The set of all sequences over type A is written Seq A.

w

The empty sequence “¢” is a sequence over type A.

If x is an element of A and xs is a sequence over type A,
then “x < xs” (pronounced: “x cons xs”) is a sequence over type A, too.

Two sequences are equal iff they are constructed the same way from ¢ and <.

Induction principle for sequences:
e if P(¢)

If P holds for ¢
@ and if P(xs) implies P(x < xs) forall x: A,

‘ and whenever P holds for s, it also holds for any x < xs,

o then for all xs : Seq A we have P(xs).

‘ then P holds for all sequences over A. ‘

Sequences — Induction Proofs

Induction principle for sequences:
e if P(¢)

If P holds for ¢
@ and if P(xs) implies P(x < xs) forall x: A,

‘ and whenever P holds for xs, it also holds for any x < xs,

@ then for all xs : Seq A we have P(xs). ‘ then P holds for all sequences over A. ‘

An induction proof using this looks as follows:
Theorem: P
Proof:
By induction on xs : Seq A:
Base case:
Proof for P[xs := €]
Induction step:
Proof for (Vx: A e P[xs:=x < xs])
using Induction hypothesis P

Concatenation

Axiom (13.17) “Left-identity of ~”

“Definition of ~ for ¢": € ~Yys =ys
Axiom (13.18) “Mutual associativity of <« with ~”
“Definition of ~ for «”: (X < XS) ~ys = X « (Xs ~ ys)

>

H13, Ex5.2

(Work through H13 before your tutorial!)

Logical Reasoning for Computer Science
COMPSCI 21L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-04

Part 2: Types

Types

A type denotes a set of values that
@ can be associated with a variable

@ an expression might evaluate to
Some basic types: B,Z,N,QR,C
Some constructed types: SeqN, N-B, Seq(SeqN)-—>SeqB, setZ

“E : t” means: “Expression E is declared to have type t”.

Examples:
o constants: true:B, w:R, 2:Z, 2:N
o variable declarations: p:B, k:N, d:R
@ type annotations in expressions:
o (x+y)-x — (x:N+y)-x
o (x+y)-x — ((((x:N)+(y:N)):N)-(x:N)):N

Function Types — LADM Version

@ If the parameters of function f have types ty,...,t,
@ and the result has typer,
o thenf has typet; x - xt, - r

We write: [ty xeext, o1

Examples: -_:B->B 4+ _LxZ-7 <_:ZLxZ-B

Forming expressions using _<_ :ZxZ - B:
@ if expression a; has type Z, and a, has type Z
o then a; < ay is a (well-typed) expression

@ and has type B.

In general: For f:f; x - xt, >,
@ if expression a; has type t;, and ..., and a,, has type t,
o then function application f(ay, ... ,a,) is an expression
@ and has type 7.

Function Types — Mechanised Mathematics Version

o If the parameters of function f have types t1,...,t,
@ and the result has type r,

}:Wewrite: fihisooty o7
o thenf has type t; — -

—=t, >
(The function type constructor — associates to the right!)
4+ L7 -7 <_:ZL-7Z->B
a L a7
(m<ap) : B

Examples: -:B->B

Forming expressions using _<_ :7Z —Z - B:

In general: For f: A > B,
.) f:A->B x: A
o if expression x has type A, ——F

Function Application — LADM Version
Consider function g defined by: (1.6) 8(z) =3-z+6
@ Special function application syntax for argument that is identifier or constant:

gz =32z+6

: B
o then function application f x is an expression fx
@ and has type B.
Well-typed Expressions?
2+k . 42 - true X -(3-x) X (1/(x:R)):R
Non-well-typed expressions make no sense!
LADM Table of Precedences Function Application — Mechanised Mathematics Version
o [x:=e] (textual substitution) (highest precedence) Consider function g defined by: (1.6) gz =3-z+6
o . (function application)
o unary prefix operators +, -, ~, #, ~, P o Function application is denoted by juxtaposition (“putting side by side”)
0 #x @ Lexical separation for argument that is identifier or constant: space required:
- / + mod gcd hz =g(g2)
e+ - U N x o e
o) 1t Superfluous parentheses (e.g., “h(z) = g(g(z))”) are allowed, ugly, and bad style.
o # @ Function application still has higher precedence than other binary operators.
e D> 7
- # < > e c c 5 2 (conjunctional) e As nAon-associative binary infix operator, functiorAl application associates to the left:
ov A If f:Z—>(Z~Z),then f23=(f2)3,and f2: Z~Z
0= $H = <« o Typing rule for function application:
o= # (lowest precedence)

All non-associative binary infix operators associate to the left,
except **, <, =, -, which associate to the right.

f:A->B x:A
fx:B

COMPSCI 2LC3 Fall 2023 CaLcCHeck Default Table of Precedences

o (o0): _[_:=_] (textual substitution) (highest precedence)
e 140: unary postfix operators: _! _~ _* _* _(_) . . .
e 130: unary prefix operators: +_ - - #_ ~_ P_ suc_ LOglcal Reasonlng fOI‘ Computer SClence
e 120: __(function application), @
. 115 COMPSCI 2LC3
e 110: - / + mod gcd
e 105: 3 . .
. 1000 - { D N x o & > a4 b > McMaster University, Fall 2023
e 97: < (relation type)
e 95 — (function type)
« 90: | ¢ Wolfram Kahl
o 70 #
. 60: 4 » -~
e 50: = # < > e cc o> 2| () (conjunctional)
e 40 v oA 2023-10-04
o 20 = $ =
e 10 = Part 3: Sets
. 9: := (assignment command, two characters)
. 5., (command sequencing)
e (-o0): ®_|_e_ (quantification notation, for ® € {V,3,U,N, ¥, 1, .. (pwest precedence)
LADM Chapter 11: A Theory of Sets The Language of Set Theory — Overview
o Thetype sett of sets with elements of type t
“A set is simply a collection of distinct (different) elements.” o Set membership: For ¢:t and S:sett: eeS
o Set comprehension: {x:t | ReE} — following the pattern of quantification
@ 11.1 Set comprehension and membership .
@ Set enumeration: {6,7,9}
@ 11.2 Operations on sets @ Set size: #{6,7,9} =3
@ 11.3 Theorems concerning set operations (many! — mostly easy...) @ Setinclusion: €22
@ Set union and intersection: U, N
@ 11.4 Union and intersection of families of sets (quantification over u and n) o Set difference: ST
°. @ Set complement: ~S
@ Power set (set of subsets): PS
@ Cartesian product (cross product, direct product) of sets: SxT (Section 14.1)

Set Membership versus Type Annotation

Let T be a type; let S be a set, that is, an expression of type set T,
and let e be an expression ot type T, then

@ e e Sis an expression
o of type B
o and denotes “eisin S”
or “eisan element of S”

Because: _e¢_: T—>setT—>B

Note:
o ¢: T isnothing but the expression e, with type annotation T.
o Ifehas type T, thene: T has the same value as e.

Cardinality of Finite Sets

(11.12) Axiom, Size: Provided -occurs(‘x’,’S’),
#S=(Zx | xeS e 1)

This uses: #_:sett >N
Note: o (X x | xeS o 1) isdefined if and only if S is finite.
o #{n:N | true e n} isundefined!

o “#N” is atype error! — because N: Type

@ Types are not sets — like in Haskell:

Integer = *
Data.Set.Set Integer :: *

The Axioms of Set Theory — Overview
(11.2) Provided —occurs(‘x’, ‘ep, . .. ,en-1"),
{eg,...,en-1} = {x | x=¢ v - Vvx=e,1 o x}
(11.3) Axiom, Set membership: Provided -occurs(‘x’, ‘F’),
Fe{x | ReE} = (3x| ReE=F)
(11.2f) Empty Set: ve{} = false

(11.4) Axiom, Extensionality: Provided -occurs(‘x’,’S,T"),

Set Comprehension
{i:N | i<4e2i+1}={1,357}
{x:Z | 1<x<5 e x-x}={1,4,9,16}
{i:Z | 5<i<8eicicae}={(5454¢),(696x¢),(7a7x¢€)}

Set comprehension examples:

(11.1) Set comprehension general shape: {x:f | R e E}
— This set comprehension binds variable x in R and E!

Evaluated in state s, this denotes the set containing the values of E evaluated in those

S=T = (VxexeS=uxeT) states resulting from s by changing the binding of x to those values from type t that
satisfy R.
11.13T)Axiom, Subset: Provided - x','5,T), .
(JAxiom, Subse rovided —occurs("x) Note: The braces “{...}” are only used for set notation!
ScT = (VxexeS=uxeT)
Abbreviation for special case: {x | R} ={x | Rex}
(11.14) Axiom, Proper subset: ScT = ScTAS+T R L ,
(1120) Axiom, Union: veSUT = veSvoeT (112) Provided ~occurs("x’, ‘eo, ..., en-1"),
(11.21) Axiom, Intersection: veSNT = wveSAveT {eo,- .- en1} ={x | x=eov - vx=e,1 o x}
(11.22) Axiom, Set difference: veS-T = veSAv¢T Note: This is covered by “Reflexivity of =" in CALCCHECK.
(11.23) Axiom, Power set: vePS = wvcS
Set Membership Set Equality and Inclusion
(11.3) Axiom, Set membership: Provided -occurs('x’, ‘F’), (11.4) Axiom, Extensionality: Provided -occurs(‘x’, ‘S, T’),
Fe{x | ReE} = (3x| ReE=F) S=T = (VxexeS=xeT)
Fe{x | R} (11.13T)Axiom, Subset: Provided -occurs(‘x’,’S,T"),
= (Expanding abbreviation) ScT = (VxexeS=uxeT)

Fe{x | R e x}
((11.3) Axiom, Set membership — provided —occurs(‘x’, ‘F"))
(3x | Rex=F)
= ((9.19) Trading for 3)
(3x | x=F e R)
= ((8.14) One-point rule — provided —~occurs(‘x’, “F’))
R[x:=F]

This proves: Simple set compr. membership: Prov. —occurs(‘x’, 'F’),
Fe{x | R} = R[x:=F]

(11.11b) Metatheorem Extensionality:
Let S and T be set expressions and v be a variable.
Then S = Tis a theorem iff veS = veT isa theorem. — Using “Set extensionality”
(11.13m) Metatheorem Subset:
Let S and T be set expressions and v be a variable.
Then S c T'is a theorem iff ve S = veT isa theorem.

Extensionality (11.11b) and Subset (11.13m) will, by LADM,
mostly be used as the following inference rules:

— Using “Set inclusion”

veS = veT veS = wveT
S = T S ¢ T

Using Set Extensionality — LADM-Style

veS =veT
S=T
Ex. 8.2(a) Prove: {E,E} = {E} for each expression E.

By extensionality (11.11b):

Extensionality (11.11b) inference rule:

Proving ve{E,E} = ve{E}:

ve{E,E}

= (Set enumerations (11.2))
ve{x | x=Evx=E}

= (Idempotency of v (3.26))
ve{x | x=E}

= (Set enumerations (11.2))
ve{E}

Using Set Extensionality — More CaLcCHeck-Style

Axiom (11.4) “Set extensionality”: S=T = (VxexeS=xeT)
— provided -occurs(‘x’, S, T")

Example (8.2a): {E,E} = {E}
Proof:
Using “Set extensionality”:
Subproof for'Vov e ve {E,E} = wve{E}:
For any "v':
ve{E,E}
(Set enumerations (11.2))
ve{x | x=Evx=E}
= (Idempotency of v (3.26))

ve{x | x=E}
= (Set enumerations (11.2))
ve{E}

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-06

Typed Set Theory, Introduction to Relations

Plan for Today
o Continuing with LADM chapter 11: Set Theory — emphasizing types

o Starting with Relations (see also LADM chapter 14)

Coming up (interleaved):

o Explicit Induction Principles

@ Induction (LADM Chapter 12)

@ More Program Correctness (LADM chapter 10, section 12.6)
@ Relations (LADM Chapter 14)

@ Sequences (LADM Chapter 13) will be further developed
mainly in Exercises, Assignments, ...

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-06

Part 0: Set Theory

The Axioms of Set Theory — Overview
(11.2) Provided —occurs(‘x’, ‘e, . .. ,en-1"),
{eo,...,enc1} = {x | x=eg v - Vvx=e,1 o x}
(11.3) Axiom, Set membership: Provided -occurs(‘x’, ‘'F’),
Fe{x | ReE} = (3x| ReE=F)
(11.2f) Empty Set: ve{} = false
(11.4) Axiom, Extensionality: Provided -occurs(‘x’, ‘S, T"),
S=T = (VxexeS=uxeT)

(11.13T)Axiom, Subset: Provided -occurs(‘x’,’S,T"),

ScT = (VxexeS=uxeT)
(11.14) Axiom, Proper subset: ScT = ScTAS*T
(11.20) Axiom, Union: veSUT = veSvoeT
(11.21) Axiom, Intersection: veSNT = wveSAveT
(11.22) Axiom, Set difference: veS-T = veSAveT
(11.23) Axiom, Power set: vePS = wvcS

Set Equality and Inclusion
Axiom, Extensionality: Provided -occurs(‘x’,’S,T"),
S=T = (VxexeS=xeT)
(11.13T)Axiom, Subset: Provided -occurs(‘x’,’S,T"),
ScT = (VxexeS=uxeT)
(11.11b) Metatheorem Extensionality:

Let S and T be set expressions and v be a variable.
Then S = T'is a theorem iff veS = veT isa theorem.

(11.13m) Metatheorem Subset:

Let S and T be set expressions and v be a variable.

Then S ¢ T is a theorem iff veS = veT isa theorem.
Extensionality (11.11b) and Subset (11.13m) will, by LADM,
mostly be used as the following inference rules:

(11.4)

— Using “Set extensionality”

— Using “Set inclusion”

veS = veT veS = veT

S T S ¢ T

LADM Set Equality via Equivalence

(11.4) Axiom, Extensionality: Provided -occurs(‘x’, ‘S, T"),
§=T = (VxexeS=xeT)
(11.9) “Simple set comprehension equality”: {x | Q}={x | R} = (Vx e Q=R)

(11.10) Metatheorem set comprehension equality:

{x | Q}={x | R}isvalid iff Q=Risvalid.
(11.11) Methods for proving set equality S = T:
(a) Use Leibniz directly
(b) Use axiom Extensionality (11.4) and prove veS = veT

(c) Prove Q =R and conclude {x | Q} = {x | R} via (11.9)/(11.10)

Note:
@ In the informal setting, confusion about variable binding is easy!
° ‘ Using “Set extensionality” or‘ Using (11.9) ‘

followed by | For any ... | make variable binding clear.

Using Set Extensionality — CaLcCHeck Example

S=T = (VxexeS=uxeT)
— provided -occurs(‘x’, ‘S, T")

Axiom (11.4) “Set extensionality”:

Theorem (11.26) “Symmetryof u”: SUT =T U S
Proof:
Using “Set extensionality ”:
Subproof for'Veeeec SUT = ec TuUS:
For any “e™:
eeSuT
= (“Union”)
eeSveeT

(“Symmetry of v)
eeT veeS
= (“Union”)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-06

Part 1: Typed Set Theory

eeTusS
Anything Wrong? “The Universe” in LADM
THE UNIVERSE
Let the set Q be definfd by the following: e, ¢ :A—>setA->B
® 0-1s | s¢5) A theory of sets concerns sets constructed from some collection of elements.
= “The mother of all type errors” There is a theory of sets of integers, a theory of sets of characters, a theory
Then: of sets of sets of integers, and so forth. This collection of elements is called
€ the domain of discourse or the universe of values; it is denoted by U . The
QeQ y
= (®) universe can be thought of as the type of every set variable in the theory.
Qe(S | S¢S) For example, if the universe is set(Z), then v:set(Z).
= ((11.3) Membership in set comprehension) When several set theories are being used at the same time, there is a
(35] S¢S e Q=5 different universe for each. The name U is then overloaded, and we have
] - . to distinguish which universe is intended in each case. This overloading is
= ((9.19) Trading for 3, (8.14) One-point rule) similar to using the constant 1 as a denotation of an integer, a real, the
Q¢Q identity matrix, and even (in some texts, alas) the boolean true .
= ((11.0) Def. ¢)
-(QeQ) Overloading via type polymorphism: {}, U : sett
With (3.15) p = —p = false, this proves: ({}:setB) = {} (U:setB) = {false,true}
®R) false — “Russell’s paradox” ({}:setN) = {} (U:setN) = {k:N | true}

“The Universe” and Complement in LADM

the domain of discourse or the universe of values; it is denoted by U . The
universe can be thought of as the type of every set variable in the theory.
For example, if the universe is set(Z), then v:set(Z).

COMPLEMENT

The complement of S, written ~S,4is the set of elements that

o are not in S (but are in the universe). In the Venn diagram

in this paragraph, we have shown set S and universe U. The
non-filled area represents ~ S.

(11.17) Axiom, Complement: ve~S = veUAvgS

For example, for U = {0,1,2,3,4,5} , we have
~{3,5} = {0,1,2,4} ,
~U=9 , ~0 =U
We can easily prove

(11.18) ve ~S = vg¢S (for v in U).

“The” Universe
Frequently, a “domain of discourse” is assumed, that is, a set of “all objects under
consideration”.

This is often called a “universe”. Special notation: U — \universe

Declaration: U : sett
Axiom “Universal set”: x e U
Theorem: (U : sett) ={x:t o x}

—remember: _€_:f—>sett—>B

Types are not sets! — (U : set t) is the set containing all values of type t.

We define a nicer notation: b, =(U:sett)

“Definitionof _ "1 Vx:texe

a

Example: . B, = {false, true}

Set Complement
(11.17) Axiom, Complement: ve~S = velAvéS

Complement can be expressed via difference: ~S = U-S

Complement ~ always implicitly depends on the universe U!

Power Set

(11.23) Axiom, Powerset: vePS = ©vcS§

Declaration: P_ : sett — set (sett)

— remember: set : Type - Type

P {0,1} = {{}. {0}, {1}, {0, 1}}

Example: ~{truey = B, - {true} = {false true} - {true} {false}
@ For a type t, the type of subsets of tis sett
LADM: “We can easily prove According 1o the fexthook. ¢ ati i sicular i bl
(11.18) veeS = ves (for vin U).” o According to the textbook, type annotations v : {, in particular in variable
declarations in quantifications and in set comprehensions, may only use types f.

Consider Z, :setZ definedas Z,={x:Z | posx}: o (The specification notation Z allows the use of sets in variable declfrations

@ Let Sbe a subset of Z,.. For example: 5= {2,3.7} — this makes V and 3 rules more complicated.)

o Consider the complement ~S If you find a place where I accidentally still follow Z in writing “IP't” for a type ¢

ols _5e~S true or false? (instead of writing “set t” or “P t ,”), please point it out to me.

Calculate! Metatheorem (11.25): Sets < Propositions

The size of a finite set S, that is, the number of its elements, Let
is written #S @ P,Q,R,...be set variables

o4 B @ p.q,r,...be propositional variables

e @ E,F be expressions built from these set variables
o #{S:setB | trueeS o S} andu, n, ~, U, {}.
T: t B TeT

o #{T:setse L OeTeT) Define the Boolean expressions E, and F, by replacing

o #{S:setN | (Vx:N | xeS ex<n)A#S=k oS} P.Q.R,... with p.q.r,... - with -

o . B = {false, truc} U with v u with true

e ' n with A {} with false

@ Se setB, = Sc B,

o setB = {{},{false},{true}, {false,true}} Then:

o Te setsetB - Tc<P B e E = Fisvalid iff E, = Fj is valid.

- ’ o o E ¢ Fisvalid iff E, = F, is valid.
o E = Uisvalid iff E, is valid.
Metatheorem (11.25): Sets < Propositions — Examples Tuples and Tuple Types in CaLcCHECK

Let E,F be expressions built from set variables P, Q, R, ...
andu,n, ~, U, {}.
Define the Boolean expressions E, and F, by replacing

P,Q,R,... with p,q,r,... ~ with =
U with true
{} with false

u with v
n with A
Then:
o E =Fisvalid iff E, = F, is valid.
e EcFisvalid iff E, = F), is valid.
o E = Uis valid iff E, is valid.

Free theorems!
Pn(PuQ) = P
Pn(QuUR) = (PnQ)u(PnR)
Pu(QnR) ¢ PuQ

Tuples can have arbitrary “arity” at least 2.

Example: A triple with type: (2,true,”Hello”) : { Z,B, String)

Example: A seven-tuple: (3, true,5 < ¢, (5, false), " Hello”, {2,8}, {42 « ¢})

The type of this: (Z,B,Seq Z,(Z,B), String, set Z,set (Seq Z))
@ Tuples are enclosed in (...) as in LADM. (type “\<” and “\>")
o Tuple types are enclosed in {(...) (type “\<!” and “\>!")

@ Otherwise, tuples and tuple types “work” as in Haskell.
@ In particular, there is no implicit nesting:
{(A,B).C) and (A,B,C) and (A,(B,C)) are three different types!

Pairs and Cartesian Products

If b and c are expressions,
then (b, c) is their 2-tuple or ordered pair

— “ordered” means that there is a first constituent (b) and a second constituent (c).
(14.2) Axiom, Pair equality: (byc)=(t',c') = b=bnrc=(
(14.3) Axiom, Cross product: SxT = {b,c | beSnceT o (bc)}
(14.4) Membership: (b,c)eSxT = beSAceT

Cartesian product of types: Two-tuple types: bity;city iff (b,c):(t,t2)

Axiom, Pair projections: fst (t1,0) >t
snd : (t,b)->h

fst(b,c)=b
snd (b, c)

c

Pair equality: For p,q: (t1, 1),
p=q = fstp=fstqAnsndp=sndq

Some Cross Product Theorems
(14.5) (x,y)eSxT = (y,x)eTxS
(146) S={} = SxT=TxS={}
(147) SxT=TxS = S={}vT={}vS=T
(14.8) Distributivity of x overu: Sx (Tul) = (SxT)u(SxU)
(SuT)xU = (SxU)u(TxU)
(149) Distributivity of x overn: Sx (TnlU) = (SxT)n(SxU)
(SnT)xU = (SxU)n(TxU)
(14.10) Distributivity of x over —: Sx (T-U) = (SxT)-(SxU)
(S-T)xU = (SxU)-(TxU)
(14.12) Monotonicity: ScS' ATcT = SxTcSxT

Some Spice...

Converting between “different ways to take two arguments”:

curry : ((A,By-C)-(A-B-0C)
curryf xy = f{xy)
uncurry (A-B-C) - ({A,B)y—>C)

uncurry g (x,y) = gxy

These functions correspond to the “Shunting” law:

(3.65) Shunting;: prg=r1 = p=>(q=>7)
The “currying” concept is named for Haskell Brooks Curry (1900-1982),
but goes back to Moses Ilyich Schonfinkel (1889-1942)

and Gottlob Frege (1848-1925).

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

Relations in Set Theory

Plan for Today
@ A Set Theory Exercise: Relative Pseudocomplement
o Correctness Variations: Ghost Variables

o Relations

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

Part 1: A Set Theory Exercise: Relative Pseudocomplement

Let ¢ be defined by:
What do you know about c?

x<c = x<5

Why? (Prove it!)

Note: x is implicitly univerally quantified!

Proving 5<c:

5<c
= (The given equivalence, with x :=5)
5<5 — This is Reflexivity of <
Proving c<5:
c<5
= (Given equivalence, with x := ¢)

c<c — This is Reflexivity of <

With antisymmetry of < (thatis,a<b A b<a = a=b), weobtainc=5 — An instance of:

(15.47) Indirect equality: a=b = (Vz e z<a = z<b)

Relative Pseudocomplement

Let A, B : set t be two sets of the same type.

The relative pseudocomplement A=B of A with respect to B is defined by:

Xc(A»B) = XnAcB

Calculate the relative pseudocomplement A =B as a set expression
not using =! That is:

Calculate A»>B = ?
Using set extensionality, that is:
Calculate xe€¢A=>B = xe?

Characterisation of relative pseudocomplement of sets: X ¢ (A=»B) = XnA c B
xeA=B
(eeS={e}cS —
{x}cA=B

(Def. =, with X := {x})
{x}nAcB

((11.13) Subset)

(Vy | ye{x}nA e yeB)

((11.21) Intersection)

(Vy | ye{x}ryecA e yeB)
(ye{x}=z=y=x — Exercise!)
(Vy | y=xAyeA e yeB)

((9.4b) Trading for V, Def. ¢)
(Vyly=xey¢AvyeB)

((8.14) One-point rule)

x¢AvixeB

((11.17) Set complement, (11.20) Union)
xe~AUB

Exercise!)

Theorem: A=>B = ~AUB

Characterisation of relative pseudocomplement of sets: X ¢ A=>B =
Theorem “Pseudocomplement via u”: A»>B = ~AUB
Calculation:

xeA=B
= (Pseudocomplement via U)

xe~AUB
= ((11.20) Union, (11.17) Set complement)

-(xeA) vxeB
= ((3.59) Material implication)

xeA=x¢eB

Corollary “Membership in pseudocomplement”:
xeA=>B = xeA=x¢eB

Easy to see: On sets, relative pseudocomplement wrt. {} is complement:
A>{} = ~A

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

Part 2: Correctness Variations: Ghost Variables

Goal of Assignment 1.3: Correctness of a Program Containing a while-Loop

Theorem “Correctness of “elem™”: Proof:
true true
=f xs:=xsp; = xs:= xsp;
b:= false; b: = false
while xs # ¢ do] (“Initialisation for “elem" ")
if head xs = x (Jus e (Us ~ xs = x59) A (b = x € us))
then b: = true =[whilexs # ¢do
else skip ifheadxs = x
fi; then b: = true
xs : = tail xs else skip
od fi;
] xs: = tail xs
(b = x € xsp) ====== Parentheses! od

] (“While” with “Invariant for “elem*”)

~(xs # €) A (Jus e (us ~ xs = x59) A (b = x € us))
= (“Postcondition for “elem*”)

(b = x € xsp)

Invariant involves quantifier: Good for practice with quantifier reasoning. ..

Easier to Prove than Assignment 1.3: With Ghost Variable — Ex6.1

Theorem “Correctness of “elem””:

true
=f xs:= xs0;
us:= €; ===ses Ghost variable: Does not influence program flow or result
b:= false;
meme Jnvariant: (us ~ xs = xs9) A (b = x € us)

while xs # ¢ do
ifhead xs = x then b:= true else skip fi;
us:= us > headxs; =====x Ghost assignment
xs : = tail xs

od

(b = x € x50) ===e=: Parentheses needed because of precedences!

“Ghost variables” can make proofs easier: They can be used to keep track of values that
are important for understanding the logic of the program.

With language support for “ghost variables”, they are compiled away, to avoid run-time
cost.

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-16

Part 3: Introduction to Relations

Predicates and Tuple Types — Relations are Tuple Sets — Think Database Tables!
called : P-P—-B
(uncurry _called_) : {P,P) > B is the characteristic function of the set
Realed = set (P, P)
Raiiea = {p,q:P | pealledq o (p.q)}
Reaiteq is a (binary) relation.
D ¢ P City - City > B

Dpab = |pdrovefromatob

Rp : set{P,City,City)
Rp = {p:P;a,b:City | Dpab e (p,a,b)}

Rp is a (ternary) relation.

Relations are Everywhere in Specification and Reasoning in CS
@ Operations are easily defined and understood via set theory
@ These operations satisfy many algebraic properties
o Formalisation using relation-algebraic operations needs no quantifiers

@ Similar to how matrix operations do away with quantifications and indexed
variables a;; in linear algebra

o Like linear algebra, relation algebra
o raises the level of abstraction
o makes reasoning easier by reducing necessity for quantification

o Starting with lots of quantification over elements,
while proving properties via set theory.

@ Moving towards abstract relation algebra
(avoiding any mention of and quantification over elements)

Relations
o LADM: A relation on By x --- x B, is a subset of By x -+ x By,
— where By, ..., B, are sets

@ CaLcCHeck: Normally: A relation on (f1,.. ., t,) is a subset of | (f1,...,t) .,

that is, an item of type set {t1,....1,)
— where ty,...,t, are types

o A relation on the tuple (Cartesian product) type (t1,...,t,) is an n-ary relation.
“Tables” in relational databases are n-ary relations.
@ A relation on the pair (Cartesian product) type (t1,,) is a binary relation.
@ The type of binary relations on {t;,t,) is written t < f, with
ety = set(t,b) — \rel
@ The set of binary relations on B x C is written B «e> C, with

B«>C = P(BxC) — \Rel

Binary Relation Types Contain Subsets of Cartesian Products

@ The type of binary relations between types t; and t,:

hety = set(t,t) — \rel
@ The set of binary relations between sets B and C:
B<«e>C = P(BxC) — \Rel

Note that for a type t, the universal set Consider R:t; <>ty and x: t; and y : t5.
U:sett Re tot,

(Def. <)

R e _ set(t,t) |

= (Membership in _ set _)

is the set of all members of .
Or, (U : set t) is “type t as a set”.

We abbreviate: | t = (U:sett),
(\1lcorner...\lrcorner)and have: Re (hh),
Se sett - Sc i = (Def. set, Def. x, Def. .,)

— Re . h,x b,
(Def. P, Def. «o>)
Re t

s h

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-18

with, Relations in Set Theory

Plan for Today
@ with, and withs

@ Relations
o Relationship notation and reasoning

@ Set operations as relation operations

o Set-theoretic definition of relational operations: Converse, composition

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-18

Part 1: with, and with;

with — Overview
CALcCHECK currently knows three kinds of “with”:
o “with,”: For explicit substitutions: “Identity of +” with “x := 2’
@ ThmA with ThmB and ThmB, ...
o “with,”: If ThmA gives rise to an implication A; = A, = .. (L = R):
Perform conditional rewriting, rigidly applying Lo ~ Ro

if using ThmB and ThmB; ... to prove Ajo, As0, ... succeeds

Using hiy:
sp1 is essentially syntactic sugar for: | By hi; with sp; and sp,
sp2

o “withs”: ThmA with ThmB
o If ThmB gives rise to an equality /equivalence L = R:

Rewrite ThmA with L — R to ThmA’,

and use ThmA' for rewriting the goal.

with,: Conditional Rewriting

ThmA with ThmB and ThmB, ... ‘

o If ThmA gives rise to an implication A; = A, = .. (L =R),
where FVar(L) = FVar(Ay = A, =...(L=R)):
e Find substitution ¢ such that Lo matches goal
e Resolve Ajo, Aso, ... using ThmB and ThmB; ...
o Rewrite goal applying Lo + Ro rigidly.

o Eg: “Cancellation of -” with Assumption ‘m +n # 0*

when trying to prove (m +mn)-(n+2) = (m+n)-5-k:
e “Cancellation of " is: c#0=(c-a=c-b=a=b)
o Wetrytouse:c-a=c-b—a=b,soLisc-a=c-b
o Matching L against goal produces o = [a,b,c:= (n+2),(5-k), (m +n)]
o (c#0)o is (m+n)=0
and can be proven by “Assumption ‘m +n = 0"

o The goal is rewritten to (a = b)o, thatis, (n+2) =5-k.

Limitations of Conditional Rewriting Implementation of with,

o If ThmA gives rise to an implication A; = A, = .. .(L = R):
o Find substitution ¢ such that Lo matches goal

@ Resolve Ayo, Aso, ... using ThmB and ThmbB, ... ‘ ThmA with ThmB and ThmB, ...
@ Rewrite goal applying Lo ~ Ro rigidly.
e E.g.: “Transitivity of ¢” with Assumptions "QnSc Q" and "Q c R
when trying to prove ‘\QnS c R*
o “Transitivity of ¢”is: QS R=RcS=Q¢cS
o For application, a fresh renaming is used: gcr=>rcs=gcs
o Wetrytouse: qcSswtrue, so L is: gcs
e Matching L against goal produces o=[q,5:=QnS,R]
e (gcr)o is (QnScr), and (rcs)o is rcR
— which cannot be proven by “Assumption ‘QnS ¢ Q
resp. by “Assumption ‘Q ¢ R”
o Narrowing or unification would be needed for such cases
— not yet implemented
o Adding an explicit substitution should help:
“Transitivity of ¢” with "R := Q" and assumption ‘QnS ¢ Q" and assumption *Q ¢ R*

withs: Rewriting Theorems before Rewriting

ThmA with ThmB

o If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L » R
o Eg: ‘ Assumption p=¢" with (3.60) ‘p=q = prg=q ‘

The local theorem p = g (resulting from the Assumption)
rewrites via: p=q ~ p=pArq (from (3.60))
too p = pngq

which can be used for the rewrite: p ~ pAg

withs: Rewriting Theorems before Rewriting

ThmA with ThmB

o If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThimA with L » R

@ E.g.: “Instantiation” with (3.60)
“Instantiation” *(V x e P)=P[x:=E]
to: (VxeP) = (Vxe P)AP[x:=E]
which canbe usedas: (Vx e P) ~ (Vx e P)AP[x:=E]

rewrites via

(3.60) q=r = g=gnar

Theorem (4.3) “Left-monotonicity of A”: (p = q) = ((p A7) = (q A 1)) Hi11:
Pr(::f: L N (Vx:Z o5 < fx)
ssur;lAngr p=a = (“Instantiation ” with “Definition of = via A" (3.60)) meenen withs
= (Assumption *p = g with “Definition of = via A") (Vx:Z o5 <fx) n (5<fx)x:=9]
pPAqGAT = (“Monotonicity of A ” with “Instantiation”) meenen with,
= (“Weakening ") G<fOx=8 A (5<fx)x:=9]
qgAar
How can you simplify if you know P;=P, ? How can you simplify if you know S;c5, ?
= (...) = (...) ~ B '
.VPivPyv... AP APyA L. = () = {)
= ») = R) LUS US UL NS NS n
, , (o7) (2)
? ?
VPV PV AP APy AL
{ “Reason for Py = Py” = (“Reason for Py = P,”
with “Def. of = via v”) with “Def. of = via A") — Set Theory:
v PV APy A @ “Set inclusion via u” ScT = SuT=T

o “Set inclusion via n” SnT=S§

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023
Wolfram Kahl

2023-10-18

Part 2: Introduction to Relations (ctd.)

What is a Relation?

A relation
is a subset
of a Cartesian product.

What is a Binary Relation?

A binary relation
is a set of pairs.

(Graphs), Simple Graphs
A graph consists of:
@ aset of “nodes” or “vertices”
@ aset of “edges” or “arrows”
@ “incidence” information specifying how edges connect nodes
— more details another day.

A simple graph consists of:

@ aset of “nodes”, and

@ aset of “edges”, which are pairs of nodes.
(A simple graph has no “parallel edges”.)

Formally: A simple graph (N, E) is a pair consisting of
@ aset N, the elements of which are called “nodes”, and
@ arelation Ewith E € N «<e> N,
the element pairs of which are called “edges”.

Simple Graphs
A simple graph consists of:
@ aset of “nodes”, and
@ aset of “edges”, which are pairs of nodes.
(A simple graph has no “parallel edges”.)

Formally: A simple graph (N, E) is a pair consisting of
@ aset N, the elements of which are called “nodes”, and
@ arelation EwithE € N «e> N,
the element pairs of which are called “edges”.

Even more formally: A simple graph (N, E) is a pair consisting of
@ asetN, and
@ arelation EwithE € N «e> N.

Given a simple graph (N, E), the elements of N are called “nodes” and the elements of E
are called “edges”.

Simple Graphs: Example
Formally: A simple graph (N, E) is a pair consisting of
@ aset N, the elements of which are called “nodes”, and
o arelation E with E € N «e> N, the element pairs of which are called “edges”.
Example: Gi1=({2,0,1,9},{(2,0),(9,0),(2,2)})

Graphs are normally visualised via graph drawings:

N

0) 9

Simple graphs are essentially just relations!

1

Reasoning with relations is reasoning about graphs!

Visualising Binary Relations

. Person | = {Bob,Jill, Jane, Tom, Mary, Joe, Jack}
parentOf = {(Jill, Bob), (Jill, Jane), (Tom, Bob), (Tom, Jane),
(Bob, Mary), (Bob, Joe), (Jane, Jack) } Jill Tom
228543
2EESZ8E i >< l
Bob
i 28,5 Bob Jane
e £53%2 / L l
Tom Bob
M il :
oa) Tane Joe Mary Jack
Jack Tom

parentOf : Person < Person parentOf € (parents <o children)

{Bob, Jill, Jane, Tom}
{Bob, Jane, Mary, Joe, Jack}
Jill (parentOf) Bob

parents = Dom parentOf =
Ran parentOf =

(Jill, Bob) € parentOf =

children =

Expressing relationship:

Notation for Relationship

Notations for “x is related via R with y”:

{x.y) R
xRy
x(R)y

\)) ” for these “tortoise shell bracket” Unicode codepoints

@ explicit membership notation:
@ ambiguous traditional infix notation:

@ CALCCHECK:

Type “\ ((...
() h->(hoh)>hL->B

e is conjunctional:
(1=x(R)y<5) =
e and calculational:

The operator
(1=x) A (x(RJy) A (y<5)

x
(R) (Reasonwhyx(R)y)
y

Experimental Key Bindings

— US keyboard only! Firefox only?

o Alt—= for = in additionto \==

o Alt-< for in additionto \<
e Alt—> for) in additionto \>
o alt-(for (inadditionto \((

e Alt-) for) in additionto \))

Set Operations Used as Operations on Binary Relations

Relation union: (u,v) e (RuS) = (u,v)eR v (u,v)es

uCRuUS)y = ulR)ovuls)o
Relation intersection: u(RnS)v = ulRYoru(s)o
Relation difference: u(R-5)v = u(R)v A -(u(S)o)

u(~R)v = -w(R)o)

Relation complement:

(VxeoVye x(R)y = x(S)y)

Relation extensionality: R=S

R=S = (VX,y-x(R)yzx(S)y)
Relation inclusion: RcS = (Vxe Vye x(R)y = x(S)y)
RcS = (onVylx(R)y . x(S)y)
ReS = (Vx,yex(R)y=x(S)y)
RecS = (Vx,y | x(R)y x(S)y)

Empty and Universal Binary Relations

o The empty relation on {f,f2) is {} : =t Dy = false Logical Reasoning for Computer Science
fah el e COMPSCI 2L.C3
o The universal relation on (t,t,) is | {t,0) , : 1o or U:t <h McMaster University, Fall 2023
x(L (t1,52) J)y = true x(U)y = true
(xv,y) € (t.t) , = true (v,yy e U = true
Wolfram Kahl
@ The universal relation on B xC is BxC
x(BxC)y = xeBayeC 2023-10-20
(14.4) (x,y) e BxC = «xeBayeC
Relations in Set Theory
Plan for Today Relation-Algebraic Operations: Operations on Relations

@ Relations
o Set-theoretic definition of relational operations: Converse, composition

@ Set operations ~, U, N, —, = are all available.

0 IfR:B«C, B
then its converse R™: C <> B
(in the textbook called “inverse” and written: R™1)
stands for “going R backwards”:

R.c

c(R)b = b(R)c

0 IfR:B«CandS:C+D, BR.c5.D
then their composition R§S

(in the textbook written: Ro S)

is a relation in B <+ D, and stands for

“going first a step via R, and then a step via S”:

b(R3S)d = (3c:C o b(RIc(S)d)

The resulting relation algebra
o allows concise formalisations without quantifications,
@ enables simple calculational proofs.

Proving Self-inverse of Converse: (R*)" =R
(R7)"=R
= (Relation extensionality)
vy e x((R) Jy=x(R)y
()

true

Using “Relation extensionality”:
Subproof for 'V x,y o x((R*)"Jy =
For any x, y:
xC(R) Jy
= (Converse)
y(R Jx
= (Converse)

x(R)y

x(R)y‘:

Proving Isotonicity of Converse

Proving RcS = R cS™:

R cS”

= (Relation inclusion)
Vyx | y(R Jx o y(S dx

= (Converse, dummy permutation)
Voay | x(R)y . x(S)y

= (Relation inclusion)
RcS

Operations on Relations: Composition B-LE.c5.D
IfR:B <« Cand S:C < D, then their composition R$S : B <> D is defined by:

(14.20) b(R3S)d = (3c:C o bR)c(S)d) (forb:B,d: D)
(14.20) b(R3S)d = (3c:C o bCR)c A c(S)d) (forb:B,d: D)
parentOf = {(Jill, Bob), (Jill, Jane), (Tom, Bob), (Tom, Jane),
(Bob, Mary), (Bob, Joe), (Jane, Jack)}
grandparentOf = parentOf § parentOf
{{Jill, Mary), (Jill, Joe), (Jill, Jack)
(Tom, Mary), (Tom, Joe), (Tom, Jack) }
Jill - Tom Efss
Bob Bob
Jin Jin
Bob Jane Jane Jane Bob Jill Tom Jane
JILT
Joe Mary Jack j(:k j(:k Mary Joe Jack

Sub-identity and Identity Relations

o The (sub-)identity relationon B:sett is idB : t <t
idB = {x:t | xeB e (x,x)}:

Bob = x(idB)y = x=yeB
Jin

id children = ™ (x,y) €idB = x=yAyeB
’::f:y — LADM writes ¢

— Writing “id B” follows the Z notation

The identity relationon t: Type is 1 : t <t with I=id U

i
=
n

, x(Dy
g (x,y) e I

Jane
Tom
Mary
Joe
Jack

n
=
I

(I: Person <> Person) =

@ The “id” and “]” notations are different from some previous years!

Domain and Range of Binary Relations
For R:t; < t,, wedefine DomR : sett; and RanR : sett, as follows:
(14.16) Dom R={x:t; | (3y:tr o xCRDy)}={p | peR o fst p}= mapgo; fit R

(1417) RanR={y:t, | (3x:t; o x(RJy)} = {p | peR o sndp}=mapg.; snd R

Formalise Without Quantifiers!

P = type of persons
C : PoP
p(Clq = pcalledq

Remember: For R: # < t5:

RN R == Jill - Tom “Membership in *Dom’":
“Membership in *Dom™": t=8583% xeDomR = (3y:t, o x(R)y)
a5 SESSSE Yyih Yy
xeDomR = (3y:ty o x(R)y) Rob Bob
Jill oo Jane “Membership in *Ran"":
“Membership in *Ran™": Jane / l yeRanR = (3x:t o« x(R)y)
yeRanR = (x:t o x(R)y)]T/E’m Joe Mary Jack
ary
Joe @ Helen called somebody.
Jack
. Helen € Dom C = (3y:P e Helen Ay
parents = Dom parentOf = {Bob,Jill, Jane, Tom} @ For everybody, there is somebody they haven't called.
children = Ran parentOf = {Bob, Jane, Mary, Joe, Jack} Dom (~C) = _ P
Dom (~C) = U
Combining Several Operations Jill - Tom Properties of Converse B-E.C
How to define siblings? Bob Jane If R:B « C, thenits converse R™:C < B is defined by:

o Firstattempt: childOf sparentOf, with childOf = parentOf ~ / i (14.18) (e,b)eR" = (bc)eR (forb:Bandc:C)
WCEELLEE . . 7 foo Mary Jack 1418) (R I = b(R)c (forb:Bandc:C)
il Jin Jin
Jane Jane Jane
o o iy BE) i Tom MED 1O (14.19) Properties of Converse: LetR,S: B < C be relations.
Joe Joe Joe
Jack Jack Jack o) 16D (@) Dom (R*) = Ran R

o X . (b) Ran (R”) = Dom R
° Impjoved: s:j;lmg = childOf §parentOf —id _ Person , () T ReS«orT, then R™ € T<or§
w w (d (R)" =R
m Bob Jill Tom Mary Jack o
Tom Tom (e) RcS = R ¢S
Mary Mary
el Jane Joe ok

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-20

Part 2: Relation-Algebraic Formalisation Examples

P = type of persons

PoP — “called”
B : PP — “brother of”
Aos : P
Jun : P

Convert into English (via predicate logic):

Aos (C) Jun
Aos (C sB) Jun

Aos (~(C5~B) YJun

Aos (~(~C3B) Yun

Aos (~((Cn~(B5C))5~B) Jun
(Bs({Jun}x _P))n(CsC”) < id P

L a

Translating between Relation Algebra and Predicate Logic

R=S = (Yxyex(RIy=x(S)y)

RcS = (Vxy e x(R)y=x(S)y)
u({}dv = false

u(ll)v = true
u(AxB)v = ueAAveB
u(~S)v = ﬁ(u(S)v)
u(SuT)v = u(S)vvulT)v
u(SnT)o = u(S)v A ulTIo
u(s-Tlv = u(S)o A ~(u(T)o)
u(S>T)v = u(S)o = u(T)v)
u(]I)v = U=0v
u(idA)o = u=veA
u(R“)v = v(R)u
u(RsS)v = 3x e ulRIx(S)0)

P = type of persons
C : PP — “called”
B : P<P — “brother of”
Aos : P
Jun : P
Convert into English (via predicate logic):
Aos(C;B)]un

= ((14.20) Relation composition)
(3b o Aos(CIb(B)Jun)

“Aos called some brother of Jun.”

“Aos called a brother of Jun.”

Aos (~(C5~B) dJun
= ((11.17r) Relation complement)
~(Aos CCs~B)Jun)
((14.20) Relation composition)
-(3p e Aos(C)p(~B YJun)
= ((11.17r) Relation complement)

~(3p » AosCCIp A ~(p(B)Jun))
= ((9.18b) Generalised De Morgan)
(Vp o ~(A0sCCIp A =(p(BIJun)))
((3.47) De Morgan, (3.12) Double negation)
(Vp o ~(Aos(CIp) v p(BIjun)
((9.3a) Trading for V)
(Vp 1 AosCCOp o p(BIJun)

“Everybody Aos called is a brother of Jun.”

“Aos called only brothers of Jun.”

Formalise Without Quantifiers! (2)

P = type of persons
C : PP
p(Clq = pcalledq

@ Helen called somebody who called her.

@ For arbitrary people x,z, if x called z, then there is sombody whom x called, and who was
called by somebody who also called z.

@ For arbitrary people x,y,z, if x called y, and y was called by somebody who also called z,
then x called z.

© Obama called everybody directly, or indirectly via at most two intermediaries.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-23

Relations in Set Theory

Plan for Today
o Relations
e Some properties of relation composition, e.g., § is monotonic
e Some properties of relations, e.g., “R is transitive”, “E is an order”

Moving towards relation-algebraic formalisations and reasoning

Translating between Relation Algebra and Predicate Logic

R=5 = (Yxyex(RIy=x(S)y)

ReS = (Vay e x(RIy=x(S)y)
u({}dv = false

u(u)v = true
u(AxB)v = ueA AveB
u(~S)v = ﬁ(u(S)v)
u(SuT)v = u(S)vvulTv
u(SnT)o = u(S)oaulTo
u(s-T)o = u(S)v/\—\(u(T)v)
u(S=T)v = 1¢(S)v=>(u(T)v)
u(]I)v = U=0v
u(idA)o = u=veA
u(R o = v(R)u
u(RsS)v = 3x e ulRIx(S)v)

P = type of persons
PP — “called”
B : PP — “brother of”
Aos P
Jun P
Convert into English (via predicate logic):
Aos ((‘)/mz
Aos ((‘:b’)/mz
Aos (~(C3~B) YJun
Aos (~(~C3B))Jun

Aos (~((Cn~(B5C))5~B) Jun
(B3({Jun} xU))n(C3C7) < 1T

Aos (~((Cn~(B3C))5~B) dJun
= (Relation complement)

~(A0s ((Cn~(B5C"))s~B)Jun)
= (Relation composition)

-(3p e Aos(Cn~(BsC))p(~B)]un)
= (Relation intersection)

-(3p e Aos(C)p A Aos (~(B3CY))p A p(~B)[un)
= (Relation complement)

~(3p » A0s(CIp A ~(AosCB5C Ip) A ~(p CB IJun))
= (Relation composition)

~(3p o AosCCIp A ~(3g » Aos(B)qCC Ip) A =~(p (B dJun))
= ((9.18b) Generalised De Morgan)

Logical Reasoning for Computer Science
COMPSCI 21L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-20

Part 2: Some Properties of Relation Composition

First Simple Properties of Composition
IfR:B <« Cand S: C < D, then their composition R$S : B <> D is defined by:

(14.20) bCR3S)d = (3c:C o b(R)cAc(S)d) (forb:B,d: D)
(14.22) Associativity of g: Q3(R3S) = (Q3R)3S
Left- and Right-identities of §: If R € X «e» Y, then: idXsR = R = RgsidY
We defined: 1 =idU with: Relationshipvia I: x(I)y = x=y
I is “the” identity of composition: Identity of ¢: IsR = R = R I
R3S

i 0 g\~ <o Re R S

Contravariance: (R3S)” = S"gR B = C 5 D

(R5S)” = S"sR”

Distributivity of Relation Composition over Union
Composition distributes over union from both sides:
(1423) Q5(RuS) = QsRuQsS

(Pu@Q)sR = P3RUQ3R

In control flow diagrams (NFA) — boxed variables are free; others existentially
quantified; alternative paths correspond to disjunction:

by
R R
Y
(] —2— = g
{ } X /
S S
by

(3b e aCQIr(RUS)C) =
(3b1,by © aCQ Y01 (R)c v alQIb(S)c)

Sub-Distributivity of Composition over Intersection
Composition sub-distributes over intersection from both sides:
(1424) Q3(RnS) ¢ Q:RnQsS

(PnQ)sR ¢ PiRNQsR

Monotonicity of Relation Composition
Relation composition is monotonic in both arguments:
QcR = QS c RsS
QcR = P3sQ < PgR

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

~ / \
[9. Q
kT) x/
(3b e aCQIr(RNS)e) =

by
(3b1,br © aCQIb1 (RIc A aCQIb:(S)c)
Counterexample for «:
Q := neighbour of R := brother of S := parent of

We could prove this via “Relation inclusion” and “For any”, but we don’t need to:
Assume Q ¢ R, which by “Definition of ¢ via U” is equivalent to QUR = R:
Proving Q35S cR3S:
R3S
= (Assumption QUR=R)

(QUR)3S
((14.23) Distributivity of § over u)
QsSUR:S
2 ((11.31) Strengthening Sc SuT)

Q35

withs: Rewriting Theorems before Rewriting

ThmA with ThmB

o If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L —» R

o E.g.: Assumption "Q ¢ R with “Relation inclusion”:
QcR rewrites via QCER = Vx e Vye x(Q)y:»x(R)y
to: Vx e Vye x(Q)y:x(R)y
which can be instantiated to: to: a(Q)b=a(R)b
Ibe+sa(Q)bab(S)c
=(“Body monotonicity of 3” with “Monotonicity of a”

with assumption "Q € R* with “Relation inclusion”)
Ibea(R)bab(S)c

with; and withs: Example
Ibea(Q)bab(S)c
=(“Body monotonicity of 3” with “Monotonicity of A"
with assumption "'Q € R' with “Relation inclusion”)
Ibea(R)bab(S)c

° ‘ assumption ‘Q ¢ R” with “Relation inclusion”

gives you via withs: vx o vy o x(Qdy=x(R)y
and then via implicit “Instantiation” triggered by the next with;:

aCo)v = a(Rb

° “Monotonicity of A” with

assumption ‘Q ¢ R” with “Relation inclusion”

gives you via withy: aCQ)o Ab(S)c = a(RIb Ab(S)e
° “Body monotonicity of 3” with “Monotonicity of A” with

assumption ‘Q ¢ R” with “Relation inclusion”

gives you via withy:

(3b e aCQIb Ab (S)e) = (3bealRIbab(S)e)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-25

Properties of Relations

Plan for Today
@ Some properties of relations, e.g., “R is univalent”, “F is bijective”

@ Symbols following the Z Notation: Function Set Arrows, Domain- and
Range-Restrictions

Moving towards relation-algebraic formalisations and reasoning

Properties of Homogeneous Relations (ctd.)

reflexive I ¢ R |[(Vb:Beb(R)b)

irreflexive InR = {}|(vb:B e ~(b(R)DD))

symmetric R* = R | (Vb,c:B e b(R)c=c(R)b)
antisymmetric | RNR™ ¢ I |(Vb,ce b(RYcrc(R)b=>b=c)
asymmetric RAR" = {} | (Vb,c:B e b(RIc=-(c(RIb))
transitive R3R ¢ R | (Vb,c,d e b(R)canc(R)d=b(R)d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric.

Ris a (partial) order on B iff it is reflexive, transitive, and antisymmetric.
(Eg., <25231)

R is a strict-order on B iff it is irreflexive, transitive, and asymmetric.
(Eg. < > ¢ 2)

Divisibility Order with Hasse Diagram

2 16
R

: ‘

5

: 12 20 8

/\\\\

1 15 6 10 4 14

; \l?&% /]

16 5 2 7 11 13
: \\\/

Hasse diagram for an order:

o Edge direction is upwards — antisymmetric
@ Loops not drawn — reflexive
o Transitive edges not drawn — transitive

Inclusion Order on Powerset of {1,2,3,4}

{1234}
{1,2,3} {124} {1,34} {234}
P N S
{12} {13} {23} {14} {24} {34}

Ny

Hasse diagram for an order:

o Edge direction is upwards — antisymmetric
@ Loops not drawn — reflexive
o Transitive edges not drawn — transitive

Properties of Heterogeneous Relations
A relation R : B < C is called:

szg;iei;;te R'5R ¢ 1 Vb,cr,00 e bR)1 AbC(R)er = 1 =0
DomR = U
total DomR = | B, Vb:B-(Hc:C-b(R)c)
I ¢ RsR”
injective |R3R™ ¢ T ¥ by,by,c by (R)Ycaby (R)c = by =by
RanR = U
surjective | RanR = _ C ,|¥c:Ce (30:B e b(R)c)
I ¢ R3R
amapping | iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Properties of Heterogeneous Relations — Examples 1

univalent | R"§R ¢ I v b,c1,c0 ¢ b(R)y AbCR)ca = c1=c2
DomR = U
total o Vb:Be (3c:Ceb(R)c)
I < R3R-
amapping | iff it is univalent and total

c‘\e\d
b/ /

N

Properties of Heterogeneous Relations — Examples 2

injective | RgR”™ ¢ 1 ¥ by,ba,c by (R)eaby (R)e = by =by
RanR = U
surjective an Ve:Ce (3b:B e b(R)c)
I ¢ R:R
bijective | iffitis injective and surjective

Function Types versus Sets of Univalent Relations
A relation R : B < Cis called:

univalent R SR ¢ 1 |Vbei,c; e b(RIAb(R)cr = c1=05
total DomR = U|Vb:Be (3c:Ceb(R)c)
amapping | iff it is univalent and total

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

— These are of different type that functions of function type B — C!
The distinction corresponds to the way in which elements of the Haskell datatype
Data.Map.Map a b are distinct from Haskell functions of type a - b.
@ A (set-theoretic) relation R : B <> C is a set of pairs — “data”
@ A function f : B - C is a different kind of entity — in Haskell, “computation”
Ifb:B, then fb
(But may be unspecified, such as

is never undefined.

head ¢ in A1.3.)

Properties of Heterogeneous Relations — Notes

univalent | R"¢R ¢ I Vb,cr,c2 e bCR)1 AbCR), = c1=cn
surjective I ¢ R3R|Vec:Ce (3b:B e b(R)c)
total I ¢ R3R™|Vb:Be (3c:C e b(R)c)
injective RsR™ ¢ 1 V¥ by,by,c by (R)cab (R)c = by =by

All these properties are defined for arbitrary relations! (Not only for functions!)
@ Ris univalent and surjective @ Ris total and injective
iff R$R=1 iff RsR =1
iff R is a left-inverse of R iff R” is a right-inverse of R

It is convenient to have abbreviations, for example:

f is a partial function from X to Y: feX+Y
f is an injective mapping from X to Y: feX»Y — Z arrows!
f is a partial surjection from X to Y: feX+»Y

The Z Specification Notation

@ Mathematical notation intended for software specification
Used for requirements contracts with customers who would be given a two-page
“Z Reference Card”
@ Very influential in Formal Methods; ISO-standardised
o Two parts:
e Zis atyped set theory in first-order predicate logic
— very close to the logic and set theory you are using in CALCCHECK

— except that in Z:
@ types are maximal sets
@ sets can be used in variable declarations: V x:S | ... e ...,
— which makes quantifier reasoning harder.
o functions are univalent relations

(CALCCHECK and Haskell are type theories with embedded typed set theories.)

e “Schemas” modelling of states and state transitions

@ Avenue — Resources — Links — Z Specification Notation

Function Sets — Z Definition and Description [Spivey 1992]

‘In Z, X< Y=P(XxY), and x+~ y=(x,y) is an abbreviation for pairs.

X+Y={f: XY |Ve:X;y,pp: Y e

(z=y)efAz=p)ef=yp=mpr)}
X—Y={f: X+ Y |dmf=X}
X Y=={f: X+ Y |(Va,zp:domf e f(z;) = f(22) = 21 = 1) }
Xr—»Y=XmY)N(X—Y)
X4+»Y=={f: X+ Y |ranf =Y}

Partial functions
— Total functions
— Partial injections
Total injections
— Partial surjections
— Total surjections
Bijections

ThiTtld

X—>»Y=X+»Y)N(X—Y)
X—»Y=X—=>Y)N(X—Y)

If X and Y are sets, X + Y is the set of partial functions from X to Y. These
are relations which relate each member x of X to at most one member of Y.
This member of Y, if it exists, is written f(x). The set X — Y is the set of total
functions from X to Y. These are partial functions whose domain is the whole
of X; they relate each member of X to exactly one member of Y.

Function Sets — Z Definition and Laws (1) [Spivey 1992]

Function Sets — Z Definition and Laws [Spivey 1992]

InZ, X~ Y=P(XxY), and x+~ y=(x,y) is an abbreviation for pairs, and So R = R§S. ‘

‘In Z, X< Y=P(XxY), and x+~ y=(x,y) is an abbreviation for pairs, and So R = R3S.

X+Y={f: XY |Ve:X;y,pp: Y e
(z=y)efA(z=p)ef=n=1u)}

X—=Y={f: X+ Y |domf=X}

X YV={f: X+ Y|(Vao,z:domfef(z)=/f(n)=mn=u)}

X—»Y=X+Y)N(X—=Y)

Laws:
feX+Y e fofY=id(ranf)

feXm Yo feXYANfTeY+X
feX—YefeX—-YANf"eY+ X

feXe Y= f(SNT)=f(S)nf(IT)

X+Y={f: XY |Ve:X;y,p2:Y e
@ y)efAzm)ef =y =)}
X—Y=={f:X-+Y|dmf=X}

X+ Y={f: X+ Y |ranf=Y}
X—=»Y=X+»Y)N(X—Y)
Xr—»Y=(X—=Y)N(X—Y)

Laws:

feX—»YefeX—=YANfreY—=X
feEX+»Y=fof =idY

Z Function Sets in CaLcCHeck

For two sets X :sett; and Y :sett,, we define the following function sets:

CALCCHECK z
feX—->Y \tfun | total function Domf=X Af sfcidY |feX->Y
feX+Y \pfun | partial function | DomfcX A f sfcidY |feX+Y
feX>»Y \tinj | totalinjection fof =idX AfrsfcidY |feX»Y
feX»Y \pinj partial injection | f5f cid X A f75fcidY | feX» Y
feX—>Y \tsurj | total surjection Domf=Xnfsf=idY |feX—>Y
feX+Y \psurj | partial surjection | DomfcX A f75f=idY |feX+Y
feX>»Y \tbij | total bijection feof =idX Afref=idY |feX»>Y
feX>»Y \pbij | partial bijjection |fsf cidX A f sf=idY

Counting ...

Let X and Y be finite sets with # X =x and # Y =y:
o #(XxY) =7
o #(XeorY) = #(P(XxY)) = 2
o #(X->Y) =7
o #(X+Y)=2
o #(X»X) =27
o #(X~>»Y) =7
o #(X»Y) =7
o #(XwY) =7
o #(X»Y) =27
o #(X—>Y) =7
o #{S | ScYA#S=x} =7

— pairs

— relations

— total functions
— partial functions
— homogeneous total bijections
— total bijections

— total injections

— partial bijections

— partial injections

— total surjections

— x-combinations of Y

More Z Symbols: Domain- and Range-Restriction and -Antirestriction

Given types t1, 1, : Type, sets A : set t; and B : set t5, and relation R : 1 < t5:

o Domain restriction: AdR = Rn(AxU)
o Domain antirestriction: A4R = R-(AxU) = Rn(~AxU)
o Range restriction: R>B = Rn(UxB)
o Range antirestriction: RpB = R-(UxB) = Rn(Ux~B)

Bs({Jun} xU) n (CsC) c I
= (Domain- and range restriction properties)
Dom(B > {Jun})< (CsC”) ¢ I

Still no quantifiers, and no x,y of element type
— but not only relations, also sets!

(The abstract version of this is called Peirce algebra,
after Chales Sanders Peirce.)

Also in Z: Relational Image and Relation Overriding

Given types t1,t : Type, sets A : set t; and B : set 5, and relations R, S : t1 < t5:
o Relational image: R(A) = Ran(A<R)

“Relational image of set A under relation R

Notation as “generalised function application”...

Bs({Jun}xU) n (CsC) < I

= (Domain- and range restriction properties)
Dom(B > {Jun})< (C3C”) ¢ I

= (Relational image)

(B*({Jun})) < (CsC) < 1

@ Relation overriding: ReS = (DomS <4R)uS
“Updating R exactly where S relates with anything”
In the relation Co {(Aos,Jun)} , Aos called only Jun.

Predicate Logic Laws You Really Need To Know Now

8.13) Empty Range:

8.14) One-point Rule: Provided ...,
8.15) (Quantification) Distributivity:
8.16-18) Range split:

(

(

(

(

(9.17) Generalised De Morgan:
(9.2) Trading for V:

(9.19) Trading for 3:

(9.13) Instantiation:

(9.28) 3-Introduction:

...and correctly handle substitution, Leibniz, bound variable rearrangements,
monotonicity/antitonicity, For any ...

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

Quantifier Reasoning, Explicit Induction Principles

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

Part 1: Quantifier Reasoning Examples: Ex6.3

Ex6.3 — Domain of Union — Step 1

Theorem “Domain of union”: Dom (R u §) = Dom R u Dom S
Proof:
Using “Set extensionality ":
For any “x™:
x € Dom (R u S)

x € DomR u Dom §

Ex6.3 — Domain of Union — Step 2

Theorem “Domain of union”: Dom (R u §) = DomR u Dom §
Proof:
Using “Set extensionality ”:
For any "x:
x e Dom(Ru S)
= (“Membership in *Dom™ ")
Jyex(RUS)y
= (“Relation union”)
Syox(R)yvx(S)y

=(7)

Ayex(RIy v @Ayex(S)y
= (“Membership in *Dom™")

x e DomR v x € Dom S
=(“Union”)

x ¢ DomR u Dom S

Ex6.3 — Domain of Union — Step 3

Theorem “Domain of union”: Dom (R u §) = Dom R u Dom S
Proof:
Using “Set extensionality "
For any "x™:
x € Dom (R u S)
= (“Membership in “Dom* ")
Jyex (RuUS)y
= (“Relation union”)
Eyox(R)y\/x(S)y
(“Distributivity of 3 over v ")
By exCRIy) v Eyex(SIy)
= (“Membership in *“Dom™ ")

x ¢ DomR v x € Dom S
= (“Union”)

x € DomR u Dom S

Ex6.3 — Domain of n — Step 1

Theorem “Domain of intersection ”: Dom (R n §) ¢ DomR n Dom §
Proof:
Using “Set inclusion ”:
For any "x™:
x e Dom(R n §)
= (“Membership in “Dom™")
Jyex(RNS)y
= (“Relation intersection”)

Jyex(R)y A x(S)y
=(7)

Ayex(RIy A Ayex(SIy)
= (“Membership in *Dom™")

x € DomR A x € Dom S
= (“Intersection”)

x ¢ DomR n Dom S

Ex6.3 — Domain of n — Step 2

Theorem “Domain of intersection ”: Dom (R n S) ¢ Dom R n Dom S
Proof:
Using “Set inclusion ”:
For any “x™:

x € Dom (R n S)
(“Membership in *“Dom"* ")

Jy ex (RnS) y
{ “Relation intersection”)

Synx(R)y/\x(S)y
= (“Idempotency of A")

Gyex(RIyax(SIy) n Gyex(RIyax(SIy)

= (? with “Weakening ")

Byex(RIy) Ay x($)y)
(“Membership in *“Dom"* ")
x ¢ DomR A x € Dom S
= (“Intersection”)
x € DomR n Dom §

Ex6.3 — Domain of n — Step 3

Theorem “Domain of intersection”: Dom (R n S) ¢ DomR n Dom S
Proof:
Using “Set inclusion ”:
For any "x:
x € Dom (R n S)
= (“Membership in “Dom™ ")
Jyex(RNS)y
{ “Relation intersection”)
Sy-x(R)y A X(S)y
= (“Idempotency of A")
Ayex(RYy A x(S)Iyn
Ayex(RIy n x(S)y)
= (“Monotonicity of A" with
“Body monotonicity of 3” with “Weakening ")
@Ayex(RIy) » Byex(s)y
(“Membership in *Dom* ")
x € DomR A x ¢ Dom S
= (“Intersection”)
x ¢ DomR n Dom S

Ex6.3 — Domain of n (B) — Step 1

Theorem “Domain of intersection ”: Dom (R n S) ¢ Dom R n Dom S
Proof:
Using “Set inclusion ”:
For any “x™:
x € Dom (R n S)
= (“Membership in “Dom* ")
Jyex(RNS)y
= (“Relation intersection ”)
Jyex(RIy A x(S)y

Theorem (9.21) “Distributivity of A over 3”:
PA(3x|ReQ) = B3x|RePAQ)
provided —occurs(‘x’, ‘P’)

=(7)

@ByexCRIy A Ayex(SIy)
= (“Membership in “Dom* ")

x e DomR A x € DomS
= (“Intersection”)

x € DomR n Dom S

Ex6.3 — Domain of n (B) — Step 2

Theorem “Domain of intersection”: Dom (R n §) ¢ Dom R n Dom S
Proof:
Using “Set inclusion "
For any "x':
x e Dom(R n S)
(“Membership in *Dom* ")
Jy ex (R nsS) v
= (“Relation intersection ”)
Syox(R)y A x(S)y

Theorem (9.21) “Distributivity of A over 3”:
PA(Ex|ReQ) = Bx[RePAQ)
provided —occurs(‘x’, ‘P’)

=(7)

Jyex(RIy A Byex(SIy
= (“Distributivity of A over 3”)
Ayex(RIy) A AByex(SIy)
(“Membership in *Dom* ")
x ¢ DomR A x ¢ DomS$S
{ “Intersection”)
x € DomR n Dom S

Ex6.3 — Domain of n (B) — Step 3

Theorem “Domain of intersection ”: Dom (R n S) ¢ Dom R n Dom S
Proof:
Using “Set inclusion ”:
For any "x:
x € Dom (R n S)
(“Membership in *“Dom* ")
dJy ex (RnsS)y
= (“Relation intersection)
Syox(R)y A x(S)_l/
= (Substitution)
Syox(R)y A (X(S)y)[y::y]
(7 with “3-Introduction”)
Jyex(RIy n Byex(S)y)
= (“Distributivity of A over 3")
ByexCRIy) ~n Byex(S)Iy
(“Membership in *Dom* ")
x e DomR A x € DomS$S
= (“Intersection”)
x € DomR n Dom S

[

Ex6.3 — Domain of n (B) — Step 4

Theorem “Domain of intersection”: Dom (R n §) ¢ DomR n Dom S
Proof:
Using “Set inclusion "
For any "x™:
x ¢ Dom(R n S)
(“Membership in “Dom* ")
Jy ex (RNS) Y
(“Relation intersection”)
Syox(R)y A x(S)y
= (Substitution)
3yex(R)y A (x(SIyly =]
= (“Body monotonicity of 3” with “Monotonicity of A ” with “3-Introduction”)
Jyex(RIy A Byex(S)Iy
= (“Distributivity of A over 3")
Ayex(RIy) A Ayex(SIy)
(“Membership in *Dom* ")
x e DOmR A x € Dom$
= (“Intersection”)
x ¢ DomR n Dom S

Distributivity over V
(9.5) Axiom, Distributivity of v over V: If —occurs(‘x’, ‘P’),
Pv(Vvx | ReQ) = (Vx| RePvQ)

(9.6) Provided -occurs(‘x’, ‘P’),
(Vx| ReP)=Pv(Vxe-R)

(9.7) Distributivity of A over V: If —occurs(‘x’, ‘'),
-(Vx e -R)=(PA(Vx | ReQ) = (Vx| RePnrQ))

(9.22.1) Distributivity of A over V: If —occurs(‘x’, ‘P’),
(3x e R) = (PA(VYx | ReQ) = (Vx| RePrQ))

(9.8) (Vx| R o true) = true

9.9) (Vx| ReP=Q)=((Vx | ReP)= (Vx| ReQ))

Distributivity over 3
(9.21) Distributivity of A over 3: If —occurs(‘x’, ‘P’),
PA3x | ReQ)=(3x| RePrQ)

(9.22) Provided -occurs(‘x’, ‘P’),
(3x | ReP) =PA(3x eR)

(9.23) Distributivity of v over 3: If —occurs(‘x’, 'P’),
(3x e R)=((3x | RePvQ) =Pv(Ix | ReQ))

(924) (3x | R e false) = false

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

Part 2: Explicit Induction Principles

Natural Numbers Generated from 0 and suc — Explicit Induction Principle
Recall: Induction principle for the natural numbers:

e if P(0) If P holds for 0

e and if P(m) implies P(suc m), ‘ and whenever P holds for m, it also holds for suc m,

@ then for all m : N we have P(m). ‘ then P holds for all natural numbers.

As inference rule:

With variable P : N — B: With P : B as metavariable for an expression:

"P(m)’ P

P(0) P(suc m) P[m:=0] Plm = suc m)
P(m) P

As axiom / theorem — LADM p. 219: “weak induction”:

Axiom “Induction over N ”:
Pn = 0]
= (Vn:N|P e P[n :=sucn])
= (Vn:NeP)

Proving “Right-identity of +” Using the Induction Principle (v0)

Axiom “Induction over N”:
P[n = 0]
= (Vn :

N * P[n = suc n])
= (Vn:N

1P
- P)
Theorem “Right-identity of +”": Vm : Nem+ 0 =m
Proof:
Using “Induction over N":
Subproof for *(m + 0 = m)[m = 0] :
By substitution and “Definition of +”
Subproof for 'V m : NI m+0=m=<e (m+0=m)[m= sucm] :
For any 'm : N' satisfying 'm + @ =m":
(m+ 0 =m)[m = suc m]
=(Substitution, “Definition of +”)
suc (m + Q) = suc m
=(Assumption 'm + @ = m', “Reflexivity of =")
true

‘ (Inever use this pattern with substitutions in the subproof goals.) ‘

Proving “Right-identity of +” Using the Induction Principle (v1)

Axiom “Induction over N”:

P[n = 0]
= (VYn: NP+ P[n=suc nl])
> (Vn:N-eP)

Theorem “Right-identity of +": ¥V m :
Proof:
Using “Induction over N":
Subproof for "0 + 0 = 0°:
By “Definition of +”
Subproof for 'Y m: N | m+0=m
For any "m : N' satisfying "m +
suc m+ 0
=(“Definition of +")
suc (m + 0)
=(Assumption 'm + @ = m")
suc m

Nem+0=

ucm+ 0 =sucm:

o .
n w

Proving “Right-identity of +” Using the Induction Principle (v2)

Theorem “Right-identity of +”": ¥ m : N e m+ 0 =
Proof:
Using “Induction over N”: Axiom “Induction over N”:
Subproof: Pin = 0]
0+0
= (v : N P« P[n =
=(“Definition of +”) o E\‘/ : TN ! P) (n = suc nl)
0 :
Subproof:
For any "m : N° satisfying “IndHyp” "m + 0 = m":
sucm + 0

=(“Definition of +")
suc (m + 0)

=(Assumption “IndHyp”)
suc m

@ (Subproof goals can be omitted where they are clear from the
contained proof.)

@ You need to understand (v0) and (v1) to be able to do (v2)!

“By induction on ...” versus Using Induction Principles

e Using induction principles directly is not much more verbose than “By
inductionon ...”
e “By induction on ...” only supports very few built-in induction principles

o Induction principles can be derived as theorems, or provided as axioms, and
then can be used directly!

Sequences — Induction Principle
Induction principle for sequences:
@ if P(¢)
@ and if P(xs) implies P(x < xs) forall x: A,

If P holds for ¢

‘ and whenever P holds for xs, it also holds for any x < xs ‘,

@ then for all xs : Seq A we have P(xs). ‘ then P holds for all sequences over A. ‘

Plxs:= €] = (Vxs:Seq A | P e (Vx:A e Plxs:=xaxs])
= (Vxs:SeqA o P)

Axiom “Induction over sequences”:

Plxs = ¢]

- (Vxs : Seq Al P (Vx: A=« P[xs=x <xs]))

- (V xs : Seq A * P)

Plm:=0] = (Ym:N | P e Plm:=sucm]) = (Vm:NeP)

Axiom “Induction over N”:

Pln = 0]

= (VYn:N]PeP[n:=sucn])

= (VYn:N=«P)

Recall: Tail is different — LADM Proof
Theorem (13.7) “Tail is different”: Vxs:SeqA e Vx:A e x <« XS # XS
Proof:
By induction on “xs : Seq A™:
Base case:
Forany 'x:A™:
Xa € F €
= (“Cons is not empty ”)
true
Induction step:
Forany 'z: A", "x: A
X 42z24X8 # Z4XS
= (“Definition of #”, “Cancellation of < ")
-(x=z A zaXxs = Xs)
<« (“Consequence ”, “De Morgan ", “Weakening ", “Definition of ")
Z4 XS # XS
= (Induction hypothesis "V x: A e x a xs # XS)
true

(For explanations about using “By induction on “xs : Seq A™:” for proving
“Vxs : SeqA e P”,see H13 and Ex5.2.)

Proving “Tail is different” Using the Induction Principle

Theorem “Induction over sequences ”
Plxs = €] = (V XS : gA | P
= (Vxs:SeqA e

Theorem (13.7) “Tail is different ”:

SVX:A e Plxs := x « xs]))

Vxs:SeqA e Vx:A e x « XS # XS

Usmi“lnductlon over sequences ”:
proof for’Vx:A e x « € # €
For any "x: A™:
By “Cons is not empty ”
Subproof for 'V xs : Seq A
(Vx:A e x aXxs # XS)
o(Vz:A e (Vx:Aex<zaXs#zaxs)):
For any "xs : Seq
satlsfymg Ind Hyp " (Vx:A ex a XS # XS):
Forany "z:
X4z XS # Z < XS
= (“Definition of #”, “Injectivity of « ")
ﬁ(x_Z/\qus:x)
< (“De Morgan”, “Weakening ”, “Definition of ")
Z 9 XS £ XS
= (Assumption “Ind. Hyp.”)
true

Proving “Tail is different” Using the Induction Principle — Less Verbose
Theorem “Induction over sequences "

Plxs = €

= (Vxs:SeqA|P e (Vx:A e P[xs := x < x5]))

= (Vxs:SeqA e P)

Theorem (13.7) “Tail is different”: Vxs:SeqA e Vx:A e x « XS # XS
Proof:
Using “Induction over sequences ”:
Subproof for'Vx:A e x « € # ¢
For any "x: A™:
By “Cons is not empty ”
Subproof:
For any "xs : Squ satisfying “Ind. Hyp.” (VY x: A ¢ x « xs # Xxs):
Forany 'z: A", "x: A
X<za XS # Z 4 XS
= (“Definition of #”, “Injectivity of « ")
-(x=z A zaXxs = Xs)
< (“De Morgan ", “Weakening ", “Definition of #”)
Z <4 X8 # X8
= (Assumption “Ind. Hyp.”)

Logical Reasoning for Computer Science
COMPSCI 21L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-27

Part 3: Residuals

true
Given: x<z x<5 Given, forR: A< Band S: A < C: X ¢ R\S = RsX c S
What do you know about z? Why? (Prove it!) Calculate the right residual (“left division”) R\S !
Given: X c A=B = XnA c B A S c
Calculate the relative pseudocomplement A=B !
Given, forR: A< Band S: A < C: X ¢ R\S = RsX c S R N
R\S isthe largest solution X:B <« C for R3X ¢ S . B

Calculate the right residual (“left division”) R\S !
A 5 c
B

b(?)c

Same idea as for ="
Using extensionality, calculate

b(R\S)c =

bC(RN\S e

= (Similar to the calculation for relative pseudocomplement)
(Va | aCRIb e a(S)c)

= (Generalised De Morgan, Relation conversions — Ex. 6.3 (R1))

bC~(R75~5) Je

Therefore: R\S = ~(R"5~5)

— monotonic in second argument; antitonic in first argument

Proving bCR\S)c=(Va | aCRIb e a(S)c):

b(R\S)c
= (eeS={e} cS—Exercise!)

{(b,c)} < (R\S)
= (Def. \: X< R\S = R;XcS)

Rg{(b,c)} = S
= ((11,131‘) Relation inclusion)

(Va, | a(Rg(b,c) })c . a(S)c)
= ((14. 20) Relation composition)

(Va,c | 30 o alRID' AL ({(b,c)})c") o a(S)c)
= (ye{x} y = x — Exercise!)

(Va,c" | 3V e a(RIVAY =bac=c") o a(S)c)
= ((9.19) Trading for 3)

(Vac | GV | V' =bealRIVrc=c) o alS)c)
= ((8.14) One-point rule)

(\1uc | [ZER Yonc=c o a(S)c)
= ((8.20) Quantifier nesting)

(Va | aCR)b e (V' | c=c oa(S)c))
= ((1.3) Symmetry of =, (8.14) One-point rule)

(Va | aCR)b e a(S)c)

Right Residual: X ¢ R\S = RsX c S
Proving R\S = ~(R"3~S):
bC(R\S e

= (previous slide)

(Va | aCRb e a(5)c)
= ((9.18a) Generalised De Morgan)
~(3a | a(RIb e ~(a(S)c))
((11.17r) Relation complement)
~(3a | aCR)b e a(~S)c)
((9.19) Trading for 3, (14.18) Converse)
-(Jae (R~)a/\a(NS)C)
((14.20) Relation composition)
~(bCR 5~5)c)
((11.17r) Relation complement)

bC~(R75~5) Je

Given, forR: A< Band S: A < C: X ¢ R\S = RsX c S

Calculate the right residual (“left division”) R\S ! (“R under S”)
A 5 c

N

B

b(R\S Jc

= (Similar to the calculation for relative pseudocomplement)
(Va | aCR)b e a(5)c)

= (Generalised De Morgan, Relation conversions — Ex. 6.3 (R1))

b(~(R75~5) Je

Therefore: R\S = ~(R"§~S)

— monotonic in second argument; antitonic in first argument

Formalisations Using Residuals

Aos called only brothers of Jun. Relationship via \:
“Everybody called by Aos is a brother of Jun.”
Vp | Aos(C)p . p(B)]un) b(R\S)c
= ((14.18) Relation converse) = (vala(RIb e a(s)o)

vyl p(C“ JAos o p(B)]un)
= (Right residual)
Aos (C*\B)Jun

“Aos called every brother of Jun.”

“Every brother of Jun has been called by Aos.”
(vp | pCBIJun o Aos(CIp)

= ((14.18) Relation converse)

(Vp | pCBYJun o pCC)Aos)

(Right residual)

Jun (B\.C~) Aos

Some Properties of Right Residuals
Characterisation of right residual: VR: A< B; S:A<~Ce X cR\S = RsXc S
R3(R\S) ¢ S
(Q\R)5(R\S) < (Q\S)

Two sub-cancellation properties follow easily:
Theorem “I \”: I\ R = R
Proof:
Using “Mutual inclusion "
Subproof:
IN\R
= (“Identity of 3")
I3 (I\R)
< (“Cancellation of \ ")

R
Subproof:
R c I\R
= (“Characterisation of \”")
IsRcR
= (“Identity of 3", “Reflexivity of ¢”)
true

Translating between Relation Algebra and Predicate Logic

Translating between Relation Algebra and Predicate Logic

R=S = (VX,y-x(R)yzx(S)y)

ReS = (Vxy e x(RIy=x(S)y)
uC{}do = false
u(AxB)o = ueAAveB
u(~S)v = ﬂ(u(S)v)
u(SuT)v = u(S)vvu(T)v
u(SnT)v = u(S)v A ulT)o
u(s-T)o = u(S)v/\ﬂ(u(T)v)
u(S>T)v = u(Ss)o = u(T)o
u(idA)v = u=veA
u(H)v = u=0
u(Rv)v = v(R)u
u(R38)v = Fx | u(R)x-x(S)v)

u(R\S)v = (Vx| x(Ru x(S)v)
u(S/RY)v = (Vx| v(R)x e u(S)x)

R=S = (VX,y-x(R)yzx(S)y)

ReS = (Vxyex(RJy = x(S)y)
uC{}do = false
u(AxB)v = ueAAveB
u(~S)v = —\(u(S)v)
u(SuT)v = u(S)vvu(T)v
u(snT)v = u(S)v A ulT)o
u(S-T)v = u(S)o A ~(ulT o)
u(S>T)v = u(S)o = u(T)o
u(idA)v = u=veA

u(]I)v = u=0v

u(R“)v = v(R)u
u(R3S)v = (x e u(R)x(S)v)
uCR\S)v = (Vx| x(RJu o x(5)0)
u(S/RYv = (Vx| v(R)x e u(S)x)

Translating between Relation Algebra and Predicate Logic

R=S = (Vxy ox(R)yzx(S)y)

Res = (Vxy e x(RIy=x(S)y)
u({}dv = false
uCAxB)v = ueAAveB
u(~S)o = ﬂ(u(S)v)
u(SuT)v = u(S)vvu(T)v
u(SnT)v = u(S)v A ulTv
u(s-Tv = u(S)ua ﬁ(u(T)U)
u(S>TIo = u($)o = u(T)o
u(idA)o = u=veA

u(]I)v = U=0v

u(R“)v = U(R)u

u(R3S)o = (x e u(R)x/\x(S)v)
u(R\S)v = (Vxe x(R)u = x(5)o)
u(S/R)o = (Vxe v(R)x = ulS)x)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

Bags, While, Quantification Calculations

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

Part 1: Bags/Multisets

“Multisets” or “Bags” — LADM Section 11.7
A bag (or multiset) is “like a set, but each element can occur any (finite) number of times”.
Bag comprehension and enumeration: Written as for sets, but with delimiters L and $.
Sets versus bags example:
{x:Z | -2<x<2ex-x} = {4,1,0} = {0,1,4} = {0,0,0,1,1,4}
lx:Z | -2<x<2ex-x3 = 4,1,0,1,45 = 10,1,1,4,45 = 10,1,45
#_:t - Bagt - N counts the number of occurrences of an element in a bag:
14#10,0,0,1,1,4 = 2

Bag extensionality and bag inclusion are defined via all occurrence counts:

The operator _:

B=C = (Vxex#B=x#C(C) BcC = (Vxex#B<x#C(C)
Bag operations: x# (BuC) = (x#B)+(x#C)
x#(BnC) = (x#B) | (x#0C)
x#(B-C) = (x#B)-(x#C)

Bag Product and Bag Reconstitution
Recall: A bag is “like a set, but each element can occur any (finite) number of times”.
Ix:7Z | -2<x<2ex-x5 = 14,1,0,1,45 = 10,1,1,4,45 = 10,1,45
1#10,0,0,1,1,45=2
1£10,0,0,1,1,45 = true

#:t—>Bagt— N counts the number of occurrences:

E_:t—>Bagt—B is membership, withxEB = x # B #0:

Calculate: L | x£10,0,0,1,1,4% = ?

Define bagProd : Bag N - N such that:
e.g., bagProd 12,2,3,3,5§ =180
@ Easy with exponentiation _sx_:

bagProdZel,ez,”.,enS =e1-€-... ey

bagProd B=T1] ?
@ Without exponentiation: ?

Related question: For sets, we have (11.5): S={x | xeS o x}

What is the corresponding theorem for bags?

Bag reconstitution: B=1? | ? o 25 —> Homework 16

Pigeonhole Principle — LADM section 16.4
The pigeonhole principle is usually stated as follows.

(16.43) If more than n pigeons are placed in n holes, at least one hole will contain more
than one pigeon.

Assume:

@ S:Bag Ris a bag of real numbers

@ av S is the average of the elements of S

@ max S is the maximum of the elements of S
(16.44) max S>1

Reformulating the pigeonhole principle: awsS>1 =

Generalising:

(16.45) Pigeonhole principle:

If S : Bag R is non-empty, then: av S <max S
Stronger on integers:
(16.46) Pigeonhole principle:

If S : Bag Z is non-empty, then: [av S| <max S

Generalised Pigeonhole Principle — Application

(16.46) Pigeonhole principle: If S : Bag Z is non-empty, then [av S] < max S
(16.47) Example: In a room of eight people, at least two of them have birthdays on the
same day of the week.
Proof: Let bag S contain, for each day of the week, the number of people in the room
whose birthday is on that day. The number of people is 8 and the number of days is 7.
S = Ud:Weekday o # {p | pinRoomry A p HasBirthdayOnAd }
Then:
max S
> (Pigeonhole principle (16.46) — S contains integers)
[av S]
(Shas 7 values that sum to 8)
[8/7]
= (Definition of ceiling)
2

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

Part 2: The While Rule

The “While” Rule
The constituents of a while loop “while B do C od” are:
@ The loop condition B : B
@ The (loop) body C: Cmd
The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q : B:

‘BaQ =fCi Q

F

'Q =F while Bdo Cod] —-B Q"

This rule reads:
@ If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,

@ then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

The “While” Rule — Induction for Partial Correctness
-t C1 Q@

‘Q =[while B do C od]

‘B AQ
'_

-BaAQ

The invariant will need to hold
e immediately before the loop starts,
@ after each execution of the loop body,
o and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by the loop, and
explain how they are related.

In general, you have to identify an appropriate invariant yourself!

Well-written programs contain documentation of invariants for all loops.

Using the “While” Rule

Theorem “While-example ”:| | Proof:
Pre Pre ===s== Precondition
=F INIT; SFINITT (7)
while B Q =s=esss [nvariant
do =[while B do
C C
od; od] (“While” with subproof:
FINAL B A Q === Loop condition and invariant
i ~fci(2)
Post Q =sssan [nvariant
)
- B A Q ====== Negated loop condition, and invariant
=[FINAL] (?)
Post ==s=== Postcondition

Goal of Assignment 1.3: Correctness of a Program Containing a while-Loop

Theorem “Correctness of ‘elem*”: Proof:
true true
= xs:= xs0; =f xs:= xs9;
b:= false; : = false
while xs # ¢ do] (“Initialisation for “elem™ ")
ifheadxs = x (3us e (us ~ xs = xs9) A (b = x € us))
then b: = true =[whilexs # ¢do
else skip ifhead xs = x
fi; then b: = true
xs : = tail xs else skip
od fi;
xs : = tail xs
(b = x € xs) *===== Parentheses! od
] (“While ” with “Invariant for “elem* ")
- (xs # €) A (Jus e (us ~ xs = x59) A (b = x € us))
= (“Postcondition for “elem™”)

(b = x € xs9)

“Quantification is Somewhat Like Loops”

Theorem “Summing up”:
true
=f s =0 ;
i=0;
while i # n
do

[}

s+ fi;
i+1

N j<nefj

Invariant: s=Yj:N|j<iefj

— Generalised postcondition using the negated loop condition

(This is a frequent pattern.)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-10-30

Part 3: More Quantification Calculations

(9.29) Interchange of quantifications:: Provided -occurs(‘y’, ‘R") A ~occurs(‘x’,‘Q’),
Bx 1 Re(Vy1QeP) = (VylQe(@x|ReP)
One direction only!

Understanding Interchange
Formalise: Every real number has an additive inverse.
true
= (Every real number does have an additive inverse)
(Vy:R e (Jx:R e y+x=0))
< ((9.29) Interchange of quantifications)
(Ax:Re (Vy:R e y+x=0))
This says: “There is a real number x
which is an additive inverse for all real numbers”.

= (Different numbers have different additive inverses ...)
false

Interchange — Proof

(9.29) Interchange of quantifications:: Provided -occurs('y’, ‘R’) A —occurs(‘x’,'Q’),

GxIRe(VylQeP) = (VylQe@x|RsP)
Proof of simpler case (R = true):
(3xe (VyeP) = (Vye(IxePD))
= ((3.57) Definition of =)
(3xe (VyeP)v(Vye(IxeP)) =(Vye (IxeP))
= ((9.5) Distributivity of v over V)
(Vye(3xe(VyeP))v(IxeP)) =(Vye (IxeP))
= ((8.15) Distributivity of 3 over v)
(Vye(3xe(VyeP)vP) = (Vye(IxeP))
= ((9.13.1) Instantiation (Y y e P) = P, with (3.57): (Vy e P) vP = P)
(Vye(3xeP) = (Yye (IxeP))
— This is (3.5) Reflexivity of =

Changing the Quantified Domain

(i) 2<i<10 o)
= ((8.22) with *(_+_ 2) hasAnInverse™)
(k| 0<k<8 e (k+2)2)

(8.22) Change of dummy: Provided f has an inverse and -occurs(‘y’, ‘R, P")
(that is, “y is fresh”), then:
(xx | ReP) = (xy | Rx:=fy] e Plx:=fy])

Above: fy =2+y and flx=2x-2

A function f has an irlversej"1 iff x=fy = vy :f’] X

Assume f has an inverse and -occurs(‘y’, ‘x,R, P’)
(+y | Rlx:=fy] o Plx:=fy])
{ (8.14) One- pomt rule: —occurs(‘x’,’f y’))
Gy I Rix=fyle x| x=fye P))
((8.20) Nesting: —occurs(‘x’, ‘R[x = f y]’
(rxy | Rlx=fylax=fy e P)
= ((3.84a) Replacement (¢ =f) AE[z:=¢] = (e=f)nE[z:=f])
(»x,y | Rlx:=x]ax=fy e P)
= (R[x:=x] =R; (8.20) Nesting: —occurs('y’, 'R’))
(*x 1 Re(xy | x=fyeP))
= <Inverse:x=fy = y:f‘lx)
(xx | Re(xyly=ftxeP)
= < (8.14) One-point rule: ~occurs(‘y’, f ' x"))
(+x | R Plys=fx
(Textual substitution, —occurs(‘y’, ‘P’))
(x| ReP)

Changing the Quantified Domain — occurs(‘y’, ‘x")
In the textbook:

(8.22) Change of dummy: Provided f has an inverse and -occurs(‘y’, ‘R, P’),
(*x | ReP) = (xy | Rlx:=fy] e Plx:=fyl)

We might have that occurs(‘y’, ‘x).
(Note that x and y are metavariables for variables!)

Then x is the same variable as y, and —occurs(‘x’, ‘R, P’).
Therefore R[x:=f y] = Rand P[x:=f y] = P.

So the theorem’s consequence becomes trivial:
(*x | ReP) = (x| ReP)

So (8.22) as stated in the textbook is valid, but the proof covers only the case
—occurs(‘y’, 'x’).

Changing the Quantified Domain — Variants — see Ref. 5.1

Theorem (8.22) “Change of dummy in »
VfeVge
(VxeVyex=fy = y=gx)
= ((*xIR P)
= (#y I R[x = fy] o Plx = fy]))

Theorem (8.22.1) “Change of dummy in * — variant ”:
(VxeVyex=fy = y=gx)
= ((*x|RArx=f(gx) e P)
= (vy I R[x = fy] « Plx = fy]))

Theorem (8.22.3) “Change of restricted dummy in * "
VfeVge
(Vx|Re (Vyex=Ffy
= (xR P

=y =8¥)
)
= (*y I R[x = fyl o PIx = fy]))

Modal Rules— Converse as Over-Approximation of Inverse

Q3RnS < Q3(RnQ73S)
Q3sRnS ¢ (QnSgR)4R

Modal rules: For Q: A< B,R: B+ (C,and S: A < C:

Useful to “make information available locally” (Q isreplaced with QnS$R")
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

PN

3b e aCQIbC(RIcAa(S)e) =
(3b,c" a(Q)b(R)C/\b(R)c’Aa(S)C’)

Proving a Modal Rule — Straight-forward Calculation

Theorem “Modalrule”: (Q3R) nSc(QnSsR)sR
Proof:
Using “Relation inclusion ”:
Subproof for'vVa e Vcea((Q3R) nS)c=al(QnSsR)sR)c:
Forany 'a’, c:
aC(@QnSsR)3R)c
= (“Relation composition”)
3bealQnSsR Jbab(R)c
(“Relation intersection ”, “Relation composition ”, “Relation converse ”)
ﬂb-u(Q)b/\(Eczoa(s)cz/\b([{)q)/\b(R)
= (“Distributivity of A over 3”
Bb.3cz-u(Q)hAa(S)czAh(R)CZ/\b(R)c

<= (7)) wewenn This is the implication from the previous slide

ﬂbzou(Q)bz/\bz(R)C/\ﬂ(S)c
= (“Distributivity of A over 3”
(3b2 ealQ)bhnab (R)c) ra(S)e
= (“Relation intersection ”, “Relation composition”)

aC@s3R)nSde

Proving a Modal Rule — Straight-forward Calculation (filled)

Theorem “Modalrule”: (Q3R)nSc (QnSsR)R
Proof:
Using “Relation inclusion "
Subproof for'Va e Vcea ((QsR) nS)c=al(QnSsR)sR)c:
Forany 'a’, *c:
a((@QnSsR)3R e
= (“Relation composition”)
Fbea(QnSsR JIbabCR)c
(“Relation intersection ”, “Relation composition ”, “Relation converse ”)
abtﬂ(Q)b/\(3C20ﬂ(s)ﬁ2/\b(R)Cz)/\b(R)
(“Distributivity of A over 3”
Eb.Scz-a(Q)b/\u(S)cZAb(R)cz/\b(R)c
< (“Body monotonicity of 3” with “3-Introduction”)
Gbe @CQIbAa(SYaaanbCR)enb (RO = c]
= (Substitution, “Idempotency of A")
szoa(Q)hz/\hg(R)cAu(S)c
(“Distributivity of A over 3”
(Bbzoa(Q)bz/\bz(R)r)/\a(S)c
= (“Relation intersection ”, “Relation composition”)

a(@3R)ns)e

Theofrem Modalrule”: (Q3R)nS ¢ (QnSsR)sR Proving a Modal Rule
Usm§ Relahon inclusion ”
P

Fmo or\achoa((Q R)mS)c:a((QnSR)yR)c -
A Artificial *Assuming witness® Variant
Assuming (1) ‘a R) n g

Sldepf%)(()f)for()g(%z) E'@h bz A by (R)c /\ a(s)c:

c s is assumption (1

= (“Relation intersection ”, “Relation com osmon)

(Ebzoa(Q)bzAbz(R)c)Aa S)c

= (“Distributivity of A over 3”
3b2-a(Q bz/\bz(R L‘/\H(S)C
Assumm wT‘lesS by sahsf

*

= (“Relatlon composltlon

Jbea(Qns 9R)b/\h(R)c
< (“F-Introduction”)

@(QnSsR”)b/\b(k)c)[b = by]
Sl(,lbshtutmn ass!jmpnon (3), “Identity of A")

b

“Relatjon intersection ”, “Relation composgition ”, “Relation converse ”)
(Q)bzASCz-a(S L‘z/\bz R)c

Assumption (3), “Identity of A
JeoealS cz/\ Z(R

<= (“I-Introduction”)
(a(S o b (R)Cz)[c = c]
= (Substitution, assumption (3), “Identity of A")
true

mg) ¢ A a (S) bylocal property (2):

(
a
(
a
(

TTOUT:
Using “Relation inclusion ”:
Subproof for'Va e Vceal(QsR) NnS)c=al(QnSsR)sRIc:
Forany “a’, *c™:
Assuming (1) a2 CQ; R)nS de:
Assuming witness “b," satisfying (3) a CQ)bhaba CR)cnalS)c
by “Distributivity of A over 3” and “Relation intersection ”
and “Relation composition ” and assumption (1):
aC@nSsRH3R)c
= (“Relation composition ")
3bea(QnSsR Ibab(R)c
<= (“3-Introduction”)
@CQnSsR ™ IbAb(RY)Db = b))
= (Substitution, assumption (3), “Identity of A”)
a(QnSsR ™ Ib
= (“Relation intersection ”, “Relation composition”, “Relation converse ”)
a(Qdhhrndaeal(S)anb, (R
= (Assumption (3), “Identity of A")
Je -a(S)cz /\bz(R)cz
<= (“3-Introduction”)
@(s)anrb(RIa)a =
= (Substitution, assumption (3), “Identity of A”)
true

Descending Chains in Numbers

Consider numbers with the usual strict-order <

and consider descending chains, like 17 >12>9>8>3> ...

Are there infinite descending chains in

o 7Z ?
o N ?
oR ?
o R, ?
e Q, ?
e C ?

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01

General Induction, Trees

Plan for Today
o General Induction (LADM section 12.4)

@ Tree Datastructures; Structural Induction

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01

Part 1: General Induction — LADM Section 12.4

Descending Chains in Numbers

Consider numbers with the usual strict-order <

and consider descending chains, like 17 >12>9>8>3> ...

Are there infinite descending chains in

o7 ? s 0>-1>-2>-3>...
o N ? — No

oR ? — 0>-1>-2>-3>...

o R, ? — s rlsa2sals
e Q. ? — 1>1/2>1/3>1/4> ...
e C ? — no “default” order!

Relations € with no infinite (descending) &-chains are well-founded.

Loops terminate iff they are “going down” some well-founded relation.

Idea Behind Induction — How Does It Work? — Informally
Proving (V x:t e P) by induction, for an appropriate type t:
@ You are familiar with proving a base case and an induction step
o The base cases establish P[x :=], for each S that are “simplest +”
@ The induction steps work for x : t for which we already know P[x := x]
and from that establish P[x := C x] for elements C x : t that “are slightly more
complicated than x”.
@ Since the construction principle(s) (“C”) used in the induction step
is/are sufficiently powerful to construct all x : ¢,
this justifies (V x:t o P).

Idea Behind Induction — How Does It Work? — Informally
Proving (¥ x:f P) by induction, for an appropriate type I
o You are familiar with proving a base case and an induction step
o The base cases establish P[x = 5], for each § that are “simplest £
o The induction steps work for x : for which we already know P[x = x]
and from that establish P[x := C x] for elements C x : f that “are slightly more
complicated than x".
o Since the construction principle(s) (“C") used in the induction step
is/are sufficiently powerful to construct all x : f,
this justifies (Vx:1 o P).

Looking at this from the other side:

o Each element x : t is either a “simplest element” (“S”), or constructed via a
construction principle (“C”) from “slightly simpler elements” y,
thatis, x=Cy.

o In the first case, the base case gives you the proof for P[x := S].

@ In the second case, you obtain P[x := Cy] via the induction step
from a proof for P[x :=y], if you can find that.

@ You can find that proof if repeated decomposition into S or C
always terminates.

Idea Behind Induction — Reduction via Well-founded Relations
@ Goal: prove (V x: T o P x) for some property P: T -~ B (with —occurs(‘x’, ‘P’))
o Situation: Elements of T are related via _&_: T — T — B with “simpler” elements
(constituents, predecessors, parts, ...)
“y 3 x” may read “y precedes x” or “y is an (immediate) constituent of x” or “y is
simpler than x” or “y is below x”...

o If for every x : T there is a proof that
if P y for all predecessors y of x, then P x,

then for every z : T with —(P z):
o there is a predecessor u of z with ~(P u)
e and so there is an infinite &-chain (of elements ¢ with ~(P c))
starting at z.

Theorem Mathematical induction over (T,<3):
If there are no infinite &-chains in T, that is, if < is noetherian, then:

(Vx e Px) = (VYxeo (Yy | y3xePy) = Px)

“(T,<3) Admits Induction” (LADM Section 12.4)

Definition (12.19): (T,<) admits induction iff the following principle of mathematical
induction over (T,<3) holds for all properties P: T — B:

(Vx e Px) = (Vxe (Vy | ySx e Py) = Px)
Definition (12.21): (T,<3) is well-founded iff every non-empty subset of T has a minimal
element wrt. 3, that is:

VS:setT o S#{} = FJx:TexeSAVy:T|y3xey¢sS

Theorem (12.22): (T,) is well-founded iff it admits induction.
Definition (12.25): (T,<3) is noetherian iff there are no infinite &-chains in T.
Theorem (12.26): (T,) is well-founded iff it is noetherian.

Theorem Mathematical induction over (T,<3):
If there are no infinite &-chains in T, that is, if < is noetherian, then:
(Vx e Px) = (Vxe (Vy | ySx e Py) = Px)

Mathematical Induction in N
Consider 3 :N->N-Bwith (x 2y) = (y & x) = (y=sucx).
Mathematical induction over (N,<):
(Vx:N e Px)
= ((12.19) Math. induction; Def. 3)
(Vx:Ne (Vy:N | sucy=x e« Py) = Px)

-

2= "suc_

= (Disjoint range split, with true=x=0vx>0)
(Vx:N | x=0e (Vy:N | sucy=x e Py)=Px)A
(Vx:N] x>0e (Vy:N | sucy=x ¢ Py)=Px)
= (One-point rule; (8.22) Change of dummy)
((Vy:N | sucy=0s Py)=P0)A
(Vz:Ne (Vy:N | sucy=sucz o Py) = P (sucz))
_ ((8.13) EmPty range, with sucy =0 ;fulse;)
Cancellation of suc , (8.14) One-point rule for ¥
POA(Vz:N e Pz = P(sucz))

Mathematical Induction in N (ctd.)
Mathematical induction over (N, "suc'):

(Vx:NePx) = POA(Vz:Ne Pz = P(sucz))

(Vx:NePx) = POA(Vz:NePz=P(z+1))

Absence of infinite descending "suc’ chains is due to the inductive definition of N with
constructors 0 and suc : “...and nothing else is a natural number.”

Mathematical induction over (N, <) “Complete induction over N”:
(Vx:NePx)=(Vx:Ne (Vy:N | y<xePy) = Px)

Complete induction gives you a stronger induction hypothesis
for non-zero x — some proofs become easier.

Example for Complete Induction in N

Mathematical induction over (N, <) “Complete induction over N”:
(Vx:NePy)=(Vx:Ne (Vy:N | y<x e Py) = Px)
Theorem: Every natural number greater than 1 is a product of (one or more) prime numbers.
Formalisation: Vnn:N e 1 <n=(3B:BagN | (Vp | pEB e isPrimep) e bagProd B = n)
Proof:
Using “Complete induction”:
For any 'n":
Assuming Vm | m<n e1<m=(3B:BagN | (Vp | pEB e isPrimep) e bagProd B = m)":
Assuming ‘1 <n':
By cases: “isPrime n*, = (isPrime n)*
Completeness: By “Excluded middle”
Case “isPrime n*:
...“3-Introduction”: B:= 3 ...
Case “-(isPrime n)™:
...thenn=mny-ny withny <n>mny
... with witness: bagProd By = ny and bagProd B, = 1,
...then bagProd (B1UB,) = n

Mathematical Induction on Sequences

Cons induction: Mathematical induction over (Seq A,3) where
S :={x:A;xs,ys:Seq A | xaxs=ys e (xs,ys)}
(Vxs:SeqA e Pxs) = Pen(Vxs:SeqA | Pxs e (Vx:A e P(xaxs)))
Snoc induction: Mathematical induction over (Seq A,3) where
3 ={x:Ajxs,ys:Seq A | xsex=ys e (xs,ys)}
(Vxs:SeqA e Pxs) = Pen(Vxs:SeqA | Pxs e (Vx:A e P(xsvx)))
Strict prefix induction: Mathematical induction over (Seq A,<3) where
3 :={us,xs,ys:Seq A | us+ e nxs~us=ys e (xs,ys)}
(Vxs:SeqA e Pxs) =
(Vxs:SeqA o (Vys:SeqA | ys<3xs e Pys) = P xs)

Different induction hypotheses make certain proofs easier.

Structural Induction

Structural induction is mathematical induction over, e.g.,
o finite sequences with the strict suffix relation
o expressions with the direct constituent relation
@ propositional formulae with the strict subformula relation
o trees with the appropriate strict subtree relation
@ proofs with appropriate strict sub-proof relation

@ programs with appropriate strict sub-program relation

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-01

Part 2: Inductive Datastructures: Trees

Inductively-defined Tree Data Structures

Huffman trees

data BTree = EmptyB data HTree = Leaf Char data Tree
| Branch BTree Int BTree | HBranch HTree HTree = Branch Int [Tree]

Q Q
o b OlOLD
@ ® © oL,

bt1left = Branch hTree1 = HBranch (Leaf 'e’)
Branch EmptyB 2 EmptyB; (HBranch
(3 i PYE) (HBranch (Leaf 't) (Leaf ') || t1left = Branch 7
(Leaf ") [Branch 3 [Branch 2 []

bt1right = Branch decode hTree1 "100110” = "the” ,Branch 5 [Branch 11 []]
EmptyB ,Branch 10 []

10
(Branch EmptyB 11 EmptyB) !

Binary (search) trees Arbitrarily branching

(Branch EmptyB 5 EmptyB)

Binary Trees (Exercise 8.3)

Binary (search) trees
! ry() : Tree A

Tree A - A - Tree A - Tree A

Declaration: A
Declaration: 2N NI

data BTree = EmptyB
| Branch BTree Int BTree

Declaration: tl1 : Tree N
a Axiom “Definition of “t1'”:
tl=((a42na) 430 (a45n 4))

VAN
(& 4108 (A 411 4))

(3) (0
@ &® O

bt1left = Branch
(Branch EmptyB 2 EmptyB)
3

Fact “Alternative definition of “t1'":
t1=(T2143nT51)
VAN
(a 24108 T 11)

(Branch EmptyB 5 EmptyB)

btiright = Branch
EmptyB
10
(Branch EmptyB 11 EmptyB)

Binary Trees (Exercise 10.4)

Declaration: A : Tree A
Declaration: _an_ i Tree A - A - Tree A - Tree A
Declaration: t1 : Tree N
Axiom “Definition of “t1'": 0
tl=((a242na) 430 (a45n 4))
47 (3) 9

(& 4108 (A 411 4))

@ ® O

Fact “Alternative definition of “t1'”:
tl=(T21 438751
47
(A 2410 n T 11 J)
Axiom “Tree induction”:
P[t = &l
A (V1 r:Tree A; x : A
e P[t=1] AP[t=1r] =
)

- (Vt:

Plt=14axnr]

Tree A + P)

Using the Induction Principle for Binary Trees

Theorem “Self-inverse of tree mirror”: V t : Tree A « (t 7) "~ =t
Proof:
Using “Tree induction”:

Subproof for ‘a ™ " = a': By “Mirror
Subproof for 'V 1, r : Tree A; x : A

e (L) "=1nA(r") r
= (Laxnr)” " =(Laxnr):

For any ‘1, r, x':

Assuming “IHL” “(l1 7) ~
“IHR” “(r 7) ~

"

x s

1,
[

(Laxnr) ™
=(“Mirror”)
(L") axn (r”
=(Assumptions “IHL” and “IHR”)
laxnr

Axiom “Tree induction”:
P[t = al
A (V1 r:Tree A; x : A
cPlt=11aAPlt=r] = Plt=1axnr]

)
= (Vt: Tree A+ P)

Recall: Induction — Reduction via Well-founded Relations
@ Goal: prove (V x: T o P x) for some property P: T - B (with —occurs(‘x’, ‘P’))
o Situation: Elements of T are related via _&_: T — T — B with “simpler” elements
(constituents, predecessors, parts, ...)
“y 3 x” may read “y precedes x” or “y is an (immediate) constituent of x” or “y is
simpler than x” or “y is below x”...

o If for every x : T there is a proof that
if P y for all predecessors y of x, then P x,

then for every z : T with —(P z):
o there is a predecessor u of z with ~(P u)
e and so there is an infinite &-chain (of elements ¢ with ~(P ¢))
starting at z.

Theorem (12.19) Mathematical induction over (T,<):
If there are no infinite &-chains in T, that is, if < is well-founded, then:

(VYx e Px) = (VYxe (Yy | y3xePy) = Px)

Induction Principle for Binary Trees
Declaration: a i Tree A

Declaration: 4N Tree A > A - Tree A > Tree A 0
Fact “Alternative definition of “t1'":
t1l=(T2143nT51) e @
a47n
(a 210 n T 11) 9 e @
Declaration: _3_ : Tree A - Tree A - B
Axiom “HTree 3":
(t 3 a)

fals
t =

e
A (E=2(Laxnr) 1T v t=r)

Theorem (12.19) Mathematical induction over (T,<3), if 3 is well-founded
(Vx e Px) = (Vxe (Vy | ySx e Py) = Px)

Equivalently:
Axiom “Tree induction”:
P[t = a]
A (VY1 r:Tree A; x : A
*Plt=11 AP[t=r] = Plt=14axnrl]

)
= (Yt : Tree A+ P)

Trees are Everywhere!
@ Search trees, dictionary datastructures — BinTree, balanced trees
@ Huffman trees — used for compression encoding e.g. in JPEG
@ Abstract Syntax Trees (ASTs) — central datastructures in compilers
— Recall: For expressions, we write strings, but we think trees. ..
° ...
o Every “data” in Haskell defines a (possibly degenerated) tree datastructure
In programming:

o Trees are easy to deal with.
@ Graphs, even DAGs (directed acyclic graphs), can be tricky

o — even with good APIs.

o Choosing “the right” API is already hard!

o The same holds for relations!

— Because relations are graphs. ..

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-03

Change of Dummy in A1.3, Functions,)

A1.3 — Direct Approach to “Invariant for ‘elem””
Theorem “Invariant for “elem” "
(xs # €) A (Jus eus ~ xs = x5p A (b = x € us))
= ifhead xs = xthenb:= trueelse skipfi; xs: = tailxs]
(3us e us ~ xs = x50 A (b = x € us))
Proof:
(Jus e us ~ xs = xs59 A (b = x € us))
[xs:= tailxs] < (“Assignment” with substitution)
(Jus e us ~ tailxs = xsp A (b = x € us))
[ifheadxs = xthenb: = true else skip fi
1< (Subproof:
Using “Conditional ”:
Subproof:
7 =a=e=e Long subproof
Subproof:
7 =a=e=e Long subproof with a lot of duplicated material
)

(xs # €) A (Jus eus ~xs =2x50 A (b=xe€us))

A1.3 — Direct Approach to “Invariant for ‘elem’” — Looking More Closely

Theorem “Invariant for “elem® ”:
(xs # €) A (3us e us ~ xs = x5p A (b = x € us))
= ifheadxs = xthenb:= trueelse skip fi; xs: = tailxs]
(Jus eus ~ xs = xs9 A (b = x € us))
Proof:
(Jus eus ~ xs = x5 A (b = x € us))
fxs:= tailxs] < (“Assignment” with substitution)
(Jus e us ~ tailxs = xsp A (b = x € us))
[ifheadxs = xthenb:= trueelse skipfi <« (Subproof:
Using “Conditional ”:
Subproof:
? we===x Long subproof containing:
= < (“3 - Introduction”)
= (us ~tail xs = x50 A ...)[us := us > head xs)

Subproof:

? w====x Long subproof with a lot of duplicated material, in particular:
= < (“3 - Introduction”)
sameme (us ~ tail xs = x5 A ...)[us = us > head xs]

)

(xs # €) A (3us e us ~ xs = xs59 A (b = x € US))

Recall: Changing the Quantified Domain

(Ti] 2<i<10 o)
= ((8.22) “Change of dummy” with *(_+_ 2) hasAnInverse®)
(k| 0<k<8e (k+2)2)

(8.22) Change of dummy: Provided f has an inverse and -occurs(‘y’, ‘R, P")
(that is, “y is fresh”), then:
(xx | ReP) = (xy | Rlx:=fy] e Plx:=fy])

Above: fy =2+y and flx=2x-2

A function f has an inversef’1 iff x=fy = vy :f’1 X

Recall: Changing the Quantified Domain — Variants — see Ref. 5.1

Theorem (8.22) “Change of dummy in »
VfeVge
(VxeVyex=fy = y=gx)
= ((+xIR P
= (#y I R[x = fy] o Plx = fy]))

Theorem (8.22.1) “Change of dummy in * — variant ”:
(VxeVyex=fy = y=gx)
= ((*x|RArx=f(gx) e P)
= (xy I R[x = fy] « Plx = fy]))

Theorem (8.22.3) “Change of restricted dummy in * "
VfeVge
(Vx|Re (Vyex=Ffy
= ((xIR P

=y =gx)
)
= (*y | R[x = fy] o P[x = fy]))

Change of Dummy in A1.3 — (8.22)?
(3us e us ~ tailxs = xsp A (b = x € us))
=(7)

(Jus e us » headxs ~ tailxs = xsp A (b = x € us » headxs))

Trying to use the following to prove this:

Theorem (8.22) “Change of dummy in 3"
(VxeVyex=fy = y=gx)
S (@R eP)
= (Y I R[x = fy] o Plx == fy]))

What are the functions involved?

Declaration: f;: A > Seq A — Seq A
Axiom “f;":fyxys = ys » x
Declaration: init: Seq A — Seq A

Axiom “init”: init (xs > y) = xs ===*== like tail, only specified for non-empty sequences

For being able to use (8.22) “Change of dummy in 3” with f, ¢ := fi (head xs), init, we would
need: (YxseVysexs=f xys = ys = init xs)
However, the <=-part of the equivalence here is clearly not valid.

Change of Dummy in A1.3 — (8.22.1)?
(Jus e us ~ tailxs = xsop A (b = x € us))
<= (7)
(Jus e us » headxs ~ tailxs = xsp A (b = x € us » head xs))
We do have the =-part of (Vxs e Vys e xs = fixys = ys = initxs):
Lemma “f; toinit”: VXxs e Vys e xs = fixys = ys = initxs
For applying
Theorem (8.22.1) “Change of dummy in 3 — variant ”:

(VxeVyexs=fy = y=gx)
= ((3x|RAax=f(gx)eP)

= By IR[x = fy] o Plx = fy])
, the range predicate of the LHS of the consequent needs to be in shape R A x = f (g x).

Since we only need a consequence calculation, not an equivalence, we can achieve this
easily using “Range weakening for 3”.

Change of Dummy in A1.3 — (8.22.1)!
Theorem (8.22.1) “Change of dummy in 3 — variant”:
(VxeVyex=fy = y=gx)
= (@xIRAx=f(gx) s P)
= (Y IR[x = fy] o Plx = fy]))

Declaration: fi:A -~ Seq A -~ Seq A
Axiom “f; ":fy xys = ys > x
Declaration: init: Seq A —~ Seq A
Axiom “init ”: init (xs » y) = xs === like tail, only specified for non-empty sequences
Lemma “f; toinit”: VXs e Vys e xs = fxys = ys = initxs
The fragment of the proof of “Invariant for “elem’” then becomes:

Jus e us ~ tailxs = xsop A (b = x € us)
< (“Range weakening for 3")

Jus | true A us = f; (head xs) (initus) e us ~ tailxs = xsp A (b = x € us)
= (“Change of dummy in 3 — variant ” with “f; to init”)

Jvs | true[us := fi (head xs) vs] e (us ~ tailxs = xso A (b = x € us))[us := f; (head xs) vs]
= (Substitution, “f; ")

Jus e us » head xs ~ tailxs = xsp A (b = x € us » head xs)

Look Again at the Functions
Declaration: fi: A - Seq A — Seq A
Axiom “f; ":fy xys = ys > x
Declaration: init: Seq A - Seq A
Axiom “init ”:init (xs > y) = xs ===== like tail, only specified for non-empty sequences

We used the name “init” because we know it from Haskell.
Don’t we know a name for f; as well? — flip snoc — flip_»_
Same problem as for “init”: We know “flip”, but it is not imported in the current scope. ..
In doubt, reproduce known definitions and theorems:

Declaration: flip: (A - B - C) - (B> A - C)

Axiom “flip":flipfyx = fxy
For the property we need here, the same proof:

Lemma “flip-snoc to init”: V xs e Yys e xs = flip_»>_xys = ys = initxs

Proof:

For any "xs’, ys™:
Assuming (1) *xs = flip_>_ xys™:

init xs
= (Assumption (1))
inib [flin . am

How to Prove that flip is Self-inverse?

Declaration: flip: (A - B - C) - (B - A - C)
Axiom “flip”:flipfyx = fxy

Theorem “Self-inverse “flip* ”: flip (flip f) = f
Proof:

flip (flip /)Ry
“iniong
fiip f 4R
= ﬂ%a%)
A
The missing piece:

Theorem “Function extensionality”: f =g = Vx e fx =gx

Proving that flip is Self-inverse

Declaration: flip: (A - B - C) - (B - A - C)
Axiom “flip”:flipfyx = fxy

Theorem “Function extensionality”: f =g = Vx e fx = gx

Theorem “Self-inverse “flip> ”: flip (flipf) = f
Proof:
Using “Function extensionality ”:
Subproof for vV x e flip (flipf) x = fx*:
For any "x™:
Using “Function extensionality "
For any "y
flip (flipf) xy
= (“flip”)
flipfyx
= (“flip")
fxy

More Conveniently Proving that flip is Self-inverse

Declaration: flip: (A -~ B - C) - (B - A - C)
Axiom “flip”:flipfyx = fxy

Theorem “Function extensionality ”: f = ¢ = Vxe fx = gx

Theorem “Function extensionality 2”: f = ¢ = Yx,y e fxy =gxy
Proof:
By “Function extensionality ”, “Nesting for ¥ ”

Theorem “Self-inverse “flip* ”: flip (flip f) = f
Proof:
Using “Function extensionality 2 ”:
For any “x, y:
flip (flipf) xy
= (“flip”)
flipfyx
- (“flip”)
fxy

Some “Prelude” Functions and Some of Their Properties
Declaration:id: A - A
Axiom “Identity function”:id x = x

Declaration: _o_:(B - C) - (A - B) - (A - ()
Axiom “Function composition”: (g o f) x = g (f x)

Theorem “Associativity of o ”:h o (§ o f) = (h o g) o f

Declaration: curry : ({A, B}y > C) - (A > B > C)
Declaration: uncurry: (A - B -~ C) - ({A, B} - C)

Axiom “curry”: curtygxy = g(x,y)
Axiom “uncurry “:uncurry f (x, y) = fxy

Theorem “curryouncurry ”: curry (uncurry f) = f

Declaration: swap:{A, B) - {B, A)
Axiom “swap”: swap (x,y) = (y, x)

Theorem “flipocurry ”: flip (curry f) = curry (f o swap)

And If We Don’t Want to Define flip?

Declaration: flip: (A - B - C) - (B - A > C)
Axiom “flip":flipfyx = fxy
We can use nameless functions instead of flip snoc:
o In Haskell: \ X ys > ys ++ [x]
o In CALCCHECK: Ax e lyseys > x
e \-abstractions follow the quantification notation pattern “as far as possible”
@ Module FunctionAbstraction provides in particular S-reduction

o Module Quantification.GenQuant.Lambda provides those quantification properties that
do carry over.

A-Calculus
A-abstraction creates nameless functions: If E: B, then (Ax : A @ E):A—B .

The following are usually introduced as left-to-right reduction rules:
(Ax e E)a = E[x :=a]
(Ax e Fx) = F

In addition, “a-conversion” is capture-avoiding renaming of bound variables.
Function extensionality follows from 7-reduction (and is actually equivalent):

Theorem “j-reduction ”:

Theorem “1n-reduction ”: — provided -occurs(‘x’, 'F’)

Theorem “Function extensionality”: f = ¢ = Yx e fx =gx
Proof:
Using “Mutual implication ”:
Subproof for'f = g = Vx e fx =gx:
Assuming f = ¢™:
For any “x": By assumption ’f = g
Subproof:
Assuming (1) 'Vx e fx = gx™:

(“n-reduction”)

X e X

= (Assumption (1)
Axegx

= (“n-reduction”)

— implicitly using quantification Leibniz)

A-Abstraction produces Functions, not Univalent Relations

A-abstraction creates nameless functions: If, E: B (and R : B) with x : A, then:

o (Ax:AeE) is a function of function type A-B
o{x e (wE) = {xyl|y=E isamapping
and an element of theset | A , > B |

o A\x:A | ReE)

For arguments a : A for which R[x := a] evaluates to false, the result is not specified.

is a function of function type A->B

o {x | Re(x,E)}={x,y | RAy=E} isaunivalent relation (partial function)
and an element of theset | A ,+ B,

Wehave: Va:A | -R[x:=a] e a ¢ Dom{x | R e (x,E)}

Example: For the partial function Pred = { x,y | x =sucy}, wehaveO ¢ Dom Pred

Big-O

Does O(n - log n) talk about n? — Abuse of notation!

O(n - log n) talks about the function “An e n - logn”!
Declaration: O: (R - R) - set (R - R)

Axiom “Definition of big O ”:
feOg = 3bedclc>0eVx|x>beabs(fx) <c-gx

Theorem: (Ax e 4 - x +7) € O(Ax o x)
Proof:
(Axed-x+7) e O(Ax ox)
{ “Definition of big 0")
Jbe3dclc>0eVx|x>boeabs((Axed -x+7)x) <c-(Axex)x
{ “B-reduction ”, substitution)
Gbedclc>0eVx|x>beabs(d-x+7) <cex
= (“3-Introduction”)
(3clc>0eVx|x>beabs(d -x+7) <c-x)[b:=2]
= (Substitution, “Trading for 3")
(Gcoc>0AVx|x>20abs(4-x+7) <c-x)
P ”}lmrodumon)
¥ly>2eabs(d-xi7) <c»x)[c = 8]
(Submmnon Fnct 8 > 0, “Identity of A"
(Vxlx>2eabs(d-x+7) <8 x)
Proof for this:
Forany "x" satisfying 2 <
Side proof for (1) 4 - x + 7 > 0%

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-06

Relation-Algebraic Calculational Proofs

Plan for Today

@ Relation-algebraic calculational proofs — “abstract relation algebra”

Relation-algebraic proof ...
o ... will be the main topic of Exercises 9.*
o ...will be on Midterm 2

@ ...is easier than quantifier reasoning

Recall: Translating between Relation Algebra and Predicate Logic

R=S§ = (Vx,yox(R)yzx(S)y)
Res = (Vxy e x(RIy=x(S)y)
u({}dv = false
uCAxB)v = ueAAveB
u(~S)o = ﬂ(u(S)v)
u(SuT)v = u(S)vvu(T)v
u(SnT)v = u(S)v A ulTv
u(s-Tv = u(S)v/\—‘(u(T)U)
u(S>TIo = u($)o = u(T)o
uidA)o = u=veA
u(]I)v = U=0v

u(R“)v = U(R)u

u(R3S)o = (x e u(R)x/\x(S)v)
u(R\S)o = (Vxe x(R)u = x(5)o)
u(S/R)o = (Vxe 9(R)x = ulS)x)

Using Extensionality/Inclusion and the Translation Table, you Proved:

Theorem “Self-inverseof ~”:R =~ = R B

Theorem “Converseofn”: (RnS) " = R nS~ All Subexpressmns have B or _o_
Theorem “Converse of"”, (R3S) =S 3R~ types!

Theorem “Converse of 1”: I7 =1 Equations of relational expressions:
Theorem “Isotonicityof ~”: RcS = R~ c§ Relation algebra

Theorem “Converseof u”: (RuUS) = R US

Theorem “Distributivity of joveru”:Q s (RuS) = Q3R U Q¢S

Theorem “Sub-distributivity of; overn”: Q 3(RnS) c Q3R n Qs3S

Theorem “Left-identity of §” * Idcnhty ofs”:]I $R =R

Theorem “Right-identity of §” “Identity of §”: R 5§ I = R
Theorem “Composition of reflexive relations ”: reflexive R = reflexive S = reflexive (R 5 S)
Theorem “Converse of reflexive relations ”: reflexive R = reflexive (R 7)
Theorem “Converse reflects reflectivity ”: reflexive (R 7) = reflexive R
Theorem “Converse of transitive relations ”: transitive R = transitive (R)
Theorem “Associativity of §”: (Q § R) §S = Q5 (R35S)
Theorem “Distributivity of joveru”: (QU R) §S = Q35S U R3§S
Theorem “Sub-distributivity of jovern”: (Q N R) §S ¢ Q§S n R3S
S

Theorem “Monotonicity of ”:Q € R = Q35S c R

Theorem “Converse of {}”: {} ~ = {}

Theorem “Co- dlfunctlonahty ” “Hesitation”: R ¢ R3R §R

Theorem “Modalrule”: (QsR)nScQ3s(RnQ 38)

Theorem “Dedekind rule”: (Q3R) n S < (QnSsR)s(RnQ 359)
Theorem “Schroder”:Q §R €S = ~S3R ¢~ Q

Relation Algebra
@ For any two types B and C, on the type B <> C of relations between B and C we have
the ordering ¢ with:
o binary minima _n_and maxima _u_ (which are monotonic)
o least relation {} and largest (“universal”) relation U (= . B ,x, C)
o complement operation ~_ such that Rn~R = {} and Ru~R=U
o relative pseudo-complement RS = ~RUS
@ The composition operation _5_
o is defined on any two relations R: B <> C;and S : C; <> Diff C; = C;
e is associative, monotonic, and has identities I
o distributes over union: Q3(RuS) =QsRuQs3S
@ The converse operation _~
e maps relationR:B <« CtoR :C< B
o is self-inverse (R™~ = R) and monotonic
e is contravariant wrt. composition: (R3S5)” =S §R”
o The Dedekind rule holds: Q3RnS ¢ (QnS3R™)$(RnQ”5S)
@ The Schréder equivalences hold:
QsRcS = Q5~Sc~R and Q3RcS = ~S3R" c~Q
@ § has left-residuals S /R = ~ (~S§R”) and right-residuals Q\S = ~ (Q” §~S)

Recall: Monotonicity of Relation Composition

Relation composition is monotonic in both arguments:

QcR = Qs3Sc R3S

QcR = P3Q < P3R
We could prove this via “Relation inclusion” and “For any”, but we don’t need to:
Assume Q ¢ R, which by (11.45) is equivalent to QUR = R:
Proving Q3ScR3S:

R3S

Recall: Relation-Algebraic Proof of Sub-Distributivity
QcR = P3QcP3R
(Q5R)N(Qs5S)

Use set-algebraic properties and Monotonicity of §:

to prove: Subdistributivity of 5 over n: Q(RnS) ¢

Q3(RnS)
= (Idempotence of n (11.35))

(Q3(RnS))n(Q3(RnS))
¢ (Mon. of n with Mon. of 5 with Weakening XnY ¢ X)

= (Assumption QUR =R)) (Q5(RnS$))n(Qs55)
P Mon. of n with Mon. of § with Weakening XnY ¢ X
(QUR)3 S_ o c — without two-sided monotonicity,)
= ((14.23) Distributivity of § over u) separate C-steps are needed in CALCCHECK!
Q3SURSS (Q3R)N(Q3S)
2 ((11.31) Strengthening Sc SuT)
Q3S
Recall: Properties of Homogeneous Relations Homogeneous Relation Properties are Preserved by Converse
reflexive I ¢ R Vb:B e b(R)D)
reflexive I ¢ R |[(Vb:Beb(RDD) irreflexive InR = {} (b:B e =(b(RD))
irreflexive InR = {}|(Vb:B e ~(b(RDD)) symmetric R = (V b, b(R)c=c(R)b)
symmetric R° = R |[(Vbc:B e b(R)c=c(R)ID) antisymmetric | RAR™ ¢ T | (Vb (/\)L nc(RIb = 1 1—[)
antisymmetric | RNR* ¢ 1 | (Vb,ce b(RIcnc(RIb=b=c) asymumetric RoR” = (bc:B e b(R)c = ~(c(RIb)
- Z - ; ~ transitive RsR ¢ R | (¥b.c,d e b(RIc(R)Li = b(R)L{)
asymmetric RNR” = {}|(Vbc:B e b(R)c=-(c(R)D)) -
- idempotent RsR = R
transitive RsR ¢ R [(Vbc,d e b(R)cacC(RId=b(R)d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric. (E.g., =, =)

Ris a (partial) order on B
iff itis reﬂexive, transitive, and antisymmetric.
Eg, <2520

Ris a strict-order on B
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, > ¢,0)

Theorem: If R : B < B is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/
transitive/idempotent, then R™ has that property, too.

Proof: Reflexivity: Transitivity:
R R”sR”
> (Mon. ~ with Reflexivity of R) | = (Converse of 3)
I (R3R)”
= (Symmetry of I') ¢ (Mon. ~ with Trans. of R)
I R~

Reflexive and Transitive Implies Idlempotent

reflexive I ¢ R|[(Vb:B e b(R)D)
transitive | R§R ¢ R | (Vb.c.d e b(R)cCR)d = b (R)d)
idempotent | R§R = R

Theorem: If R : B <> B is reflexive and transitive, then it is also idempotent.

Reflexive and Transitive Implies Idlempotent — Direct Approach

Theorem “Idempotency from reflexive and transitive ”:

reflexive R = transitive R = idempotent R reflexive I

n

Proof:

transitive R3R

=

Assuming ‘reflexive R*, “transitive R:
idempotent R

idempotent | R§R

= (“Definition of idempotency ”)
R3R =R
(“Mutual inclusion”)
RsRcR A RcR3R
(“Definition of transitivity ”, assumption “transitive R*, “Identity of A")
RcR3R
= (“Identity of 3)
RsIcRsR
<« (“Monotonicity of 5")
TeR
= (Assumption “reflexive R* with “Definition of reflexivity ”)
true

Reflexive and Transitive Implies Idlempotent — “and using with”

Theorem “Idempotency from reflexive and transitive ”:

Reflexive and Transitive Implies Idlempotent — Semi-formal

reflexive R = transitive R = idempotent R reflexive rcR reflexive I ¢ R|(Vb:Beb(R)D)
Proof: transitive | R§R ¢ R transitive | RsR ¢ R | (Vb.c.d o« b(R)c(R)d = b(R)d)
Assuming ‘reflexive R* and using with “Definition of reflexivity ", : N .
idempotent | RgR = R sR =
“transitive R and using with “Definition of transitivity ”: P ? idempotent | R$R R
idempotent R
= (“Definition of idempotency ”) Theorem: If R : B < B is reflexive and transitive, then it is also idempotent.
RsR =R
= (“Mutual inclusion ”) Proof: By mutual inclusion and transitivity of R, we only need to show R ¢ R$R:
RsRcR A RcR3R
= (Assumption “transitive R°, “Identity of A") R
ReR3R = (Identity of §
= (“Identity of 3") { yofs)
R3sIcR3R Rs 1
< ;AIM;“OtO"iC“Y of5”) ¢ (Mon. ; with Reflexivity of R)
<
= (Assumption “reflexive R*) R 3R
true
Reflexive and Transitive Implies Idempotent — Cyclic c-chain Proving * = Most Homogeneous Relation Properties are Preserved by Intersection
Theorem “Idempotency from reflexive and transitive ”: - reflexive I ¢ R symmetric R = R
: - . reflexive I ¢ R - - - -
reflexive R = transitive R = idempotent R irreflexive InR = {} antisymmetric | RNR™ ¢ 1
Proof: transitive RsR ¢ R — -
i) X X e . - transitive RsR ¢ R asymmetric RNR™ = {}
Assuming “reflexive R* and using with “Definition of reflexivity ", idempotent | R§R = R -
“transitive R* and using with “Definition of transitivity ”: idempotent | R§R = R

Using “Definition of idempotency "
Subproof for 'R § R = R

R3R

c (Assumption “transitive R")
R

= (“Identity of 3")
R3I

< { “Monotonicity of 3 with assumption “reflexive R*)
R3R

Using cyclic =-chains to prove equalities requires activation of antisymmetry of &.

Theorem: If R, S : B < B are reflexive/irreflexive/symmetric/ antisym-
metric/ asymmetric /transitive, then Rn S has that property, too.

Proof: Reflexivity: Transitivity:
RnS (RnS)3(RNS)
2 (Mon. of nwith Refl. S)| ¢ (Sub-distributivity of 5 over n)
Rl (R3R)n(R5S)n(S5R)n(S3S)
2 (Mon. of nwith Refl. R)| ¢ (Weakening XnY ¢ X)
Inl (R3R)n(S35)
= (Idempotence of n) ¢ (Mon. n with transitivity of Rand S)
1 RnS

Most Homogeneous Relaton Properties are Preserved by Intersection

reflexive I ¢ R symmetric R* = R
irreflexive | InR = {} antisymmetric | RNR™ ¢ I
transitive RsR ¢ R asymmetric RnR™ = {}
idempotent | R§R = R

Theorem: If R, S : B < B are reflexive/irreflexive/symmetric/ antisym-
metric/ asymmetric /transitive, then Rn S has that property, too.

Counter-example for preservation of idempotence:

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ¢ R symmetric R* = R
irreflexive | InR = {} antisymmetric | RnR™ ¢ I
transitive RsR ¢ R asymmetric RNR™ = {}
idempotent | R§R = R

Theorem: If R, S : B < B are reflexive/irreflexive/symmetric, then Ru S has that

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ¢ R symmetric R* = R
irreflexive | InR = {} antisymmetric | RNR™ ¢ I

transitive RsR ¢ R asymmetric RnR™ = {}
idempotent | R§R = R

Theorem: If R, S : B < B are reflexive/irreflexive/symmetric, then RuS has that
property, too.

Counter-example for preservation of transitivity:

property, too. Irreflexivity:
Proof: In(RUS)
Reflexivity: = (Distributivity of nover u)
1 (InR)u(InS)
¢ (Reflexivity of R') = (Irreflexivity of Rand S)
R (ot
¢ (Weakening X c XuY') = (Idempotence of U)
RuS {
Weaker Formulation of Symmetry
reflexive I ¢ R symmetric R =
irreflexive | InR = {} antisymmetric | RnR™ ¢ 1
transitive RsR ¢ R asymmetric RnR” = {}
idempotent | RsR = R

For proving symmetry of R,S : B < B, it is sufficient to prove R” ¢ R.
In other words:
Theorem: If R” ¢ R, then R™ = R.
Proof: By mutual inclusion, we only need to show Rc R™:
R
(Self-inverse of converse)
(R7)”
c (Mon. of ~ with Assumption R” ¢ R)
R~

Symmetric and Transitive Implies Idempotent
symmetric R~ = R|(Vboc:Be b(R)c=c(R)b)
transitve | R3R ¢ R| (vb.c.d « b(R)c(RId = b(R)d)
idempotent | RsR = R

Theorem: A symmetric and transitive R : B < B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ¢ R§R:
R
= (Idempotence of n, Identity of §)
RsInR
(Modalrule QsRnS < Q3(RnQ755))
R3(I n R"3R)
(Mon. 5 with Weakening XnY c X)
R3R™3R
= (Symmetry of R)
R3R3R
(Mon. ; with Transitivity of R)
R3R

n

n

n

Symmetric and Transitive Implies Idempotent
symmetric | R = R|(Vbc:Beb(R)c=c(RIb)
transitive | RgR ¢ R | (vb.c.d « bCR)c(R)d = b (R)d)
idempotent | R§R = R

Theorem: A symmetric and transitive R : B <> B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ¢ R§R:
R
= (Idempotence of n, Identity of §)
IR nR
c (Modalrule QsRnS < (QnSiR)3R))
(InRgR)3R
c (Mon. 5 with Weakening XnY c X)
R3R"3R
= (Symmetry of R)
RsR3R
¢ (Mon. 5 with Transitivity of R)
R3R

Modal Rule for “Symmetric and Transitive Implies Idempotent”

b 1% R b
RN N
(] 5 [a]

I¢gRnR

c (Modalrule Q3RnS < (QnSsR7)3R))
(InRsR")¢R

Modal Rules— Converse as Over-Approximation of Inverse

Q3RnS < Q3(RnQ73S)
Q3sRnS ¢ (QnSgR)4R

Modal rules: For Q: A< B,R: B+ (C,and S: A < C:

Useful to “make information available locally” (Q isreplaced with QnS$R")
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):
R

@Q) | X@}/bx

3b e aCQIbCRIcAa(S)c) =
(3b,c" a(Q)b(R)C/\b(R)c’/\a(S)c’)

Modal Rules modulo Inclusion via Intersection
Modal rules: For Q: A« B,R: B« (C,and S: A< C: QsRnS < Q3(RnQ75S)
Q¢RnS ¢ (QnSsR7)¢R
Equivalently, using McN = M=MnN etc.: Q3RnS = Q3(RNnQ " 35)nS
Q3RNS = (QnS3R*)3RNS

In constraint diagrams:
b ¢ R b

AN

a(Q)b(R)CAa(S)c) =
= 3b,c" « aCQIBbCRI Aa(S)c AbCR Ycna(S)c)

A%
£

(3b

Modal Rules and Dedekind Rule
Modal rules: For Q: A« B,R: B~ C,and S: A« C: Q3RnS ¢ Q3(RNQ75S)

Q3RnS ¢ (QnSgR)3R

Equivalent: Dedekind Rule: QiRnS ¢ (QnSsR")(RNQ735S)

I A

[a]

Dedekind Rule modulo Inclusion via Intersection
Modal rules: For Q: A« B,R: B« (C,and S: A< C: QsRnS € Q3(RnQ75S)
Q¢RnS ¢ (QnSsR7)¢R

Equivalent: Dedekind Rule:
Equivalently, viaMcN = M =MnN:

Q3RnS ¢ (QNS3R7)3(RnQ73S)

Q3RS = (QnS3R)3(RNQ™5S)N(SNQ5R)
. , R , 0 ,

N N
A

AN
A

Modal Rules and Dedekind Rule: Summary with Sharp Versions
Forall Q: A< B,R: B+ (C,andS: A< C:
Modal rules: Q3RnS ¢ Q3(RNQ75S)

QsRnS ¢ (QNS$R7)sR

Q;RNS = Q3(RNQ738) n S

Q3RnS = (QnS3R)sRn S

Q3RnS < (QnS3R7)3(RNQ"5S)
Q3RnNS = (QNS3R)$(RNQ735)nS

c
c
Modal rules (sharp versions):
Dedekind:

Dedekind (sharp version):
Proofs: Exercise!

Remember: How to construct these rules from the triangle diagram set-up!
R

@Q) | X@;/bx

Symmetric and Transitive Implies Idempotent
symmetric R~ = R[(Vbc:Beb(R)c=c(RIb)
transitive | RsR ¢ R | (Vb,c,d « b(R)c(R)d = b(R)d)
idempotent | RsR = R

Theorem: A symmetric and transitive R : B < B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ¢ R§R:
R
= (Idempotence of n, Identity of §)
RsInR
c (Modalrule QsRnS < Q3(RnQ7355))
R3(I n R"3R)
c (Mon. 5 with Weakening XnY ¢ X)
R3R"3R
= (Symmetry of R)
R3R3R
¢ (Mon. ; with Transitivity of R)
R3$R

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-08

Continuing Relation-Algebraic Calculational Proofs

Recall: Relation Algebra

@ For any two types B and C, on the type B <> C of relations between B and C we have

the ordering ¢ with:
e binary minima _n_ and maxima _u_ (which are monotonic)
o least relation {} and largest (“universal”) relation U (= . B ,x, C)
e complement operation ~_ such that Rn~R = {} and Ru~R=U
o relative pseudo-complement R=>S = ~RuUS
o The composition operation _§_
e is defined on any two relations R: B <> Cy and S : C; <> D iff C; = G,
e is associative, monotonic, and has identities T
o distributes over union: Q§(RuS) = QsRuQsS
@ The converse operation _~
e maps relationR: B« CtoR™:C < B
o is self-inverse (R™~ = R) and monotonic
e is contravariant wrt. composition: (R§5)” = S”§R~
@ The Dedekind rule holds: Q§RNS ¢ (QnSsR7)5(RNQ75S)
@ The Schréder equivalences hold:
QiRcS = Q3~Sc~R and QsRcS = ~S3R c~Q
@ $ has left-residuals S,/ R = ~ (~S$R”) and right-residuals Q\S = ~ (Q"§~S)

Recall: Properties of Homogeneous Relations

):B e ZV(R)[)
1:B e ~(b(R)b))

reflexive I b
L
Vb,c:B e 17(/\)< =c(R)D)
b
b

N

v

irreflexive InR = {}

symmetric R = R

v b.c e b(R)cAc(RIb=b=c)
),c:B o IY(R)L:ﬁ (R)I’))
vb,c,d e b(RYcnc(RYd=b(R)d)

Ris an equivalence (relation) on B iff it is reflexive, transitive, and symmetric. (E.g., =, =)

asymmetric RnR” = {}

(v
(v
(A
antisymmetric | RnR™ ¢ T |(
(v
(v

transitive R3R ¢

Ris a (partial) order on B
iff it is reflexive, transitive, and antisymmetric.
(Eg, < 2520)

R is a strict-order on B
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, > ¢

Recall: Properties of Heterogeneous Relations

A relation R : B < C is called:

univalent -
determinate R ¢R ¢ I Vb,ci,co ¢« bCR)ey AbCR)y = 1 =¢n
DomR = B
total o Vb:Be (3c:C o b(RC)
I ¢ RyR°
injective | R3R™ ¢ 1 V by, bo,c o by CR)cab, (R)c = by = by
RanR = C .
surjective an e (30:B e b(R)c)
I ¢ R3R

amapping | iff it is univalent and total

bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

For Univalent Relations, Sub-distributivity turns into Distributivity
If F: A < Bis univalent, then F§(RnS) = (F§R)n(F3S)

Proof: From sub-distributivity we have ¢; because of antisymmetry of ¢ (11.57) we only
need to show 2:

Assume that F is univalent, thatis, F"sFc I
(F3R)n(F35)
c (“Modalrule” Q3RnS < QyRnQ7359))
Fs(Rn(F $FsS))
c (“Mon. of 5” with “Mon. of n” with “Mon. of ;” with assumption ‘F" §Fc I")
F3(Rn(I35))
(“Identity of §”)
F3(RnS)

Composition with Univalent Distributes over Intersection: In Diagrams
(FsR)n(F5S)
c (“Modalrule” Q3RnS < Q3(RnQ759))
F3(Rn(F5F35))

¢ (“Mon. of ;” with “Mon. of n” with “Mon. of §” with assumption ‘F*¢Fc I")

F3(Rn(135))
= (“Identity of §”)
F3(RnS) /
F

b b

A A

[a] [a]

@/ R
/b

New Keywords: Monotonicity and Antitonicity
If F: A < Bis univalent, then F§(RnS) = (F§R)n(F3S)

Proof: From sub-distributivity we have ¢; because of antisymmetry of ¢ (11.57) we only
need to show 2:

Assume that F is univalent, thatis, F"§Fc I
(F3R) n(F35)
(“Modalrule” Q:RnS < QiRnQsS))
F3(Rn(F5F3S))
¢ (Monotonicity with assumption ‘F*§Fc I')
F3(Rn(I3S))
= (“Identity of 5")
F3(RnS)

n

Inverses are Defined from Composition and Identities

Definition: Let B and C be types, and f : B < C be a relation.
An inverse of f is arelation ¢:C < B suchthat fsg=1 and g5/ =1 .

Theorems:
@ f has an inverse iff f is a bijective mapping.

© The inverse of a bijective mapping f is its converse f~.

Note:

“Inverse” should always be defined this way, based on an associative composition with identities.

In such a context, if f has an inverse, it is also called an isomorphism.

(Ad-hoc “definitions of inverse” produce a moral proof obligation of the inverse properties.
Without these, one runs the risk of inducing strange theories. ..)

In particular: Converse of relations does in general not produce inverses.

Inverses of Total Functions — Between Sets
We write “f € S; - S,” for “f is a mapping fron S; to S,” — Dom f = S; A f~5f cid Sy
(14.43) Definition: Let f with f € S; > S be a mapping from S; to S.
Aninverse of f is a mapping g from S, to Sy such thatf 3¢ = id Sy and g5f = id S».
Still:
@ f has an inverse iff f is a bijective mapping.
@ The inverse of a bijective mapping f is its converse f~.

@ A homogeneous bijective mapping is also called a permutation.

o

/

_2E & 3
EERELE e -~ ccmam |
0 0 0 !
1 1 f i 1 |
2 2 2 2
3 3 % 3 |
4 4 \ 4 s
5 5 Y 5 \
i

Inverses of Total Functions — Between Types

(14.43t) Definition: Let B and C be types, and f : B <> C be a mapping.
An inverse of f is a mapping g: C <> Bsuch thatf3g=1T=id B andgif=1T=id

1(-1

Recall: Equivalence Relations

Recall: A (homogeneous) relation R : B < B is called:

Theorem: If ¢ is an inverse of a mapping f : B — C, then g = f~.
Proof: (Using antisymmetry of <)
f [c]-[5]
= (Identity of 5)

Jatl: [C]-/-B—-[B]

= (gisaninverseoff)

f3fsg [C]«L-B—Lsc—£.[B]

¢ {Mon. of § with f is univalent, thatis, f~5f ¢ ')
I3
= (Identity of 5)
8
(Identity of 5, Mon. of 5 with f is total, thatis, I f5f)
83f3f”
= (gisaninverse of f; Identity of 5)

r

n

c-L[B]

reflexive I ¢ R [(¥b:Beb(R)D)

symmetric R = R |(Vbyc:B e c=c(R)D)
transitive RsR ¢ R | (Vb,c,d « b(R)c(R)d = b(R)d)
idempotent RsR = R

equivalence | [cR=R3R = R |reflexive, transitive, symmetric

— it n o~

Qoo e o —

Definition (14.34): Let = be an equivalence relation on B. Then [b]=. the equivalence

Equivalence Classes, Partitions

class of b, is the subset of elements of B that are equivalent (under Z) to b:

Theorem: For an equivalence relation = on B, the set Blz = { b: B
equivalence classes of Z is a partitionof | B . P

xe[bl: = x(E) Equivalently: [b]l= = 2({b})

E({b}] } of

{{1), {23}, {4,5,6,7} }

Definition (11.76): If T:sett and S:set(sett), then:
S is a partition of T

= (Vu,o | ueSaveSauz+v e unv=4{})
AUu | ueSeu)=T

Theorem: There is a bijective mapping

between equivalence relations on B and partitions of B.

The partition view can be useful for implementing equivalence relations.

Equivalence Quotients

For an equivalence relation = on B, the set Blz = { b: B o [b]= } of equivalence classes of
Z is also called quotient of B via =.

The mapping x = { b (b,[b]=) } is the quotient projection.

X satisfies:

@ x §x = I —univalent and surjective

@ x$x~ = E — therefore total, since = is reflexive
The quotient together with the quotient projection is determined uniquely up to
isomorphism by these two properties:
Let C be an “alternate quotient set candidate”,

with v: B < Csatisfying y” 5y = Iand y§7” = Z.

Then ¢ = x~ §~ is an isomorphism between Bz and C:

© P3P T =XTEYIY X TN TSEIX =X TSXSX s = [5I=1

HEH — total and injective
® PSP =YTIXIX 3V =Y 32y =53y sy = I5I=1

— univalent and surjective

M1(A, B) Notes

M1.1a) Only one induction needed for:
Theorem “Minimum with addition”: k | (k + n) =k
Theorem “Maximum with addition”: k1 (k +n) =k +n

M1.1b) Two inductions needed for:
Theorem “At most via maximum”: k<n=ktn=n
Theorem “At most via minimum”: k<n=k|n=k

M1.1c) Three inductions needed, plus using M1.1b) in the right way— tricky!

Congratulations to those who found checkable proofs for that, without proof

checking!

M1.2a) Familiarity with “3-Introduction” is expected.
Quantification has lowest precedence: (3x e E=F)=(3x e (E=F))

M1.2b-d) Routine with correctness proofs is expected —
we started these in Week 2 Homework 4.

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-10

Reachability Concepts in (Simple) Graphs, Closures

Recall: Simple Graphs

A simple graph (N, E) is a pair consisting of

Example:

a set N, the elements of which are called “nodes”, and

arelation E with E € N «e> N, the element pairs of which are called “edges”.

G1=({2,0,1,9},{(2,0),(9,0),(2,2)})

Graphs are normally visualised via graph drawings:

1

N

9) 9

Simple graphs are exactly relations!

Reasoning with relations is reasoning about graphs!

Simple Reachability Statements in Graph G = (V,E)
@ No edge ends at node s

s¢ Ran E or se~(RanE) — s is called a source of G
o No edge starts at node s
s ¢ Dom E or s e~ (DomE) — s 1is called a sink of G

@ Node 1, is reachable from node 1; via a three-edge path
m CESESE Jny

Simple Reachability Statements in Graph Gy = (| N, "suc’)

No edge ends at node 0
0 ¢ Ran "suc’ or 0€~(Ran "suc)

0 is the only source of Gy: ~(Ran "suc") = {0}
s is a sink iff no edge starts at node s

s ¢ Dom "suc’ or s €~ (Dom "suc')

Gy has no sinks: Dom "suc’ = N or

a

~(Dom "suc') = {}

Node 5 is reachable from node 2 via a three-edge path:
2 suc s suc” 3"suc’)5

0—1—2—>3—>4—>5—6—>7— ...

— 01is a source of Gy

K NP
N QVAN AN
sQ X]J CF
Directed versus Undirected Graphs
c 7
b—d y u

’

o Edges in simple undirected graphs can be considered as “unordered pairs”
(two-element sets, or one-to-two-element sets)

@ The associated relation of an undirected graph relates two nodes
iff there is an edge between them

@ The associated relation of an undirected graph is always symmetric
@ In a simple graph, no two edges have the same source and the same target.
(No “parallel edges”.)

@ Relations directly represent simple directed graphs.

Symmetric Closure

Relation Q : B <> B is the symmetric closure of R: B < B
iff Q is the smallest symmetric relation containing R,

or, equivalently, iff

eRcQ
°eQ=0Q"
o (YP:B-B|RcP=P" e QcP)

Theorem: The symmetric closure of R:B <« B is RUR™.

Fact: If R represents a simple directed graph, then the symmetric
closure of R is the associated relation of the corresponding simple
undirected graph.

y - —

u

L~

Reflexive Closure

Relation Q : B <> B is the reflexive closure of R: B <> B
iff Q is the smallest reflexive relation containing R,
or, equivalently, iff

e RcQ

e IcQ

o (YP:B<-B | RcPAIcPeQcP)

Theorem: The reflexive closure of R: B <> Bis Ru .

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.

3 Q c:‘c QO T / OT7YO

y u |Gy) y u Cy u))

Transitive Closure
Relation Q : B <> B is the transitive closure of R: B <> B
iff Q is the smallest transitive relation containing R,
or, equivalently, iff
e RcQ
0 Q5QcQ
o (VP:B<~>B | RcPAP3sPcP e QcP)

Definition: The transitive closure of R : B <> B is written R*.
Theorem: R* = (NP | RcP A PsPcP e P).

Transitive Closure via Powers
Powers of a homogeneous relation R : B <> B:

e RO=1 e RZ=R3R
e R'=R e R¥®=R3R3R
e R™1=R"sR e R*=R3R3R3R

o R'is reachability via exactly i many R-steps

i = I = =i
(@ wl| y=——u ||Gy u ||Gy u | |Gy u
RO R! R? R3 R*

Theorem: R* = (U i:N | i>0 o R)
This means:
e R* =RUR?UR*UR*U
o Transitive closure R* is reachability via at least one R-step

Reflexive Transitive Closure
Q: B < Bis the reflexive transitive closure of R: B <> B
iff Q is the smallest reflexive transitive relation containing R,
or, equivalently, iff
e RcQ
e IcQAQ5QcQ
@ (VP:B<B | RcPAICPAPSPCP e QCcP)

Definition: The reflexive transitive closure of R is written R*.
Theorem: R*= (NP | RcP A IcP AP§PcP e P).
Theorem: R* = (U i: N o R')

Transitive and Reflexive Transitive Closure via Powers

==
Gy u | |G uD
R® R*

o Rl is reachability via exactly i many R-steps

i |7l g

u u

RO R! R?

e R*=(Ui:N | i>0 e R
e R* =RUR?UR*UR*U
@ Transitive closure R* is reachability via at least one R-step

e R*=(Ui:N e R/)
e R* = TURUR?UR?UR*U
@ Reflexive transitive closure R*
is reachability via any number of R-steps

@ Variants of the Warshall algorithm calculate these closures in cubic time.

Reachability in graph G = (V,E)
o No edge ends at node s
S¢ Ran E or

— 1 (ctd.)
se~(RanE) — s is called a source of G
@ No edge starts at node s

s ¢ Dom E or

se~(DomE) — s is called a sink of G

@ Node n; is reachable from node n; via a three-edge path
n1(E3)n2 or 111(E$E;E)712
@ Node y is reachable from node x

x (E*)y — reachability

AD

NSO
P /\//\
N Aw=aN|

Reachability in graph G = (V,E) —2

@ Node y is reachable from node x

xCE*)y — reachability
o Every node is reachable from node r
{r}xVcE* or E*({r})=V — ris called a root of G

xCE")y

xCE*n1)x or xeDom(E*nT)

@ Node y is reachable via a non-empty path from node x:

@ Nodes x lies on a cycle: x (E*)x or

AD

NSO AN
P /\//\ RP
DU /M

Reachability in graph G= (V,E) —3
o From every node, each node is reachable
VxVcE*
o From every node, each node is reachable by traversing edges in either direction
VxVc(EUE")* — G is connected
@ Nodes 11 and 1, reachable from each other both ways
m CE*n(E*)" Jny — ny and n; are strongly connected
@ Sis an equivalence class of strong connectedness between nodes
SxScE* A(E*n(E*)")(S)=S —Sisa strongly connected component (SCC) of G

— G is strongly connected

Reachability in graph G = (V,E) —4
@ Anode 1 is said to “lie on a cycle” if there is a non-empty path from n to n
cycleNodes := Dom(E*nT)
@ No node lies on a cycle
Dom(E* nT) ={}
E'nI={}
E* is irreflexive — Gis called acyclic or cycle-free or a DAG

AD

NSO
| /\//\RP
e Q/M

HL\ Pb AD\

EZ——>VU S

<N\ /A
QB
HS KO NP
QNN
SQ XJ CF
Reachability in graph G= (V,E) —5— DAGs

@ Nonodeliesonacycle: E*nl={} — Gis a directed acyclic graph, or DAG
@ Each node has at most one predecessor: ESE™ ¢ I or E is injective

—if G is also acyclic, then G is called a (directed) forest

o Every node is reachable from node r
{r} xVcE* — if Gisalso a forest, then G is called a (directed) tree, and r is its root
o For undirected graphs: A tree is a graph where for each pair of nodes there is exactly
one path connecting them.
— graph-theoretic tree concept
/CH /I H TB AM
/ \ \ 4 7 2

Fw HL

AQ ER G NN\
3 10 6

/. N\ NN
NK GE VB WO CZ 9 15 11

NL OD Ny SK OH

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-10

Part2: Closures Generalised

Recall: Reflexive Closure

Relation Q : B <> B is the reflexive closure of R: B <> B
iff Q is the smallest reflexive relation containing R,
or, equivalently, iff

e RcQ

o IcQ
@ (VP:B<~B | RcPAIcPeQcP)

Theorem: The reflexive closure of R: B <> Bis Ru I.

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.

3 Q cr QO 1(7 OT7Q

y u [|Gy u)) y u |[|[y——uD

Reflexive Closure Operator ‘reflClos’ (in Ref9.4)

Axiom “Definition of “refIClos* ”: reflClosR = R u I Relation Q : B < Bis the

reflexive closure of R: B < B
Theorem “Closure properties of “reflClos™: Expanding "

R ¢ reflClos R
Proof: containing R, or, equivalently, iff
e RcQ
? e [cQ
Theorem “Closure properties of “reflClos": Reflexivity ”: o (VP:B<B | RcP A lcP

reflexive (reflClos R)

«QcP)

iff Q is the smallest reflexive relation

Proof:

?

Theorem “Closure properties of “reflClos’: Minimality ”:
R c S A reflexive S = reflClosR ¢ S
Proof:

»

Closures

Let pred (for “predicate”) be a
property on relations, i.e., for some type B and C:

pred : (B<C)-B
Relation Q : B <> C is the pred-closure of R : B « C iff
@ Qis the smallest relation

Relation Q : B <> B is the
reflexive closure of R: B < B

o that contains R iff
@ and has property pred @ RcQ
or, equivalently, iff e IcQ
e RcQ @ (VP:B<B | RcPAlcP
o pred Q *QcP)

iff Q is the smallest reflexive rela-
tion containing R, or, equivalently,

® (VP:B<~>C | RcP ApredP o QcP)

(For some properties, closures are not defined, or not always defined.)

Formalising General Relation Closures
Let pred (for “predicate”) be a property on relations, i.e.: pred : (B<C)—>B
Relation Q : B < C is the pred-closure of R : B « C iff
@ Qs the smallest relation that contains R and has property pred,
or, equivalently, iff

e RcQ and predQ and (VP:B<C | RSP ApredP o QcP)

General Relation Closures in Ref9.4:

Precedence 50 for: _is_closure — of _
Conjunctional: _is_closure —of _
Declaration: _is_closure - of _:
(A<~ B) > (A~B)->B) >~ (A< B) - B

Axiom “Relation closure ”:
Q is pred closure-of R
= RcQApredQ A (VPeRCPApredP = Q c P)

Theorem “Well-definedness of “reflClos™ ”:

Declaration: _is_closure —of _:
(A< B) - (A< B)->B) > (A< B) - B

Axiom “Relation closure ”:
Q is pred closure-of R
= RcQ ApredQ A (VPeRCPApredP = Q c P)

Theorem “Well-definedness of “reflClos™ :
refiClos R is reflexive closure-of R
Proof:
By “Relation closure ”
with “Closure properties of “reflClos™: Expanding ”
and “Closure properties of “reflClos™: Reflexivity ”
and “Closure properties of “reflClos™: Minimality ”

Theorem “Well-definedness of “reflClos™ ”:

Declaration: _is_closure —of _:
(A< B) > (A< B)>B) > (A< B) - B

Axiom “Relation closure ”:
Q is pred closure-of R
= RcQ ApredQ A (YPeRCSCPApredP = Q c P)

Theorem “Well-definedness of “reflClos™ ”:
reflClos R is reflexive closure-of R
Proof:
Using “Relation closure ”:
Subproof for 'R ¢ reflClos R*:
9

Subproof for “reflexive (reflClos R):
?
Subproof for’V P e R ¢ P A reflexive P = reflClosR ¢ P:

For any "P*:
Assuming ‘R ¢ P, “reflexive P*:
?

Reachability

Let a directed graph G = (V, E) with vertex/node set V and edge relation E
(with E € V «e> V) be given.
Formalise via relation-algebraic expressions, and name the concepts:
@ No edge ends at node s
@ No edge starts at node s
o Node t is reachable from node s
@ From every node, each node is reachable
@ Each node in the vertex set S (with S € P V) is reachable from every node in S
@ No node lies on a cycle
o Each node has at most one predecessor

o Every node is reachable from node r

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13

Kleene Algebra, Arrays

Reminder: Limitations of Conditional Rewriting Implementation of with,

o If ThmA gives rise to an implication Ay = A, = .. (L = R):
o Find substitution ¢ such that Lo matches goal

o Resolve Ao, Aso, ... using ThmB and ThmB, ... ‘ ThmA with ThmB and ThimB, ...

@ Rewrite goal applying Lo — Ro rigidly.
o E.g.: “Transitivity of ¢” with Assumptions "\QnSc Q and ‘Qc R
when trying to prove "\QnS ¢ R
o “Transitivity of ¢”is: QE R=RcS=QcS
o For application, a fresh renaming is used: gcr=rcs=qcs
o Wetrytouse: gCswtrue, so L is: qcs
o Matching L against goal produces o=[q,s:=QnS,R]
e (gcr)o is (QnScr), and (rcs)oc is rcR
— which cannot be proven by “Assumption ‘QnS c Q
resp. by “Assumption ‘Q ¢ R””
o Narrowing or unification would be needed for such cases
— not yet implemented
e Adding an explicit substitution should help:
“Transitivity of ¢ with 'R := Q" and assumption *Qn S ¢ Q" and assumption "Q ¢ R®

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13

Part 1: Kleene Algebra

Recall: Reflexive Transitive Closure
Q: B < Bis the reflexive transitive closure of R: B <> B
iff Q is the smallest reflexive transitive relation containing R,
or, equivalently, iff
e RcQ
o IcQAQ30cQ
@ (VP:B<>B | RcPAICPAPSPCP e QcP)

Definition: The reflexive transitive closure of R is written R*.
Theorem: R*= (NP | RcP A IcP APsPcP e P).
Theorem: R* = (U i: N o R/)

o R'is reachability via exactly i many R-steps
@ Reflexive transitive closure R* is reachability via any number of R-steps

o Transitive closure R* = (U i:N | i>0 o RY) is reachability via at least one R-step

Kleene Algebra

The transitive and reflexive-transitive closure operators satisfy many useful algebraic
properties, e.g.:
o (R') = (R’
@ R*=TuRUR*3R*
@ (RuS)*=(R*35)*sR*
o (RUS)* =R*U(R*35)"$R*
@ R*uS*c (RuS)*
On can prove such properties via reasoning about arbitrary unions U of relation
powers. ..

(R7)"=(R7)"

One can also derive these properties from a simple axiomatisations (Ex10.2, Ref10.1):
Axiom (KA.1) “Definition of *”: R*=TuRUR*§R*
Axiom (KA.2) “Left-induction for*”: R3S cS = R*3Sc S
Axiom (KA.3) “Right-induction for*”: Q$Rc Q = Q3sR*cQ

Axiom (KA.4) “Definitionof *”: R* = R§R*

Kleene Algebra — Example for Using the Induction Axioms
“Leftind.*”: R3ScS = R*3ScS$ “Right-ind.*”: Q3RcQ = Q3R*cQ
Theorem (KA.14) “Shuffle*”: R § R* = R* ¢ R
Proof:

RsR*
¢ (“Identity of 3”, “Monotonicity of §” with “Reflexivity of *”)
R*$R§R*
¢ (“Right-induction for *” with *Q := R* § R* and subproof:
R*$R3sR
¢ (Monotonicity with “* increases ”, “s-idempotency of *”)
R* 3§ R
)

R*3$ R
¢ (“Identity of §”, “Monotonicity of §” with “Reflexivity of *”")
R*3RsR*
¢ (“Left-induction for *” with *S := R § R* and subproof:
R¢RgR*
¢ { Monotonicity with “* increases ”, “s-idempotency of *”)
R§R*
)

RgR*

Kleene Algebra — Not Only Relations: Formal Languages
Definition: A word over “alphabet” A is a sequence of elements of A.

Definition: A formal language over “alphabet” A is a set of words over A.

Interpret:
@ [as the language containing only the empty word
@ U as language union
@ 5 as language concatenation: Ly L, = {u,v | ueli Avel, eu~v}

@ _* as language iteration: L*=(Ui:NelL")

Then:
@ Formal languages over A form a Kleene algebra.
@ Regular languages over A form a Kleene algebra.

(A regular language is generated by a regular grammar, and accepted by a finite
automaton.)

Kleene Algebra — Not Only Relations: Control Flow Semantics

Definition: A trace is a sequence of commands,

Interpret:
o T as the singleton trace set containing the empty trace
@ U as trace set union
@ 3 as trace set concatenation

@ _* as trace set iteration

Then:

@ Kleene algebra can be used for reasoning about traces (possible executions) of
imperative programs
o Kleene algebra provides semantics for control flow

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-13
Part2: Programming with Arrays

== Exercise 10.3

Modelling Arrays as Partial Functions
Precedence 100 for: _ ——_
Associating to the right: _ —e—_
Declaration: _ -o>_ : setA — setB — set(A < B) — type “\tfun” for -

”,

Axiom “Definition of e~ ":
X > Y {fIf sfcidY A Domf =X}

Useful for the domain of arrays:

Precedence 100 for: _.._
Non-associating: _.._

Declaration: _.._:N - N - setN s type: \ L.

Axiom “Definitionof ..”: m..n = {i|m <i<n}
Theorem “Membershipin..”: i e m..n = m <i<n
Theorem “Membershipin0..”: i € 0..n = i<

Array access: alil = q@i

Array update: ali]l] := E = a:=ao{(i,E)}

Swapping Two Elements of an Array: Specification
i<k>j A xs=xs¢e(0..k) o N,

Swap
]

xs = xsg & { (i, x50Qj), (j, xs0@i)}

Swapping Two Elements of an Array: Implementation

z = xs[i] ;
xs[i] = xs[j] ;
xs[j] =z

Theorem “Array swap ”:
i<k>j A xs=xsp¢e (0..k) - N,
=>fz:=xs@i;
xs:=xs ® { (i, xs@j)};
xs:=xs ® {(j,z)}
]

xs = xsg @ { (i,x50Q7j), (j,xs0@i)}

Sortedness

Declaration: sorted: (N < N) - B
Axiom “Definition of “sorted" ”:
sortedR = R "§"_<_ "3R ¢ "_<_ "

Note: No assumption that R is univalent or contiguous!

Theorem “Sortedness ”:
SOI’tedREViOVj|i<j0Vm0ani(R)mA/(R)nOmSn

<
m ——— n
R t R
ro

Specification of Sorting — First Attempt

xs € (0..k) = N,
=f SORT
]

xs € (0..k) - N, A sortedxs

Theorem “Sorting 0"

xs € (0..k) = N, A Program Satisfying the Sorting

=fp:=0; Specification from the Previous Slide:
whilep = k + 1do
xs:=xs ® {(p,42)}; p =0 i
pi=p+1 while p # k + 1 do
od xs[pl := 42 ;
1= + 1
xs € (0..k) == N, A sortedxs P g

Proof:

xs € (0..k) - N,
=(7)

xs e (0..k) == N, A Ran((0..0) < xs) = {xs@O0}
=[p:= 0] (“Assignment” with substitution)

xs € (0..k) =» N, A Ran((0..p) < xs) = {xs@0}
=[whilep #+ k + 1do xs:=xs & {(p,42)};p:=p+1 od

1 (“While ” with subproof:

?

)
-(ptk+1)A xse(0..k) = N, A Ran((0..p) < xs) = {xs@O0}
=(7)

xs € (0..k) = N, A sortedxs

Bag-based Specification of Sorting

xso = xs € (0..k) - N,
=f SORT
i
xs € (0..k) - N, A sortedxs
AlplpexsesndpS=1Up|peaxsesndp)

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-15

Topological Sort — LADM 14.4, pp. 287-291

Topological Sort — Introduction

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, thatis, EnE”c IcE2ESE and
EUE =V xV and BCcE.

Since (V,B) is a DAG, B is an order: B*nB*~ ¢ I ¢ B* 2 B*§B*

® D ®
&
OROND

Example: The DAG above has, among others, the following topological sorts:
@ [573,11,8,2,9,10] —
@ [3,57811,2,9,10] —
e [573811,10,9,2] —
e [7,511,3,10,8,9,2] —
e [5711,23,89,10] —
@ [3,7,85,11,10,2,9] —

E is normally presented as a sequence in Seq V' that is sorted with
repect to E and contains all elements of V.

visual left-to-right, top-to-bottom
smallest-numbered available vertex first
fewest edges first

largest-numbered available vertex first
attempting top-to-bottom, left-to-right
(arbitrary)

B ={(3.,8),(3,10), (5, 11),(7.8),(7,11),(8,9),(11,2),(11,9), (11,10)}

Topological Sort — Code Scheduling — SSA

X? : _ 32 ; \271 We can consider SSA as encoding data-flow graphs.
v3 :=vl + 1 Each admissible re-ordering of an SSA sequence is a
Xé 1 ;:v‘7’5 B *V‘3’7 different topological sort of that graph.

v2 := vl1l + 2 ltisfrequently easier to think in terms of that graph
v9 := v1ll % V8 thanin terms of re-orderings!

v10 := v1l % v3

Topological Sort — Code Scheduling — SSA — Pipeline Stalls

® ®@® & D G
IO N ER

Static single assignment form: Each variable is assigned once, and assigned before use.
[7,5,11,3,10,8,9,2]
Let E be the topological sort of (V,B);

v7? = vd % vl N .

v5 = vd - 2 let C = E - I be the associated strict-order.
Vé 1= ‘1’5 * 1"7 Depth-2 pipelining requires B c C3C.

v3 = vl + ipelini i sCs
V10 1= Vil x v3 Depth-3 pipelining requires B < C5C3C.
v8 := v7 - v3 The “next-step” relation: S =C-C35C*

Zg iz Zﬁ : ‘;8 Depth-2 pipelining requires BnS = {}.

Depth-3 pipelining requires Bn(SuS;S) = {}.

Topological Sort — Code Scheduling — Different Schedules

Example: Most of the original example topological sorts induce pipeline stalls:

0[57311,8,29,10] —
0 [3,57,8,11,2,9,10] —
0 [573811,10,9,2] —
e [7,511,3,10,8,9,2] —

visual left-to-right, top-to-bottom
smallest-numbered available vertex first
fewest edges first

largest-numbered available vertex first
attempting top-to-bottom, left-to-right
(arbitrary)

3,8).(3,10), (5,11),(7.8),(7,11),(8,9), (11,2), (11,9), (11,10)}

[S5]
I
—~

Topological Sort — Specification
A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, thatis, EnE”c IcE2ESE and
EUE =V xV and BCcE.

Since (V,B) is a DAG, B* is an order: B*nB*~ c I ¢ B* 2 B*§B*

® D ®
&

@ © @

E is normally presented as a sequence in Seq V' that is sorted with
repect to E and contains all elements of V.

varvs:set T
vars:Seq T

Seq T topSort(set T vs)

Interface types: s Input: V

====== Qutput, representing E
C-style procedure declaration:

Precondition: vs=V

Define: Cis the expression “{ u,v | u precedesvins }”

E is the expression “C u 1”

(of type T < T)
— both containing the free variable s

Real postcondition: ENE”c ICE2ESE A EUE =V xV ABcE.

One Formalisation of _precedes_in_

Precedence 50 for: _precedes_in_
Conjunctional: _precedes_in_
Declaration: _precedes_in_:A - A - SeqA - B

Axiom “Def."_precedes_in_*
Axiom “Def. " _precedes_in_>
Axiom “Def."_precedes_in_>

: xprecedesyin ¢ = false

: xprecedesyin(x « zs) = y e zs
:x #z = (xprecedesyin(z « zs) = xprecedes yin zs)

1precedes3in [1,2] = ?
1precedes3in[3] = ?
1 precedes 3 in [3,1,3]

n
-~

Topological Sort — Specification (ctd.)

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B.

Since (V,B) is a DAG, B* is an order: B*nB*~ c I ¢ B* 2 B*3B*

E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

® D ®
&
© 19

Interface types: varuvs:set T
vars:Seq T

=e=e== Input: V
=memme Qutput, representing E
Precondition: vs=V
Define: Cis the expression “{ u,v | u precedesvins}” (of typeT < T)
E is the expression “C u 1” — both containing the free variable s
Real postcondition: ENE"c ICE2ESE A EUE =V xV A BCE.
(Vu,o | uCBlv e u precedes v in s)
Ao | ves} =V
A lengths = #V

Representation-level postcondition:

Topological Sort — Simple Algorithm
Given a DAG (V,B) (with V :set T),
calculate sequence s encoding a topological sort E.

varvs:set T; s:Seq T

vs:=V ; — not-yet-used vertices
{vs=V} — Precondition @ @ @
si=¢€ ; — Initialising accumulator for result sequence

{(vsand {v | ves} partition V) Alengths+# vs=#V A
(Vu,o | ves AuCB)v o u precedes v in s) }
while vs {} do
Choose a source u of the subgraph (vs, Bn(vs x vs)) induced by vs ;
vs,s 1= vs—{u},svu
od
{(Vu,o | u(Blv e u precedes v in s)
Ao | vesp =V Alengths=#V }

— Invariant

— Postcondition

The “Tableau” Presentation of the Previous Slide
Closely Corresponds to Our Correctness Proof Presentation

Theorem “While-example ”:| | Proof:
Pre Pre ===s== Precondition
=[INIT; =[INIT] (?)
while B Q === Invariant
do = [while B do
C C
od; od] (“While” with subproof:
FINAL B AQ wwmmm Loop condition and invariant
1 ~fci(7)
Post Q s=xesr [nvariant

)

- B A Q === Negated loop condition, and invariant
=[FINAL] (?)
Post s===sx Postcondition

Recall: The “While” Rule
The constituents of a while loop “while B do C od” are:
@ The loop condition B : B
@ The (loop) body C: Cmd

The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q : B:

‘BaQ =t Ci Q

|_
'Q =F while Bdo Cod] —-BnAQ

This rule reads:
@ If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,

@ then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

Recall: The “While” Rule — Induction for Partial Correctness
‘BAQ =FC1 Q@

'Q =f whileBdoCod] -BaAQ

The invariant will need to hold
o immediately before the loop starts,

o after each execution of the loop body,

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

@ and therefore also after the loop ends. Wolfram Kahl
The invariant will typically mention all variables that are changed by
the loop, and explain how they are related. 2023-11-17
Frequent pattern: Generalised postcondition using the negated loop
condition A2, Topological Sort
For Univalent Relations ... — LADM Hint, for M2-like Context

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-17

Part1: A2: “Distributivity of ; with univalent over n” etc....

Theorem: If F : A < B is univalent, then F§(RnS) = (F§R) n(F3S)

Hint: Assume determinacy; then show the equation using relation extensionality, and
start from the RHS (b,d) € (F3R) n(F3S). In the expansions of the two relation
compositions here, introduce different bound variables.

For Univalent Relations ... — LADM Hint, for M2-like Context

Theorem: If F: A < B is univalent, then F§(RnS) = (F§R)n(F3S)

Hint: Assume determinacy; then show the equation using relation extensionality, and
start from the RHS (b,d) € (F3R) n(F3S). In the expansions of the two relation
compositions here, introduce different bound variables.

Theorem “Distributivity of composition with univalent over n”:
univalentF = F§(RnS) =F¢RnFsS$
Proof:

For Univalent Relations ... — LADM Hint, for M2-like Context
Theorem: If F : A < B is univalent, then F§(RnS) = (F§R) n(F3S)

Hint: Assume determinacy; then show the equation using relation extensionality, and
start from the RHS (b,d) € (FsR) n(F3S). In the expansions of the two relation
compositions here, introduce different bound variables.

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=F3sRnFs3$
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
For any "x*, "z
x(F3sRnNnF3S)z

=(7)

x(F5(RnNS))z

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=F3sRnF3S$S
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
Forany "x', "z™:

Axiom “Univalence ”:
univalent R
= Vb eVbh eVae
aCRIbAaCR)b
= b =b

x(F3sRNF3S)z
=(“Relahon intersection”, “Relation composition”)

GBwn ‘2(F)y| (R)Z)A(SVZ'X(F)VZ(S)Z)

(7)

ﬂycx(F)y(R)Z/\y(S)z

{ “Relation intersection”)

Byox(F)y(RmS)z

= (“Relation composition”)
x(F3(RNS))z

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=FsRnFs3S
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
For any "x*, "z

Axiom “Univalence ”:
univalent R
= Vb eVbhyeVae
aCR)b AaCR)b
= b =b

x(F3RNF35)z

= ”Relatlon intersection”, “Relation composition”)

Gy ex(FIn (R)Z) NGBy ex(FIy(S)z)
(“Distributivity of A over 3”)

3y ex(FIn (RIzA @y ex(FIp (S)2)
(“Distributivity of A over 3”)

Sy,oSyzox(F)yl(R)ZAx(F)yg(S)z

?

7)
Jyex(FIy(R)zany(S):z
{ “Relation intersection”)
Jyex(F)y(RNS)z
= (“Relation composition”)
x(Fs35((RnS))z

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=F¢RnFsS$S
Proof:

Axiom “Univalence "”:
univalent R
Assuming “univalent F* and using with “Univalence ”: = VbheVh eVae
Using “Relation extensionality ”: aCRYbra(R)b,
Forany 'x", "z*: = b =b

x(F$RNF3S)z
= (“Relation intersection ”, “Relation composition”)
Ay ex(FIp (RID) A @By ex(FIp(S)z)
(“Distributivity of A over 3”)
3y e x CFIpn CRIzZA @Bz o x(Fly (S)2)
(“Distributivity of A over 3”)
3y1o3y2-x(F)yl(R)Z/\x(F)yz(S)z
(7)
Jyre3dpmep =y AxCF)y (R)zAxCF)p(S):z
>

7)
By-x(F)y(R)z/\y(S)z
{ “Relation intersection”)
Byox(F)y(RmS)z
= (“Relation composition”)
x(Fs (RnS))z

Theorem “Distributivity of composition with univalent over n”: Axiom “Univalence ”:
univalentF = F3(RnS) =F3RnF3S univalent R
Proof: = Vb eVhyeVae
Assuming “univalent F* and using with “Univalence ": a(RYby naCR)by
Using “Relation extensionality " = b =b

For any "x*, “z:
x(F3RNF35)z
(“Relation intersection ”, “Relation composition”)
Gyex(FIpn(RID A Gy ex(FIp(s))
(“Distributivity of A over 3”)
3y ex(FIn (RIzA @y ex(FIp (S)2)
= (“Distributivity of A over 3")
Iy o3 exCFYy (RIzAx(F)p(S)z
(7)
Iyedpey =y AxCFIy CRIzAx(FIpn(S)z
= (“Trading for 3”, “One-point rule for 37,
substitution, “Idempotency of A")
Syox(F)y(R)z/\y(S)z
= (“Relation intersection”)
Jyex(F)y(RNS)z
= (“Relation composition”)
x(F3((RnNS))z

Theorem “Distributivity of composition with univalent over n”:

univalontF = F3 (Rn§) =F3RnF3$ Axiom “Univalence ”:
frove nivalent R
Assuming “univalent F* and using with “Univalence ”: B \1[;7 Vi MR
Using “Relation extensionality ”: = 1eVD2eVae
aCRYbra(R)b,
Forany "x', "z™:
= by = by

x(F3RNF35)z

= (“Relation intersection ”, “Relation composition”)

Ay exCFIp(RID) A @By ex(FIp(S)z)
(“Distributivity of A over 3”)

3y e x CFIpn CRIzZA @Bz o x(Fly (S)2)
(“Distributivity of A over 3”)

3y edp e x(FIpn (RIzax(F)p(S):

?

’)
e 3 e CF I nx CF)i = vs = 1)
SR (RE A P (s)

= (“Strong modus ponens”)

3y e3mey = Ax(FIn (RIzAx(F)p(S)z
= (“Trading for 3”, “One-point rule for 37,

substitution, “Idempotency of A")
ﬂyox(F)y(R)Z/\y(S)z

= (“Relation intersection”)
¢n oN

o PSRN

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS) =F3RnF3S Axiom “Univalence ”:
Proof: univalent R
Assuming “univalent F* and using with “Univalence ": = Vb eVbh eVae
Using “Relation extensionality ”: aCR)by AaCR)b
For any "x*, “z: = b = b
x(F3RNF3S)z

= (“Relation intersection ”, “Relation composition”)
Gyex(FIpnCRID A By ex(Flp(s))
(“Distributivity of A over 3”)
3y ex(FIn (RIzA @y ex(FIp (S)2)
(“Distributivity of A over 3”)
Iy o3 exCF)yp (RIzAx(F)p(S)z
(Assumption \uni\EaIen)t F, "Ichtity)m‘ A")
Jyredpe x(FIpuaxCFlyp =1y =mn
SN (R A (F)n (s
(“Strong modus ponens ")
3ypredpep=nAx(F)n(RIzAx(FIp(S)z
= (“Trading for 3”, “One-point rule for 37,
substitution, “Idempotency of A")
Synx(F)y(R)Z/\y(S)z

= (“Relation intersection”)
¢n o

o PSRN

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=F3sRnF3S§S
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
Forany “x, z:

x(F3sRNF3S)z
{ “Relation intersection ”, “Relation composition”)

€V -x(F)yu (K)Z) INEN ‘X(F)yz (5)2)
(“Distributivity of A over 3”)

3y e x CFIpn CRIzZA B2 o x(Fly (S)2)
(“Distributivity of A over 3”)

3y e3p e x(FIn (RIzAx(F)p(S):
(====ss Assumption univalent F with “Definition of = via A"

Subprouffur‘VyloVyzox(F)]“/\X(F)yzzyzzy1/\x(F)y1 /\x(F)yz‘

For any “yi", "1™
Side proof for (1) “x (F)y1 A X (F)l/z =2 =yt
By Assumption “univalent F*
Continuing:
By local property (1) with “Definition of = via A"
)
a3 e =y Aax (FIn(RIzAx(FIp(s):

=/ “Trading for 37 “On int riilo for 37

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=FsRnFs3S
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
For any “x, z*:
x(FsRNF3S)z
= (“Relation intersection ”, “Relation composition”)
Gyex(FInCRIDAEpex(FInls)z)
(“Distributivity of A over 3”)
3y ex(FIn (RIzA @y ex(FIp(S)2)
(“Distributivity of A over 3”)
Iy o3 exCF)y (RIzAx(F)p(S):z
(====== Assumption univalent F with “Definition of = via A”
Subprooffcr\x(F)yl /\X(F)_l/z =p=n /\x(F)yl Ax(F)yz\:
===sss By Assumption univalent F with “Definition of = via A”
By “Definition of = via A” with Assumption “univalent F*

)
3]{1oayzoyz:y1/\X(F)y1(R)Z/\X(F)y2(5)Z
= (“Trading for 3”, “One-point rule for 3",
substitution, “Idempotency of A")
Syox(F)y(R)z/\y(S)z

= [“Rolation i

Theorem “Distributivity of composition with univalent over n”:
univalentF = F3(RnS)=F3sRnF;3S$S
Proof:
Assuming “univalent F* and using with “Univalence ":
Using “Relation extensionality ”:
Forany 'x, z
x(F3RNF3S)z
= (“Relation intersection ”, “Relation composition”)

@y o x CFYy CRI2) APz e x (CFIy2 (S)2)
(“Distributivity of A over 3”)

3y ex(FYIp CRIzA 3y o x (FIp2 (S)2)
(“Distributivity of A over 3”)

3pedpex (FIn(RIzax(F)n(s):
{ “Definition of = via A” with Assumption “univalent F*)

Jyredpmep =y AxCF)y (R)zAxCF)p(S):z
= (“Trading for 3”, “One-point rule for 3”, substitution, “Idempotency of A")

Ely-x(F)y(R)z/\y(S)z
(“Relation intersection”)

ﬂyox(F)y(RmS)z
= (“Relation composition”)

x(Fs (RnS))z

Theorem “Partial-function application of §”:
univalentf A univalentg A x e D 5 g
Proof: Assuming “univalent f°
Side proof for 'x € Dom
By assumption ‘x € Dom (f 3 ¢)° with “Membership in domain of §”, “Weakening "
Side’proof for ’f @ x ¢ Dom
x € Dom(f 5 ¢) — This is an assumption
= (“Membership in domain of §”, “Weakening ")
dylx(fJyeyecDomg
= (“Partial-function application ” with assumption “univalent f* and local property *x ¢ Domf*)
Jyly =f@x ey c Domg
(“One-point rule for 3”, substitution)
@x ¢ Dom ¢
Sxde proof for “U " univalent (f 5 ¢)*:
Umvalence of compoatmn w1th assumptions “univalent f* and “univalent g
Con mum
%) @x = ga(fax)
=(" Pamal functlon application ” with local property “U” and assumption “x ¢ Dom (f 5 g)*)
x(f33)80(f@
(“Relatlon composition”)
dyex(fly(glga(an
(“Partial-function apphcatlon with assumptmn univalent f*
and local property “x € Dom f*, “Trading for 3")
3yly=faxey(glga(ax
{ “One-point rule for 3”, substitution)
fax(glga(fax)
= (“Relationship with @ "
true

Q@x =gQ@(fax
umvalentg\ “x e(fDom (fs 3)(}(P8 safen

with assumption “univalent ¢ and local property ’f @ x ¢ Domg*)

Theorem “Injectivity and @ ”:
univalentf A injectivef A x; € Domf A x; e Domf = (fQx =fQx; = x = x2)
Proof:
Assuming “univalent f°, “injective f* and using with “Injectivity ”,
x; € Domf, “xa € Domf:
Using “Mutual implication ”:

Subproof:
Assuming ‘x; = X2
fax
= (Assumption *x; = x2°)
f@x;

Subproof for'f Qx; = fQx, = x1 = X
Side proof for*x; (f) f@ux:
By “Relationship with @ ” with assumptions “univalent f* and “x; ¢ Dom f*
Continuing:
f@Qx =fQ@x,
= (“Partial-function application ” with assumptions “univalent f* and “x, ¢ Dom f*)
w(f)fa X
= (“Identity of A", local property “x; (f) f @x;°
M CFYfan A xCf)fan
= (Assumption “injective f*)
X=X

Theorem “Injectivity and @ ”:
univalentf A injectivef A x; € Domf A x, e Domf = (fQx; = fQ@x, = x = x)
Proof:
Assuming “univalent f*,
“injective f* and using with “Injectivity ”,
x1 € Domf, “x; ¢ Dom f*:
Using “Mutual implication "
Subproof:
Assuming ‘x; = X
fax
= (Assumption “x; = x2")
fQux;
Subproof for'f@x; = fQx, = x1 = ™
X1 =X
<= (Assumption “injective f*)
ymCfFYfax A xu(fl)faxy
= (“Relationship with @ ” with
assumptions “univalent /> and “x; € Dom f*, “Identity of A")
2 (f)f Qxy
= (“Partial-function application ” with assumptions “univalent f* and “x, € Dom f*)
fQx = fQx

Theorem “Injectivity and @ ”:
univalentf A injectivef A x; e Domf A x; e Domf = (fQx; = fQx, = x = x2)
Proof: ====** Raymond Zhao
Assuming “univalentf*, “x; € Domf", “x, ¢ Domf*:
Assuming “injective f* and using with “Injectivity ”:
X = x
= (“Leibniz”)
(fQz)[z := 1] = (fQz)[z := x2]
= (Substitution)
fQx =fQx,
= (“Partial-function application ” with
Assumption “x, € Dom f* and Assumption “univalent f*)
x f) fax
(“Identity of A”")
true A x» (f)f@:n
= (“Relationship with @” with
Assumption “univalent f* and Assumption “x; € Domf*)
a(fdfannx (f)fax
= (Assumption “injective f*)
X1 = X2

Theoren “Mirrored decode?

4 (nap not m

 Seq'B - decode? | (nap not bs) = map (second (nap not)) (decode2 (1 7} bs))
V b5 i 350 B © dccodes r (map not ba) = nap tsecond lnop not}) (dscode? (r °) ba)}
(st

s ; Seq B« decode? (L P} (sap not b5) = nap.(second_ (ap not)) (decode2 (1 r)) bs)) s

HyoLe 1Y bs : Seq B - decode2 L (nap not bs) = map (second (nap not)) (decodez (1 1) bs):,
YR ¥ bs : Seq B - decodez r (ap not bs) = map (second (map not)) (decode2 (r °) bs)’
By lndncxlnn on bs : Seq

Tngp: (second,(xap not)) (decode2 (1a) °))

- efinition of decodez " “Maybe nap”)

= ~nm3mnn of "decoez.«, “Definition of “aap’ for ¢*)
E

e2 (1 ar) (map not
lndutnnn ste
any :

By cases ’
omplef

= false’

By “Definition of ~ from =", “LEM"

code2 (1 ay 1) (map not. (b

= ation s} SBaRinttion o™ map' for a7,
decoded (1 ri (false « B39 1o

“Definition of “not'", “Definition of “false’”)
~(Befinition of *decoder’
dacods? | (kap not b))
=(Assumption *Ind
P, (sec map num (decodez (1) bs)
~ Tor, assumptio “Definition of ‘decode2’”)
(secund map hoth) Gaécoder it 1) 3750 b)

Case

aemr‘“ummub bs)) . o
- o' "«Detinition of “sap’ for «*, “Definition of “not’", “Negation of false’”)
5 (Brie & map not 53]
Befinition of decodes -)
p not b2)

“Ind}

nop.(second (nop i) (decoden (r

il ror agsumption b e fatse “befinition of decode2)
aap (second” aop o)) (decodes (11 m 1 51Tt 6355

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-17

Part 2: Topological Sort

Recall: Topological Sort — Simple Algorithm e
Given a DAG (V,B) (with V :set T),

calculate sequence s encoding a topological sort E.

(D (3
. ®

varvs:set T; s:Seq T

vs:=V ; — not-yet-used vertices
{vs=V} — Precondition @ @ @
si=¢€ ; — Initialising accumulator for result sequence

{(vsand {v | ves} partition V) Alengths+# vs=#V A
(Vu,o | ves AuCB)v o u precedes v in s) }
while vs # {} do
Choose a source u of the subgraph (vs, Bn(vs x vs)) induced by vs ;
vs,s 1= vs—{u},svu

— Invariant

od
{(Vu,o | uCB)v e 1 precedes vin s)
Ao | vesy=V Alengths=#V } — Postcondition

How to “Choose a source u of the subgraph induced by vs” efficiently?

Data Refinement

Initialisation Operations Finalisation
Abstract states:
A R
i : : : : P
I T
9
v v v v
Implementation states: y 81,y 8,y 8 y
Representation relation: R:X <Y — “coupling invariant” —

relates abstract states X with concrete implementation states Y:

o Compatible initialisation: jcisR
@ Operation simulation: Rsgr € fisR
o Compatible results: Rsqg cp

Topological Sort — Making Choosing Minimal Elements Easier
To store mappings V - X in “array ...of X”, “assume” V = 0..k = {i:N | 0<i<k}.

var sources : Seq (0..k) — three new variables make vs superfluous
var preCount : array 0..kof N |

var postSet : array 0..k of P (0..k) — read-only version of B: V «<e> Vas V o> PV

Coupling invariant:
{u | uesources} =vs— (RanB') A — sources contains sources of B’ = Bn(vs x vs)

(B ({v}])) A
B ({u}))) <5J>
Initialisation:
1y

forve0..k do preCount[v] := # (B~ ({v})) od ;
foru €0..k do postSet[u] := B({u}]) od ;
sources := ¢ ;

(Yo | veovs o preCount[v] =
(Vu | uewvs o postSet[u] =

@ ©® W

forv e 0..k do if preCount[v] = 0 then sources := sources > v fi od

Topological Sort — Complete “Translated” LADM Algorithm

forve0..kdo preCount[v] := # (B~ ({v}])) od ;
foru €0..k do postSet[u] := B({u}| od ;

sources := ¢ ;

forve0..k do if preCount[v]
ghostvs :=0..k ;

=0 then sources := sources »v fi od
— B’ =Bn(vs x vs)

1= €
while sources # ¢ do — Coupling invariant:
u := head sources ;

{u | uesources} =vs— (RanB') A
(Yo | vevs o preCountlo] = # (B'~ ({0})
A(Vu | ueovs e postSet[u] =B’ ({u}]))

si=sou ;
sources := tail sources ; — remove u from sources 6 0 e
ghostvs := vs - {u} ;

for v ¢ postSet[u] do 7
preCount[v] := preCount[v] -1 ; @
if preCount[v] = 0 then sources := sources > v fi

od
od

Topological Sort — Complete O(# B + # V) Algorithm

forpeBdo
preCount[snd p] := preCount[snd p] + 1
postSet[fst p] := postSet(fst p] u{snd p}
od ;
sources 1= ¢ ; forve0..k do if preCount[v] = 0 then sources := sources > fi od
ghostovs :=0..k ; — B’ = Bn(vs x vs)
=€

while sources + ¢ do — Coupling invariant:| (4 | 1 €sources} =05 (Ran B') ,
u := head sources ; (Vo | veos o preCount[v] = # (B' ({})))
Si=svu : - A(Vu | ueovs o postSet[u] =B'({u}]))

sources := tail sources ; — remove u from sources
ghostvs := vs - {u} ;
for v € postSet[u] do
preCount[v] :=
if preCount[v] =

preCount[v] -1 ;

0 then sources := sources » v fi
od

od

Topological Sort — Complete O(# B + # V) Algorithm — Using Pair Iteration
for (1,v) € Bdo

preCount[v] := preCount[v] +1

postSet[u] := postSet[u] u{v}

od ;

sources 1= ¢ ; forve0..kdo if preCount[v] = 0 then sources := sources » v fi od

ghostos := 0.k ; — B’ =Bn(vs x vs)
S:i= €

{u | wuesources} =vs— (Ran B") A
(Vo | vevs o preCount[v] = (B'~ (|{v})))
A(Yu | uevs e postSet[u] =B’ ({u})))

while sources # ¢ do — Coupling invariant:
u := head sources ;

si=sou ;
sources := tail sources ; — remove u from sources
ghostvs := vs - {u} ;

for v € postSet[u] do
preCount[v] := preCount[v] -1 ;
if preCount[v] = 0 then sources := sources > v fi
od
od

Recapitulate: Data Refinement

Initialisation Operations Finalisation
Abstract states: X i X % X 7 X
i z ; NG
I R R R R T
. : : oy

v

i B i
y 8,y 82,y & .y

Impl. states: ‘ (sources, preCount, postSet) ‘

Representation relation: R:X <Y — “coupling invariant” —
relates abstract states X with concrete implementation states Y:

o Compatible initialisation: j € isR
@ Operation simulation: Rsgr € frsR
@ Compatible results: Rsgcp

Topological Sort — Summary
@ The “Simple Algorithm” can be proved correct wrt. a mathematical characterisation
of “Choose a source u”
® As a “Finalisation” relation relating states with u-values, this is not univalent.
@ Given the coupling invariant, “u := head sources” chooses a “compatible result”.

@ The for-loop updating the refined state implements “vs : = vs — {1}
by re-establishing the coupling invariant

@ Separation of concerns between
o high-level algorithm correctness proof
o data representation decisions for low-level efficiency implemented as refinement

makes the whole proof is more modular, and easier to understand,
and the development more maintainable and reusable.

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20

Relational Semantics of Simple Imperative Programs

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20

Part1: Ghosts for Complexity

Recall: Topological Sort — Complete O(# B + # V) Algorithm (Pair Iteration)
for (u,v) € Bdo

preCount[v] := preCount[v] +1

postSet[u] := postSet[u] u{v}

od ;

sources := ; forve0..k do if preCount[v] = 0 then sources := sources > v fi od

ghostovs :=0..k ; — B’ =Bn(uvs x vs)
§:i= €

{u | uesources} =vs—(Ran B') A
(Yo | vevs o preCount[v] =# (B~ ({v}]))
A(Yu | uevs o postSet[u] =B ({u})))

while sources + ¢ do — Coupling invariant:

u := head sources ;
si=seu ;
sources := tail sources ;
ghostvs := vs - {u} ;
for v € postSet[u] do

preCount[v] := preCount[v] -1 ;

if preCount[v] = 0 then sources := sources > v fi

— remove u from sources

od
od

Recall: Ghost Variables
If a language supports “ghost variables” then:
@ ghost variables cannot occur in if-conditions, while-conditions, RHS of assignments,
function call arguments.
@ That is, values of ghost variables do not influence program flow or results.
@ Compilers will normally suppress ghost variables and their assignments.

“Ghost variables” can make proofs easier: They can be used to keep track of values that
are important for understanding/documenting/proving the logic of the program.

On the “topological sort” example of the previous slide, the ghost variables vs contains
the state of the abstract version of the algorithm, so that the coupling invariant relating
vs with the refined state (sources, preCount, postSet) can be verified before and after the
loop body.

Ghost variables can also be used to “instrument” a program for proving complexity
bounds — see the next slide.

Topological Sort — Complete O(# B + # V)-ghosted Algorithm
ghost int stepCount =0 ;
for (u,v) € Bdo)
preCount[v] := preCount[v] +1 ; ghost stepCount++ ;
postSet[u] := postSet[u] u{v} ; ghost stepCount++
od ;
sources := ¢ ;
forve0..k do ghost stepCount++ ; if preCount[v] = 0 then sources := sources > v fi od
s5:= €
while sources + ¢ do
u := head sources ;s :=s>u ; ghoststepCount++ ;
sources := tail sources ; — remove u from sources
for v € postSet[u] do
preCount[v] := preCount[v] -1 ; ghost stepCount++ ;
if preCount[v] = 0 then sources := sources > v fi
od
od ;

gh();t assert stepCount < Ci-# B+ Co-# V — complexity postcondition

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-20

Part 2: Relational Semantics

Formalising Partial Correctness — Syntax Types

So far, we have been using the dynamic logic notation:
P={C]Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

What are P, Q, C?
o P and Q are some kind of Boolean expressions — of type ExprB
o Cisacommand — of type Cmd

o We also need expression e for assignment RHSs, “x :=¢” — of type ExprV

The Programming Language: Expressions and Commands
The types Cmd, ExprV, and ExprB are abstract syntax tree (AST) types

Declaration: ExprV, ExprB : Type
Declaration: Var':Var - ExprV

Declaration: Int':Z — ExprV

Declaration: _+'_ : ExprV — ExprV — ExprV
Declaration: true’, false’ : ExprB

Declaration: -'_ : ExprB — ExprB
Declaration: _A'_ : ExprB — ExprB — ExprB
Declaration: _="_ : ExprV — ExprV — ExprB

Declaration: Cmd
Declaration: _; :Cmd - Cmd - Cmd

Declaration: _: =_ :Var - ExprV — Cmd
Declaration: if_then_else_fi: ExprB - Cmd - Cmd - Cmd
Declaration: while_do_od : ExprB - Cmd — Cmd

: Type

Formalising Partial Correctness — Semantics Types

So far, we have been using the dynamic logic notation:

P={C]Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

What does “state” mean? “starts”? “holds”? “terminates”? ...
@ States assign variable to values
@ here we simply model states as function — of type Var — Value
@ “P holds in state s”: semantics of Boolean expressions: sat : ExprB — set State
(s esatP iff “condition P is satisfied in state s”)

(Alternatively, start from evalB : StateB —~ ExprB — B and define satP={s | evalBsP })

Types for Semantics of Expressions and Commands
What does “state” mean? “holds”? ...

Imperative programs, such as Cmd, transform a State that assigns values to variables.

— variables
— storable values

Declaration: Var : Type
Declaration: Value : Type
Declaration: State : Type

Axiom “Definition of “State® ”: State = Var — Value

Declaration: eval : State -~ ExprV — Value
Declaration: sat : ExprB — set State

— value expression semantics
— Boolean expression semantics

Declaration: _@'_: (A - B) - (A, B) - (A > B)

Axiom “Definition of function override ”:
x=z= (o (x,y)z=y)
Arzz=(fe (x,y)z=[z)

— state update

Semantics of Commands
What does “starts” mean? “terminates”? ...

Program execution induces a state transformation relation.
Declaration: [_] : Cmd — (State < State)

51 C [ci)s, iff “when started in state s;, command C can terminate in state s,”.

Inductive definition of [_] over the structure of Cmd:

Axiom “Semantics of :=": [x:=e] = {s:State e (5,5 @& (x,evalse))}

Axiom “Semantics of ;”: [Ci:CG]=[C]s[C]
Axiom “Semantics of “if* "

[ifBthenC;else Cofi] = (satB < [Ci]) u (satB <€ [C2])

Axiom “Semantics of “while* ”:
[whileBdoCod] = (satB <« [C])* & satB

Formalising Partial Correctness

So far, we have been using the dynamic logic notation:
P={C]Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Declaration: _={_]_:ExprB - Cmd — ExprB - B
Axiom “Partial Correctness "
(P=fCiQ = [C](satP] csatQ

Theorem “Partial Correctness ”:
(P=[CIQ) = Vs,spesesatPas ([C])s, = s esatQ

Soundness of the Inference Rules for Correctness
Since partial correctness statements (P =f C] Q) are now defined via the relational
semantics, we can prove soundness of the Hoare logic proof rules by deriving them, e.g.:

Derived inference rule “Sequence ”: P =fC]1Q,Q =GR

-
P =[C ;IR
Proof:
Assuming (C1) ‘P =f C;] Q and using with “Partial correctness ”,
(C2)'Q =fC2] R and using with “Partial correctness ":
P =[C;CGIR
= (“Partial correctness ”)
[Ci:C] (satP] c satR
= (“Semantics of ;”, “Relational image of 5")
[C] ([Ci] (satP]] c satR
<= (Antitonicity with assumption (Cy))
[C] (satQ | < satR
= (Assumption (C;))
true

Soundness of the Inference Rules for Correctness (ctd.)

Derived inference rule “Conditional ”:
‘BANP=[C]Q, “'BANP=[C]Q
.

‘P =fifBthenCelse C;fi] Q

Derived inference rule “While ”:

BAQ =fC]Q

*Q =[whileBdoCod] -'B A" Q

“Operational Semantics”, “Axiomatic Semantics”
For a command C : Cmd, we introduced it relational semantics [C] : State < State.

This semantics only captures the terminating behaviours of C, in the shape of an
“input-output relation”.

This is also called “big-step operational semantics”, or “natural semantics”.

“Small-step operational semantics” maps C to a relation of type State < (State* U State™):
@ Each start state sp is related to all possible execution sequences starting from sg.
o All intermediate states (after each assignment) are recorded.
@ Non-terminating behaviours give rise to infinite state sequences.
@ Terminating behaviours give rise to finite sequences sy, . . .,s,, with sg ¢ [cl Js,
— this is either a proof obligation, or a way to define [C].

“Axiomatic semantics” is the set of correctness statements (P =[C] Q) that can be
derived about C in a inference system of the kind we have used.

As seen on the previous slides, such an inference system can (and should!) be justified
against the operational semantics.
— More in COMPSCI 3MI3!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22

Total Correctness

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22

Part 1: Relational Semantics: Partial Correctness

Bag-based Specification of Sorting

xsg = xs € (0..k) = N,
=[SORT
]

xs € (0..k) - N, A sortedxs
AlplpexsesndpS=1Up|peaxsesndp]’

Theorem “Sorting 0" ”: A Verified Sorting Algorithm

xso = xs € (0..k) = N
= [while true do

xs:=xs ® {(0,42)}

od

while true do
xs[0] := 42

xs € (0..k) -> N, A sortedxs
Alplpexsesndpl=1p|peaxsesndp!

Proof structure?

Theorem “Sorting 0" ”:
xsp = xs € (0..k) - N,
= [while true do
xs:=xs @ {(0,42)} while true do

od xs[0] := 42

A Verified Sorting Algorithm

]
xs € (0..k) - N, A sortedxs
/\Zp|p € xs-sndpS = Zplp € xsp @ snde
Proof:
xso = xs € (0..k) = N,
=(?)
?
=[whiletruedo xs:=xs® {(0,42)} od
1 (“While ” with subproof:
?

=fxs:=xs ® {(0,42)}]
(7)
?
)
?
=(?
xs € (0..k) - N, A sortedxs
/\Zp|pexSosndp5= Zp|p € xsp osnde

Where do we flag the invariant?

Theorem “Sorting 0" ”:
xso = xs € (0..k) - N,
=[while true do -
xs:=xs ® {(0,42)} while true do

od xs[0] := 42

A Verified Sorting Algorithm

xs € (0..k) > N, A sortedxs
AlplpexsesndpS=1p|peaxsesndpl

Proof:
xso = xs € (0..k) = N,
=(?)
Q — Invariant

=[whiletruedo xs:=xs & {(0,42)} od
1 (“While ” with subproof:
?

=fxs:=xs ® {(0,42)}]
(7)
?

) Which other conditions ere

(77 determined by the invariant?
=(?

xs € (0..k) -> N, A sortedxs

Alplpexsesndpd=1Up|pexsoesndpl

Theorem “Sorting 0" ”:
xsp = xs € (0..k) - N,
= [while true do
xs:=xs @ {(0,42)} while true do

od xs[0] := 42

A Verified Sorting Algorithm

]
xs € (0..k) - N, A sortedxs
/\Zp|pexSosndp5= Zp|p € xsp osnde

Proof:
xso = xs € (0..k) = N,
=(?)
Q — Invariant

=[whiletruedo xs:=xs @& {(0,42)} od
1 (“While ” with subproof:
true A Q
=fxs:=xs ® {(0,42)}]
(7)
Q
) Can we already complete some
;JV)UG A Q proof obligations now, without
=(?
xs'c (0.K) > N, A sortedxs even fixing the invariant?
AlplpexsesndpS=1p|peaxsesndp’

Theorem “Sorting 0" ”:
xso = xs € (0..k) - N,
= [while true do :
xs:=xs @ {(0,42)} while true do

od xs[0] := 42

A Verified Sorting Algorithm

xs € (0..k) -> N, A sortedxs
Alplpexsesndpd=1Up|peaxsoesndp’

Proof:
xso = xs € (0..k) = N,
=(?)
Q — Invariant

=[whiletruedo xs:=xs & {(0,42)} od

1 { “While ” with subproof:

true A Q
=[xs:=xs ® {(0,42)}] How can we choose the invariant to make

Q< 7 the remaining proof obligations easy?

)

~true A Q
= (“Definition of “false* ”, “Zero of A", “ex falso quodlibet ")

xs € (0..k) > N, A sortedxs

Alplpexsesndpd=1Up|peaxsoesndp’

Theorem “Sorting 0" ”:
xsp = xs € (0..k) - N,
= [while true do
xs:=xs @ {(0,42)} while true do

od xs[0] := 42

A Verified Sorting Algorithm

>j<s € (0..k) = N, A sortedxs
AlplpexsesndpS=1p|peaxsesndp’
Proof:
xsp = xs € (0..k) - N,
= (“Right-zero of =")
true — Invariant
=[whiletruedo xs:=xs ® {(0,42)} od
1 (“While ” with subproof:
true A true
=fxs:=xs ® {(0,42)}]
(“Idempotency of A", “Assignment ” with substitution)
true

This program has herewith been
proven partially correct with respect to
our sorting algorithm specification.

)
- true A true
= (“Contradiction”, “ex falso quodlibet ")
xs € (0..k) - N, A sortedxs
AlplpexsesndpS=1p|peaxsesndp’

Partial Correctness: “Terminate Only in States Satisfying Postcondition”
(P=fC]1Q) = [C](satP) csatQ

[whileBdoCod] = (satB <« [C])* » satB

Axiom “Partial Correctness ”:
Axiom “Semantics of ‘while® ”:

Theorem “Partial correctness of *while true™ ”:
Proof:
P = [while true’ do Cod] Q

= (“Partial correctness ”)
[while true’ doCod] (| satP |) c satQ
(“Semantics of “while® ")
((sattrue’ « [C])* & sattrue’) (satP |) c satQ
(“sat true’ ")
(U< [ChH*pU)(satP] csatQ
(“pu”)
{} (satP|) c satQ
= (“Relational image under {})

{} c satQ

P =} while true’ do Cod 1 Q

That is:

Any “while true” loop
is partially correct
with respect to any
pre-post-condition
specification.

— This is “Empty set is least”

Domain and Range Relation-algebraically

o In the abstract relation-algebraic setting, we are only dealing with relation types A < B
@ No set types, and therefore no direct way to express Don, <1, (|_|), etc.
@ One candidate for “relations representing sets” are subidentities, g ¢ I
o In set theory, idA is a relation that can just serve as a representation of set A
@ id allows us to define <:
Theorem (14.237) “Domain restriction via§3”: A < R = id A § R
o In the abstract relation-algebraic setting, the role of the operation
Dom : (A < B) — set A
is taken by the new operation
dom: (A < B) - (A < A)
domR = R3R " nlI
taking each relation R to the subidentity relation representing the set Dom R
o In set theory:
domR = id (Dom R)

= H18, H19

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-22

Part 2: Total Correctness

Precondition-Postcondition Specifications in Dynamic Logic Notation

@ Program correctness statement in LADM (and much current use): “Hoare triple”:
{Prc{Q}
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.
@ So far, we have been using the dynamic logic notation:
P={C]Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds

then it will terminate only in states in which the postcondition Q holds.

Differences between partial and total correctness:
Commands that do not terminate properly:

o Commands that crash — evaluating undefined expressions

o Infinite loops

Undefined Behaviors in C

Spatial memory safety violations —int a[5]; int k= al[6];

Temporal memory safety violations —int a; int b=a + 1;
Integer overflow — k = maxint + 2; m = minint - 3;
Strict aliasing violations
Alignment violations
Unsequenced modifications — printf("%d.%d”, a++, a++);

Data races

Loops that neither perform I/O nor terminate

Rules That Work for Both

Sequential composition:

Primitive inference rule “Sequence”:
P=fCi] Q, Q =fC2] R
I.

P = Ci;Ca] R

Strengthening the precondition:

Py o P2, ProfC]Q
' Pr=f C1Q
Weakening the postcondition:
P=fC1Q:7, 0= Q2
" P =f C1 Q2"

Total Correctness Rule for Assignment

Used so far: Dynamic Logic Partial Correctness Assignment Axiom:
Qx:=E] ={x:=E] Q
LADM Total Correctness Assignment Axiom (10.1):

Assignment “:=":
Two characters;
type “: ="

{dom’E" A Q[x:=E]} x:=E {Q}

For each programming-language expression E, the predicate
dom 'E’

Substitution “:=":
One Unicode character;
type “\: ="

is satisfied exactly in the states in which E is defined.
(dom is a meta-function taking expressions to Boolean conditions.)

Examples:
o dom’sqrt (x [y) = y#0ax/y>0
o dom’a@i” = ieDoma

@ For int-variables i and j:

dom’i+j" = minint <x+y < maxint
Conditional Rule “While” Rule
So far: ‘BAQ =EC] Q

v

Each evaluation of an expression E needs to be guarded by a precondition dom ‘E”:

{BaP} G {Q} {=BAP} G {Q}

{dom‘B" AP} if BthenCyelseCofi {Q}

'Q =f whileBdoCod] -BaAQ

Now two additional ingredients:
Q:B

@ Variant (or “bound function”): T:Z

o Invariant: — as before, ensuring functional correctness

— ensuring termination

{BAQAT=tg} C {T<t}
{dom’B" A Q} whileBdoCod {-BAQ}

{BAQ} C {Q} BAQ=T>0

In each iteration:
o The invariant Q is preserved.
o The variant T decreases.

Termination: The relation < on the subset {t: Z | t >0} is well-founded.

“Merged” While Rule

Now two additional ingredients:
Q:B

@ Variant (or “bound function”):

@ Invariant: — as before, ensuring functional correctness

T:Z — ensuring termination

{BAQAT=ty} C {QAT<t}
{dom’B" A Q} whileBdoCod {-BAQ}

BAQ=T>0

prov. —occurs(‘ty’, ‘B,C,Q, T")

In each iteration:
o The invariant Q is preserved.

o The variant T decreases.

Recall: Total Correctness versus Partial Correctness
@ Program correctness statement in LADM (and much current use): “Hoare triple”:
{Prc{Q}
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.
@ So far, we have been using the dynamic logic notation:
P={C]Q
with its partial correctness meaning:

If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Differences between partial and total correctness:
Commands that do not terminate properly:

@ Commands that crash — evaluating undefined expressions
@ Infinite loops

Relation-Algebraic Total and Partial Correctness

.

@ Program correctness statement in LADM (and much current use): “Hoare triple”:
{PIC{Q}
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds

then it will terminate in a state in which the postcondition Q holds.

Axiom “Total Correctness ”:
(P =[KCHYQ) = satP c Dom[C] A [C] (satP| c satQ

@ So far, we have been using the dynamic logic notation:
P{C]Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds

then it will terminate only in a state in which the postcondition Q holds.

Axiom “Partial Correctness ”:
(P=[C]Q) = [C](satP| csatQ

Total and Partial Correctness in Predicate Logic
@ Program correctness statement in LADM (and much current use): “Hoare triple”:
{Prc{Q}
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.
Theorem “Total Correctness ”:
(P =KCcHQ
= (Vs |sy esatP e 3]s ([ci Isr e ¢ sat Q)
A(Vsi,spes esatP asg ([C] sy = s € satQ)

@ So far, we have been using the dynamic logic notation:

P={C]Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds

then it will terminate only in a state in which the postcondition Q holds.
Theorem “Partial Correctness ”:
(P =fCiQ)
= Vs, s o5 €satP a s ([ci s, = s, e satQ

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-24

Temporal Logic: PLTL

Syntax and Semantics of Propositional Logic

o Given: A set P of proposition symbols p, g, ...
@ A propositional formula ¢, 1), ... is (an abstract syntax tree) generated by the
following “grammar” (informal):
eu=T|F|p|-glort|ove|p=1
o Astateisafunctiona:P - B
@ The semantics of propositional formula ¢ is the function
[¢l: (P~B)~B
that maps each state « to a truth value, the “value of ¢ in o

[Tl = true
Fela = (el o)
lertla = [elan[¥la

o « satisfies ¢ iff [¢] a = true; this is also written: a k= ¢
o pisvalid iff (Vo e [¢] a = true); this is also written: E ¢

Syntax and Semantics of Propositional Logic — Applications

@ Define a (Haskell) datatype for propositional formule: data PropFormp = ...
@ Write functions that takes each formula to its disjunctive/conjunctive normal form

‘ toCNF, toDNF :: PropForm p — PropForm p

Use CALCCHECK to prove that your implementations are correct
@ Define the semantics as an evaluation function

‘ evalPropForm :: PropForm p — State p — Bool

@ Define a representation of truth tables
o Write a truth table generation fucntion
o Write a validity checker using truth tables

‘ validPropForm :: PropForm p — Bool

o Write a satisfiability checker using truth tables

‘ satPropForm :: PropForm p — Maybe (State p)

@ Look up the DPLL algorithm and write a more efficient satisfiability solver

Syntax and Semantics of Predicate Logic
@ Given: A vocabulary/signature X consisting of
e a countably infinite set of variable symbols v,v;,vs, ...
o acountable set of function symbols f,g, ... (with arity information)
e a countable set of predicate symbols p,q, ... (with arity information)
o Aterm t,ty,t; is (an abstract syntax tree) generated by the following “grammar”:
tu=f(tr, ... ty)
o A predicate-logic/first-order-logic formula ¢, v, ... is (an abstract syntax tree)
generated by the following “grammar”:
pu=plt,..tn) | ~plorv oV o= [(Vo e p)|[(T0 e)
o An interpretation of X / X-structure A consists of
o a domain set D
o a mapping of function symbols f to functions f4 : D" — D
o a mapping of predicate symbols p to functions p : D" - B
@ A variable assignment for A is a function a.: V - D
@ Semantics of terms: [t] 4: (V - D) - D
@ Semantics of formulae: [¢]4: (V —» D) — B; we write “A, a k= ¢” for [p]a « = true
o ... — RSD chapters 3, 4

Infinite Program Executions

o Even simple imperative programming languages have programs that do not
terminate
Not all programs are expected to terminate:

o Operating systems

o Bank databases

@ Online shops

while truedo ...

Pre-postcondition specifications are useless for programs that are expected to not
terminate!
Different patterns of specification are used for such systems:

o Each request will generate a response

@ The ledger is always balanced

o Shipping commands are sent to the warehouse only after payment is confirmed

Central concept: Time
System behaviour: Different states at different time points
Plausible abstraction: Discrete time, with time points taken from N

Infinite state sequences: Functions of type N — State

How to Reason About Infinite state sequences?

o Infinite state sequences: Functions of type N — State
@ Specification example sketches in predicate logic:

o Vi, rld,di, | request(rld,d,t)

o It,doy | to<h o response(rld, oy, t1)

A appropriate(dous, din)
o Vit e (X a:Account e balanceat) =0
e ...
@ Lots of quantification about time points!
o Quantification about time points follows relatively few patterns!

@ Temporal logics “internalise” these time point quantification patterns
and allow to express them without bound variables for time points.

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL)
@ Given: A set A of atomic propositions p,q, ...

o A PLTL formula ¢,7),...is (an abstract syntax tree) generated by the following
“grammar” (informal):

eu=T|Flpl-plory|ove|o=¢|Fo|Gp|Xp|pU¥
o A state associates a truth value with each atom: State = A - B

o A time line o associates a state with each time point — for simplicity, we use N for
time points:
a:N-A-B
o Given an LTL formula ¢ and a time line «, the semantics of ¢ in «, written “[¢ | o”,
is a function that associates with each time point t : N the truth value “[¢] a "

Declaration: [_]:LTLA - (N > A > B) > N> B

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 1

Lol at=true iff LTL formula ¢ holds in _

timelinea : N - A — Battimet: o = glme plajris
Declaration: [_]:LTLA - (N - A > B) > N > B 1

An atomic proposition p is true at time ¢ iff the §

time line contains, at time ¢, a state in which p is 1

true: 5
“Semantics of LTL atoms”: [‘pJat = atp 6,16,26, ...

7,17,27,...

“Semantics of LTL =" [~ p] at = = [¢] at 8,18,28,. ..
“Semantics Of LTLA”: [A] at = [p]at A [¢]at 9,19,29,...
“Semantics of LTLV”: [V' ¢ Jat = [¢]lat v [¢]at 10,20, 30,
“Semantics of LTL =": [=’ ¢] at = [¢]at = [¢]at i;;;g;
o [p]lal =7 o [prqlal =7 13,23,33,
o [pla3 =7 o [pv-q]a3 =7 igiggg
o [q]a0 =7 o [g=rjad2 =7 s

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 2

Lol at=true iff LTL formula ¢ holds in i
timelinea : N - A — Battimet: o = g1me Playris
Declaration: [_]:LTLA - (N > A - B) > N > B 1
2
F ¢ is true at time f if ¢ is true at some time t' > £ 3
“Semantics of “F* " 4
Folat = 3F:N|t<t o [plat 5
[Fel l [e] 6.16,26, ..
G ¢ is true at time ¢ if ¢ is true at all times ' > t. 7,17,27,...
P . N 8,18,28,...
Semantics of *G™ ") ,) 919,29, .
[Gelat=V¢:N|t<t o [p]at 10,20,30, ...
”) 11,2131, ...
o [GplalO =7 o [Fsla7 =7 12,2,32,...
o [Gpla5="7 o [F-p]lal =" 13,23,33,...
o [Fqla0 =" o [F-plalo0 = ? 14,2434, .
[Fal [F-rl 15,25,35,. ..

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 3

Lol at=true iff LTL formula ¢ holds in _
timelinea : N - A — Battimet: o = glme Plairis
Declaration: [_]:LTLA - (N - A > B) > N > B 1
2
X ¢ is true at time t iff ¢ is true at time ¢ + 1: 3
“Semantics of “X" 4
Xolat = [¢]a(suct 5
[Xe] [#la(suct) AT
[Xpla0 =7 o [F(sAXs)]al=7 Z}Zig
[Xq]la0 =7 o [F(sArXs)]Jal0 =7 919’29’
[ganXr]al=" e [G(g=Xr]al2="7" 10,20, 30,
GF(qAnXr)Ja0=? o [GF(q=Xr]al2=7" 11,21, 31,
[GFGrXn]a [GF(g=XN]a A
13,23,33,
14,24,34,
15,25,35, ...

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 4

Lol at=true iff LTL formula ¢ holds in

timelinea : N - A — Battimet: o - glme pPlqair|s

Declaration: [_]:LTLA - (N - A - B) - N - B 1
@ U 9 is true at time t if ¢ is true at some time g
t' > t, and for all times " such that t <t <, ¢ is 1
true. 5

Axiom “Semantics of *U"”: ==em=s “until” 6,16,26,...

[eUp]at 7,17,27,...

= VN[t H 8,18,28,...

, 9,19,29, ...

s[¢]at 10,20,30, .-

AVERNTE< " <t e [p]at” 11,21,31, ...

12,22,32,...

o [pUg]al =" o [pU(grr)]ad2 =7 13,23,33,...

S =7] 14,24,34, ...

o [pUs]w0 =7 o [pU(gnAs)]ad2 =7 5255

o [-sU-p]lad0=?7 o[(pvr)Us]al =7

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-27

Frama-C and ACSL

Frama-C: https://www. frama-c.com/

Frama-C is an open-source extensible and collaborative platform dedicated to source-
code analysis of C software. The Frama-C analyzers assist you in various source-code-
related activities, from the navigation through unfamiliar projects up to the certification
of critical software.

@ Platform with multiple plug-ins
@ Plug-in for total correctness proofs: WP

@ Specification language: ACSL “ANSI C Specificatiion Language”
o Similar to JML
o Based on first-order predicate logic

o Not all ACSL features are currently supported by Frama-C and WP

Frama-C and ACSL — https://www. frama-c.com/
Frama-C: An industrially-used framework for C code analysis and verification

@ Delegates “simple” proofs to external tools, mostly Satisfiability-Modulo-Theories
solvers (e.g., Z3)

@ Practical Program Proof = Verification Condition Generation (VCG) + SMT checking

ACSL: ANSI-C Specification Language
@ Similar to the JML — Java Modelling Language

@ But Java is more complex:
Statements that can raise exceptions need additional postconditions for those.

o ACSL “is” standard first-order predicate logic in C syntax.

o ACSL allows definition of inductive datatypes
— natural abstractions for specification, but rather clumsy in ACSL
— From discrete math to C: A big gap to bridge!

Start reading:
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

ACSL Function Contracts
Opverall program correctness is based on function contracts, mainly:
@ “requires”: Procedure call precondition
o “assigns”: Global variables that may be updated

o “ensures”: Procedure call postcondition
May refer to \result for the return value.

Contracts of exported functions are part of the module interface, and therefore should be
in the module interface file (= . h).

all _zeros.h:

/*@requires n >0 A \valid(t + (0..n-1));

assigns \nothing;

ensures \result * 0 < (V integer j; 0 < j <n = t[j] = 0);
+/

int all zeros (int *t, int n);

ACSL Loop Annotations

Total correctness While rule:

{BAQAT=ty} C {QnaT<ty}
{dom‘B" A Q} whileBdoCod {-BnaQ}

BAQ=T>0

prov. —occurs(‘ty’, ‘B,C,Q,T")

“loop invariant Q”: Property always true in the following loop

@ true at loop entry, at each loop iteration, at loop exit

@ usually contains a generalisation of the post-condition

@ may need to contain additional “sanity” conditions
“loop assigns footprint”: What may be assigned to within the loop
“loop variant T”: To prove termination:

o Integer metric T that is strictly decreasing at each iteration
and bounded by 0

all zeros.c: all zeros findMaxl.c: findMax Attempt 1
/+@requires n >0 A \valid(t + (0..n-1)); /+@requires n > 0;
assigns \nothing; requires \valid(a + (0 .. n- 1));
ensures \result * 0 < (V integer j; 0 < j <n = t[j] = 0); ensures V integer i ; 0 < i <n = \result > a[i];
*/ ensures 3 integer i ; 0 < i <n = \result = a[i];
int all zeros(int »t, int n) { +/
int k=0; int findMax(int n, int a[]) {
/+*@loop invariant 0 < k < n; int i;

loop invariant V integer j; 0 < j <k = t[j] = 0;
loop assigns k;
loop variant n - k;
*/
while(k < n){
if (t[k] # 0)
return 0;
k++;
}

return 1;

/+*@loop invariant YV integer j ; 0 < j <i = a[j] = 0;
loop invariant 0 < i < n;
loop variant n - i;

*/

for(i =0; i <n; i++)ali] =0;

return 0;

}

frama-c-gui -wp findMaxl.c frama-c-gui -wp -wp-rte findMaxl.c

frama-c -wp findMaxl.c frama-c -wp -wp-rte findMaxl.c

“RTE”: Run-time exceptions (include undefined behaviour)

The findMax Attempt 1a

findMaxla.c:

findMax2.c:

findMax Attempt 2

/*@requires n > 0;

requires \valid(a + (0 .. n- 1));
ensures ¥V integer i ; 0 < i <n = \result > a[i];
ensures 3 integer i ; 0 < i <n = \result = a[i];
*/
int findMax(int n, int a[]) {
int i;

/+@loop invariant V integer j ; 0 < j <i = a[j] = 0;
loop invariant 0 < i < n;
loop assigns i, a[0 .. n- 1];
loop variant n - i;

*/

for(i =0; i <n; i++)ali] =0;

return 0;

/+@requires n >1;
ensures V integer i; 0 < i <n = a[i] < \result;
ensures 3 integer i; 0 < i <n A a[i] = \result;
assigns \nothing;
*/
int findMax(int n, int a[]) {
int i;
/+@
loop invariant0 < i < n;
loop assigns i;
*/
for(i =0; i <n; i++);
return 0;

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-11-29

Frama-C: Behaviours, Loop Variants

Reconsidering the findMax Specification

/+@requires n >1;
requires \valid read(a+ (0 .. n- 1));
ensures V integer i; 0 < i <n = a[i] < \result;
ensures 3 integer i; 0 < i <n A a[i] = \result;
assigns \nothing;

*/

int findMax(int n, int a[]);

@ “requires \valid_read(a+ (0 .. n—- 1))” is necessary for array access

(pointer dereference)
@ “assigns \nothing” documents that findMax must not have memory side-effects
o What if we wish to replace “requires n >1” with “requires n >0”?

“ensures 3 integer i; 0 < i <n A a[i] = \result” would be unsatisfiable for
“n = 0"!

A different specification for that case is needed: findMax then has two distict
behaviours, that can be specified separately:

“ACSL by Example”: The max_element Algorithm — Specification

max element .h:

nax_element . ¢¢CSL by Example”: The max_element Algorithm — Implementation

#include "typedefs.h”
/*@ requires valid:
assigns
ensures result:

\valid_read(a + (0..n-1));
\nothing;
0 < \result < n;

behavior empty:
assumes n=0;
assigns \nothing;
ensures result: \result = 0;

behavior not_empty:
assumes 0<n
assigns \nothing;
ensures result: 0 < \result <n;
ensures upper: Y integer i; 0

<i<n = a[i] < a[\result];
ensures first: YV integer i; 0 <

i <\result = a[i] < a[\result];

complete behaviors; disjoint behaviors;
+/

size_type max_element(const value_typex a, size_type n);

#include "max_element.h”

size_type max_element(const value_typex a, size_type n)
{ if Ou<n){
size_type max = Ou;
/*@ loop invariant bound: 0 < i < n;
loop invariant max: < max < n;
loop invariant upper: V integer k; 0 <
loop invariant first: V integer k; 0 <
loop assigns max, i;
loop variant n—i;

0
0
k<i = a[k] < a[max];
k <max = alk] < a[max];

*/
for (size_type i =1u; i <n; i++){
if (a[max] < a[i]) { max=1; }

return max;

}

return n;

}

ACSL By Example — Conventions
SizeValueTypes.h:
#ifndef SIZEVALUETYPES

typedef int value_type;
typedef unsigned int size_type;
typedef int bool;

#define false 0

#define true 1

#define SIZEVALUETYPES
#endif

IsvalidRange.h:
#ifndef ISVALIDRANGE

#include "SizeValueTypes.h”
/+@ predicate IsValidRange(value_typex a, integer n)
=(0 < n) A \valid(a+(0.. n-1));

2/

ACSL Loop Annotations
Total correctness While rule:

{BAQ}C{Q} {BAQAT=t}C{T<ty} BAQ=>T2>0
{dom’B" A Q} whileBdoCod {-BArQ}
“loop invariant Q”: Property “always” true in the following loop:
@ true at loop entry, at each loop iteration, at loop exit
@ usually contains a generalisation of the post-condition
@ may need to contain additional “sanity” conditions

prov. —occurs(‘ty’, ‘B,C,Q, T")

“loop assigns footprint”: What may be assigned to within the loop
“loop variant T”: To prove termination:
o Integer metric T that is strictly decreasing at each iteration and bounded by 0
@ Conceptually, this establishes a well-founded relation on the states encountered at
start and end of loop body executions.
s1&5 = [Tlsi>[T]s2 — (using [_] also for expression semantics evalV’)
@ Any expression T for which the premises can be proven is acceptable.
@ Some expressions T may make these proofs easier than others. ..

Loop Variants 1
{BAQ}C{Q} {BAQAT=1t}C{T<ty} BAQ=T2>0
{dom’B" A Q} whileBdoCod {-BAQ}

prov. —occurs(‘ty’, ‘B,C,Q, T")

/ /@ assigns \nothing;
void f () {
int i =10;
/+@]loop assigns i;
loop variant i; //°T
*/
while (i > 0)

) -
}

o T needs to be some upper bound for the “number of iterations still remaining”

Loop Variants 2
{BAQYC{Q} {BAQAT=1}C{T<ty} BAQ=T=0
{dom’B" A Q} whileBdoCod {-BnArQ}

prov. -occurs(‘ty’, ‘B,C,Q, T")

// @ assigns \nothing;
void f () {
int i =10;
/+@]loop assigns i;
loop variant i; // T
*/
while (i > 0)
{ .
i-=;
}
}

ACSL only requires BAQ = T>0
ACSL def., section “Loop Variants”:
“its value at the beginning of the iteration must be nonnegative.”

Loop Variants 3
{BAQ}C{Q} {BAQAT=1t}C{T<ty} BArQ=T=>I(
{dom’B" A Q} whileBdoCod {-BAQ}

)
prov. —occurs(‘ty’, ‘B,C,Q, T")

/ /@ assigns \nothing;
void f () {
int i =10;
/+@]loop assigns i;
loop variant i; //°T
*/
while (i > -1)

) -
}

[wp] [Alt-Ergo | Goal typed_f loop_variant positive : Timeout (Qed:1ms) (10s)

@ Weneed BAQ=T2>0 !

Loop Variants 4
{BAQYC{Q} {BAQAT=(}C{T<t} BrQ=T=xI
{dom’B" A Q} whileBdoCod {-BAQ}

)
prov. -occurs(‘ty’, ‘B,C,Q, T")

// @ assigns \nothing;
void f () {
int i =10;
/+@loop assigns i;
loop variant i; //°T */
while (i >0) {
if (i %2=0){i-—}
else {i=1i-3}
}

}

o T needs to be some upper bound for the “number of iterations still remaining”
o T does not need to be a tight upper bound!

@ Simpler variants may have “faster proofs”

Loop Variants 5
{BAQ}C{Q} {BAQAT=t,}C{T<ty} BAQ=Tz>0
{dom’B" A Q} whileBdoCod {-BAQ}

prov. ~occurs(‘ty’, ‘B,C,Q,T”)

Loop Variants 6
{BAQ}C{Q} {BAQAT=1,}C{T<ty} BAQ=T>0

{dom’B" A Q} whileBdoCod {-BArQ}

prov. —occurs(‘ty’,

‘B,C.Q.T)

/ /@ assigns \nothing;
void f () {
int i =10;
/+@]loop assigns i;
loopvariant i /2, // T +/
while (i >0) {
if (1 %2=0){i—-}
else {i=i-31}
}
}

o T needs to be some upper bound for the “number of iterations still remaining”
o T does not need to be a tight upper bound!

@ More complex variants may have “slower proofs”, or time-outs. ..

#define N 1000
/ /@ assigns \nothing;
void f () {
int i =0;
/+@1loop assigns i;
loop variant N-i; //'T
*/
while (i < N)
{

i++;

}

}

o T needs to be decreasing, even if your counters are increasing!

Loop Variants 7
{BAQ}C{Q} {BAQAT=1t}C{T<thy} BAQ=T2>0

prov. ~occurs(‘ty’, ‘B,C,Q,T")

Loop Variants 8
{BAQ}C{Q} {BAQAT-1}C{T<k} BAQ=T>0

prov. -occurs(‘ty’, ‘B,C,Q, T")

{dom’B" A Q} whileBdoCod {-BAQ} {dom’B" A Q} whileBdoCod {-BAQ}
/ /@ assigns \nothing; // @ assigns \nothing;
void f () { void f () {
int i =100, k = 200; int i =0, k=10;
/+@]loop assigns i, k; /+@]loop assigns , k;

loop variant i +k; // T
*/
while (i >0 A k>0)

if((i+k %2=0){i—}
else {k—}

i <k+1A0<Kk

i
loop invariant 0 <
k+ (k+1) +i; //°T

loop variant
*/
while (k > 0)

if(1i>0){i—}
else {i=k k—;}

1}

o If your loop is not a “plain for-loop”, several variables may be involved in the
variant.

@ Invariants may be needed to contribute to provability of the variant.
@ Finding appropropriate variants can be tricky. ..

Loop Variants 9
{BAQ}C{Q} {BAQAT=1t}C{T<th} BAQ=T20

prov. ~occurs(‘ty’, ‘B,C,Q,T”)

Loop Variants 9
{BAQ}C{Q} {BAQAT-1}C{T<k} BAQ=T>0

prov. -occurs(‘ty’, ‘B,C,Q, T")

{dom’B" A Q} whileBdoCod {-BAQ} {dom’B" A Q} whileBdoCod {-BAQ}
/ /@ assigns \nothing; // @ assigns \nothing;
void £ () { void f () {

int i =0, k=10;
/+@loop assigns i, k;
loop invariant 0 < i < (k+1) + (k+1) A0 < k;
loop variant k=* k+ (k+1) +i; //°T
*/
while (k > 0)

i(i>0) {i—}
else {i=k+k k—;}

int i =0, k=10;
/+@]loop assigns ?7?;
loop variant ~ ???;
*/
while (k > 0)

if(i>0){i—}
else {i=k=+k k—;}

Loop Variants 9
{BAQ}C{Q} {BAQAT=1t}C{T<ty} BAQ=T2>0

{dom’B" A Q} whileBdoCod {-BAQ}

prov. —occurs(‘ty’, ‘B,C,Q, T")

/ /@ assigns \nothing;
void f () {
int i =0, k=10;
/+@loop assigns i, k;
loop invariant 0 < i < (k+1) + (k+1) A0 < k;
loop variant k=* k+ (k+1) +i; //°T
*/
while (k > 0)

i(i>0) {i—}
else {i=k+k k—;}

Logical Reasoning for Computer Science
COMPSCI 2L.C3

McMaster University, Fall 2023

Wolfram Kahl

2023-12-01

Part 1: Midterm 2

M2.1: Alternative definition of antisymmetry (1)

Theorem “Alternative definition of antisymmetry ”:
antisymmetricR = ~(3x e dylx*yex (RIy (R Ix)
Proof:
antisymmetric R
= (“Definition of antisymmetry ”)

RnR cI
= (“Relation inclusion”)
vyeVyex(RNR Jy==x(1)y

(“Relationship viaI”)
vyxevVyex(RNR™

= (“Relation intersection”)
VieVyex(RIyrx(R Jy=x=y

(“Relation converse ”)
onVyo(Y(R)/(R)x):»x:y

(“Definition of ", “Contrapositive”)
on\iy-x*y:ﬁ(x(R)y(R)x)

(“Trading for V" (9.2))
VieVylx#ye-(x(RIy(RIx)

= (“Generalised De Morgan ")

q(ﬂxoﬂyl)c*yox(R)y(R)x)

Jy=x=y

M2.1: Alternative definition of antisymmetry (2)

Theorem “Alternative definition of antisymmetry ”:
antisymmetricR = -~ (3x e 3y|x2yex (R Iy (R Ix)
Proof:
ﬁ(ﬂxoﬂylx:yox(R)y(R)x)
(“Definition of +”, “Trading for 3”
~(3xe3ylx(R)ng)x-%vf/))
(“Generalised De Morgan ”
onVylx(R)y(R)xo\'—y
(“Relationship via I
VievVylxCRIy(RIxex(I)y
(“Relation inclusion ”, “Relation intersection ”, “Relation converse ")
RnAnR ¢l
= (“Definition of antisymmetry ”)
antisymmetric R

M2.1: Alternative definition of univalence
Theorem “Alternative definition of univalence ”: univalentR = R3~I1c ~R
Proof:
Rs~Tc~R
= (“Relation inclusion”)

vieVyex(Rs~1)y=x(~R)y
(“Relation composition”)

VieVye 3y ex(RIy(~1)y) = x(~R)y
(“Relation complement ”)

VieVye @y ex(RIY A~ C(L)y) = -xC(RIY
(“Relationship viaI”)

VievVye @3y ex (RIY A=/ =y) = -(RIy)
(“Witness ")

VieVyeVy ex(RIY A=/ =y =-a(RIy
(“Trading for v ")

VievyeVy |x(RIy ¢~y =y) = -~ (RIy
(“Contrapositive ”)

VxeVyeVy |x(R)y ex(R)y=y -y

= (“Trading for V ”, “Interchange of dummies for V")

Vy-vZ.Vx-x(R)yAx(R)z:»y:z
= (“Univalence”)
univalent R

M2.1: “Bounded domain”
Theorem (14.135) “Bounded domain”: DomR ¢ A = idA§R = R
Proof:
DomR c A
= (“Set inclusion ")

VxexeDomR = xeA
(“Membership in *Dom* ")

Vx-(Eyox(R)y)ﬁst
{ “Witness ")

Vx-Vy-x(R)yﬁxeA
{ “Definition of = via A")

onVy-xeAAx(R)yzx(R)y
{ “One-point rule for 3”, substitution)

VyeVye(3x|x=xex cArx (R)y) =x(R)y
= (“Trading for 3")

VxeVye (Ix ex
(“Relationship via “id> ")

VieVye (3x ex(idA)x¥ (R)y) =x(R)y
{ “Relation composition”)

onVpo(idAgR)yzx(R)y
= (“Relation extensionality ”)

idAsR =R

x’eA/\x’(R)y)Ex(R)y

M2.1: “Bounded range”
Theorem “Bounded range”: B ¢ RanR = idB < R~ §R
Proof:
B c RanR
= (“Set inclusion”)
VyeyeB=yecRanR
(“Membership in “Ran* ")
VyeyeB= 3xex(R)y)
(“Idempotency of A")
Vy-yeBﬁﬂx-x(R)yAx(R)y
= (“Relation converse”)
VyeyeB=3xey(R Jx(R)y
(“Relation composition”)
VyeyeB=y (R 3Ry
(“One-point rule for V ”, substitution)
Vyevyly=y ey cB=y(R 3Ry
(“Trading for V")
VyeVy ey=y eB=yC(R 3Ry
(“Relationship via “id> ")
VyeVy eyCidB)y =y (R 3Ry
= (“Relation inclusion ”)
idBcR 3R

M2.2: “Surjectivity of composition”

Theorem “Surjectivity of composition ”:
surjective Q = surjective R = surjective (Q § R)
Proof:
Assuming “Q " “surjective Q" and using with “Definition of surjectivity ”:
Assuming “R” “surjective R and using with “Definition of surjectivity ”:
Using “Definition of surjectivity ”:
(Q3R) "5(Q3R)
= (“Converse of 3")
R75Q 5Q5R

2 { Monotonicity with assumption “Q”)

R “3Is3R

= (“Identity of 3)
R 3R

2 (Assumption “R”)
I

M2.2: “Injectivity of composition” (1)

Theorem “Injectivity of composition ”:
injective R = injective S = injective (R § S)
Proof:
Assuming “injective R, “injective S*:
Using “Definition of injectivity ”:
(R38)5(R3S) "
= (“Converse of §”)
R$SsS §R ™
¢ (Monotonicity with assumption “injective S* with “Definition of injectivity ”)

RsIsR "~

= (“Identity of §”)
RsR~

¢ (Assumption “injective R* with “Definition of injectivity ”)
1

M2.2: “Injectivity of composition” (2)

Theorem “Injectivity of composition ”:
injective R = injective S = injective (R § S)
Proof:
Assuming “injective R, “injective S*:
Using “Definition of injectivity ”:
(R58)5(R5S) "
= (“Converse of 5")
R3(53S 7)sR~
¢ (“Monotonicity of 5 with “Monotonicity of §”
with assumption injective S* with “Definition of injectivity ”)

RsIgR ™

= (“Identity of 3)
R¢R "™

¢ (Assumption “injective R* with “Definition of injectivity ”)
I

With explicit “Monotonicity of ...” invocations, all enclosing operations need to be
traversed outside-in!

M2.2: “Injectivity of composition” (3)
Theorem “Injectivity of composition ”: injective R = injective S = injective (R § S)
Proof:
Assuming “injective R*, ‘injective S™:
injective (R 5 S)
= (“Definition of injectivity ”)
R58)5(R5S) " <1
= (“Converse of §”)
RsSsS ¢R ¢l
<= (“Transitivity of ¢ ” with “Monotonicity of §” with “Monotonicity of §”
with assumption “injective S with “Definition of injectivity ”)
RsIgR ™ ¢l
= (“Identity of §”)

R¢R™ c 1
= (Assumption “injective R* with “Definition of injectivity)
true

With explicit “Monotonicity of ...” invocations, all enclosing operations need to be
traversed outside-in! — Here starting with “c”!

Transitivity theorems are (heterogeneous) mono-/anti-tonicity theorems as well!

M2.2: “Injectivity of composition” (4)

Theorem “Injectivity of composition ”:
injective R = injective S = injective (R ¢ S)

Proof:

Assuming “injective R, “injective S*:
injective (R 5 S)
(“Definition of injectivity ”)
(R385 (R3S) <1
(“Converse of 3)
R3SsS ¢R™ cl
< (Antitonicity

with assumption “injective S* with “Definition of injectivity ”)

RsIgR ™ c 1

= (“Identity of 3)

R¢R ™ ¢l
= (Assumption “injective R* with “Definition of injectivity ”)
true

M2.2: Theorem “M2.2a”
The following theorem statement contains an obvious invitation to use a modal role for
the proof:

Theorem “M2.2a": Theorem “M2.2a":
Qcl = RnSs5Q=RnSsQ Rcl = QnRsS=R5(QnS)
Proof: Proof:
Assuming "Q ¢ I': Assuming 'R ¢ T:
RnSsQ QnRsS
< (“Modal rule”) c (“Modal rule”)
R35Q 7 n8s5Q R5(R"3Qn5S)
<€ { Monotonicity with assumption *Q ¢ I") ¢ { Monotonicity with assumption *R ¢ T")
R31°n8s5Q R5(I735Qn5S)
= (“Converse of I”, “Identity of 3") = (“Converse of I”, “Identity of 3")

(RnsS)sQ R3(QnS)

¢ (“Sub-distributivity of § over n”) ¢ (“Sub-distributivity of 3 overn”)
R5QnS30Q R$5QAR3S

< { Monotonicity with assumption *Q < T") < { Monotonicity with assumption "R ¢ T")
R31nSsQ I35QnR3S

= (“Identity of 5") = (“Identity of 3")
RnSs5Q QnRs3S

M2.3: Recall: The “While” Rule for Partial Correctness
The constituents of a while loop “while 5 do C od” are:
@ The loop condition 5 : B
@ The (loop) body C : Cmd
The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q : B:

‘BAQ =fC]Q

*Q =fwhileBdoCod] ~B A Q

This rule reads:
@ If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant O,
o then you have proof that the whole loop also preserves the invariant Q,
and in addition establishes the negation of the loop condition.

M2.3: Using the “While” Rule for Partial Correctness (0)

M2.3: Using the “While” Rule for Partial Correctness (1)

Theorem “While-example ”: Proof:
Pre Pre smesss Precondition
=[INIT; =[INIT] (?7)
while B Q
do Cod; = [while B do
FINAL c
] od] (“While” with subproof:
Post 277
=fCci(7)
277
)
?7?
=fFINAL] (?)
Post wxxess Postcondition

The invariant Q will be the precondition of the whole while-loop.

Theorem “While-example ”: Proof:
Pre Pre =s===- Precondition
=[INIT; =[INIT] (7)
while B Q mmmmen Invariant
doCod; = [while B do
FINAL C
] od] (“While” with subproof:
Post BAQ mwmmme (1) Loop condition and invariant
~Eci(7)
7
)
?7?7?
—~[FINAL] (?)
Post ====== Postcondition

(1): At the start of a loop body iteration, the loop condition B just checked as true, and we
expect the invariant Q to hold.

M2.3: Using the “While” Rule for Partial Correctness (2)

M2.3: Using the “While” Rule for Partial Correctness (3)

Theorem “While-example ”: Proof:
Pre Pre ssmes= Precondition
=[INIT; =[INIT] (?7)
while B Q mewme Invariant
doCod; = f while B do
FINAL C
] od] (“While” with subproof:
Post BAQ e (1) Loop condition and invariant
~fci(7)
Q wmeem (2) Invariant
)
272?
=fFFINAL] (?)
Post ssessr Postcondition

(2): After a loop body iteration, we expect the invariant Q to still hold.

(The loop condition B may be true or false for the next check!)

Theorem “While-example ”: Proof:
Pre Pre sessss Precondition
=[INIT; =[INIT] (7)
while B Q mmmmen Invariant
doCod; = [while B do
FINAL c
] od] (“While” with subproof:
Post BAQ wmeme= (1) Loop condition and invariant
={Ci(?)
Q mmmmmm (2) Invariant
)
B AQ wemmun (3) Negated loop condition, and invariant
=[FINAL] (?)
Post ===s== Postcondition

(3): After the loop exists, the loop condition B must have become false, and we expect the
invariant Q to still hold.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-12-01

Part 2: Graphs, Subgraphs, Lattices Graph Homomorphisms

Graphs
Definition: A graph is a tuple (V, E,src, trg) consisting of
@ aset V of vertices or nodes
o aset E of edges or arrows

@ amapping src: E - V that assigns each edge its source node
@ amapping trg : E -e» V that assigns each edge its target node

Example graph:

({x.y,2}, {a,b,c,d}, {{a,x),(b,2),{c,2),{d,x)}, {{a,y), (b,y), {c.2), (d,)})

a
b

d

Graphs, Induced Subgraphs

Definition: A graph is a tuple (V, E, src, trg) consisting of

@ aset V of vertices or nodes

@ aset E of edges or arrows

® a mapping src: E -o» V that assigns each edge its source node

@ a mapping trg : E - V that assigns each edge its target node
Definition: Let two graphs Gy = (V1, Ey, srcy, trg,) and Gy = (V2, Ez,srca, trg,) be given.

o G is called a subgraph of G, iff V, ¢ V; and E; € E; and srcy € srcp and trg, € trg,.
Def. and Theorem: Given a subset Vj ¢ V of the vertex set of graph G = (V, E,src, trg),
the edges incident with only nodes in V are Eq := Ensrc™ (Vo) ntrg” (| Vo |), and then
Go = (Vo, Eo, Eo < sre, Eg < trg) is called the subgraph of G induced by V.
It is a graph, and a subgraph of G.

b
1)

aetrg”({y,z}), but ag¢src ({y.z})

— Induced subgraphs are well-defined

Graphs, Subgraphs

Definition: A graph is a tuple (V,E,src, trg) consisting of

@ aset V of vertices or nodes

@ aset E of edges or arrows

@ amapping src: E > V that assigns each edge its source node

@ amapping trg: E - V that assigns each edge its target node
Definition: Let two graphs Gy = (Vy, Eq,srcy, trg,) and Gy = (Va, Ea, srep, trg,) be given.

@ G is called a subgraph of G, iff V; ¢ V; and E; € E; and srcy € srep and trg, ¢ trg,.

@ We write Subgraph, for the set of all subgraphs of G.

@ For a given graph G, we write G £¢ G; if both Gy and G; are subgraphs of G, and G, is a

subgraph of G,.

Theorem: =¢ is an ordering on Subgraph,.
Theorem: c¢ has greatest element G and least element ({},{},{},{})- a
Theorem: c¢ has binary meets defined by intersection.

b
Theorem: ¢ has binary joins defined by union. Cy Z.QC

Theorem: c; has pseudo-complements, but not complements. d

The subgraph induced by {y,z} has the subgraph induced by {x} as pseudo-complement,
but their union is not the whole graph.

Joins and Meets

@ Given an order g, z is an “upper bound” of two elements x and y iff x=z A y =z

o Given an order g, the two elements x and y have j as “join” or “least upper bound”
(lub),iff Vz e jEz = xcz AyEZ

@ The order ¢ “has binary joins” if for any two elements, there is a join — see
“Characterisation of U” for the inclusion order ¢

Given an order ¢, the set S of elements has j as “join” or “least upper bound” (lub),
iffVzejcz= (Vx| xeS excz)

The order € “has arbitrary joins” if for any set of elements, there is a join — see
“Characterisation of J”

Given an order ¢, the set S of elements has m as “meet” or “greatest lower bound”
(glb),iff Vz e zcm = (Vx | xeS e zEX)

The order € “has binary meets” if for any two-element set, there is a meet — see
“Characterisation of N”

@ The order € “has arbitrary meets” if for any set of elements, there is a meet.

Lattices

Definition: A lattice is a partial order with binary meets and joins.

Examples:
@ For every graph G, its subgraphs, that is, {(Subgraph,=c) with ng and ug
o (Z,<) with | and 1

(Z,>) with 1 and |

(N,<) with | and 1

(N, |) with ged and Iem

(PA, c) with nand u

o Equivalence relations on A ordered wrt. ¢, with n and (E; UE;)*

Algebraic Definition: A lattice (A, n,u) consists of a set A with two binary operations i,
u on A such that:

e nand u each are idempotent, symmetric, and associative

@ The absorption laws hold: xu (xny) =x=xn (xuy)

A Boolean lattice (A,n,u, 1, T,~) in addition has least and greatest elements L and T,
and a unary complement operation ~ satisfying~xnx=1land ~xux=T.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-12-04

Temporal Logic and Model Checking

Temporal Logics for Specification of Reactive and Distributed Systems

@ Reactive Systems: No clear input-output relation
o Operating systems
o Embedded systems

o Network protocols

@ Specification techniques: Temporal logics
o Rich choice of temporal logics — multiple classification criteria

e Some important logics are (polynomial-time) decidable — Model checking

Reading More about Temporal Logics

o E. Allen Emerson: Temporal and Modal Logic, pages 995-1072 of Jan van Leeuwen
(ed.): Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, Elsevier Science Publishers B. V., 1990
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
Thode Library Bookstacks: QA 76 .H279 1990

“Post-print”? linked on Wikipedia:
https://profs.info.uaic.ro/~masalagiu/pub/handbook3.pdf

Michael R. A. Huth and Mark D. Ryan: Logic in Computer Science, Modelling and
Reasoning about Systems, 2nd edition, Cambridge University Press 2004,

Thode Library Bookstacks: QA 76.9 .L63H88 2004

Modal Logics

o Original philosophical motivation: Express different modalities:
The proposition “Napoleon was victorious at Waterloo”
o is false in this world,

o but could be true in another world.

@ Typical modal operators:
e “possibly”: op — “itisimaginable that p holds” “diamond p”

o “necessarily”: O p — “itis notimaginable that p doesn’t hold” “box p”

o Kripke (1963): “possible world semantics” (orig. Kanger 1957)

Temporal Logics

Prior (1955): Tense Logic — notation still customary today
o instead of ¢ p now temporally: F p — “p will eventually be true”

o instead of O p now temporally: G p — “p will always be true”

Two kinds of applications: Temporal logics are used
o in Al, to let programs reason about the world,

e in software technology, to let the world reason about programs

Pnueli (1977): “The Temporal Logic of Programs”:

Argues for using temporal logics as tool for specification and verification, in
particular for reactive systems such as operating systems and network protocols

Propositional Logics versus First-order Predicate Logics

o Temporal Propositional Logics:
e Classical junctors: A, v, =

o Temporal operators: F, G

o Extension to temporal predicate logics

variable, constant, function and predicate symbols as usual

uninterpreted / partially interpreted / fully interpreted

local/global variables

sometimes restrictions on permitted formulae
with respect to the interaction between quantifiers and temporal operators, e.g.:

(Vy:G (P(y))) = (G (Vy: P(y)))

“Formula of Barcan” — “highly undecidable” logics

Linear Time versus Branching Time

This distinction is mainly semantic, but also reflected in syntax
@ Linear Time:

e Atany point only one possible future

@ Branching Time:

o Atany point multiple possible futures

Both approaches are used in software technology

Further Aspects of Time

o Time Points versus Time Intervals

o Some properties are easier to formulate using intervals.

o Discrete Time versus Continuous Time

e Continuous (or dense) time first considered in philosophy

o Possible application in real time systems

@ Future Only versus Also Past
o Philosophiscal approaches: Past at least as important as future
o Software: Frequently only future

o Past operators are frequently useful in compositional specifications.

Classification of Temporal Logics — Summary
@ Propositional logics — first-order predicate logics
o Endogeneous time (global) — exogeneous time (compositional)
o Linear time — branching time
o Time points — time intervals
@ Discrete time — continuous time

o Future — also past

Temporal Operators of Linear-Time Propositional Logic

e Fp — “eventually p”

O—0—0—-0—-0—@—0—0O—

o Gp —"“alwaysp”

o0 -06-0-06-06 00

o Xp — “in the next state p”

O—@—O—0O—0O0—0O—0—0—

e plUg — “eventually g, and until then p” (until)

o000 -(O—0-(—0—

Propositional Linear-Time Temporal Logic — Syntax

Definition: The set of formulae of propositional linear-time temporal logic is the
smallest set generated by the following rules:

@ every atomic proposition P : AP is a formula;
o if p and q are formulae, then p A g and -p are formulae, too;

o if p and q are formulae, then p U g and X p formulae, too.

Abbreviations:
pvg = =(-pAr-q) Fp = trueUp
p=q = -pvq Gp = -F-p
peqg = (p=q9)rg=p) F*p = GFp — “infinitely often”
true = pv-p G®p = FGp — “almost everywhere”
false = -true pBq = -((-p)Uyg) — “p before q”

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 1
Lol at=true iff LTL formula ¢ holds in

Time plqg|r]|s

timelinea : N - A — Battimet:

Declaration: [_]:LTLA - (N - A > B) > N > B

An atomic proposition p is true at time ¢ iff the

time line contains, at time ¢, a state in which p is

true:

“Semantics of LTL atoms”: [‘pJat = atp

“Semantics of LTL - ": [~ ¢ Jat = = [p]at

“Semantics Of LTLA": [A] at = [p]at A [¢]at

“Semantics of LTLV": [V']t = [elat v [¢]at

“Semantics of LTL =": [=’ ¢] at = [¢]at = [¢]at] =
Lo ="vlat=lela [v]a 12,2232, ...

o [pJal =7 o [prqlal =7 13,23,33,...

_ _ 14,24,34,. ..
o [pla3d =7 o [pv-q]a3 =7 T
o [q]a0="7 o [g=r]a42 =7

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 2

Lol at=true iff LTL formula ¢ holds in

Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 3

Lol at=true iff LTL formula ¢ holds in

timelinea : N - A — Battimet: o - gime Playris timelinea : N - A — Battimet: o = "é"ime Plairis
Declaration: [_]:LTLA - (N > A - B) > N > B 1 Declaration: [_]:LTLA - (N - A > B) - N> B 1
2 2
F ¢ is true at time f if ¢ is true at some time t' > £ 3 X ¢ is true at time t iff ¢ is true at time ¢ + 1: 3
“Semantics of “F* ”: 4 “Semantics of *X* " 4
Folat = 3IF:N[t <t o [plal 5 Xolat = [¢]a(suct 5
[Fel | el 1636 [Xel [#la(suct) S T636
G ¢ is true at time f if ¢ is true at all times ¢’ > £. 7,17,27,... o [Xp]a0 =7 o [F(sAXs)]al=7 7,17,27,...
P . <, 8,18,28,... . 8,18,28,...
Semantics of °G"": , , , 9,19,29, ... o [Xq]a0 =7 o [F(sAXs)[all =7 9,19,29, ...
[Gelat =Vt :N|t <t o[p]at 10,20, 30, ... o [gAXr]al =7 0 [G(g=Xr]al2=7 10, 20,30, ...
11,21,31,... _f - _ 9 11,21,31,...
o [Gplal =7 o [Fs]a7 =7 12,22,32,... ° [CFgnXn]a0 =1 e[GF(g=Xn]al2 =7 12,22,32, ...
o [Gpla5 =7 o [F-pJa0 =7 13,23,33, ... 13,23,33, ..
o lFala0 =? o TF-p]alll = ? 14,2434, ... 14,2434,
[Fala [F-pla 15,25,35, .. 15,25,35, ..
Syntax and Semantics of Propositional Linear-Time Temporal Logic (PLTL) 4 Important Valid Formulae
[e]at=true iff LTL formula ¢ holds in _ =G -p < —F EG® —p > ~F® £ X —p e =X
timelinea : N - A — Battimet: o = glme Playris F 4 Gp Fo 4 Gwp 4 u 4
Declaration: [_]:LTLA - (N > A > B) ~ N - B : Fropeor Frope o R F(ep) Ug) < ~(pB q)
@ U 9 is true at time t if ¢ is true at some time 3 Idempotencies Implications
' > t, and for all times t’ such that t <t < t/, p is 1 EFFpeFp Ep=Fp EGp=p
true. 5
EGGpeG EXp=>F EGp=>X
Axiom “Semantics of *U"”: =sem=s “yntil” 6,16,26 P P 4 4 4 4
loUv]at g};g;, EF*F*peF>p EGp=Fp =EGp=>XGp
= ANl 519,29 FEGG¥p=G™yp FpUg=Fq FG*q=F~q
c[¥lar 10,20,30,
AVENTE < <t o [p]at” 11,21.31 =EXFpeFXp EXGp=GXp E((XpUXq)=X(pUg)
12,22,32
o [pUglal =7 o [pU(gar)]a42 =" 13,23, 33, E F"p e XFp o FF¥p < GFp « F*F¥p < G¥F%p
o [pUs]a0 =7 o [pU(gnrs)]ad2 =7 14,2434 E G®p o XG®p o FGC®p o GG®p o F*G®p o G®G®
P pUq 152535 P P P p P p

o [-sU-plad0=7 o[(pvr)Us]al =7

(considering <> to be conjunctional)

Interplay between Junctors and Temporal Operators

EG(prg) = (GpaGy)
EG® (prg) = (G*prG™yq)
E(prq)Ure (pUragqUr)

EF(pvq) < (FpvFq)
EFE® (pvg) = (F*pvE=q)
EpU(qvr)< (pUgqvpUr)

EX(pvg) = (XpvXq)
FEX(prg) = (XpaXq)

EX(p=q) = (Xp=Xq)
EX(peq e XpeXg)

E(GpvGg)=G(pvy)
E(G*pvG* =G> (pv9)
E((pUr)v(gUr))=((pvq) Ur)

=F(prq)=FpnFgq
EF® (prq)=F> pAF>q
E(pU@an)=((pUg)a(pUr))

Monotonicity and Fixpoint Characterisations
FG(p=q=Fp=Fq) FG(p=q=F"p=F>q)
EG(p=0=(GC"p=G~q)
FG(p=n=((rUp)=(Urq)

EG(p=q)=(Gp=>Gq)
EG(p=q=(pUr)=(qUr))
EG(p=q9=Xp=Xq)

Fixpoint Characterisations:

EFpepvXFp =E(pUq)=qviprX(pUg))

EGpeprXGp =B q) < -qr(pvX (pB q))

Variants of the Basic Temporal Operators

o p U g, until now, is known as “strong until”:
There is a future state g, and until then p.

o Alternative notations: p Us g or p Uz q.

o Weak until p U, qorp Uy g:
p holds as long as g does not hold — if necessary, forever.

o x &= p Uy qiff forall j: N we have ¥/ i p as far as for all k < j we have x* & 4.
We have:
o rplzgeplvqnFg

orpUyqge (pUaqvGp) = (pUsqvG(pr-q))

Past
Until now, all operators are future-related — explicitly:

o F'yp — “in the future, eventually p”

e G'yp — “in the future, always p”

e X*p — “in the next state p”

eplU*yq — “in the future, eventually g, and until then p”

Purely future-oriented propositional linear-time temporal logic —
Propositional Linear-time Temporal Logic / Future: PLTLF

Corresponding past-oriented operators (originally P, H, and S for since):

°Fp — “in the past at some point p”

eGp — “in the past, always p”

e X3p — “in the previous state we had p”

eplU g — “in the past at some point g, and since then p”

Logic only with past-oriented operators: PLTLP; with both: PLTLB.

Safety

@ Safety properties: “nothing bad happens”

Invariance properties: every finite prefix of the execution satisfies the invariance
condition

in PLTLB: initially equivalent to G p for a past formula p: “nothing bad has
happened until now” must always be true.

Every formula constructed from past operators, A, v, G and U, is a safety property,

eg.:

(p Uy q)= G (G pvE (gaX G p)) Exercise!

Safety Examples

o Partial correctness wrt. precondition ¢ and postcondition ¢:
If a program (with start label Iy and halting label /) starts executing in a state
satisfying the precondition ¢ and terminates, the the terminating state satisfies the
postcondition :
atly A p =G (atl, =)

This is initially equivalent to:
G (F~(—(atlgrp) AX yfalse) v G (atl, = 1))
and therefore a safety property.
o Mutual Exclusion: G (-(atCS; AatCS;))

o Deadlock-freeness: G (enabled; v...venabled,,)

Liveness

Liveness: “Something good will still happen (often enough)”

@ pis an “invincible” past formula iff every finite sequence x has a finite extension x’
such that p holds in the last state of x”:

[p] ' (lengthx") = true

A pure liveness property is a PLTLB formula that is initially equivalent to a formula
Fp, GFporF G p, where p is an invincible past formula

If p is a pure liveness property, then every finite sequence x can be extended to a
finite or infinite sequence x’ such that (x’,0) & p

Temporal implication G (p = F q) (where p and g are past formulae) is a generic
liveness property

Propositional Branching-time Temporal Logic

o The “Computational Tree Logic” CTL, and its generalisation CTL*
@ Low complexity of CTL

@ CTL model checking (SMV)

Time Structures for Branching Time

Definition: A time structure M = (S, R, L) consists of
@ astatesetS,
o atotal time step relation R: S < S
(for every time point there is at least one successor)
@ amarking L:S — P AP, mapping each state s to the set of atomic propositions true
ins.
Therefore M is a node-labelled directed graph. M is
o acycliciff R*nT={},
o tree-like iff M is acyclic and R is injective
(every state has at most one predecessor)
@ atree iff M is tree-like and there is a root node
(a node without predecessors from which all nodes are reachable). O
Tree property is not essential! Cyclic graphs can be “unravelled” to infinite trees.

Syntax of the “Computational Tree Logic” CTL

State formulae are generated by the following rules:
(S1) Every atomic proposition P is a state formula.
(S2) If p and q are state formulae, then so are p Aq and -p.
(S3a) If p is a state formula, then E X p and A X p are state formulae.

EXp

AXp — in all possible futures, X p
(S3b) If p and g are state formulae, then E (p U q) and A (p U q) are state formulae.

— in some possible future, X p

E(pUg) — in some possible future, (p U q)
A(pUyqg) — in all possible futures, (p U q)
Abbreviations in CTL: EFp:=E (ruellp) AGp:=-EF-p
AFp:=A((trueUp) EGp=-AF-p

CTL: Strict alternation between E /A and X, U ,F ,G
CTL*: Direct nesting of X , U ,F ,G allowed

CTL Specification Patterns

o E F (started A —ready)

o A G (requested = A F acknowledged)

o AG (AF enabled)

o AF (AG deadlock)

o AG (EF restart)

o A G (floor = 2 Adirection = up A ButtonPressed5 = A [direction = up U floor = 5])

o A G (floor = 3 nidle ndoor = closed = E G (floor = 3 nidle ndoor = closed))

Small Models Theorem for CTL

Theorem: Let py be a CTL formula of length n. Then the following statements are
equivalent:
@ py is satisfiable.

@ po has an infinite tree model with finite branching degree in O ().

@ pp has a finite model of size <n-2".

Theorem: The satisfiability test for CTL is DEXPTIME complete.

Why is this useful?
Synthesis of correct-by-construction automata!
(For satisfiable specifications. ..)

Model Checking
The Model Checking Problem:
M z |4
Le., is a given finite structure M a model for a given temporal logic formula p?
o The model checking problem for propositional temporal logics is decidable.
@ The model checking problem for PLTL(FX) is PSPACE-complete.
@ The model checking problem for PLTL(F) ist NP-complete.
o The model checking problem for CTL" is PSPACE-complete.

@ The model checking problem for CTL is solvable in deterministic polynomial time.

A CTL Model Checker: SMV

@ Developed since 1992 at Carnegie MODULE main
Mellon University VAR

@ OBDD-based symbolic model checking ;Etgtl;ft: ; {lr):a()(;;?ll];usy};
for CTL ASSIGN

o Finite datatypes: Booleans, init (status) := ready;
enumeration types, finite arrays nexizz;tus) =

@ Model description: Arbitrary
propositional-logic formulae allowed

request : busy;
1 : {ready, busy};
esac;
SPEC
AG(request - AF status=busy)

@ Safe model description: Parallel
assignments

o Original motivation: hardware
description

SMYV Example from [Huth, Ryan]: Mutual Exclusion

e

Two processes, each with three states: “n”: non-critical, “t”: trying, “c”: critical.
First protocol:

34 S7

Safety ®1:=AG-(c1AC2)

Liveness D:=AG(lhh=AFc)
3:=AG(m=EXH)

No strict sequencing @4 :=EF (¢; AE [c; U (—~c1 AE [-c2 U ¢q])])

Non-blocking

First Translation into SMV Input Language

MODULE main
VAR
pl: {n,
p2: {n,
ASSIGN
init (p1)
init (p2)
TRANS
(next(p2) = p2& ((p1=n - next(pl) = t) &
(pl=t - next(pl) =c) &
(pl=c — next(pl) =n) |
(next(pl) = pl & ((p2=n — next(p2) = t) &
(p2=t — next(p2) = ¢) &
(p2=c - next(p2) = n)))
TRANS next(pl) = c > next(p2) # ¢

.

, ch
, ch

n;
n;

SPEC AG !(pl=c & p2=0)

SPEC AG (pl=t— AF pl=c)

SPEC AG (pl=n - EX pl=t)

SPEC EF (pl=c & E[pl=c U (pl#c & E[p2#c U pl=c])])

SMV Output

—— specification AG ({(pl=c & p2=c)) is true

—— specification AG (pl=t— AFpl=c) is false

—— as demonstrated by the following execution sequence
state 1.1:

pl=n, p2=n

—— loop starts here ——
state 1.2:

pl=t

state 1.3:
p2=t

state 1.4:
p2=c

state 1.5:
p2=n

—— specification AG(pl=n— EXpl=t) is true
—— specification EF (pl=c & E(pl=cU(pl #+ c & E(p2 ... is true

Mutual Exclusion — continued
Safety P1:=AG-(c1A2)
Liveness Dy:=AG(Hh=AFcy)
P3:=AG(m=EXH)
No strict sequencing @4 :=EF (¢ AE [c1 U (-1 AE [-co U cr])])

Non-blocking

That can even be synthesised from the specification!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-12-06

Part 1: Graph Homomorphisms, Categories

Recall: Graphs
Definition: A graph is a tuple (V, E,src, trg) consisting of
@ aset V of vertices or nodes
@ aset E of edges or arrows
@ amapping src: E - V that assigns each edge its source node
@ amapping trg : E -e» V that assigns each edge its target node

Example graph:
({x.y.2}, {a.b,e.d}, {{a,x), (b,2), {e,2),{d, 1)}, {{a,y). (b.y), (e.2), (d,y)})

’\?y ——)

Graphs as Structures over Signature sigGraph

A signature is a tuple ¥ = (S, F, R) consisting of
o asetS of sorts
@ aset F of function symbols f : 51 x - x5, > t
@ aset R of relation symbols 7 : 51 x -+ x5, <> t

A Y-structure A consists of:
o for every sorts: S, a carrier sA, and

o for every function symbol f : s x -+ xs, >t amapping f4:sf x - xs7t - 4,

o for every relation symbol r:s1 x -+ xs, <>t arelation 7 :s{' x -+ x st t4.

sigGraph := (sorts: V,&
ops: src,trg: € -V

)

The signature graph of sigGraph: ;%’ 4
8

Signatures, as mathematical objects, are of a similar kind as graphs!

Recall: Subgraphs

Definition: Let two graphs Gy = (V1, Ey,srcy, trg;) and Gy = (V2, Ez, srca, t1g,) be given.

o G is called a subgraph of G, iff V1 ¢ V, and E; € E; and srcy ¢ srep and trg; € trg,.

@ We write Subgraph, for the set of all subgraphs of G.

@ For a given graph G, we write G; 5 G, if both G; and G, are subgraphs of G, and G;

is a subgraph of G,.

Theorem: C is an ordering on Subgraph .
Theorem: c; has greatest element G and least element ({}, {},{},{})-

a
b

d

Theorem: ¢ has binary meets defined by intersection.
Theorem: ¢ has binary joins defined by union.
Theorem: c; has pseudo-complements, but not complements.

The subgraph induced by {y,z} has the subgraph induced by {x} as pseudo-complement,
but their union is not the whole graph.

Pseudo- and Semi-Complements of a

Pseudo-complement of 5: The largest X such that Xn S = L:

Semi-complement of 5 The smallest X such that Xu 5 = T:

P e B s
il €l

Graph Homomorphisms

Definition: Let two graphs G = (V1, Eq,srcy, trg,) and Gy = (V2, Ey, srca, t1g,) be given.
A pair ¢ = (Py, Pr) is called a graph homomorphism from G; to G, iff

@ dyeVi-e>V, and PreE;-->E;

@ Ppssrep =src1 3Py and Ppstrg, = trg s Py
Homomorphisms are “structure-preserving mappings”.

(Mappings; Total and univalent)

Graph homomorphisms can: G,

o Identify different structure

_ T~
elements
T Vit b T

— not injective
@ Not cover the target completely
— not surjective

Graph Homomorphisms Compose
Definition: Let two graphs Gy = (V4,Ey,srcy, trgl) and G; = (V,, Ep, srca, trgz) be given.
A pair ® = (®y, ®r) is called a graph homomorphism from G; to G; iff

@ dyeVy->V, and PpeE)->E;

@ Opjsrey=sre15®y and Ppstrg, = trg sy

Definition and theorem: Let three graphs Gy, G1, and G, be given.

Let ® = (®y, $g) be a graph homomorphism from Gy to G; and ¥ = (Uy, V) be a graph
homomorphism from G; to G,.

Then their composition ® ;¥ = (Dy 3 Uy, & s Ug) is a graph homomorphism from Gy to Gs.

Gy

Gy

Definition and theorem: The identity graph homomorphism I = (id V,id E) is well-defined, and
is “the” identity for graph homomorphism composition.

Graph Homomorphisms Compose — and Form a Category

Graph homomorphisms have
@ source and target graphs,
@ associative composition § of consecutive homomorphisms,
@ identity homomorphisms I (satisfying the identity laws).

That is, graphs with graph homomorphisms form a category.

In particular:
o Visaninverse of P iff ®sW =Tand ¥s® = I.
@ & = (Py, Pg) has an inverse iff it is bijective, that is, iff both ® and ®f are bijective.
The inverse of @ is then ($y~, Pr”).

" ou

(Category theory is the source of the words “functor”, “monad”, “arrow”, etc. in the
context of Haskell.)

Categories

A category C consists of:
@ a collection of objects
o for every two objects A and B a homset containing morphisms f : A — B

son

@ associative composition “;” of morphisms, defined for AL»B —$,¢, with
(f38):A=C

o for every object A an identity morphism I 4 which is both a right and left unit for
composition.

Categorial Graph Transformation
Graphs with graph homomorphisms form a category — category theory is re-usable
theory!

Using category-theoretical concepts, various graph transformation mechanisms are
defined; these are used for system modelling and model transformation.

@
5 2 (1) 2 (1)/‘\(2)
—=0 L] L] L]
N N
Rule LHS ©) ©) Rule RHS
L K R
(PO1) (PO2)
G D H
o
) (2)) @) (1) A N(2)
L] L]]
. e %
Application graph) ® Result graph
© @ & o & 0

Pushouts — A Typical Categorial “Universal Construction”

Pushouts can be seen as a generalisation of unions/joins:

Recall “Characterisation of u”: (—2+D <5 is pushout of span “BL_ AL iff
BuC is union of sets B and C iff

VXe BCXACcX =BuCcX

PsR=Q35 A V(XD <T) | PsR'=Qs58
e 3Y:D—-D" e« R5Y=R" A S3Y=65

X

Such a pushout can be understood as:

gluing B and C together “along the interface «’— A-—2+".

Double-Pushout Rewriting

Rule: £<'I>7Lg &»R

L+ g . p

Redex: XL
A
% g _ %, 5
Rewriting step: Xt PO = PO Xr
At gy Yr.p

Example Double-Pushout Rewriting Step: Rule

l—— PhiL <]

Example Double-Pushout Rewriting Step: Redex

l€«——PhiL <

cnil. |

Example Double-Pushout Rewriting Step: Host

Ce ‘
(\r? |€— PhiL €—| PhiR

Example Double-Pushout Rewriting Step: Result

x }
4\?;0 «—pite] | PhiR

The Power of Double-Pushout Rewriting

easy to understand

easy to implement

delete
can { identify } precisely specified items
add

cannot duplicate or delete loosely specified items
— no “subgraph variables”

DPO graph rewriting is the most widely used graph transformation formalism.

@ Describing evolution/execution of systems modelled as graphs

@ Defining model transformations (e.g., of UML diagrams) for system development

The Power of Gluing
@ Gluing via pushouts (or more general colimits) works in many intersting categories
@ A component specifications consists of a signature and axioms

@ Such component specifications form a category; specification homomorphism can
structure comples specifications:

spec PreOrder s

spec BinRel is import BinRel
sort E axiom refleivily is x le
op de_: E,E — Boolean|™ axiom fransitivity is
end-spec cley Aylez = wlez
end-spec

spec Anlisymmelry is
import BinRel
axiom antisymmelry is

cley Ayles =z = =
end-spec

@ Specification homomorphism can also be used for refinement —
this method is used for correct-by-construction software development

Refining Bags to Sets in Sorting [Smith 1998]

LINEAR-ORDER
|

BAG+SEQ-LinOrd
|
|
|
|

SORTING

I

i

L I
BaS+SEQ-LinOrd }
i

I

I
I

I

I

I
BaS+SEQ-CONV !
¥)
BaS+SEQ-over-LinOrd |
I
I
I

¥
BaS-SORTIN

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2023

Wolfram Kahl

2023-12-06

Part2: Conclusion

Organisation
Extra TA office hours — Details to be announced — current plan:

e Thursday, Dec.7th, 1:00 to 4:00 p.m. — online only: Course help channel

e Friday, Dec. 8th, 1:00 to 4:00 p.m. — room TBA
e Saturday, Dec. 9th, 1:00 to 4:00 p.m. — room TBA
¢ Sunday, Dec. 10th, 1:00 to 4:00 p.m. — room TBA (if there is demand)
e Monday, Dec. 11th, 1:00 to 4:00 p.m. —room TBA

The final exam covers the whole course. Expect questions that combine several topics.

@ COMPSCI 2LC3 on Avenue and CALCCHECKwep, remains active throughout term 2.

@ Collected lecture slides will be posted under “General”.

@ Please fill in the course experience surveys for all your courses!
— mcmaster.bluera.com/mcmaster

Proofs — (Simplified) Inference Rules — See LADM p. 133, “Using Z” ch. 2&3
“Natural Deduction” — A Presentation of Logic for Mathematical Study of Logic

About Natural Deduction
Example proof (using the inference rules as shown in Using Z):

PAQ PAQ SERCALLYASE CUE
A : A . VxeP - . v 3 -elim
- - ———— Instantiati V-El p=4q .
P A Elim; 0 A-Elimp Plx=E] nstantiation (V-Elim) el T — -clim
Q Plx:=E] Gxiaep=qll wiaeq . [g-mtro
p xX= Jx:a e —elim
——— v-Introg v-Intro, ————= 3-Intro 9 . 2
PvQ PvQ Jx e P (Vx:a e p)=(3x:a e q) =-introl?
(Ix:aep=q) = ((Vx:aep)=(3Ix:aeq)) =-introl!
P=Q P P Q P e “er .
Q =-Elim PAQ A-Intro VxeP ¥-Intro (Prov. x not free @ Each formula construction C has:
in assumptions) o Introduction rule(s): How to prove a C-formula?
o Elimination rule(s): How to use a C-formula to prove something else?
@ Tactical theorem provers (Coq, Isabelle) provide methods to
P’ PQ P’ Tactical th p (Coq, Isabelle) provid hod:
: : (virtually) construct such trees piecewise from all directions
PvQ R R . (3x e P) R X @ Several of the Natural Deduction inference rules correspond
P=0Q =-Intro — g VElim — R 3-Elim (Prov. x not fre.e o to LADM Metatheorems or proof methods,
in R, assumptions) o to CALCCHECK proof structures.
Writing Proofs Proofs for Software

Natural deduction was designed as a variant of sequent calculus that closely
corresponds to the “natural” way of reasoning used in traditional mathematics.

As such, natural deduction rules constitute building blocks of proof strategies.
Natural deduction inference trees are not normally used for proof presentation.
CALcCHECK structured proofs are readable formalisations of conventional informal
proof presentation patterns.

If you wish to write prose proofs, you still need to get the right proof structure first
— think CALCCHECK!

For proofs, informality as such is not a value.

Rigorous (informal) proofs (e.g. in LADM)

strive to “make the eventual formalisation effort minimal”.

There is value to readable proofs, no matter whether formal or informal.
There is value to formal, machine-checkable proofs,

especially in the software context,

where the world of mathematics is not watching.

Strive for readable formal proofs!

o Partial correctness: Verifying essential functionality

o Total correctness: Verifying also termination

@ Absence of run-time errors imposes additional preconditions on commands

@ Termination is typically dealt with separately requires a well-founded “termination
order”.

These are supported by tools like Frama-C, VeriFast, Key, ...:
o Hoare calculus inference rules are turned into Verification Condition Generation

@ Many simple verification conditions can be proved using SMT solvers
(Satisfiability Modulo Theories) — Z3, veriT, ...

@ More complex properties may need human assitance:
Proof assistants: Isabelle, Coq, PVS, Agda, ...

@ Pointer structures require an extension of Hoare logic: Separation Logic

Industry has more and more formal methods jobs!
@ Legacy C/C++ code needs to be analysed for issues
@ Legacy C/C++ code bases are still growing. ..

Mathematical Programming Languages

Software is a mathematical artefact

Functional programming languages and logic programming languages aim to
make expression in mathematical manner easier

Among reasonably-widespread programming languages.
Haskell is “the most mathematical”

Dependently-typed logics (e.g., Coq, Lean, PVS, Agda) make it possible to express
mathematics in a natural way:
o For a matrix M : R, the element access Ms ¢ raises a type error
o A simple graph (V, E) can consist of a type V and a relation E: V < V.
Dependently-typed programming languages (e.g., Agda, Idris)
o contain dependently-typed logics — “proofs are programs, too”
o make it possible to express functional specifications via the type
system — “formulae as types”: Curry-Howard correspondence
o A program that has not been proven correct wrt. the
stated specification does not even compile.

Continued Use of Logical Reasoning
COMPSCI 2AC3 Automata and Computability
— formal languages, grammars, finite automata, transition relations, Kleene algebra!
acceptance predicates, ...

COMPSCI 2SD3 Concurrent Systems Design
—correctness of concurrent programs, may use temporal logic
COMPSCI 2DB3 Databases

— n-ary relations, relational algebra; functional dependencies

COMPSCI 3MI3 Principles of Programming Languages

— Programming paradigms, including functional programming;
mathematical understanding of prog. language constructs, semantics
3RA3 Software Requirements

— Capturing precisely what the customer wants, formalisation

COMPSCI 3EA3 Software and System Correctness
— Formal specifications, validation, verification

COMPSCI 4FP3 Advanced Functional Programming

Concluding Remarks

How do I find proofs? — There is no general recipe

Proving is somewhat like doing puzzles — practice helps

Proofs are especially important for software — and much care is needed!

Be aware of types, both in programming, and in mathematics

Be aware of variable binding — in quantification, local variables, formal parameters

Strive to use abstraction to avoid variable binding
— e.g., using relation algebra instead of predicate logic

When designing data representations, think mathematics: Subsets, relations,
functions, injectivity, ...

Thinking mathematics in programming is easiest
in functional languages, e.g., Haskell, OCaml

Specify formally! — Design for provability!

When doing software, think logics and discrete mathematics!

